1
!"#$%&' )*+,*-.,/0 !" $%&'() !" *)+)(+%' 1*+ 2344 0-1 25$678 57 1*+ 29:&'$4 1;9 <5= >?@,0A-BC !"#$%&'#( #$*%+ !,#'* -#%. /0 /$% /0 +./ 1%(0/('+%2 341/5%46 '+ %$2 /0 "/-'7*% 8*'44 #$*%+ 9:; 1(/7% <=>/-'7*% 4+'#$*%44? 4+%%* 4'"1*% #$*%+ @#,%2 1%(0/('+%2 #$*%+ (#$84 A%$+ +/ B//2 CD9 E'+%( F'G5%+ ;H"#2#I%2 '#( #$*%+ >J! #$*%+ +/ "/4+ 2/.$4+(%'" 41/5%4 K$*%+ +/ "#,#$8 '#( 41/5%4 L/ 2%+%G+/( 0.3 0.2 0.1 0.0 -0.1 Difference 1000 800 600 400 200 m/z X X 500-nm Part. 250-nm Part. Monomers Dimers Oligomers Uptake liquid PEG Uptake SOA Loss liquid PEG Loss SOA Nitrate absorbance @ 1280 cm 1 Time (min) OH DMA OH DMA Véronique Perraud , 1 Ma1hew L. Dawson, 1 Carla WaringKidd, 1 Michael J. Ezell, 1 Mychel E. Varner, 1 R. Benny Gerber, 1 Andrew S. MarInez, 2 Donald Dabdub 2 and Barbara J. FinlaysonPi1s 1 1 Department of Chemistry, University of California, Irvine, CA, United States; 2 Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, United States New ParIcle FormaIon and Growth From the ReacIon of Methanesulfonic Acid with Amines and the Ozonolysis of Terpernes 1x10 4 0 2.0x10 6 1.5 1.0 0.5 MSA + TMA MSA + H 2 O MSA+TMA+H 2 O Excess TMA MSA+TMA+H 2 O Excess MSA % RH % RH 4% 9% 20% 3% 8% 19% 18% 0% 1x10 4 0 1.0x10 6 0.5 MSA + DMA MSA + H 2 O MSA+DMA+H 2 O Excess DMA MSA+DMA+H 2 O Excess MSA % RH % RH 3% 8% 18% 8% 12% 21% 18% 0% TMA DMA No Amine No Water No Amine No Water Figure 2: Complex dependence of parKcle formaKon on precursor concentraKon in the MSAamine water system, for trimethylamine (TMA) and dimethylamine (DMA). 13 Atmospheric aerosols negaKvely impact human health, reduce visibility and affect the climate by scaUering and absorbing solar radiaKon and changing cloud properKes. 14 Models typically consider sulfuric acid (H 2 SO 4 ) nucleaKon as the major source of new parKcles in the atmosphere. However, these methods consistently underpredict parKcle formaKon, indicaKng that other sources and/or conucleaKng species may play a role. 2,3,5 Ammonia and amines have recently been idenKfied as important conucleaKng species in parKcle formaKon from sulfuric acid. 612 Also, recent research at AirUCI using a flow tube reactor (Fig.1) has idenKfied methanesulfonic acid (MSA, CH 3 SO 3 H) and amines as a potenKally important source of parKcles. 13 ParKcle formaKon in these mulKcomponent systems shows a complex dependence on precursor concentraKon (Fig. 2), making them difficult to model using parameterizaKons based on nucleaKon theory. Two kineKcsbased nucleaKon mechanisms, one for sulfuric acid, amines and water, and one for MSA, amines and water (Fig. 3), have been proposed as accurate, computaKonallyinexpensive methods for predicKng parKcle formaKon from these systems. 12,13 Figure 1: Flow tube uKlized for parKcle formaKon experiments IntroducIon / Previous Work on MSA + Amines + H 2 O Modeling New Mini Flow tube Experiments 150 m 1100 m 40 m 0m 310 m 670 m 80 Cells 30 Cells 123 Gas Species 296 Aerosols: 37 species, 8 sizes 361 ReacIons Each Cell: 5 x 5 km 2 Figure 4: UCICIT SpecificaKons UCICIT solves the DiffusionAdvecKonReacKon equaKon in three dimensions in a 30x80x5 grid encompassing the South Coast Air Basin of California (SoCAB). Emissions of species besides MSA and amines follows 2005 emissions inventories. Table 1: OxidaKon reacKon rates The species MSA, methylamine (MMA), dimethylamine (DMA) and trimethylamine (TMA) were included in the UCICIT model along with their oxidaKon reacKons with OH and ozone (O 3 ). Choose Emissions Rate Factor E DMA = 15 pptv*m/min Define Emissions Scenario Set Chemistry Switch AMINE + O 3 AMINE + OH AMINE + O 3 AMINE + OH Run Airshed Model Choose SpaIal Metric Specific LocaKons DomainWide Values Evaluate ConcentraIon 100 pptv Other Figure 6: IteraKve model execuKon and analysis process Amine emissions were set to track those of ammonia. The