104
U.S. Department of the Interior U.S. Geological Survey Scientific Investigations Report 2010-5099 Prepared in cooperation with the City of Tallahassee Nitrate-N Movement in Groundwater from the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966-2018

Nitrate-N Movement in Groundwater from the Land ... · Davis, J.H., Katz, B.G., and Griffin, D.W. — — USGS/SIR 2010-5099

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Davis, J.H., Katz, B.G., and Griffin, D.W.—

    —USGS/SIR 2010-5099

    U.S. Department of the InteriorU.S. Geological Survey

    Scientific Investigations Report 2010-5099

    Prepared in cooperation with the City of Tallahassee

    Nitrate-N Movement in Groundwater from the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966-2018

  • Nitrate-N Movement in Groundwater from the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966-2018

    By J. Hal Davis, Brian G. Katz, and Dale W. Griffin

    Prepared in cooperation with the City of Tallahassee

    Scientific Investigations Report 2010-5099

    U.S. Department of the InteriorU.S. Geological Survey

  • U.S. Department of the InteriorKEN SALAZAR, Secretary

    U.S. Geological SurveyMarcia K. McNutt, Director

    U.S. Geological Survey, Reston, Virginia: 2010 Revised: 2011

    For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS

    For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

    Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

    Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

    Suggested citation:Davis, J. H., Katz, B.G., and Griffin, D.W., 2010, Nitrate-N Movement in Groundwater from the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966-2018: U.S. Geological Survey Scientific Investigations Report 2010-5099, 90 p.

    9781411328570

  • iii

    Contents

    Abstract ...........................................................................................................................................................1Introduction.....................................................................................................................................................2

    Purpose and Scope ..............................................................................................................................4Previous Investigations........................................................................................................................4Description of the Study Area ............................................................................................................5Background and Approach .................................................................................................................5

    Geohydrologic Setting of the Wakulla Springs Springshed ...................................................................6Geologic Setting ....................................................................................................................................6Hydrologic Setting ................................................................................................................................8Groundwater Flow ................................................................................................................................8

    Data Collection and Field Methods ...........................................................................................................16Well and Core Samples ......................................................................................................................17Nitrate-N Loading and Concentrations at Land Surface from Various Sources ......................19

    Southeast and Southwest Sprayfields ...................................................................................19Atmospheric Deposition ...........................................................................................................20Effluent Discharges from Onsite Sewage Disposal Systems .............................................20Disposal of Biosolids by Land Spreading ..............................................................................23Creeks Discharging into Sinks .................................................................................................23Fertilizer Application .................................................................................................................23Livestock Wastes .......................................................................................................................24

    Nitrate-N and Chloride Concentrations in the Upper Floridan Aquifer and Wakulla Springs .....................................................................................................................25

    Model Development ....................................................................................................................................30Groundwater Flow Model Description and Calibration ................................................................30

    Subregional Model Geometry ..................................................................................................34Boundary Conditions ........................................................................................................34Simulated Hydraulic Conductivities ...............................................................................34Simulated Recharge to the Upper Floridan Aquifer ....................................................34

    Subregional Model Calibration ................................................................................................35Simulated Effective Porosity ....................................................................................................44

    Fate and Transport Model and Calibration .....................................................................................47Hydrodynamic Dispersion ........................................................................................................47Simulation of Nitrate-N and Chloride Concentrations from Various Sources .................47

    Southeast and Southwest Farm Sprayfields ................................................................47Effluent Discharges from Onsite Sewage Disposal Systems, Fertilizer

    Application, and Livestock Wastes ..................................................................51Inflow at Model Boundaries ...........................................................................................52Disposal of Biosolids by Land Spreading .....................................................................53Creeks Discharging into Sinks and Atmospheric Deposition ....................................53

    Nitrate-N and Chloride Concentrations in Wakulla Springs ...............................................53Simulated Future Nitrate-N Concentrations in Wakulla Springs .......................................53Simulated Nitrate-N Concentration Distribution in the Upper Floridan Aquifer

    at Selected Times .........................................................................................................55

  • iv

    End of 1967 .........................................................................................................................55End of 1986 .........................................................................................................................55End of 2004 .........................................................................................................................55End of 2006 .........................................................................................................................55End of 2007 .........................................................................................................................64End of 2018 .........................................................................................................................64

    Simulated Nitrate-N Loading to the Upper Floridan Aquifer ..............................................64Simulated Nitrate-N Loading to Wakulla Springs from All Sources .................................64

    Southeast and Southwest Farm Sprayfields ................................................................64Atmospheric Deposition ..................................................................................................79Effluent Discharges from Onsite Sewage Disposal Systems ....................................79Inflow at Model Boundaries ...........................................................................................79Disposal of Biosolids by Land Spreading .....................................................................79Creeks Discharging into Sinks ........................................................................................79Fertilizer Application ........................................................................................................80Livestock Wastes ..............................................................................................................80

    Model Sensitivity Analysis .......................................................................................................80Groundwater Flow Model Sensitivity Analysis ............................................................80Fate and Transport Model Sensitivity Analysis ............................................................81

    Model Limitations................................................................................................................................83Summary........................................................................................................................................................84References ....................................................................................................................................................85

    Figures 1. Map showing study area and potentiometric surface of the Upper Floridan aquifer

    during late May through early June 2006 .................................................................................3 2. Graph showing nitrate-N concentration in Wakulla Springs from 1966 through 2007

    compared to Leon and Wakulla County population ................................................................4 3. Map showing location of A, Southeast Farm sprayfield and B, Southwest Farm

    sprayfield and airport biosolids disposal area .........................................................................5 4. Chart showing geologic units, hydrogeologic units, and model layers in north-central

    Florida .............................................................................................................................................75–8. Maps Showing— 5. Top of the Upper Floridan aquifer used to set the top of model layer 1 ......................9 6. Base of the Upper Floridan aquifer used to set the bottom of model layer 2 ..........10 7. Thickness of the Upper Floridan aquifer ........................................................................11 8. Location of the Wakulla Springs cave system ..............................................................12 9. Diagram showing a generalized geologic cross section and model layers .....................13 10. Graph showing Wakulla Springs discharge from 1928 to 2008 ........................................15 11. Graph showing Wakulla Springs, Sopchoppy River, and Lost Creek discharges

    from January 2005 to August 2008 ...........................................................................................15 12. Diagram showing hydrostatic balance between freshwater and saltwater

    illustrated by a U-tube ................................................................................................................16

  • v

    13-15. Graphs Showing— 13. Nitrate-N loading to land surface and the Upper Floridan aquifer from 1966

    through 2018 .......................................................................................................................18 14. Nitrate-N and chloride concentrations and recharge rates at the Southeast

    Farm (SEF) and Southwest Farm (SWF) sprayfields ....................................................19 15. Actual and estimated number of onsite sewage disposal systems in Leon and

    Wakulla Counties from 1966 to 2018 ...............................................................................20 16. Map showing locations of onsite sewage disposal systems in Leon and Wakulla

    Counties in 2005 ..........................................................................................................................2117-22. Graphs Showing— 17. Land surface nitrate-N concentration and concentration recharging the Upper

    Floridan aquifer from biosolids disposal for the Tallahassee airport, Southwest Farm (SWF) sprayfield, and Council, Petty, Strickland, and Young farm sites.........22

    18. Nitrate-N load from domestic fertilizer application on Leon, and Wakulla Counties ...............................................................................................................24

    19. Nitrate-N loading from animal wastes on A, Leon, and B, Wakulla Counties .........25 20. Measured and simulated nitrate-N and chloride concentrations in wells

    SE-22, SE-53, SJ-1, and SJ-9 ............................................................................................26 21. Measured and simulated nitrate-N concentrations in wells LS-25 and SF-02 ........27 22. Measured and simulated nitrate-N and chloride concentrations in Wakulla

    Springs, A-, B-, C- and D-tunnels ....................................................................................2923-28. Maps Showing— 23. Finite-difference grid (every tenth cell boundary shown) and general

    locations for boundary conditions for the subregional groundwater flow and solute transport models ............................................................................................31

    24. Bottom of model layer 1 ....................................................................................................36 25. Thickness of model layer 2 ...............................................................................................37 26. Simulated horizontal hydraulic conductivity for layer 1 ..............................................38 27. Simulated horizontal hydraulic conductivity for layer 2 ..............................................27 28. Simulated net recharge rates to the Upper Floridan aquifer .....................................40 29. Graph showing total onsite sewage disposal system discharges for Leon and

    Wakulla Counties ........................................................................................................................41 30. Map and graph showing location of wells and comparison of measured and

    simulated heads in 1991 .............................................................................................................42 31. Map and graph showing location of wells, and comparison of measured and

    simulated heads for the late May to early June 2006 data set ...........................................4332-36. Maps Showing— 32. Particle pathlines showing groundwater flow directions with the simulated

    Wakulla Springs stage at 5 feet and the Spring Creek Springs Group stage at 0 feet, and simulated Wakulla Springs stage at 5 feet and Spring Creek Springs Group stage at 6 feet ..........................................................................................44

    33. Simulated porosity for layer 2 ..........................................................................................45 34. Particle tracking from monitoring wells SE-06, SE-11S, and SE-40 ...........................46 35. Simulated and measured nitrate-N concentrations at the Southeast Farm (SEF)

    sprayfield in model layer 1 in 2006 ..................................................................................48 36. Simulated and measured nitrate-N concentrations at the Southeast Farm (SEF)

    sprayfield in model layer 2 in 2006 ..................................................................................49

  • vi

    37-42. Graphs Showing— 37. Measured and simulated A, chloride and B, nitrate-N concentrations at well

    SE-22 ....................................................................................................................................50 38. Volume of recharge at the Southeast Farm (SEF) and Southwest Farm (SWF)

    sprayfields ...........................................................................................................................50 39. Simulated nitrate-N concentrations reaching the Upper Floridan aquifer at each

    onsite sewage disposal system (OSDS) location in Wakulla County .......................51 40. Simulated nitrate-N concentrations in recharge from atmospheric deposition,

    fertilizer, livestock, and total sources in the Leon County part of the study area ...51 41. Nitrate-N and chloride in water-supply wells CW-5 and CW-17, located near

    the model boundaries .......................................................................................................52 42. Simulated nitrate-N loads in Wakulla Springs from 1966 through 2018 ...................54 43-. Maps Showing— 43. Simulated nitrate-N concentrations in the Upper Floridan aquifer in model

    layer 1 at the end of 1967 ..................................................................................................56 44. Simulated nitrate-N concentration in the Upper Floridan aquifer in model

    layer 2 at the end of 1967 ..................................................................................................57 45. Simulated nitrate-N concentration in the Upper Floridan aquifer in model

    layer 1 at the end of 1986 ..................................................................................................58 46. Simulated nitrate-N concentration in the Upper Floridan aquifer in model

    layer 2 at the end of 1986 ..................................................................................................59 47. Simulated nitrate-N concentration in the Upper Floridan aquifer in model

    layer 1 at the end of 2004 ..................................................................................................60 48. Simulated nitrate-N concentration in the Upper Floridan aquifer in model

    layer 2 at the end of 2004 ..................................................................................................61 49. Simulated nitrate-N concentration in the Upper Floridan aquifer in model

    layer 1 at the end of 2006, assuming that Wakulla Springs is fully capturing the flow in the A-, K-, and R-tunnels ...............................................................................62

