9
腎腚腅腄腆腇腈腔腋腀腂腃腜腞腟腌腏腘腑腗腁 腉腝腒腙腓腍腐腕腖腁腊腛 *臢臊**膄臙膵膷* Development of Automated Suction Controlled Flux Sampler for Unsaturated Sandy Soil Naoko HIGASHI*, Yasushi MORI** and Mitsuhiro INOUE* * Arid Land Research Center, Tottori University, +-3* Hamasaka, Tottori 02****+, Japan ** Faculty of Life and Environmental Science, Shimane University, +*0* Nishikawatsu, Matsue 03*2/*., Japan Abstract A sandy field has the potential hazard of nitrate contamination because of its low fertilizer holding capacity. A suction controlled flux sampler (SCFS) consisting of an automated vacuum system and a sampling filter device has been developed for accurate measurement of water flux from the root zone. Knowing that water content in sandy field was highly sensitive to suction change, a bu#er container was placed between the pump and a sampling bottle to apply moderate suction and avoid accidental over-sucking. A sampling device with a glass filter was placed in a dune sand column and infiltration experiments were conducted. A moderate suction was ac- hieved and the resulting water-collecting e$ciency was from 3. to +*3under continuous rainfall. It showed that SCFS collected infiltrated water e#ectively without disturbing the infiltration streamline. Key words : dune sand, suction control, unsaturated soil, water-collecting e$ciency. +腇腅腈腆 臇臥膉腩腚腳腑膎膗臎腟臚腣腟腏腵腝腜腞腪腬腝膎膗臎腍臚臡腛膥腞膃腒腙臚腩膍臡腍 膋臬腑腮腙腈腏腐腛腞臶腒臸腎腝膜臝腍膝腔腫腮 腙腈腭+32, 腞膚膦腍臏臋腒腖臭膽腟膍臡臎臲膪膑腞腋腈腙臀腨膭臔腟膻腌腗腖臎腠臘臇臥腋腪 腢膀臘臇臥臮腚腇腭腐腛腍膼腑腮腖 臖臫,***腅腀 腕腒腙腝腜腞腪腭膚膦腣腟膒腍膬腑腮腭腩膚膦腞臓膅腰臝腞臡臎腟腻腺腹腽腾 腴腟膧膎 臼臫腫,**,腍臠腫腮腙腈腭膡臕腟臺腞腪腗腙腒腏腩腠 臡臥腞腭膿臎臚腚腨膊腍膏腞腝腗腙 腈腭 +33-腅腀 腥腖臣膔腞膯腮腡腠臵 腈腍膃膂臡腟臛膫腑腊臦腊腡膻腈臑腍膞臷腚腎腭 膙臰膙臰膚膦臚膗臒膂膇膓+332臥腠膿臎臚腚腇腭腐腛腍臵腈腕腟膿臎臚腠臡臥 腍膻腏腠腽臻腽腷腳腨膻腈腖腧膰膕腝臡膛腛臋 腍膣腧腫腮腞膾膩膅膍腞臔腓腭臟臡腟膛 腡腸腛膹腊腫腮腭臏臂膿臎臚腣腟臵腟臋膳腟臡腇腭腈腠膺膉腞腪腗腙膍臯腣腟腱腲腾臒自腍膈 腎膠腐腑腮臚腱腲腾腟至臍腩膍臡腣腟腱腲腾腟臱臸腛腈腉臹腞腘腝腍腭膏臥腍腫腌腞腑腮腙腈 致腫,**-腅腀 腒腖腍腗腙膿臎臚腞腄腰腒腖膍 臡腟膛膡臕腰膖腒腙腋腏腤腎腚腇腭膺膉腞膍臡膁腟膌腠膆腟腌腞腠腖腀膁腚膲腯 腮腭腐腛腍臵腏 腖腮腁膍臡膗膓,**+腅腁 膍臡腟臡 臩膪膑腟腦腌腫臎腟腰臆臔腒腙臶臄腰 * 臐臸膗膙臰膮膤腸腾腹腃 02****+ 臐臉+-3* ** 膾臸膗臧臌膱膐膗03*2/*. 臗膸臉臨臫腊腆 +*0* 腉腁腋腁腊 : 膿膢膿腵腳腶腼腾臤膴腣腬膁腍臁臡膶J. Jpn. Soc. Soil Phys. 臚腟腦腹No. +*+, p. ,1-/ ,**/

No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

  • Upload
    trandat

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

���������� �������������������

� ��*�����**�����*

Development of Automated Suction Controlled Flux Sampler for

Unsaturated Sandy Soil

Naoko HIGASHI*, Yasushi MORI** and Mitsuhiro INOUE*

* Arid Land Research Center, Tottori University, +-3* Hamasaka, Tottori 02*�***+, Japan

** Faculty of Life and Environmental Science, Shimane University,

+*0* Nishikawatsu, Matsue 03*�2/*., Japan

Abstract

A sandy field has the potential hazard of nitrate contamination because of its low fertilizer

holding capacity. A suction controlled flux sampler (SCFS) consisting of an automated vacuum

system and a sampling filter device has been developed for accurate measurement of water flux

from the root zone. Knowing that water content in sandy field was highly sensitive to suction

change, a bu#er container was placed between the pump and a sampling bottle to apply moderate

suction and avoid accidental over-sucking. A sampling device with a glass filter was placed in a

dune sand column and infiltration experiments were conducted. A moderate suction was ac-

hieved and the resulting water-collecting e$ciency was from 3. to +*3� under continuous

rainfall. It showed that SCFS collected infiltrated water e#ectively without disturbing the

infiltration streamline.