magnitude of the amine emissions was iteraKvely adjusted unKl average concentraKons were 100 pptv 14,15 between 6 and 9 am. Model results with and without oxidaKon chemistry were performed to assess the impact of oxidaKon reacKons on amine concentraKon. Goal: Study the formaKon and growth mechanism/kineKcs of SOA from MSA + Amines +H 2 O at shorter reacKon Kme. Results Figure 8: Long Beach hourly variaKons in OH and DMA. Solid: OxidaKon Disabled. Dashed: OxidaKon Enabled. Goal: Use a regional air quality model (UCICIT) to asses the impact of kineKcsbased nucleaKon mechanisms in the South Coast Air Basin of California References: 1. Forester et al., IPPC Report (2007); 2. FinlaysonPiUs & PiUs (2000); 3. Seinfeld & Pandis (2006); 4. Pope & Dockery, W. J. Air Waste Manage. Assoc,. 56, 709–742 (2006); 5. Sipila et al., Science, 327, 1243–1246 (2010); 6. Angelino et al., Environ. Sci. Technol., 35, 3130–3138 (2001); 7. Berndt et al., Atmos. Chem. Phys., 10, 7101–7116 (2010); 8. Kirkby et al., Nature, 476, 429–U77 (2011); 9. Smith et al., PNAS, 107, 6634–6639 (2010); 10. Yu et al., Geophys. Res. LeJ., 39, (2012); 11. Zollner et al., Atmos. Chem. Phys., 12, 4399–4411 (2012); 12. Chen et al., PNAS, 109, 1871318718 (2012); 13. Dawson et al., PNAS, 109, 1871918724 (2012). Figure 3: Calculated energy diagram and proposed kineKcs based nucleaKon mechanism 13 Figure 5: ColocaKon of amine parKcle precursor species in SoCAB Modeled amine concentraKons are a linear funcKon of emission factors (Fig.7) Fast oxidaKon rates lead to chemistry dominaKng over advecKon in determining amine concentraKons (Fig. 7) Magnitude of required emission factors varies slightly between amine species but by several orders of magnitude by geographical locaKon (as low as 45 in the domain’s peak, to 460 in Long Beach, and 1900 in Anaheim, all in units of pptVm/min) Low amine concentraKons suggest a smaller role for amines in parKcle formaKon during the day CompeKKon for amine chemistry is driven mostly by oxidaKon via OH. Amines and OH are observed to have inversely correlated temporal variaKons (Fig. 8 and Fig. 9). Predicted emission factors are in reasonable agreement with global average measurements of NH 3 :amine raKos (Fig. 10). Differences are likely due to local variaKon in NH 3 and amine emission rates. SO 2 NH 3 Methodology Amines and reduced sulfur species (precursors for sulfuric acid and MSA) were not previously included in the UCICIT model. However, SO 2 (an important source of sulfuric acid) and ammonia are included and show areas of overlapping concentraKon (Fig. 5). Conclusions Under this emissions scenario, there appears to be a potenKal for parKcle formaKon in the morning hours. OxidaKon of amines by OH presents the greatest compeKKon to parKcle formaKon through amineacid reacKons. References: 14. Ge et al., Atmos. Environ., 45, 524546 (2011) 15. Facchinni et al., Environ. Sci. Technol., 42, 91169121 (2008) Figure 7: Long Beach concentraKonemission trends !"!! !"!# !"$! !"$# !"%! !"%# ! #! $!! $#! %!! %#! ! # $! $# %! %# !" $%&'(&)*+),%& -..)/ 012 $%&'(&)*+),%& -..)/ "%3* &'( &'( )* )* !"#$% '( )* )+,-./'0 Figure 9: Top: OH and DMA at Kme of low OH oxidaKon BoUom: OH and DMA during Kme of high OH oxidaKon Figure 10: Comparison of model emission rates to literature values !"#$%& !"#$%' !"#$%( !"#$%! !"#) %% **+ ,*+ -*+ x4.8 x21 x5.6 Global Median 14 UCI-CIT Model Total Figure 14: Organic nitrate uptake on αpinene/O 3 SOA and Poly(ethylene glycol) seed parKcles (PEG) 1 ATRFTIR Experiments Goal: InvesKgate SOA phase and uptake of VOCs IR spectrum of SOA coaKng IR signal monitored as a funcKon of Kme EvaporaKon rate and IR spectrum of evaporated material obtained SOA evaporaKon RONO 2 uptake rate RONO 2 loss rate RONO 2 uptake Very liUle evaporaKon, less than 20% loss in 20 hrs Good agreement with results from Vaden et al., (2011) for lab generated and ambient SOA parKcles EvaporaKon behavior is not consistent with that predicted based on instantaneous equilibrium parKKoning of known ozonolysis products References: Normalized peak area Time (hrs) Recent studies show that aerosols are semisolid or glassy, 1627 which will affect the way SVOCs parKKon into SOA. The uptake of SVOCs may be beUer represented by a condensaKon mechanism. 