    50. Simulated nitrate-N concentration in the Upper Floridan aquifer in model layer 2 at the end of 2006, assuming that Wakulla Springs is fully capturing the flow in the A-, K-, and R-tunnels ...............................................................................63

    51. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 1 in model layer 1 at the end of 2007, assuming the flow in the R-tunnel is going to both Wakulla Springs and Spring Creek Springs Group ..........................65

    52. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 1 in model layer 2 at the end of 2007, assuming the flow in the R-tunnel is going to both Wakulla Springs and Spring Creek Springs Group .........................................66

    53. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 2 in model layer 1 at the end of 2007, assuming Wakulla Springs is fully capturing the flow in the A-, K-, and R-tunnels ...............................................................................67

    54. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 2 in model layer 2 at the end of 2007, assuming Wakulla Springs is fully capturing the flow in the A-, K-, and R-tunnels ...............................................................................68

    55. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 1 in model layer 1 at the end of 2018, assuming that the flow in the R-tunnel is going to both Wakulla Springs and the Spring Creek Springs Group .......................69

    56. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 1 in model layer 2 at the end of 2018, assuming that the flow in the R-tunnel is going to both Wakulla Springs and the Spring Creek Springs Group .......................70

  • vii

    57. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 2 in model layer 1 at the end of 2018, assuming that Wakulla Springs is fully capturing the flow in the A, K and R-tunnels ................................................................71

    58. Simulated nitrate-N concentration in the Upper Floridan aquifer for scenario 2 in model layer 2 at the end of 2018, assuming that Wakulla Springs is fully capturing the flow in the A-, K-, and R-tunnels ............................................................72

    59. Graphs showing simulated nitrate-N loads to the Upper Floridan aquifer and Wakulla Springs from all sources ............................................................................................73

    60. Graphs showing results of the subregional fate and transport model sensitivity analysis .........................................................................................................................................82

    Tables 1. Measured discharges for Wakulla and St. Marks Rivers and the Spring Creek

    Springs Group ..............................................................................................................................14 2. Concentrations of nitrate-N and chloride in water samples from wells, springs, and

    Tallahassee sprayfield effluent ................................................................................................17 3. Nitrate-N concentration in Wakulla Springs vent and tunnels from 2004 to 2006 ...........28 4. Transient stress periods for the subregional groundwater flow and solute transport

    models from January 1, 1966, to December 31, 2018 ............................................................32 5. Simulated sources of recharge to the Upper Floridan aquifer ...........................................35 6. Measured and simulated discharges for the 1991 and 2006 data sets ..............................41 7. Percentage of nitrate-N removed in the unsaturated zone as recharging water

    moves from land surface to the Upper Floridan aquifer ......................................................53 8. Simulated nitrate-N loading to the Upper Floridan aquifer and Wakulla Springs in

    selected years .............................................................................................................................74 9. Results of the subregional groundwater flow model sensitivity analysis .........................81 10. Results of the subregional groundwater flow sensitivity analysis for stage in Spring

    Creek Springs Group ..................................................................................................................82

  • viii

    Conversion Factors, Datum, and Abbreviations

    Multiply By To Obtain

    mile (mi) 1.609 kilometer

    square mile (mi2) 2.590 square kilometer

    inch per year (in/yr) 25.4 millimeter per year

    foot (ft) 0.3048 meter

    foot per day (ft/d) meter per day

    foot squared per day (ft2/d) 0.09290 meter squared per day

    cubic foot per second (ft3/s) 0.2832 cubic meters per day

    gallons per day 0.003785 cubic meter per day

    million gallons per day (Mgal/d) 0.4381 cubic meter per day

    acre 0.4047 hectare Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

    °C=(°F-32)/1.8

    Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

    Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

    Altitude, as used in this report, refers to distance above the vertical datum.

    *Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness [(ft3/d)/ft2]ft. In this report, the mathematically reduced form, foot squared per day (ft2/d), is used for convenience.

    Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25°C).

    Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (µg/L).

  • ix

    Abbreviations and Acronyms

    bls below land surface

    kg/yr kilograms per year

    kg N/yr kilograms of nitrogen per year nitrate-N nitrate-nitrogen

    µS/cm microsiemens per centimeter

    Mgal million gallons

    Mgal/yr million gallons per year

    mg/L milligrams per liter

    MODFLOW Modular Three-Dimensional Finite-Difference Groundwater Flow Model

    MT3D Modular Three-Dimensional Multi-Species Transport Model

    OSDS onsite sewage disposal system

    RASA Regional Aquifer-System Analysis

    SEF Southeast Farm

    SWF Southwest Farm

    the City the City of Tallahassee

    TKN total Kjeldahl nitrogen

    USGS U.S. Geological Survey

    UFA Upper Floridan aquifer

  • x

  • Nitrate-N Movement in Groundwater from the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966-2018

    by J. Hal Davis, Brian G. Katz, and Dale W. Griffin

    2. Biosolidsdisposalbylandspreadingat14,000kg/yr(21percent),

    3. Creeksdischargingintosinksat7,800kg/yr(11percent),and

    4. TheSouthwestFarmsprayfieldat4,500kg/yr(6percent).Thetotalsimulatednitrate-NloadtoWakullaSpringsin

    1987hadincreaseddramaticallyto306,000kg/yr.Themajorsourcesofnitrate-Nloadin1987weredeterminedtobe:1. TheSoutheastFarmsprayfieldat186,000kg/yr

    (61percent),

    2. Biosolidsat37,000kg/yr(12percent),and

    3. Inflowtothestudyareaacrossthelateralmodelboundariesat36,000atkg/yr(12percent).Alloftheothersourceswere8percentorless.TheWakullaSpringsdischargecanchangerapidly,even

    duringperiodsoflittleornorainfall.ThisrapidchangeisprobablytheresultofWakullaSpringsintermittentlycapturinggroundwaterthathasbeengoingtotheSpringCreekSpringsGroup.Thisspringgroupislocatedinamarineestuaryandisaffectedbytidallyinfluencedsaltwaterintrusion.Twomodelingscenariosweresimulatedandresultsarepresentedfor2007and2018inanefforttobrackettherangeofpossiblecurrentandfuturechangesintheflowofWakullaSprings.Inscenario1,itwasassumedthatWakullaSpringswasnotcapturingSpringCreekSpringsGroupflow.Inscenario2,itwasassumedthatWakullaSpringswascapturingSpringCreekSpringsGroupflow.

    AbstractTheCityofTallahasseebeganapilotstudyin1966at

    theSouthwestFarmsprayfieldtodeterminewhetherdisposaloftreatedmunicipalwastewaterusingcenterpivotirrigationtechniquestouptakenitrate-nitrogen(nitrate-N)isfeasible.Basedontheearlysuccessofthisproject,anew,largerSoutheastFarmsprayfieldwasopenedinNovember1980.However,arecent2002studyindicatedthatnitrate-NfromtheseoperationsmaybemovingthroughtheUpperFloridanaquifertoWakullaSprings,thuscausingnitrate-Nconcentra-tionstoincreaseinthespringwater.Theincreaseinnitrate-Ncombinedwiththegenerallyclearspringwaterandabundantsunshinemaybeencouraginginvasiveplantspeciesgrowth.Determiningthelinkbetweenthenitrate-Napplicationatthesprayfieldsandincreasednitrate-Nlevelsiscomplicatedbecausethereareothersourcesofnitrate-NintheWakullaSpringsspringshed,includingatmosphericdeposition,onsitesewagedisposalsystems,disposalofbiosolidsbylandspreading,creeksdischargingintosinks,domesticfertilizerapplication,andlivestockwastes.

    Groundwaterflowandfateandtransportmodelingwereconductedtosimulatetheeffectofallofthenitrate-NsourcesonWakullaSpringsfromJanuary1,1966,throughDecember31,2018.Thetotalsimulatednitrate-NloadtoWakullaSpringsin1967wasarelativelymodest72,000kilogramsperyear(kg/yr).Themajorsourcesofthenitrate-Nloadin1967weredeterminedtobe:1. Inflowtothestudyareaacrossthelateralmodel

    boundariesat31,000kg/yr(43percent),

  • 2 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    Undertheassumptionsofscenario1,thetotalsimulatednitrate-NloadtoWakullaSpringsin2007was222,000kg/yr.Themajorsourcesofnitrate-Nloadweredeterminedtobe:1. TheSoutheastFarmsprayfieldat111,000kg/yr

    50percent),

    2. Inflowtothestudyareaacrossthelateralmodelboundariesat44,000atkg/yr(20percent),and

    3. Onsitesewagedisposalsystemsat38,000kg/yr(17percent).

    Alloftheothersourcescontributed6percentorless.Undertheassumptionsofscenario2,thetotalsimulatednitrate-NloadtoWakullaSpringswas320,000kg/yr.Themajorsourcesofnitrate-Nloadweredeterminedtobe:1. TheSoutheastFarmsprayfieldat111,000kg/yr

    (35percent),

    2. Onsitesewagedisposalsystemsat83,000kg/yr(26percent),

    3. Inflowtothestudyareaacrossthelateralmodelboundariesat52,000atkg/yr(16percent),and

    4. Creeksdischargingintosinksat31,000kg/yr(10percent).

    Alloftheothersourcescontributed8percentorless.Thenitrate-NloadstoWakullaSpringsfromthe

    SoutheastFarmsprayfieldforscenarios1and2wereboth111,000kg/yr.TheseamountswerethesamebecausemostofthewaterfromtheSoutheastFarmsprayfieldwentintoWakullaSpringsinbothsimulations.Incontrast,thenitrate-Nloadsfromonsitesewagedisposalsystemsforscenarios1and2were38,000kg/yrand83,000kg/yr,respectively.TheadditionalwatercapturedbyWakullaSpringsinscenario2camefromanareathathadahighdensityofresidentialandcommercialsitesusingonsitesewagedisposalsystems.