2830 IBN uptake and loss much slower in SOA than liquid PEG model system SOA has a higher viscosity than PEG (0.1 pa s) Loss of IBN from SOA is very slow considering the high vapor pressure of IBN (10 Torr) SOA behaving like a semisolid and hindering diffusion Aim to extend method to other organic nitrates/ SVOCs/model systems 16. Zobrist et al., ACP, 8, 52215244 (2008); 17. Virtanen et al., Nature, 467, 824827 (2010); 18. Virtanen et al., ACP, 11, 87598766 (2011); 19. Vaden et al., PNAS, 107, 66586663 (2010); 20. Vaden et al., PNAS, 108, 21902195 (2011); 21. Cappa and Wilson, ACP, 11, 18951911 (2011); 22. Koop et al., PCCP, 13, 1923819255 (2011); 23. Tong et al., ACP, 11, 47394754 (2011); 24. Mikhailov et al., ACP, 9, 94919522 (2009); 25. Saukko et al., Atmos. Meas. Tech., 5, 259265 (2012); 26. Zelenyuk et al., EST, 46, 1245912466 (2012); 27. Abramson et al. PCCP, 15, 29832991 (2013); 28. Perraud et al., PNAS, 109, 28362841 (2012); 29. Kleinman et al., ACP, 9, 42614278 (2009); 30. Riipinen et al., ACP, 11, 38653878 (2011); 31.Bruns et al., Anal. Chem., 82, 59225927 (2010); 32. Bruns et al., PCCP, J. Phys. chem., 116, 59005909 (2012) Figure 11: Design of the mini flow tube. (Ezell et al., 2013) Step 1: Residence Ime measurements ParKcle conc. (# cm 3 ) ParKcle conc. (# cm 3 ) 2 A New Approach for SOA analysis: Atmospheric Solid Analysis Probe Mass Spectrometry (ASAPMS) 3132 Heated N 2 H 2 O Corona discharge needle 3 kV, 5ȝA ASAP probe To MS analyzer Sample on PEEK 2 Placement of the wafer on the new ASAP probe [M+H] + 1 CollecKon of the SOA on Siwafer 1.0 0.8 0.6 0.4 0.2 0.0 Normlaized Intensity 600 500 400 300 200 100 0 Scan number !"#$ &""#$ &!"#$ '""#$ '!"#$ (""#$ (!"#$ )""#$ Figure 16: Thermogram 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Normalized Intensity 1000 800 600 400 200 m/z 167 183 199 155 295 313 339 353 369 383 399 479 493 521 Fig. 17: Integrated Mass Spectrum (20’C to 350’C) New ParIcle FormaIon and Growth from Ozonolysis of Terpenes Thermal desorpKon of the SOA products using a temperature ramp from 20°C to 450°C. Sou ionizaKon forming [M+H] + ions. DetecKon using a Kmeofflight mass spectrometer allowing accurate mass determinaKon. New sampling/analysis method: no more transfer of the sample!!! The new method increases runtorun reproducibility. Able to compare different condiKons, such as those presented here for d > 500nm parKcle vs. 250nm < d < 500nm parKcles (Sioutas impactor, stage C and D respecKvely; sampling at 9 Lpm, from Port 5 [31min rxn Kme]) (X = impurity peaks) Figure 12: Experimental design Figure 13: αPinene/O 3 SOA EvaporaKon experiments Results Fig. 18: Comparison Spectrum Figure 15: Sampling/Analysis sequence !"#$%&'( *+&,-&. /!012 34 5567 834 99:6+* Air Results Total Flow (Lpm) 6 11 17 Distance d (cm) t r (s) t r (s) t r (s) 3.5 1.2 0.8 0.5 0.9 2.5 1.5 0.9 12 4.2 2.6 1.6 22 7.7 4.9 3.0 32 11.2 7.1 4.3 42 14.7 9.3 5.7 52 18.2 11.5 7.1 Laminar flow/residence Kme tested with the measurement of NO 2 in air by UVvis spectroscopy). First experiments with MSA + amines + H 2 O are underway (see B.J. FinlaysonPiUs’ talk on Tuesday/NPF breakout session) d Port 5 (31 min rxn Ime) C=O C–H Port 1 (7 min rxn Ime) C=O C–H Amine Oxidant Rate Constant (ppm/min) MMA OH 3.4E+04 O 3 1.1E05 DMA OH 1.0E+05 O 3 2.6E03 TMA OH 9.3E+04 O 3 1.2E03 Table 2: Residence Kme in the flow tube Amine:NH 3 Emissions Rate (weight basis)

New*ParIcle*FormaIon*and*Growth*From*the*ReacIon*of ... · )*+,*-.,/0(!"#*)+)(+%'# !"#$%&'()# 1*+(2344(0-1(25$678(57(1*+(29:&'$4(1;9(?@,0a-bc(!"#$%&'#() #$*%+)!,#'*)-#%.)/0)/$%)/0)+./)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New*ParIcle*FormaIon*and*Growth*From*the*ReacIon*of ... · )*+,*-.,/0(!"#*)+)(+%'# !"#$%&'()# 1*+(2344(0-1(25$678(57(1*+(29:&'$4(1;9(?@,0a-bc(!"#$%&'#() #$*%+)!,#'*)-#%.)/0)/$%)/0)+./)

!"#$%&'(

)*+,*-.,/0(

!"#$%&'()#!"#*)+)(+%'#

1*+(2344(

0-1(25$678(57(1*+(29:&'$4(

1;9(<5=(>?@,0A-BC(

!"#$%&'#()#$*%+)!,#'*)-#%.)/0)/$%)/0)+./)

1%(0/('+%2)341/5%46))'+)%$2)/0)"/-'7*%)8*'44)#$*%+)

9:;)1(/7%)

<=>/-'7*%)4+'#$*%44?)4+%%*)4'"1*%)#$*%+)

@#,%2)1%(0/('+%2)#$*%+)(#$84)

A%$+)+/)B//2)

CD9)E'+%()F'G5%+)

;H"#2#I%2)'#()#$*%+)

>J!)#$*%+)+/))"/4+)

2/.$4+(%'")41/5%4)))

K$*%+)+/)"#,#$8)'#()41/5%4)

L/)2%+%G+/()

0.3

0.2

0.1

0.0

-0.1

Diffe

renc

e

1000800600400200m/z

X

X 500-nm Part.

250-nm Part.

Monomers

Dimers

Oligomers

Uptake  -­‐  liquid  PEG    

Uptake  -­‐  SOA  

Loss  -­‐  liquid  PEG    

Loss  -­‐  SOA  

Nitrate  absorbance  @

 1280  cm

-­‐1  

Time  (min)  

OH

DMA OH

DMA

   

Véronique  Perraud,1  Ma1hew  L.  Dawson,1  Carla  Waring-­‐Kidd,1  Michael  J.  Ezell,1  Mychel  E.  Varner,1  R.  Benny  Gerber,1  Andrew  S.  MarInez,2  Donald  Dabdub2  and  Barbara  J.  Finlayson-­‐Pi1s1    

1Department  of  Chemistry,  University  of  California,  Irvine,  CA,  United  States;    2Department  of  Mechanical  and  Aerospace  Engineering,  University  of  California,  Irvine,  CA,  United  States  

New  ParIcle  FormaIon  and  Growth  From  the  ReacIon  of  Methanesulfonic  Acid  with  Amines    and  the  Ozonolysis  of  Terpernes  

1x104

0

Tota

l Par

ticle

Con

cent

ratio

n (p

artic

les

cm-3

)