    Undertheassumptionsofscenario1,thetotalsimulatednitrate-NloadtoWakullaSpringsin2018willbe175,000kg/yr.Themajorsourcesofnitrate-Nloadforscenario1areanticipatedtobe:1. Inflowtothestudyareaacrossthelateralmodel

    boundariesat48,000atkg/yr(28percent),

    2. TheSoutheastFarmsprayfieldat42,000kg/yr(24percent),

    3. Onsitesewagedisposalsystemsat51,000kg/yr(29percent),and

    4. Fertilizerat18,000kg/yr(10percent).Alloftheothersourceswillcontribute5percentorless.Undertheassumptionsofscenario2,thetotalsimulatednitrate-NloadtoWakullaSpringsin2018willbe

    305,000kg/yr.Themajorsourcesofnitrate-Nloadforscenario2areanticipatedtobe:1. Onsitesewagedisposalsystemsat119,000kg/yr

    (39percent),

    2. Inflowtothestudyareaacrossthelateralmodelboundariesat57,000atkg/yr(19percent),

    3. TheSoutheastFarmsprayfieldat43,000kg/yr(16percent),

    4. Creeksdischargingintosinksat31,000kg/yr(10percent),and

    5. Fertilizerat32,000kg/yr(10percent).Alloftheothersourceswillcontribute6percentorless.

    Thesimulatednitrate-NloadfromtheSoutheastFarmsprayfieldtoWakullaSpringsduring2007through2018decreasesfrom111,000kg/yrto42,000kg/yrinscenario1anddecreasesfrom111,000kg/yrto43,000kg/yrinscenario2.Bothscenariosshowthesedecreasesbecauseofthesimulatedplannedreductionintheconcentrationofnitrate-Ninthewastewaterusedforirrigationfromapproximately12milligramsperliter(mg/L)in2007to3mg/Lin2018.Incontrast,thesimulatednitrate-NloadfromonsitesewagedisposalsystemstoWakullaSpringsfrom2007through2018increasesfrom38,000kg/yrto51,000kg/yrinscenario1,andincreasesfrom83,000kg/yrto119,000kg/yrinscenario2.Bothscenariosshowincreasesrespectivetotheincreasesinpopulationandresidentialandcommercialsitesusingonsitesewagedisposalsystems.Inaddition,thesimu-latednitrate-NloadtoWakullaSpringsfrom2007through2018frominflowtothestudyareaacrossthelateralmodelboundariesincreasesfrom44,000kg/yrto48,000kg/yrinscenario1,andincreasesfrom54,000kg/yrto57,000kg/yrinscenario2.Bothscenariosshowincreasesduetoincreasingnitrate-NlevelsupgradientinLeonCounty.

    IntroductionKarsticaquifersandtheirassociatedspringsare

    particularlyvulnerabletonitratecontaminationfromvariousanthropogenicactivitiesatlandsurface.Publicconcernaboutincreasednitrate-nitrogen(nitrate-N)levelsfromlandapplicationsinnorthernFloridaisunderstand-able,particularlyasWakullaSpringsisamajorgroundwaterdischargepointfortheUpperFloridanaquifer(UFA),whichservesasthesourceofpublicwatersupplyformuchofLeonandWakullaCounties(fig.1;Katzandothers,2009).Increasedloadingofnitrate-NtoreceivingwatersinmanypartsofFloridahasresultedindetrimentaleffectstoaquaticecosystems,includingaproliferationofnuisanceaquaticvegetationandacceleratedalgalgrowth(FloridaSpringsTaskForce,2000).WakullaSpringsisaffectedasthese

  • Introduction 3

    Figure 1. Study area and potentiometric surface of the Upper Floridan aquifer during late May through early June 2006. Monitoring well details are included in table 1 of the appendix.

    319

    98

    61

    267

    98

    365

    319

    267

    61

    363

    27

    16

    32

    44

    5256606

    46872

    48

    4036

    2824

    20

    12

    8

    8

    12

    16

    20

    4

    28

    24

    SpringCreek Gage

    St. MarksSpring

    WakullaSprings

    SpringCreekSpring

    GEORGIA

    FLORIDA

    ALAB

    AMA

    0 25 MILES

    25 KILOMETERS0

    LEON COUNTYWAKULLA COUNTY CO

    UNTY

    JEFF

    ERSO

    N

    EXPLANATION

    0 5 MILES

    5 KILOMETERS0

    RESIDUALS DISPOSAL AREASPRAYFIELD LOCATION—Southeast farm (SEF) and southwest farm (SWF)SPRINGSHEDS—For Wakulla, St. Marks, and Spring Creek.REGIONAL MODEL BOUNDARYSUBREGIONAL MODEL BOUNDARY—and study area boundaryPOTENTIOMETRIC CONTOUR—Shows altitude at which water would

    have stood in tightly cased wells. Contour interval is 4 feet.CODY SCARPDIRECTION OF GROUNDWATER FLOWMAPPED SUBMERGED CAVESCENTER PIVOT LOCATIONGAGING STATIONMONITORING WELLSINK—With creek inflow.SPRING LOCATION

    Lost CreekGage

    WakullaRiverGage

    Fisher CreekGage

    SopchoppyRiverGage

    SEFSprayfield

    SWFSprayfield

    Airportsite

    Council Site

    Petty siteYoung site

    Strickland site

    Spring CreekSpring

    WakullaSprings

    St. MarksSpring

    Turf Sink

    AmesSink

    Burnt MillSink

    JumpCreekSink

    Lost CreekSink

    Black Creek Sink

    Fisher Creek Sink

    HallBranchSink

    4

    TALLAHASSEE

    Gul f o f Mex ico

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

  • 4 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    higherlevelsofnitrate-N,incombinationwiththegenerallyclearspringwaterandabundantsunshine,maybeencourag-inginvasiveplantspeciesgrowth.Nitrate-NconcentrationsinWakullaSpringshavevariedduringthelastseveraldecades.Nitrate-Nwasabout0.2milligramperliter(mg/L)intheearly1960s;ithadincreasedtomorethan1.0mg/Lbythe1980s;itdeclinedtoabout0.8mg/L(Cheletteandothers,2002)inthe1990s;anditfurtherdeclinedtobetween0.5to0.7mg/L(fig.2;Katzandothers,2009)inthe2000s.Theincreaseofnitrate-NatWakullaSpringswasrelativetoanincreaseofpopulationsforLeonandWakullaCountiesfrom1965toabout1990;however,nitrate-Ndecreasedfrom1990to2007eventhoughpopulationgrowthcontinuedforbothcounties.

    Nitrate-NsourcesintheareasurroundingWakullaSpringswereinventoriedbyCheletteandothers(2002).Thesourcesandpercentloadingatlandsurfaceduringtheperiod1990through1999weredeterminedtobe:theCityofTallahassee(theCity)wastewatertreatmentfacilities(40percent),atmosphericdeposition(26percent),biosolidsfromwastewatertreatment(15percent),commercialfertil-izerapplication(7percent),onsitesewagedisposalsystems(OSDS,6percent;OSDSaregenerallyknownasseptictanks),creeksdischargingintosinks(4percent),andlivestockwastes(2percent).Biosolids,asusedinthisreport,refertothesolidresidueproducedasaresultofsewagetreatment.

    TheCheletteandothersreport(2002)indicatedthattheCitywastewatertreatmentfacilitieswerecontributing40percentofthenitrate-NloadtoWakullaSprings;howevertheiranalysiswasbasedonamassbalanceapproachthatdidnotdirectlytietheincreaseinnitrate-NinWakullaSpringstothewastewatertreatmentfacilities.Toreducethenitrate-Nload,thewastewatertreatmentfacilitieswouldrequireexpensiveupgrades.Beforeconsideringtheseupgrades,theCitywantedtobecertainthatitsfacilitieswereatleastpartiallyresponsiblefortheproblem.Forthisreason,theCityandtheU.S.GeologicalSurveybeganthiscooperativestudytodetermineifnitrate-NfromtheCitywastewatertreatmentfacilitieswereaffectingWakullaSpringsandtowhatdegree.

    Figure 2. Nitrate-N concentration in Wakulla Springs from 1966 through 2007 compared to Leon and Wakulla County population. (Data sources: Population data is from the U.S. Census Bureau (2005), nitrate-N concentrations are from the U.S. Geological Survey and Jamie Shakar, City of Tallahassee, written commun., 2005).

    NITRATE-N CONCENTRATIONTOTAL POPULATION–Dashed where estimated

    EXPLANATION

    1965 75 85 95 05 15

    1.0

    NIT

    RATE

    -N C

    ONCE

    NTR

    ATIO

    N,

    IN M

    ILLI

    GRAM

    S PE

    R LI

    TER

    0

    0.5

    1.5

    2.0

    70 80 90 2000 10 2020YEAR

    100,000

    200,000

    300,000

    400,000

    500,000

    TOTA

    LPO

    PULA

    TION

    OFLE

    ONAN

    DW

    AKUL

    LACO

    UNTI

    ES

    Purpose and Scope

    ThisreportdocumentsthedevelopmentofagroundwaterflowmodelthatsimulatesthemovementofgroundwatertoWakullaSpringsandotherlocalspringsfromtheperiod1966through2018.Next,thereportdescribesthedevelopmentofafateandtransportmodelthatsimulatestheevolutionofnitrate-NconcentrationsintheUFAandspringsduringthesameperiod.Finally,thereportpresentstheresultsofeachofthesesimulations.Alsoincludedaredetailsaboutpreviousworkintheregionandthespecificstudyarea.Thereportdiscussesthecompilationofavailablenitrate-Nandotherdata,andthecollectionofadditionalwater-qualitydatatofillinthegapspriortocharacterizingthegroundwatersystem.Eachofthedeterminedsourcesofnitrate-Ninthestudyareaisreviewed.

    Previous Investigations

    HendryandSproul(1966)investigatedthegeologyandgroundwaterresourcesofLeonCounty.TheydescribedthegeologyandhydrologyoftheUFA,overlyingunits,andthegeneralwaterquality.Miller(1986)describedthegeologyoftheFloridanaquifersystemthatunderliesallofFloridaandpartsofGeorgiaandSouthCarolina.Insomeareas,MillerdividedtheFloridanaquifersystemintotheUFAandtheLowerFloridanaquifer;however,onlytheUFAwasdeterminedtobepresentwithinthisstudyarea.Millermappedthetop,bottom,andthicknessoftheUFAanddescribedthegeologyoftheformationsthatcomprisetheaquiferaspartoftheRegionalAquifer-SystemAnalysis(RASA)oftheU.S.GeologicalSurvey(USGS).BushandJohnston(1988)simulatedgroundwaterflowintheentireFloridanaquifersystemusingafinite-differencemodelaspartoftheRASA.BasedonMiller’sdetermination,theysimulatedonlythepresenceoftheUFAinthestudyareaforthisreport.Duringtheirinvestigation,model-derivedtransmissivitiesweredeterminedfortheUFA,aswellasratesofrechargeanddischarge.Arelativelycoarsegridwithspacingof8×8miles(mi)wasusedforthesesimulations.Themajorspringswithinthestudyareaofthisreportweresimulated,butthecoarsegridspacingrestrictedtheamountoffinedetailthatcouldbeincludedinthemodeling.Ground-waterflowtoWakullaSprings,St.MarksRiversprings,andtheSpringCreekSpringsGroupwassimulatedinstudiesbyDavis(1996)andDavisandKatz(2007).Thesetwostud-iessimulatedtheentirerechargeareaforthesespringsusingamuchfinermodelgridthanBushandJohnston(1988)andrefinedthemodel-derivedtransmissivitiesandratesof

  • Introduction 5

    rechargeanddischarge.ThemodeldocumentedbyDavisandKatz(2007)wasusedastheregionalmodelinthisreport,withsomeminormodification.

    Description of the Study Area

    Thestudyarea(alsoreferredtointhisreportasthesubregionalmodelarea)coversabout500squaremiles(mi2)andextendsfromtheCodyScarpsouthtotheGulfofMexico(fig.1).ThestudyareaislocatedwithintheCoastalPlainphysiographicprovince(Brooks,1981),wherethetopo-graphyischaracterizedbyrollinghillsandland-surfacealtitudesthatrangefrom0toabout200feet(ft)justnorthoftheCodyScarp.Southofthescarp,theland-surfacealtitudesaregenerallylessthat50ftandarecharacterizedbyclosedbasinstypicalofkarstterrains.Theclimateishumidsub-tropicalwithrelativelyhighrainfall.Theaverageannual

    temperatureinTallahasseeis67oFandtheaverageannualprecipitationisabout66inchesperyear(in/yr).TheaverageyearlypotentialevapotranspirationfortheTallahasseeareawasestimatedtobeabout46in/yr(Smajstrlaandothers,1984).