2.0x106

1.5

1.0

0.5

MSA+

TMA

MSA+

H2O

MSA+TMA+H2OExcess TMA

MSA+TMA+H2OExcess MSA

% RH

% RH

4% 9% 20% 3%

8%

19%

18%0% 1x10

4

0

Tota

l Par

ticle

Con

cent

ratio

n (p

artic

les

cm-3

)

1.0x106

0.5

MSA+

DMA

MSA+

H2O

MSA+DMA+H2OExcess DMA

MSA+DMA+H2OExcess MSA

% RH

% RH

3%

8%

18%

8%12%

21%

18%

0%

TMA   DMA  

No  Am

ine  

No  Water  

No  Am

ine  

No  Water  

Figure  2:  Complex  dependence  of  parKcle  formaKon  on  precursor  concentraKon  in  the  MSA-­‐amine-­‐water  system,  for  trimethylamine  (TMA)  and  dimethylamine  (DMA).13  

•       Atmospheric  aerosols  negaKvely  impact  human  health,  reduce  visibility  and  affect  the  climate  by  scaUering  and  absorbing  solar  radiaKon  and  changing  cloud  properKes.1-­‐4    •       Models  typically  consider  sulfuric  acid  (H2SO4)  nucleaKon  as  the  major  source  of  new  parKcles  in  the  atmosphere.    However,  these  methods  consistently  underpredict  parKcle  formaKon,  indicaKng  that  other  sources  and/or  co-­‐nucleaKng  species  may  play  a  role.2,3,5    •       Ammonia  and  amines  have  recently  been  idenKfied  as  important  co-­‐nucleaKng  species  in  parKcle  formaKon  from  sulfuric  acid.6-­‐12    Also,  recent  research  at  AirUCI  using  a  flow  tube  reactor  (Fig.1)    has  idenKfied  methanesulfonic  acid  (MSA,  CH3SO3H)  and  amines  as  a  potenKally  important  source  of  parKcles.13    

 

•       ParKcle  formaKon  in  these  mulKcomponent  systems  shows  a  complex  dependence  on  precursor  concentraKon  (Fig.  2),  making  them  difficult  to  model  using  parameterizaKons  based  on  nucleaKon  theory.    Two  kineKcs-­‐based  nucleaKon  mechanisms,  one  for  sulfuric  acid,  amines  and  water,  and  one  for  MSA,  amines  and  water  (Fig.  3),  have  been  proposed  as  accurate,  computaKonally-­‐inexpensive  methods  for  predicKng  parKcle  formaKon  from  these  systems.12,13  

Figure  1:  Flow  tube  uKlized  for  parKcle  formaKon  experiments  

IntroducIon  /  Previous  Work  on  MSA  +  Amines  +  H2O  

   

   

Modeling  

New  Mini  Flow  tube  Experiments  

150  m  

1100  m  

40  m  0  m  

310  m  

670  m  

80  Cells  30  Cells  

123  Gas  Species  296  Aerosols:  37  species,  8  sizes  361  ReacIons  

Each  Cell:    5  x  5  km2  

Figure  4:  UCI-­‐CIT  SpecificaKons  

•       UCI-­‐CIT  solves  the  Diffusion-­‐AdvecKon-­‐ReacKon  equaKon  in  three  dimensions  in  a  30x80x5  grid  encompassing  the  South  Coast  Air  Basin  of  California  (SoCAB).  

•       Emissions  of  species  besides  MSA  and  amines  follows  2005  emissions  inventories.  

Table  1:  OxidaKon  reacKon  rates  

•       The  species  MSA,  methylamine  (MMA),  dimethylamine  (DMA)  and  trimethylamine  (TMA)  were  included  in  the  UCI-­‐CIT  model  along  with  their  oxidaKon  reacKons  with  OH  and  ozone  (O3).  

Choose  Emissions  Rate  Factor  

EDMA  =  15  pptv*m/min    

Define  Emissions  Scenario  

Set  Chemistry  Switch  

AMINE  +  O3  

AMINE  +  OH  

AMINE  +  O3  

AMINE  +  OH  O  

P Run  Airshed  Model  

Choose  SpaIal  Metric  

Specific  LocaKons  Domain-­‐Wide  Values  

 Evaluate  ConcentraIon  

100  pptv  Other   O

P

Figure  6:  IteraKve  model  execuKon  and  analysis  process  

•       Amine  emissions  were  set  to  track  those  of  ammonia.  •       The  magnitude  of  the  amine  emissions  was  iteraKvely  adjusted  unKl  average  concentraKons  were  100  pptv14,15  between  6  and  9  am.    •       Model  results  with  and  without  oxidaKon  chemistry  were  performed  to  assess  the  impact  of  oxidaKon  reacKons  on  amine  concentraKon.  