    Background and Approach

    Disposalofwastewaterinamannerthatdoesnotcauseenvironmentalproblemsisalwaysachallenge.Priorto1966,theCitydisposedoftreatedwastewaterbydischargingittoalocallake,butthenitrate-Ninthewastewatercausedalgalblooms.Topreventthis,theCitybeganchangingitsdis-posalmethod.In1966,theCitybeganapilotprojectcalledtheSouthwestFarm(SWF)sprayfieldthatusedcenterpivotirrigationtechniques(figs.1and3).Inthefirstyearofopera-tion,theCitysprayed91milliongallonsperyear(Mgal/yr)

    Figure 3. Location of A, Southeast Farm sprayfield and B, Southwest Farm sprayfield and airport biosolids disposal area.

    !

    !

    TALLAHASSEE

    2

    63

    7

    9

    8

    4

    5

    1

    11

    12

    16

    14

    1310

    15

    SJ8

    SJ6

    14

    16

    12

    18

    20

    22

    Center Pivot Operational Start Dates1-7

    8, 9, 11, 1210, 1314-16

    November 1980March 1982March 1986April 1999

    15

    EXPLANATION

    12

    SE53

    Turf Sink

    A B

    SJ2

    SE53SE22

    SJ9

    SJ7

    SJ5

    SJ4SJ3 SJ1

    SJ10

    Southwest FarmSprayfield

    Airportsite

    TALLAHASSEE

    LS25

    SF02Southeast FarmSprayfield

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

    SPRAYFIELD LOCATIONWATER-LEVEL CONTOUR—Shows

    groundwater elevation in feet, June 2006CODY SCARPCENTER PIVOT—Location and numberMONITORING WELL—Location and numberSINK—With creek inflow

    0 2 MILES

    2 KILOMETERS00 2 MILES

    2 KILOMETERS0

    1

    1

  • 6 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    ofwastewater(Chelletteandothers,2002)onthe16-acresite.From1966through1980,theflowvolumeincreasedtoanestimated2,522Mgal/yrandthesiteexpandedtocover118.5acres(JamieShakar,CityofTallahassee,writtencom-mun.,2005).AfterNovember1980,thevolumeofwastewaterdisposedofbytheSWFsprayfielddecreasedtoanestimated112Mgal/yrbecausethenew,largerSoutheastFarm(SEF)sprayfieldbecameoperational(JamieShakar,CityofTallahassee,writtencommun.,2005).ThenewsprayfieldbeganoperationinNovember1980withcenterpivots1-7(fig.3).InMarch1982,centerpivots8,9,11,and12beganoperation;inMarch1986,centerpivots10and13beganoperation;andinNovember1999,centerpivots14-16beganoperation(JamieShakar,CityofTallahassee,writtencommun.,2005).In1981,thefirstfullyearofoperation,theCitysprayed2,824Mgal/yrofwastewater(JamieShakar,2005,CityofTallahassee,writtencommun.);from1981through2005,theflowvolumeincreasedtoanestimated7,154Mgal/yr.

    TheinvestigationintotheeffectsofthelandapplicationoftreatedmunicipalwastewateronwaterqualityintheUFAandWakullaSpringsiscomposedoftwoparts.Thefirstpartconsistsofextensivewater-qualitysamplingattheSEFsprayfield,WakullaSprings,andotherlocalspringsthathasbeendocumentedbyKatzandothers(2009).Thesecondpartoftheinvestigationdescribedhereinpresentstheresultsofgroundwaterflowandsolutetransportmodelingsimulationsthatwereconductedtodeterminethecauseofincreasednitrate-NconcentrationsinWakullaSpringsfromtheyears1966through2007,andtoestimatefutureconcen-trationsthrough2018.TheenddateofDecember31,2018,wasselectedbecausetheplannedreductionsinnitrate-NconcentrationsattheSEFandSWFsprayfieldswillhavehadsufficienttimetotravelthroughthegroundwaterflowsystemandtobeevidentinthenitrate-Nconcentrationsoccurringinlocalsprings.

    Geohydrologic Setting of the Wakulla Springs Springshed

    Thestudyareaincludesthesouthernpartsofthethreemajorspringsheds(fig.1):WakullaSprings,theSt.MarksRiversprings,andtheSpringCreekSpringsGroup.ThesespringsareregionalgroundwaterdischargepointsfortheUFAofnorthernFloridaandsouthernGeorgia.Ground-waterflowinthestudyareaisshapedbythekarsticsubsurfaceconditionsandthosefeaturesresultingfromkarstificationatlandsurface.Limestonesedimentscom-prisingtheaquiferunderlyingthestudyareahavesecondarypermeabilityfeaturesthatstronglyinfluencetransporttimesofcontaminantsthroughthesystem.

    Thissectiondescribesthedevelopmentoflong-termwater-leveltrends,recharge,andsecondaryporosityastheyrelatetothelocalgeologyandhydrologyoftheWakullaSpringsspringshed.Thesefactorsprovidetheframeworkforthemodelneededtogainabetterunderstandingofgroundwaterflowandtransportconcepts.

    Geologic Setting

    ThestudyareaisunderlainbysedimentaryrocksofTertiarythroughQuaternaryagethatconsistoflimestone,dolostone,clay,andsandofvaryingdegreesoflithification(Miller,1986).TheserockunitsgenerallydipsouthwardtowardtheGulfofMexico.Alistofgeologicunitsandtheprincipalhydrogeologicunits(aquifersandconfiningunits)withcorrespondingmodellayersareshowninfigure4.Forreference,themodellayercorrelationsfortheregionalmodelbyDavisandKatz(2007)areincluded.Thegeologicdescrip-tionsgiveninthissectionarebasedonworkbyMiller(1986)unlessotherwisecited.

    ThePaleoceneClaytonFormationunderliestheentirestudyareaandconsistsofmassivecalcareousmarineclay.TheEocenesedimentscanbesubdividedfromoldesttoyoungestintotheOldsmarandAvonParkFormationsandtheOcalaLimestone,allconsistingofpermeablelimestone.TheOli-goceneSuwanneeLimestoneisgenerallypermeabletoverypermeable.TheMiocenesedimentscanbesubdividedintotheChattahoocheeFormation,theSt.MarksFormation,andtheHawthornGroup.TheChattahoocheeFormationisprimarilyadolostonecontainingquartzsand,clay,calcite,limestone,chert,mica,heavyminerals,phosphate,andfossils(Huddles-tun,1988).TheSt.MarksFormationisapredominantlyfine-tomedium-grained,siltytosandylimestonethathasunder-gonedegreesofsecondarydolomitization(HendryandSproul,1966).ThepermeabilityoftheSt.MarksandChattahoocheeFormationscanrangefromhighlypermeabletorelativelyimpermeable.TheHawthornGroupispredominantlysandandclay;subordinatecomponentsincludedolomite,dolos-tone,calcite,limestone,phosphorite,phosphate,silicaintheformsofclaystone,chert,andsiliceousmicrofossils,feldspar,heavyminerals,carbonaceousmaterialandlignite,zeolites,andfossils(Huddlestun,1988).ThePliocenesedimentsarerepresentedbytheMiccosukeeFormation,whichismostcom-monlysandyandsiltyclay.SedimentsoftheHawthornGroupandtheoverlyingclay,silts,andsandyclaysoftheMiccosu-keeFormationformalow-permeabilityhydrogeologicunitthatispresentonlyintheextremenorthernpartofthestudyarea.

    Pleistocenesedimentsconsistofmedium-tocoarse-grained,tan,white,andbrownsandthatlocallycontainstraceamountsofcarbonaceousmaterialandshellfragments.TheHolocenedepositsincludethinsandandgravelaccumulationsdepositedmostlyadjacenttostreams,estuaries,andlagoons.

  • Geohydrologic Setting of the Wakulla Springs Springshed 7

    Figure 4. Geologic units, hydrogeologic units, and model layers in north-central Florida.

    SYS-

    TEM

    SERI

    ES

    QUAT

    ERN

    ARY

    TERT

    IARY

    EOCE

    NE

    PALE

    OCEN

    EOL

    IGOC

    ENE

    MIO

    CEN

    EPL

    IO-

    CEN

    EHO

    LO-

    CEN

    EPL

    EIS-

    TOCE

    NE

    GEOLOGIC UNITMODEL LAYERS

    Davis and Katz (2007) Sub-regional model(This study)

    HYDROGEOLOGICUNIT

    Undifferentiateddeposits

    Undifferentiatedterrace and shallow

    marine deposits

    Miccosukee Formation

    HawthornGroup

    Chattahoochee andSt. Marks Formations

    SuwanneeLimestone

    ClaytonFormation

    OcalaLimestone

    OldsmarFormation

    Avon ParkFormation

    Water-tableaquifer

    HawthornClays

    Low-permeabilitysediments

    No-flowboundary

    No-flowboundary

    Upper Floridanaquifer

    Layers 3 and 4 Layers 1 and 2

    Layer 1 Notsimulated(Generally

    not present)

    Notsimulated(Generally

    not present)Layer 2

  • 8 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    Hydrologic Setting

    TheUFAispartoftheFloridanaquifersystemthatispresentinFloridaandpartsofGeorgia,SouthCarolina,andAlabama;itisutilizedformunicipal,industrial,agricultural,anddomesticwatersupply.Wheretransmissivitiesarehigh,theUFAgenerallyyieldslargequantitiesofpotablewater;wheretransmissivitiesarelow,thewaterqualityisgenerallyalsolowbecauseofhighlevelsofdissolvedsolids.BushandJohnston(1988)concludedthatcarbonaterocksoftheUFAarenearlyalwayscharacterizedbyanunevendistributionofpermeability.Thewater-bearingopeningsconsistofoneormoreofthefollowing:1. Openingsinlooselycementedfossilhashesthatare

    similartotheintersticesofsands,

    2. Mosaicsofmanyfracturesandsolution-widenedjoints,and

    3. Solutioncavitiesranginginsizefromlessthan1fttotensoffeetorgreater.

    Largesolutioncavitiesgenerallyarepresentnearlargespringsandsinkholes,wheredissolutionofthelimestoneisgreatest.Inareasawayfromthelargesolutionopenings,thefirsttwoconditionsdominate.ThepermeabilityoftheUFAisdirectlyrelatedtothethicknessandlithologyoftheover-lyinglow-permeabilitysediments.Thinnerandmorepermeableoverlyingsedimentsallowgreaterratesofinfiltrationandincreaseddissolutionofthelimestone.Theremovaloftheselow-permeabilitysedimentsfromsomeareasduringPleistocenetimeislargelyresponsibleforthecurrentdistributionofkarst,andthus,thecurrentdistributionoftransmissivity.ValuesoftransmissivitydeterminedbyaquifertestsfortheUFAvarygreatlyinthestudyarea,rangingfrom1.3×103to1.3×106feetsquaredperday(ft2/d)(Davis,1996).

    ThestructureoftheUFAwasdescribedbyMiller(1986)andtheremainderofthissectionisbasedonhisworkunlessotherwisecited.ThealtitudeofthetopoftheUFAisabout50ftabovetheNationalGeodeticVerticalDatumof1929(NGVD29)inthenortheastcornerofthestudyareaanddipstoabout-100ftbelowNGVD29inthesouthwestcorner(fig.5).ThealtitudeofthebaseoftheUFA(fig.6)wasmodi-fiedfromMiller(1986)basedonnewinformationcollectedduringthewelldrillingpartofthisstudy(thisisdiscussedintheDataCollectionandFieldMethodssection).Inbrief,theboringassociatedwithwellSJ-7indicatedthatthebaseofthefreshwaterflowsystemwasabout400ftNGVD29,soMiller’s(1986)mapwasrecontouredinthisarea.ThebaseoftheUFAdipsto-1,800ftNGVD29onthewesternsideofthestudyareabecauseofapaleochannelthatexistedduringtheearlyTertiaryandwasdescribedbyHuddlestun(1988).ThethicknessoftheUFAwasdeterminedbysubtractingthealtitudeofthebaseoftheUFAfromthatofthetop(fig.7).

    Groundwater Flow

    Onthewesternsideofthestudyarea,thepotentiometricsurfaceissteepestduetolow-permeabilitylimestonedepositedwithinadeepwaterpaleochannel(Huddlestun,1988).Inthecentralandeasternpartsofthestudyarea,thepotentiometricsurfaceslopesgentlytothesouthandsouth-east;thegentleslopeiscausedbyveryhighpermeabilitiesduetodissolutionofthelimestone.TheUFAwithinthestudyareaisinastateofdynamicequilibriuminwhichtherehavebeennoknownlong-termchangesinthepotentiometricsurface;butwaterlevelsdofluctuateseasonallyandyearlyinresponsetovariationsinrainfall(DavisandKatz,2007).BushandJohnston(1988)foundnoevidenceforanetdeclinebetweentheestimatedpredevelopmentpotentiometricsurfaceandtheobservedpotentiometricsurfaceinMay1980.

    GroundwaterflowstoWakullaSpringsbyoneofthemostextensivesubmergedcavesystemsintheUnitedStates,withapproximately37miofmappedcavepassage(Loperandothers,2005;fig.8).CavedivershaveenteredthesubmergedcavesystemthroughWakullaSpringsandnumeroussinkholesintheWakullaSpringsspringshed.Identifyingindividualcavepassagesastunnelswithalphabeticletterdesignationsisastandardnamingconventionestablishedbycaveexplorers.Thiscavesystem,fororientationanddescriptionpurposesinthisreportasshowninfigure8,isassumedtostartatthespringventandinitiallyheadssouthwardwhereitbranchesintotheA-andK-tunnels.TheA-andK-tunnelseventuallymergetoformtheO-tunnel,whicheventuallyconnectstotheQ-tunnel.TheQ-tunnelcontinuesheadingtowardtheSpringCreekSpringsGroup,atleasttothepointwhereadivingexplorationteamhadtoturnaround.TheB-tunnelinitiallytrendseastwardthenturnsnorthwardinthegeneraldirectionoftheSEFsprayfield;theC-tunnelislocatedclosetotheB-tunnelandtrendstowardsouth.TherelativelyshortD-tunnelheadsnorthward.TheextensiveR-tunnelconnectsneartheA-K-Otunneljunction;theR-tunnelconnectswithothertunnelsthatextendseveralmilesnorthwestwardpassingthroughseveralsinkholes.

    Tracertestshavebeenconductedusingdyeinjectiontechniquesatseveralsitestodeterminethedirectionandvelocityofgroundwaterflow(ToddKincaid,Hazlett-Kincaid,Inc.,writtencommun.,2006;fig.8).DyeinjectedintoFisherCreekSinkwasdetectedinEmerald,UpperRiver,andTurnerSinksandWakullaSprings(fig.8);themeasuredtraveltimefromFisherSinktoWakullaSpringswasabout10days(thestraightlinedistanceis5.7mi);dyeinjectedintoAmesSinktraveledtoWakullaSpringsinabout20days(thestraightlinedistanceis5.6mi)(ToddKincaid,Hazlett-Kincaid,Inc.,writtencommun.,2006).Thetraveltime,asusedinthisreport,referstothelengthoftimethatittakesforadye(orothertracer)totravelfromtheinjectionpointtoapointwhereitisdetected.DyeinjectedintoTurfSink,locatedattheSEF(fig.1),arrivedatWakullaSpringsinabout40days(11.7mistraightlinedistance)indicatingadirectconnectionbetweentheSEFsprayfieldandWakullaSprings(ToddKincaid,

  • Geohydrologic Setting of the Wakulla Springs Springshed 9

    Figure 5. Top of the Upper Floridan aquifer used to set the top of model layer 1. (Contours modified from Miller 1986.)

    319

    98

    61

    267

    98

    365

    319

    267

    61

    363

    27

    LEON COUNTYWAKULLA COUNTY CO

    UNTY

    JEFF

    ERSO

    N

    0 5 MILES

    5 KILOMETERS0

    Spring CreekSpring

    WakullaSprings

    TALLAHASSEE

    Gul f o f Mex ico

    St. MarksSpring

    -50

    0

    50

    -100

    EXPLANATIONRESIDUALS DISPOSAL AREASPRAYFIELD LOCATION—Southeast farm (SEF) and

    southwest farm (SWF)SUBREGIONAL MODEL BOUNDARYTOP OF THE UPPER FLORIDAN AQUIFER—In feet

    above and below NGVD 1929. Contour interval 50feet

    -50

    CODY SCARPMAPPED SUBMERGED CAVESCENTER PIVOT LOCATIONMONITORING WELLSINK—With creek inflowSPRING LOCATION

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

  • 10 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    Figure 6. Base of the Upper Floridan aquifer used to set the bottom of model layer 2. (Contours modified from Miller, 1986.)

    319

    98

    61

    267

    98

    365

    319

    267

    61

    363

    27

    LEON COUNTYWAKULLA COUNTY CO

    UNTY

    JEFF

    ERSO

    N

    0 5 MILES

    5 KILOMETERS0

    Spring CreekSpring

    WakullaSprings

    TALLAHASSEE

    Gul f o f Mex ico

    St. MarksSpring

    -1,200-800-600

    -400

    -1,00

    0-1,20

    0-1,40

    0-1,60

    0

    -1,80

    0-1,000

    -800

    -600

    -400

    -1,200

    -1,400

    EXPLANATIONRESIDUALS DISPOSAL AREASPRAYFIELD LOCATION—Southeast farm (SEF) and

    southwest farm (SWF)SUBREGIONAL MODEL BOUNDARYBASE OF THE UPPER FLORIDAN AQUIFER—In feet

    below NGVD 1929. Contour interval 200 feet-600

    CODY SCARPMAPPED SUBMERGED CAVESCENTER PIVOT LOCATIONMONITORING WELL—and numberSINK—With creek inflowSPRING LOCATION

    SJ-7

    SJ-7

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

  • Geohydrologic Setting of the Wakulla Springs Springshed 11

    Figure 7. Thickness of the Upper Floridan aquifer.

    319

    98

    61

    267

    98

    365

    319

    267

    61

    363

    27

    LEON COUNTYWAKULLA COUNTY CO

    UNTY

    JEFF

    ERSO

    N

    0 5 MILES

    5 KILOMETERS0

    Spring CreekSpring

    WakullaSprings

    TALLAHASSEE

    Gul f o f Mex ico

    St. MarksSpring

    1,700

    1,400

    500

    800

    1,1001,400

    1,100

    1,10

    0

    800

    500

    #

    #

    ##

    #

    #

    #

    #

    EXPLANATIONRESIDUALS DISPOSAL AREASPRAYFIELD LOCATIONCENTER PIVOT LOCATIONMAPPED SUBMERGED CAVESSUBREGIONAL MODEL BOUNDARY

    CODY SCARPTHICKNESS OF UPPER FLORIDAN

    AQUIFER—in feet feet below NGVD1929. Contour interval 300 feet

    SINK—with creek inflowSPRING

    #

    500

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

  • 12 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    Figure 8. Location of the Wakulla Springs cave system.

    319

    61

    267

    61

    365

    319

    267

    61

    K

    RA

    O

    Q

    D

    C

    B

    365

    267

    61

    0 1 MILE

    1 KILOMETER0

    0.5

    0.5

    0 2 MILES

    2 KILOMETERS0

    1

    1

    D

    SPRING LOCATION

    SINKHOLE — where standing wateror marshy conditions are indicated

    SINK — with creek inflow

    MAPPED SUBMERGED TUNNELS —letter is tunnel designation

    DIRECTION OF FLOW IN TUNNEL

    EXPLANATION

    WakullaSprings

    Groundwaterdivide postulatedby Kincaid

    LEON COUNTYWAKULLA COUNTY

    Upper River Sink

    Turner Sink

    Emerald Sink

    WakullaSprings

    AmesSink

    JumpCreekSink

    Black Creek Sink

    FisherCreek Sink

    WakullaRiver Gage

    INSET MAPINSET MAP

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

  • Geohydrologic Setting of the Wakulla Springs Springshed 13

    Hazlett-Kincaid,Inc.,writtencommun.,2006).Onlyasmallproportionoftheinjecteddyeswasrecoveredduringthetracertests,whichsuggeststhepossibilitythatsomeoftheground-watermaybebypassingWakullaSprings.

    Groundwaterflowinthetunnels(conduitflow)thatconnecttoWakullaSpringsiscomplexandisnotcompletelyunderstood.TheflowintheR-tunnelisprobablythesimplesttounderstand.TheR-tunnelispartoftheextensivecavesys-temthattrendsnorthwestfromWakullaSprings.UpperRiverSinkoccurswherethiscavesystembreacheslandsurface;theflowinthissinkhasbeenmeasuredseventimesintheperiodfrom1932to1977andaveraged165ft3/s(Rosenauandoth-ers,1977).Thisfindingindicatesthatthecavesystem(includ-ingtheR-tunnel)iscarryingasubstantialquantityofwater.WheretheR-tunnelreachestheA-K-Otunneljunction,theflowcouldbesubstantiallyhigherifthetunnelsaregainingwaterallalongtheirlength.FlowatthejunctionoftheRandA-K-O-tunnelshasthepossibilityofgoingnorthtoWakullaSprings,southtowardtheSpringCreekSpringGroup,orboth.Sometimes,cavediversswimmingsouthwardintheA-tunnelfromthespringentrancehaveobservedthatthegroundwaterflowinthecaveisnorthwardtowardthespringvent,butreversessomewhereinthevicinityoftheR-tunnelconnectionandcanflowsouthwardtowardtheSpringCreekSpringsGroup(fig.8).Agroundwaterdivide(fig.8)inthisareawaspostulatedasearlyas1999byKincaid(1999).