Goal:  Study  the  formaKon  and  growth  mechanism/kineKcs  of  SOA  from  MSA  +  Amines  +H2O  at  shorter  reacKon  Kme.  

Results  

Figure  8:  Long  Beach  hourly  variaKons  in  OH  and  DMA.    Solid:  OxidaKon  Disabled.  Dashed:  OxidaKon  Enabled.  

Goal:  Use  a  regional  air  quality  model  (UCI-­‐CIT)  to  asses  the  impact  of  kineKcs-­‐based  nucleaKon  mechanisms  in  the  South  Coast  Air  Basin  of  California  

References:    1.  Forester  et  al.,  IPPC  Report  (2007);      2.  Finlayson-­‐PiUs  &  PiUs  (2000);      3.  Seinfeld  &  Pandis  (2006);      4.  Pope  &  Dockery,  W.  J.  Air  Waste  Manage.  Assoc,.  56,  709–742  (2006);      5.  Sipila  et  al.,  Science,  327,  1243–1246  (2010);      6.  Angelino  et  al.,  Environ.  Sci.  Technol.,  35,  3130–3138  (2001);        7.  Berndt  et  al.,  Atmos.  Chem.  Phys.,  10,  7101–7116  (2010);      8.  Kirkby  et  al.,  Nature,  476,  429–U77  (2011);      9.  Smith  et  al.,  PNAS,  107,  6634–6639  (2010);        10.  Yu  et  al.,  Geophys.  Res.  LeJ.,  39,  (2012);        11.  Zollner  et  al.,  Atmos.  Chem.  Phys.,  12,  4399–4411  (2012);        12.  Chen  et  al.,  PNAS,  109,  18713-­‐18718  (2012);      13.  Dawson  et  al.,  PNAS,  109,  18719-­‐18724  (2012).  

!"#$%&'(''

'

Figure  3:  Calculated  energy  diagram  and  proposed  kineKcs  based  nucleaKon  mechanism13  

Figure  5:  Co-­‐locaKon  of  amine  parKcle  precursor  species  in  SoCAB  

•       Modeled  amine  concentraKons  are  a  linear  funcKon  of  emission  factors  (Fig.7)  

•       Fast  oxidaKon  rates  lead  to  chemistry  dominaKng  over  advecKon  in  determining  amine  concentraKons  (Fig.  7)  

•       Magnitude  of  required  emission    factors  varies  slightly  between  amine  species  but  by  several  orders  of  magnitude  by  geographical  locaKon  (as  low  as  45  in  the  domain’s  peak,  to  460  in  Long  Beach,  and  1900  in  Anaheim,  all  in  units  of  pptV-­‐m/min)  

•       Low  amine  concentraKons  suggest  a  smaller  role  for  amines  in  parKcle  formaKon  during  the  day  

•       CompeKKon  for  amine  chemistry  is  driven  mostly  by  oxidaKon  via  OH.  Amines  and  OH  are  observed  to  have  inversely  correlated  temporal  variaKons  (Fig.  8  and  Fig.  9).  

•       Predicted  emission  factors  are  in  reasonable  agreement  with  global  average  measurements  of  NH3:amine  raKos  (Fig.  10).    Differences  are  likely  due  to  local  variaKon  in  NH3  and  amine  emission  rates.  

SO2   NH3  

Methodology  

•       Amines  and  reduced  sulfur  species  (precursors  for  sulfuric  acid  and  MSA)  were  not  previously  included  in  the  UCI-­‐CIT  model.    However,  SO2  (an  important  source  of  sulfuric  acid)  and  ammonia  are  included  and  show  areas  of  overlapping  concentraKon  (Fig.  5).  

Conclusions  

 •       Under  this  emissions  scenario,  there  appears  to  be  a  potenKal  for  parKcle  formaKon  in  the  morning  hours.  

•       OxidaKon  of  amines  by  OH  presents  the  greatest  compeKKon  to  parKcle  formaKon  through  amine-­‐acid  reacKons.  

References:    

14.  Ge  et  al.,  Atmos.  Environ.,  45,  524-­‐546  (2011)  15.  Facchinni  et  al.,  Environ.  Sci.  Technol.,  42,  9116-­‐9121  (2008)  

Figure  7:  Long  Beach  concentraKon-­‐emission  trends  

!"!!