    Kincaidfurthernotedthatthisdivideisnotstationaryandcanmoveasgroundwaterconditionschange.Iftheground-waterdivideweretoshifttothesouth,thenuponreachingtheA-K-O-tunneljunction,alloftheflowintheR-tunnelwouldflownorthwardtoWakullaSprings;conversely,ifthedivideweretoshifttothenorth,thenalloftheflowintheR-tunnelwouldgosouthwardtowardtheSpringCreekSpringsGroup.Ifthedividewerelocatedasshowninfigure8,theR-tunnelflowwouldsplitwithsomegoingnorthwardandsomegoingsouthward,whichappearstohavebeenthecasewhenKincaidpostulateditsexistence.Inarecenttracertest,adyewasintroducedintoLostCreekSink(fig.1);thisdyewaslaterdetectedatsomeoftheSpringCreekSpringsGroupandatWakullaSprings(ToddKincaid,Hazlett-Kincaid,Inc.,writtencommun.,2008).ThisfindingsuggeststhattheflowintheQ-tunnelcanreversecompletelyandflownorthwardtowardWakullaSprings.

    Rapiddissolutionofthelimestoneisoccurringwithinthestudyareaasevidencedbytheseextensivecavesys-tems.CavemapsofWakullaSpringsshowthatmanyofthecavesliebetween300and400ftbelowlandsurface(bls)(althoughsomearemuchshallowerandevenbreachthelandsurfaceassinkholes).Across-sectionalconceptualmodelofground-waterflowforthestudyareaisshowninfigure9.Inthisconceptualmodel,itwasassumedthatdissolutionofthelimestoneisoccurringatalllevelsoftheaquifer,butis

    Figure 9. Generalized geologic cross section and model layers.

    NGVD1929

    NGVD1929

    FEET FEET

    EXPLANATIONSANDHAWTHORN GROUPUPPER FLORIDAN AQUIFERNO-FLOW BOUNDARYSPECIFIED HEAD BOUNDARYGENERALIZED DIRECTION OF GROUNDWATER FLOW

    South

    Vertical scale greatly exaggerated

    500

    -500

    -1,000

    -1,500

    Cody Scarp Gulf ofMexico

    Low-PermeabilitySediments

    LAYER1

    LAYER 2

    500

    -500

    -1,000

    -1,500

    North

    Leon

    Coun

    tyW

    akul

    laCo

    unty

  • 14 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    probablyoccurringmostactivelyintheshallowerpartwheretherechargingrainwaterfirstencounterslimestone.Thesands,silts,andclaysthatoverliethelimestonetendtofilltheshal-lowdissolutioncavitiesfromabove;thedeeperdissolutioncavitiesaresomewhatprotectedbytheirdepthandarelesslikelytoinfill.Infillingoftheshallowerpartsoftheaquiferresultsinoveralllowerhydraulicconductivityandlowergroundwatervelocities.Incontrast,thelowerpartoftheaquiferhashigherhydraulicconductivitiesandhighergroundwatervelocities.

    WakullaRiverdischargehasbeenmeasuredsporadicallysince1929,andapermanentgagewasinstalledin2004.TheWakullaRivergageislocatedapproximately3midownstreamfromthespring(fig.1).EssentiallyalloftheflowmeasuredatthegagecomesfromWakullaSprings,withonlyasmallamountcomingfromotherspringsthatflowintotheWakullaRiver.Theaveragedischargemeasuredatthatgagefortheperiod1929to2008was559ft3/s(table1)withastandarddeviationof242ft3/s.AgagehasbeeninoperationontheSt.MarksRiversince1956andislocatedapproximately1midownstreamfromtheheadspring(fig.1);theaveragedischargeattheSt.Marksgagefrom1956to2008is697ft3/swithastandarddeviationof350ft3/s.DischargeattheSpringCreekSpringsGrouphasonlybeenmeasuredthreetimesinthepast(recentlyagagewasinstalled,buttheratingcurveshavenotbeenestablished).TheSpringCreekSpringsGroupislocatedinatidalestuaryandislogisticallydifficulttomeasurebecauseitrequiresa13-hourmeasurementperiodtocoveronefulltidalcycle.ThedischargeforallthreeofthemajorspringshasonlybeenmeasuredoncesimultaneouslyandthatwasinNovember1991(table1)duringalowrainfallperiodwhenthewaterclarityinallofthespringswasgood.Duringlowrainfallperiods,thewaterinthespringsandriversbecomesveryclear.Forexample,thebottomofWakullaSprings,more

    than100ftdeep,cansometimesbeseenfromtheglassbottomboatsduringtheseconditions.Lackofclarityindicatesthatsubstantialquantitiesofsurfacewaterareenteringtheaquiferthroughsinkholes.Duringheavyrainfallperiods,darkbrown(tannicacidstained)surfacewaterwillflowintosinkholesandtravelthroughthecavestothesprings,causingthespringdischargestoriseandtheclaritytofalltoafewfeetorless.

    TheUFAintheregionsurroundingthestudyareashowsnolong-termchangesinthepotentiometricsurface(BushandJohnston,1988;DavisandKatz,2007),sothevolumeofgroundwaterflowingsouthwardtowardthespringsshouldhavebeenrelativelyconstant.However,thedischargeatWakullaSpringsappearstohaveexperiencedalong-termincreasebetween1928and2008(fig.10).WakullaSpringsislocatedupgradientfromSpringCreekSpringsGroup,soitispossiblethattheflowinWakullaSpringshasincreasedbytakingflowawayfromtheSpringCreekSpringsGroup.Therearetwopossiblereasonsforthelong-termincreaseinWakullaSpringsflow.First,southFloridaexperienceda9-in.sealevelrisefrom1932to2007duetothewarmingoftheseawatertemperaturesinthewesternpartofthenorthAtlantic(ScienceandTechnologyCommittee,2007).IfthissamesealevelriseoccurredinnorthFlorida,thenadditionalheadpressurewouldhaveoccurredattheSpringCreekSpringsGroup,possiblyresultinginmoreofthewaterintheR-tunnelflowingnorthwardtoWakullaSprings.Second,theevolutionofthesubmergedcavepassagesmayhaveallowedWakullaSpringstocapturemoreflowinthesamewaythatonerivercancaptureflowfromanotherriverthrougherosionprocesses.

    Rapidshort-termchangesareoccurringatWakullaSpringsinadditiontotheincreasesinlong-termdischarges.Someofthesechangescouldbecausedbyherbicidetreat-mentsusedtokillhydrilla,aninvasiveplantthathascolonizedtheWakullaRiver.Forexample,immediately

    River gage

    Measured discharge in

    November 1991 (ft3/s)

    Measured discharge during late May to early

    June 2006 (ft3/s)

    Average discharge

    for period of record (ft3/s)

    St.Marks 602 560 697a

    Wakulla 350 750 559b

    SpringCreekSpringsGroup 307 na na

    Total 1,259 ≥1,310 naaPeriodofrecordis1956to2008.bPeriodofrecordis1929to2008.

    Table 1. Measured discharges for Wakulla and St. Marks Rivers and the Spring Creek Springs Group.

    [Rivergagelocationsshowninfigure1;ft3/s,cubicfeetpersecond;N/A,datanotavailable;≥,greaterthanorequalto;na,notapplicable]

  • Geohydrologic Setting of the Wakulla Springs Springshed 15

    beforethetreatmentonApril18,2006,thedischargeinWakullaSpringswasabout350ft3/s,butitincreasedtoabout750ft3/safterthetreatment(fig.11).Hydrillagrowsinthick,aeriallyextensivematsthatextendfromthebottomoftherivertothesurfaceandcanrestrictriverflow;theherbicidetreatmentkillstheplants,thusremovingthisrestriction.Thisincreaseinflowofabout400ft3/soccurredduringadryperiodwhenlittleornosurfacewaterwasrechargingtheUFAthroughsinkholes.EvidenceforthelackofsurfacewaterflowingintothesinksresultedfromexaminingthedischargerecordoftheSopchoppyRiver,whichisadjacenttothestudyarea(gagelocationisshownonfig.1).TheSopchoppyRiveristheclosestrivertothestudyareawithanextensiverecordofdischargemeasurements(since1961).DuringtherapidincreaseinWakullaSpringsflowduringApril2006,flowintheSopchoppyRiverwasatoneofthelowestlevelssince1966(dischargewaslessthan10ft3/s)duetobelowaverage

    rainfall.TheSopchoppyRiver,LostCreek,FisherCreek,andBlackCreekallhavesimilarcatchmentareas,soLostCreek,FisherCreek,andBlackCreeklikelyhadverylowflowsorwerecompletelydryduringtheincreaseindischargeatWakullaSprings.Figure11illustratesthesimilarityinflowpatternbetweenLostCreekandtheSopchoppyRiver.

    AtWakullaSprings,thesameoccurrenceoflow-flowconditionspriortotheherbicideapplicationandapproximatedoublingofflowafterthetreatmentwasrepeatedforApril2007andApril2008.TherapidchangeinflowinWakullaSpringsduetothehydrillatreatmentsdemonstrateshowsmallchangesinthehydraulicconditionscanresultinlargeshiftsingroundwaterflowinthestudyarea.WhenthehydrillacolonizedtheWakullaRiver,itreplacedthenativeeelgrass.Theeelgrassalsogrewinthickmatsthatextendfromthebottomoftherivertothesurfaceandcouldhaveactedasarestrictiontoflow.Therefore,thehydrillatreatmentscan

    Figure 10. Wakulla Springs discharge from 1928 to 2008.

    Figure 11. Wakulla Springs, Sopchoppy River, and Lost Creek discharges from January 2005 to August 2008.

    1920 40 60 80 2000

    10,000

    1,000

    100

    1030 50 70 90 2010

    WAK

    ULLA

    SPR

    INGS

    DIS

    CHAR

    GE,

    IN C

    UBIC

    FEE

    T PE

    R SE

    CON

    D

    YEAR

    Linear regression

    r =0.152

    200

    400

    600

    800

    1,000

    1,200

    1,400

    1,600

    2005 2006 2007 2008

    1,800

    0J F M AM J J A S O N D J F MAM J J A S O N D J F M AM J J A S O N D J F MAM J J

    DISC

    HARG

    E, IN

    CUBI

    C FE

    ET P

    ER S

    ECON

    D

    Water-level measurements taken in late Mayand early June for model calibration

    Herbicide appliedto kill Hydrilla

    EXPLANATIONSOPCHOPPY RIVER DISCHARGE 10-day

    running averageLOST CREEK DISCHARGE

    —10-dayrunning average

    WAKULLA SPRINGS DISCHARGE 10-dayrunning average

  • 16 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    removeanunwantedinvasivespecies,butthisactioncreatesanunnaturalstateoflowerdensityvegetationintheriverthatdoesnotrestrictflowanddoesnotrestorehistoricconditions.However,hydrillatreatmentsbeganin2002,sotheseshort-termchangesarenotthecauseofthelong-termincreaseinflowinWakullaSprings.

    WakullaSpringscanrapidlytransitionfromlow-flowtohigh-flowconditionsduetoseveralcircumstances.Afteranherbicidetreatmentforhydrilla,flowincreasesinWakullaSpringssothatmost,orall,oftheflowintheR-tunnelgoestothisspring.ThisoccurrencewouldreducetheflowatSpringCreekSpringsGroup.BecauselessfreshwatergoestotheSpringsCreekSpringsGroup,thehydraulicheadatthespringsdropsslightly(thespringsareinanestuary)andallowsmoresaltwatertobepushedbackintothespringvents,thusfillingtheventswithhigherdensitysaltwater.TherehasbeenlimitedexplorationofthecavesattheSpringCreekSpringsGroup,buttheWakullacavesareknowntoexceed350ftindepth.AssumingthattheSpringCreekSpringGroupcavesaresimilar,asubstantialverticalcolumnofsaltwatercanbepushedbackintothecavesystem.Thesaltwatercancauseahigherequivalentfreshwaterhead(fig.12).Ifthecaveis300ftdeepandfilledwithpureseawater,thentheequivalentfreshwaterheadintheSpringCreekSpringsGroupwillbe7.5ft,whichexceedstheheadof5ftinWakullaSprings.

    Inthespringmonths,growinghydrillabeginstoobstructflowintheWakullaRiver,causingmorewaterintheR-tunneltodiverttotheSpringCreekSpringsGroup.IftheadditionalfreshwaterflowtotheSpringCreekSpringsGroupisenoughtopushoutthesaltwater,thentheSpringCreekSpringGroupcanbeginflowingagainandmaycontinuetoflowassum-ingthatasubstantialamountofwaterfromtheR-tunnelwasflowingsouth.Ifsealevelrises,theheadattheSpringCreekSpringsGroupmayriseandpushmoresaltwaterintotheSpringCreekSpringsGroup,thuscausingWakullaSpringstomaintainhigherflowsforlongerperiodsthaninthepast.Othercauses,suchasblockageinthecaves,canreducetheflowintheSpringCreekSpringsGroup.Cavesinthestudyareacancarryasedimentbedload(justlikeariverdoes)andthiscantemporarilyblockaconduit.LostCreekflowsintotheLostCreekSinkabout5minorthwestoftheSpringCreekSpringsGroupandcanbeasourceofsediments,ascanverticalmigrationdownwardofthesurfacesediments.

    Data Collection and Field MethodsFielddatawerecollectedtouseformodelcalibration

    purposesandconsistedofwater-levelmeasurements,riverdis-chargemeasurements,geologiccoring,monitoringwellinstal-lation,andgroundwater-andsurface-waterqualitysampling.Nitrate-Nloadingatlandsurfacewasthendeterminedforeachofthesevenmajorsources:1. Irrigationusingwastewaterandfertilizerapplication

    attheSEFandSWFsprayfields,

    2. Atmosphericdeposition,

    3. EffluentdischargesfromOSDS,

    4. Disposalofbiosolidsbylandspreading(thiswasdiscontinuedin2005),

    5. Creeksdischargingintosinks,

    6. Fertilizerapplication(separatefromthatappliedatthesprayfields),and

    7. Livestockwastes.

    Figure 12. Hydrostatic balance between freshwater and saltwater illustrated by a U-tube (modified from Todd, 1980).

    Freshwater

    Saltwater

    h

    z

    Thickness ofsaltwater (z),

    in feet

    Height of freshwaterabove saltwater (h),

    in feet2.55.07.5

    10.0

    100200300400

  • Data Collection and Field Methods 17

    Well and Core Samples

    Groundwater-levelmeasurementsweremadein108wellsinlateMaytoearlyJune2006todefinethepotentiometricsurfaceoftheUFA(app.;fig.1).SouthoftheSEFsprayfield,10newwellswereinstalledaspartofthisstudytoinfillgapsinthewaterlevelandwater-qualitycoverageandtocollectgeologiccores(fig.3;wellsSE-22andSE-53,SJ-1to10).Characteristicsofallwellsaregivenintheappendix.Surface-watergagesmaintainedbytheUSGSontheWakullaandSt.MarksRiverscontinuouslymeasureddischarges(gagelocationsshownonfig.1).

    Water-qualitysamplingwasconductedbytheCityandUSGSforanextensivelistofcompoundstodeterminetheeffectoftheSEFsprayfieldontheUFAandWakullaSprings.ThisworkisbeingdocumentedbyKatzandothers(2009)andonlythedatausedformodelcalibrationpurposeswillbediscussedinthisreport.Thewells,springs,andothersitessampledbytheUSGS,samplingdates,andthenitrate-Nandchloridemeasurements,areincludedintable2.Inadditiontowater-qualitysamplingconductedspecificallyforthisstudy,theCitycollectsroutinesamplesfrommanyofthewellsattheSEFsprayfieldaspartoftheiroperatingpermit,andthiswater-qualitydatasetalsowasusedformodelcalibration.

    TheUSGShassporadicallysampledWakullaSpringsbeginninginthe1960sandthesedatawereusedforthisstudy.

    ThelithologyandthicknessoftheUFAwasnotwelldescribedsouthoftheSEF,soaspartofthemonitoringwelldrillingprocessacontinuouscorewascollectedfromlandsurfaceto476ftblsatwellSJ-7well(fig.3).Theopenholewasgeophysicallyloggedforfluidtemperature,fluidresistivitynaturalgamma,spontaneouspotential,8,16,32,64-inch(in.)formationresistivity,anddiameterusinga3-armcaliper.Thelogsshowedasubstantialchangeinaquiferpropertiesoccurringintheintervalfromabout400ftblstothebottomat476ftbls.Atthesedepths,theresistivitylogsshowedalowerresistivityinthewatersurroundingtheborehole,indicatinghigherdissolvedsolidsintheforma-tion.Thehigherresistivitywater(aboveabout400ftbls)wasinterpretedtobepartoftheactivefreshwaterflowsystemandthelowerresistivity(below400ftbls)wasinterpretednottobepartofthefreshwaterflowsystem.Intheintervalfromlandsurfacetoabout400ftbls,thevolumeofrockrecoveredinthecorebarrelwasoftenlessthan50percent(andsometimeszero),withnumerousdissolutioncavitiesbeingreportedbythedriller.Belowabout400ftbls,thecoresshowedlittletonodissolutioninthelimestone,andthecorerecoveryincreasedto90percentormore,indicatingmuchlowereffective

    Table 2. Concentrations of nitrate-N and chloride in water samples from wells, springs, and Tallahassee sprayfield effluent.

    [μS/cm;microsiemenspercentimeter,oC;degreesCelsius,mg/L;milligramsperliter;

  • 18 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    Figure 13. Nitrate-N loading to land surface and the Upper Floridan aquifer from 1966 through 2018.

    A

    B C

    D E

    F G

    H I

    1965 75 85 95 05 1570 80 90 2000 10 20201965 75 85 95 05 1570 80 90 2000 10 2020

    YEAR YEAR

    NIT

    RATE

    –N,I

    NKI

    LOG

    RAM

    SPE

    RYE

    AR

    NIT

    RATE

    –N, I

    NKI

    LOG

    RAM

    SPE

    RYE

    AR

    NIT

    RATE

    –N, I

    NKI

    LOG

    RAM

    SPE

    RYE

    AR

    NIT

    RATE

    –N, I

    NKI

    LOG

    RAM

    SPE

    RYE

    AR

    800,000

    600,000

    400,000

    200,000

    0

    EXPLANATIONSEF Sprayfield

    BoundariesLivestock

    FertilizerCreeks

    BiosolidsOnsite sewage disposal system

    AtmosphericSWF Sprayfield600,000

    400,000

    200,000

    0

    600,000

    400,000

    200,000

    0600,000

    400,000

    200,000

    0

    600,000

    400,000

    200,000

    0600,000

    400,000

    200,000

    0

    600,000

    400,000

    200,000

    0600,000

    400,000

    200,000

    0

    600,000

    400,000

    200,000

    0

    TOTAL NITRATE LOAD TO LAND SURFACE—Beforeentering the unsaturated zone

    TOTAL NITRATE LOAD TO THE UPPER FLORIDANAQUIFER—Amount of land surface load that makesit through the zone to reach theunsaturated

  • Data Collection and Field Methods 19

    upperlimitonthemassofnitrate-NthatcouldreachtheUFA.Nitrate-Nisconsumedbyarangeofbiologicalprocesses(suchasplantuptakeormicrobialprocesses)intheunsaturatedzone;themassthatactuallyreachestheUFAwillusuallybelessthanthemassloadedatlandsurface.Aneighthsourceofnitrate-Ntothestudyareaistheresultofgroundwaterflowingacrosstheboundaries(althoughthisisnotaloadingtolandsurface).Theloadfromeachsourcewasdeterminedforeachyearfrom1966throughabout2006andextrapolatedthrough2018basedonpopulationgrowthwhereapplicable.Figure13summarizesthemassofnitrate-Nloadingperyearateachsource;italsoshowsthemassfromeachsourcethatmakesitthroughtheunsaturatedzonetoreachtheUFA,asdeterminedfromfateandtransportmodeling(discussedinalatersectionofthisreport).

    Southeast and Southwest SprayfieldsThemassofnitrate-Ninthewastewatereffluentused

    forirrigationandfertilizerapplicationistrackedbytheCityforbothsprayfields.Thetotalyearlymassofnitrate-NloadedtolandsurfaceattheSEFwascalculatedbysummingthemassappliedinthewastewater,themassinrainfall,andthemassappliedasfertilizer.AttheSEF,theloadpeakedatabout600,000kg/yrin1986(fig.13A)whenfertilizerapplicationwashighest;since1986,theloadhasdeclinedtoabout320,000kg/yr.Thisdeclinewasduetoareductionandeventualeliminationoffertilizerusage.Afurtherdeclinetoabout91,000kg/yrisanticipatedby2013,basedonplannedimprovementsatthetreatmentplantthatwillreducethewastewaternitrate-Nconcentrationfromabout12mg/Lto3mg/L.

    Themassofnitrate-Nloadedatlandsurfacewasconvertedtoaconcentrationbydividingbythenetrecharge(netrechargeisthesumoftheirrigatedvolumeplusrainfallvolumeminusthepotentialevapotranspiration).TheSEFsprayfieldnitrate-Nconcentrationatlandsurfacepeakedatabout20mg/Linthemiddletolate1980s(fig.14A).Theserelativelyhighvalueswereacombinationofthewastewatereffluentconcentration,rangingfrom10to15mg/L,andtheheavyapplicationoffertilizer.Dilutionbyrainfallreducedthenitrate-Nconcentrationssomewhatandwasgreatestduringheavyrainfallyears.Asteadydeclineinnitrate-Nconcentrationsoccurredfromthemid-1980suntil2006;this

    Figure 14. Nitrate-N and chloride concentrations and recharge rates at the Southeast Farm (SEF) and Southwest Farm (SWF) sprayfields. (Data from Jamie Shakar, City of Tallahassee, written commun., 2005).

    A

    1965 75 85 95 05 1570 80 90 2000 10 2020

    YEAR

    CHLO

    RIDE

    CON

    CEN

    TRAT

    ION

    ,IN

    MIL

    LIGR

    AMS

    PER

    LITE

    RN

    ITRA

    TE–N

    CON

    CEN

    TRAT

    ION

    ,IN

    MIL

    LIGR

    AMS

    PER

    LITE

    R

    EXPLANATION

    RECH

    ARG

    E,IN

    INCH

    ESPE

    RYE

    AR

    1,600

    1,200

    800

    400

    0

    NITRATE CONCENTRATION IN WASTEWATER EFFLUENTNITRATE CONCENTRATION AT LAND SURFACENITRATE CONCENTRATION REACHING THE UPPER FLORIDAN

    AQUIFERCHLORIDE CONCENTRATION IN WASTEWATER EFFLUENTCHLORIDE CONCENTRATION AT LAND SURFACE AND

    RECHARGING THE UPPER FLORIDAN AQUIFER It is lessthan the effluent concentration because of dilution by rainfall

    NET RECHARGE RATE

    SEF Sprayfield

    C SEF Sprayfield

    B SWF Sprayfield1,600

    1,200

    800

    400

    0

    1,600

    1,200

    800

    400

    0

    70

    60

    50

    40

    30

    20

    10

    0

    20

    15

    10

    5

    0

    20

    15

    10

    5

    0

    porosity.Basedonthisdiscovery,thebaseofthefreshwaterflowsystemwasassumedtobeabout400ftblssouthoftheSEFsprayfield,andwasthesupportingreasonforrevisingMiller’s(1986)mapofthebaseoftheUFAasdiscussedinthepreviousHydrologicSettingsection.