!"!#

!"$!

!"$#

!"%!

!"%#

!

#!

$!!

$#!

%!!

%#!

! # $! $# %! %#

!"#$%&

'(&)*+),%&

#-..

)/

012#$%&

'(&)*+),%&

#-..

)/

" %3*

&'( &'( )* )*

!"#$%&'(&)*&)+,-./'0&

Figure  9:  Top:  OH  and  DMA  at  Kme  of  low  OH  oxidaKon  BoUom:  OH  and  DMA  during  Kme  of  high  OH  oxidaKon  

Figure  10:  Comparison  of  model  emission  rates  to  literature  values  

!"#$%&

!"#$%'

!"#$%(

!"#$%!

!"#) %%

**+ ,*+ -*+!"#$%&'()*+"

#,,#-$

,*./0%*

12%#34

0*5/,#,6

./012/3*45627 *054/3-082/

x4.8 x21 x5.6 Global Median14 UCI-CIT Model Total

Figure  14:    Organic  nitrate  uptake  on  α-­‐pinene/O3  SOA  and  Poly(ethylene  glycol)  seed  parKcles  (PEG)  

1  -­‐  ATR-­‐FTIR  Experiments  

Goal:          InvesKgate  SOA  phase  and  uptake  of  VOCs  

-­‐  IR  spectrum  of  SOA  coaKng  -­‐  IR  signal  monitored  as  a  funcKon  of  Kme  -­‐  EvaporaKon  rate  and  IR  spectrum  of  evaporated  material  obtained  

SOA  evaporaKon  

-­‐  RONO2  uptake  rate  -­‐  RONO2  loss  rate  

RONO2  uptake  

•       Very  liUle  evaporaKon,  less  than  20%  loss  in  20  hrs    •       Good  agreement  with  results  from  Vaden  et  al.,  (2011)  for  lab  generated  and  ambient  SOA  parKcles  •       EvaporaKon  behavior  is  not  consistent  with  that  predicted  based  on  instantaneous  equilibrium  parKKoning  of  known  ozonolysis  products  

References:    

Normalize

d  pe

ak  area  

Time  (hrs)  

•       Recent  studies  show  that  aerosols  are  semi-­‐solid  or  glassy,16-­‐27  which  will  affect  the  way  SVOCs  parKKon  into  SOA.  •       The  uptake  of  SVOCs  may  be  beUer  represented  by  a  condensaKon  mechanism.28-­‐30  

•     IBN  uptake  and  loss  much  slower  in  SOA  than  liquid  PEG  model  system  •     SOA  has  a  higher  viscosity  than  PEG  (0.1  pa  s)  •     Loss  of  IBN  from  SOA  is  very  slow  considering  the  high  vapor  pressure  of  IBN  (10  Torr)  •     SOA  behaving  like  a  semi-­‐solid  and  hindering  diffusion  •     Aim  to  extend  method  to  other  organic  nitrates/  SVOCs/model  systems  

16.  Zobrist  et  al.,  ACP,  8,  5221-­‐5244  (2008);      17.  Virtanen  et  al.,  Nature,  467,  824-­‐827  (2010);      18.  Virtanen  et  al.,  ACP,  11,  8759-­‐8766  (2011);      19.  Vaden  et  al.,  PNAS,  107,  6658-­‐6663  (2010);      20.  Vaden  et  al.,  PNAS,  108,  2190-­‐2195  (2011);      21.      Cappa  and  Wilson,  ACP,  11,  1895-­‐1911  (2011);      22.  Koop  et  al.,  PCCP,  13,  19238-­‐19255  (2011);      23.  Tong  et  al.,  ACP,  11,  4739-­‐4754  (2011);      24.  Mikhailov  et  al.,  ACP,  9,  9491-­‐9522  (2009);      25.  Saukko  et  al.,  Atmos.  Meas.  Tech.,  5,  259-­‐265  (2012);      26.  Zelenyuk  et  al.,  EST,  46,  12459-­‐12466  (2012);    27.  Abramson  et  al.  PCCP,  15,  2983-­‐2991  (2013);      28.  Perraud  et  al.,  PNAS,  109,  2836-­‐2841  (2012);      29.  Kleinman  et  al.,  ACP,  9,  4261-­‐4278  (2009);      30.  Riipinen  et  al.,  ACP,  11,  3865-­‐3878  (2011);      31.Bruns  et  al.,  Anal.  Chem.,  82,  5922-­‐5927  (2010);      32.  Bruns  et  al.,  PCCP,  J.  Phys.  chem.,  116,  5900-­‐5909  (2012)  