    Nitrate-N Loading and Concentrations at Land Surface from Various Sources

    Nitrate-Nloadingatlandsurfaceinthisreportreferstonitrate-Nappliedatornearlandsurfaceandisconsideredtobethemassenteringtheunsaturatedzone.Itrepresentsan

  • 20 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    wasaresultofanongoingreductioninfertilizerusage.After2006,thenitrate-Nconcentrationisanticipatedtodeclinefurtherbecauseofthecompleteeliminationoffertilizerapplicationandimprovementsatthewastewatertreatmentplant.Theconcentrationofnitrate-Ninthewastewatereffluentisanticipatedtobereducedto3mg/Lby2013;withrainfalldilution,theconcentrationatlandsurfacewillbeabout2.5mg/L.ThenetrechargerateattheSEFsprayfieldrangedfromalowof83.4in/yrin1983to140.8in/yrin2006,andisanticipatedtoreach175in/yrin2018(fig.14A)duetotheincreasingvolumesofwastewaterresultingfrompopulationgrowth.

    TheSWFsprayfieldnitrate-Nloadatlandsurfacewasinitiallylowin1966whendisposalfirstbeganandpeakedatabout140,000kg/yrin1980.Thenitrate-NloadabruptlydecreasedaswastewatereffluentwasdivertedtothenewlyopenedSEFsprayfieldandhasbeenunder10,000kg/yrsince1980(fig.13B).Thisfacilitywasapilotprojecttotestirriga-tiontechniques.Wastewaterwassprayedonthelandsurface,thusresultinginhighrechargeratesbecausethelandareaavailablewasrelativelysmall.

    Thenitrate-NconcentrationsatlandsurfaceattheSWFsprayfieldwerewithinthe10to15mg/Lrangeduringthehighestrechargeyearsof1966through1980(fig.14B);from1980through2007,theconcentrationwasgenerallylessthan5mg/L.Thenitrate-Nconcentrationinthewastewatereffluentfrom1966through2007generallystayedwithinthe10to15mg/Lrange;irrigationratesweresohigh(exceeding1,000in/yrattimes)thatdilutionbyrainfallwasminor.Incontrast,irrigationratesfrom1980through2007werelow(between20and75in/yr)anddilutionbyrainfallwasimportant,yieldingnitrate-Nconcentrationsatlandsurfaceofabout5mg/Lorless.Theconcentrationinthewastewatereffluentisanticipatedtobeabout3mg/L;theconcentrationatlandsurfacewillbeabout0.7mg/Lbasedonassumedirrigationrateswithrainfalldilution.

    Atmospheric Deposition Atmosphericdepositionisoneofthelargestsourcesof

    nitrate-Nloadingtolandsurface.Thedissolvedinorganicnitrogen(nitrate-Nplusammonia)rangedfrom0.15mg/Lto0.28mg/Landaveraged0.22mg/Lin1999(Chelletteandothers,2002).Assumingalong-termaveragerainfallof60in/yr,aconcentrationof0.22mg/L,andatotalareaof463mi2,theloadatlandsurfacewasestimatedtobeabout400,000kg/yr(fig.13C);however,plantsuptakemostofthisnitrate-Nthatisthinlyspreadoveralargearea.

    Effluent Discharges from Onsite Sewage Disposal Systems

    Theyearlynitrate-NloadingtolandsurfacefromOSDSswasdeterminedbyestimatingthetotalnumberofOSDSsinthestudyareaandmultiplyingthatnumberbythenitrate-NloadperOSDS.TheactualnumberofOSDSsinLeonandWakullaCountieswasavailablefortheyears1970to2005

    (fig.15);however,thelocationswereavailableonlyin2005(fig.16).

    Therewere39,043OSDSsinLeonCountyin2005thatincluded8,026inthestudyarea.ForyearswhentheactualnumberofOSDSsinLeonCountywasnotavailable,thenumberwasestimatedbyusingthecountypopulationnumberfromtheU.S.Censusdataandapplyingtheproportionof1OSDSforevery6.838countyresidents(thiswastheactualproportionin2005).Inthestudyarea,therewere0.2056OSDSsforeveryOSDSinthecounty(alsotheproportionin2005)(fig.15A).Chelletteandothers(2002)estimatedthattherewere2.42peopleperOSDSinLeonCounty,withawateruseof55gallonsperpersonperday.Thenitrate-NconcentrationintheeffluentfromOSDSsishardtoassess.AccordingtoaliteraturereviewbyOtisandothers(1993),totalnitrogenintheeffluentinfluentrangesfrom35to100mg/L.TheU.S.EnvironmentalProtectionAgency(1980)estimatedthatthetotalnitrogenconcentrationinOSDSeffluentrangesfrom25to100mg/L.Forthisstudy,thenitrate-Nconcentrationintheeffluentatthedrainfield(theconcentrationafterallformsofnitrogenareconvertedtonitrate-N)wasassumedtobe60mg/L.

    Figure 15. Actual and estimated number of onsite sewage disposal systems in A, Leon and B, Wakulla Counties from 1966 to 2018.

    ONSITE SEWAGE DISPOSAL SYSTEM—Shows the actualnumber of systems for the county

    ESTIMATED ON-SITE-DISPOSAL SYSTEM—Shows theestimated number of systems for the county

    ESTIMATED ON-SITE-DISPOSAL SYSTEM WITHIN THESTUDY AREA—Shows the estimated number ofsystems within the study area for the county

    EXPLANATION

    B Wakulla County

    A Leon County60,000

    40,000

    20,000

    0

    1965 75 85 95 05 1570 80 90 2000 10 2020

    YEAR

    NUM

    BER

    OF O

    NSI

    TE S

    EWAG

    E DI

    SPOS

    AL S

    YSTE

    MS,

    ACTU

    AL A

    ND

    ESTI

    MAT

    ED

    20,000

    15,000

    10,000

    5,000

    0

  • Data Collection and Field Methods 21

    Figure 16. Locations of onsite sewage disposal systems in Leon and Wakulla Counties in 2005.

    319

    98

    61

    267

    98

    365

    319

    267

    61

    363

    27

    LEON COUNTYWAKULLA COUNTY CO

    UNTY

    JEFF

    ERSO

    N

    0 5 MILES

    5 KILOMETERS0

    Spring CreekSpring

    WakullaSprings

    TALLAHASSEE

    Gul f o f Mex ico

    St. MarksSpring

    EXPLANATIONRESIDUALS DISPOSAL AREASPRAYFIELD LOCATIONMODEL-SUBREGIONAL BOUNDARYCODY SCARP

    MAPPED SUBMERGED CAVESCENTER PIVOT LOCATIONOSDS—onsite sewage disposal systemSPRING LOCATION

    Base from U.S. Geological Survey digital data, 1:24,000, datum nad83Albers Equal-Area Conic Projection,Standard parallels 29 30’ and 45 30’, central meridian -83 00’° ° °

  • 22 Nitrate-N Movement in Groundwater, Leon and Wakulla Counties, Florida, 1966-2018

    Figure 17. Land surface nitrate-N concentration and concentration recharging the Upper Floridan aquifer from biosolids disposal for the A, Tallahassee airport, B, Southwest Farm (SWF) sprayfield, and C, Council, D, Petty, E, Strickland, and F, Young farm sites (shown on fig. 1).

    TOTAL NITRATE LOAD AT LAND SURFACE Before entering thezone

    TOTAL NITRATE CONCENTRATION REACHING THE UPPER FLORIDANAQUIFER Amount of land surface load that makes it through the

    zone to reach the aquifer

    unsaturated

    unsaturated

    EXPLANATION

    1965 75 85 95 05 1570 80 90 2000 10 20201965 75 85 95 05 1570 80 90 2000 10 2020

    YEAR YEAR

    NIT

    RATE

    –N,I

    NM

    ILLI

    GRA

    MS

    PER

    LITE

    R

    C Council Farm biosolids

    A Airport biosolids200

    150

    100

    50

    0

    E Strickland Farm biosolids

    D Petty Farm biosolids

    B SWF Sprayfield biosolids

    F Young Farm biosolidsNIT

    RATE

    –N,I

    NM

    ILLI

    GRA

    MS

    PER

    LITE

    R

    200

    150

    100

    50

    0

    200

    150

    100

    50

    0

    200

    150

    100

    50

    0

    200

    150

    100

    50

    0

    200

    150

    100

    50

    0

  • Data Collection and Field Methods 23

    ThenumberofOSDSsintheWakullaCountypartofthestudyareawascalculatedusingthesamemethodasforLeonCounty(fig.15B).In2005,therewere11,334OSDSsinWakullaCountythatincluded9,714OSDSsinthestudyarea,thusgivingaproportionof0.8571OSDSsinthestudyareaforeveryOSDSinWakullaCounty.Chelletteandothers(2002)estimated2.57peopleperOSDS,awateruseof55gallonsperperson,andanitrate-Nconcentrationintheeffluentof60mg/L.WakullaCountyisintheprocessofconstructingsanitarysewers,sotheestimatednumberoffutureOSDSsmaybetoohighifasubstantialnumberofadditionalsitesareconnected.Inaddition,WakullaCountyhaspassedanordinancerequiringadvancedOSDSs,whichwillreducetheconcentrationofnitrate-Ngoingtothedrainfieldsandwillreducetheactualnitrate-Nload.IfthisordinanceresultsinallthenewOSDSsbeingadvanced,andtheconversionofasub-stantialnumberofexistingOSDSs,thentheactualloadfromOSDSswillbelessthantheloadcalculatedhere.

    Thetotalnitrate-Nloadatlandsurface(theloadatthedrainfield)inbothcountieswascalculatedbymultiplyingthenumberofOSDSs,thenumberofpersonspersystem(2.42forLeonCountyand2.57forWakullaCounty),awateruseof55gallonsperperson,andanitrate-Nconcentrationof60mg/L.Theresultwas40,000kg/yroftotalnitrate-Nin1966,increasingtoabout230,000kg/yrin2006.About350,000kg/yroftotalnitrate-Nisanticipatedby2018fig.13D).

    Disposal of Biosolids by Land SpreadingFrom1966to2005,theCitydisposedofwastewater

    biosolidsbylandapplication,whichconsistedofspreadingathinlayeracrossalargearea.MostofthelandapplicationoccurredattheCityairportsite(fig.1);however,smallervolumesweredisposedoffrom1996to2005atfoursites(Council,Petty,Strickland,andYoungfarms;fig.1).Atotalof37,000kgN/yrwasappliedin1966atallsitesco