Figure  11:  Design  of  the  mini  flow  tube.(Ezell  et  al.,  2013)    

Step  1:    Residence  Ime  measurements  

ParKcle  conc.  (#  cm

-­‐3)  

ParKcle  conc.  (#  cm

-­‐3)  

2  -­‐  A  New  Approach  for  SOA  analysis:    Atmospheric  Solid  Analysis  Probe  Mass  Spectrometry  (ASAP-­‐MS)31-­‐32  

HeatedN2

H2O

[                ] Coronadischargeneedle3  kV,  5 A

ASAPprobe

To  MSanalyzer

Sampleon  PEEKtube

M      H -­-­

2  -­‐  Placement  of  the  wafer  on  the  new  ASAP  probe  

[M+H]+  

1  -­‐  CollecKon  of  the  SOA  on  Si-­‐wafer  

1.0

0.8

0.6

0.4

0.2

0.0

Norm

laiz

ed In

tens

ity

6005004003002001000Scan number

!"#$%

&""#$%

&!"#$%

'""#$%

'!"#$%

(""#$%

(!"#$%

)""#$%

Figure  16:  Thermogram  

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Norm

aliz

ed In

tens

ity

1000800600400200m/z

167183

199

155

295313

339353

369

383

399

479493

Stage C500-nm particles

Integrated MS spectra (20'C to 350'C)

521

Fig.  17:    Integrated    Mass  Spectrum    (20’C  to  350’C)  

!"#$%&'($)$!"#$%&'($*$!+,$%&'($*$!+,$%&'($)$

!"#$

   

New  ParIcle  FormaIon  and  Growth  from  Ozonolysis  of  Terpenes  

•       Thermal  desorpKon  of  the  SOA  products  using  a  temperature  ramp  from  20°C  to  450°C.  •       Sou  ionizaKon  forming  [M+H]+  ions.  •       DetecKon  using  a  Kme-­‐of-­‐flight  mass  spectrometer  allowing  accurate  mass  determinaKon.  

   •  New  sampling/analysis  method:    no  more  transfer  of  the  sample!!!  •       The  new  method  increases  run-­‐to-­‐run  reproducibility.  •       Able  to  compare  different  condiKons,  such  as  those  presented  here  for    d  >  500-­‐nm  parKcle  vs.  250-­‐nm  <  d  <  500-­‐nm  parKcles  (Sioutas  impactor,  stage  C  and  D  respecKvely;  sampling  at  9  Lpm,  from  Port  5  [31min  rxn  Kme])  

(X  =  impurity  peaks)  

Figure  12:  Experimental  design  

Figure  13:    α-­‐Pinene/O3  SOA  EvaporaKon  experiments  

Results  

Fig.  18:    Comparison  Spectrum  

Figure  15:  Sampling/Analysis  sequence  

!"#$%&'()*+&,-&.)/!012))34)5567)834)99:6+*)

Air  

Results  

Total  Flow  (Lpm)  6   11   17  

Distance  d  (cm)   tr(s)   tr(s)   tr(s)  3.5   1.2   0.8   0.5  0.9   2.5   1.5   0.9  12   4.2   2.6   1.6  22   7.7   4.9   3.0  32   11.2   7.1   4.3  42   14.7   9.3   5.7  52   18.2   11.5   7.1  

•       Laminar  flow/residence  Kme  tested  with  the  measurement  of  NO2  in  air  by  UV-­‐vis  spectroscopy).  

•       First  experiments  with  MSA  +  amines  +  H2O  are  underway    (see  B.J.  Finlayson-­‐PiUs’  talk  on  Tuesday/NPF  breakout  session)  

d  

Port  5    (31  min  rxn  Ime)  p  C=O  n  C–H    

Port  1    (7  min  rxn  Ime)  p  C=O  n  C–H  

Amine   Oxidant   Rate  Constant  (ppm/min)  

MMA  OH   3.4E+04  O3   1.1E-­‐05  

DMA  OH   1.0E+05  O3   2.6E-­‐03  

TMA  OH   9.3E+04  O3   1.2E-­‐03  

Table  2:  Residence  Kme  in  the  flow  tube  

Amine:NH 3  Emissions  Rate    

(weight  b

asis)