Key words : dune sand, suction control, unsaturated soil, water-collecting e$ciency.

+� � � � �

����� ����������������� ������������� ��� !��"#$% &'(��)�� *�+,�-.�/01% &23 +32,��45��67�89:� !��;�<=�>& � ?@AB��CDE8��FG>�HIG�JKL2(���M$%8 NOP� ,***Q3R� � 7�����245���S�T�$%2 U�45��V�� UW�.�������XYZ[\]�^ N�_P1� ,**,Q �`1% &23 *�F���7�ab��c��E � �d����'� �� ��!2e���K@f�g��h"��E &2 Ni#� +33-Q3 j8kl��m%n� o�p$Fq

&����%��rs$tutnC&v$�wxK,2yz�&yz U N45���'{|}~� +332Q ��Fe���KL2(��q&3 R�e���F(��C'� �)�*�[��@C&8������+�7��+���1%� ,���U!�-B�2�(���+�.���t1%23 6�� e�����q$�7�����L2&F����E !�����\{���,�($%� ����\���� !�����\�S��+�&�/�����2h"�01D�$% &2 N��1� ,**-Q3 �8�E � e����12�8!3�(���+abW�4� >'�,KL23���5� !����6F 7��F89�K¡¢%2(��q' N8# !��~'� ,**+Q� !����:£<=�¤D1���%B�S$W¥B� )¦W

*;§+�yz ¨©ª\Z« ¬02*�***+ ;§­<® +-3*

**=�+�¯�°±²�> ¬03*�2/*. i³­´P?@ +*0*

���� : eµe� ¶�·¸\¹º� ABC��� »�¼�

J. Jpn. Soc. Soil Phys.

����+No. +*+, p. ,1-/ �,**/�

Page 2: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

��������� ����� ,**.�� ���� ����������� �������������� �!�"�#$�������% &'()�� ��� *+,-./01�������2��3452,-./01�����6�����7�89�������:���;<=� ��>?���@AB��C�D�� �CE�������F���GH�IJ�(K�LM N ,***� !��OP=�LM Q���"$���#�RST$U%�&V�='�(K )* � ,**,� WXMKY+,�Z��-.��$LMW[\]^#�[��$���M�

( _`a10����bc.d+�/e$�LM��6 �C0�������M1����7=)�bc.d+f+gh0ab+i,0�% &'(K�� L'������bc.d+�jk��CM2�[/e$�LM=jk�lm+.naih_o-a��&p qr6 ����-.�s3t����up���$�LM�4v����=�� van Grinsven et al. +322� �TC���K( �w�5�wQx�=_`a10�yM��j6�C�zg{|clm+.na�}� +*�&7�W��Ybc.d+�/e$�.~m��8�� N9 ,***� �:�T��K��;;<3�<�C���;<��K( �C�=t��D��\N��>u�����?W���% �(K�� ��� Kp'���=] ���_`a10�@����'(��p r� bc.d+�/e����C��A�M���[��$��YW@B]�&'(KWK� ���� ���ML�C�W�C����?W��������DW�����"E&'(KWK� '� T!�C���Wbc.d+�F�"�(�C�=���)[�F�

(�rY�� �F�bc.d+f+gh0ab+i,0��K���T!�C����_`a10�@�3�GWbc.d+/e��YHI���J���4D� �F�bc.d+f+gh0ab+i,0��K�( T!�C=������-.��$LMW[��DW����?W���% $�LM=�� �;�,�;<=�W�Qx�L�"$����?�M�� bc.d+���(����Y��N�M�Kbc.d+����@B�qK(' ��� ��^#�¡y�4v� _`a10bc.d+�s�/e$�.~m��Y¢ T!�C=�������O£$¤)�KP�¥���

,� �������

,�+ �� ����������������T!�C=�¦§�������K��¨Q/e�¦§N�R3��S>��)&WX�qK(� ©T ,. ,

�� GH -. +=ª��«¤�� LL=� rp�K�GH�U¬&­�bc.d+f+gh0a_,|c~b+i,0 Suction Controlled Flux Sampler ; ®¯SCFS� �°V±�±�+�¥� ��WX�qK(°Y$��van Grinsven et al. +322� 3 Inoue and Dirksen

,***� �8��²�³Z&'� SCFS� ��_`a10 Sampling Filter Device ; ®¯ SFD� M¨Q�s�/e$�[= Automated Vacuum System ; ®¯AVS� ��\� ±�+�� �C0�]�$� SFD�� ����OKT!�C��������$�_`a10�@^��� ¦§���_u`�´µ¶aR�·¢¸q����O[ 4¹r6��[[ bº=�76»K�

��+ bc.d+f+gh0a_,|c~b+i,0 SCFS� �°V±Fig. + Schematic of the suction controlled flux sampler (SCFS).

�C�%c� d +*+¼ ,**/�28

Page 3: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

����������� ���������� ���� ����� ,**- ; ��� ,**.�� ��������� ��+�!"#���� SFD$ � AVS$%��&��'()*�+�!,-./��01��2�3�%456 . cm���� 7� 8'��,-���� ,./ cm�$9:;<=�� +����,�� >�9:;<=��(��?�������@AB01C9:;D hC� !� ����E��F��@AB01C9:;D hL, hR� � -�G��H�(8'I'J�6'�� hC!���K�@AB01C9:;D��H� hLR� L�MN���O�� AVS

$%#���$LL�P1;Q:��&,�� SFDL�/�RS! T/UVW�X! ��"# (�'-"#� $�$��,�E�� .YZ�[:P��/U,�%\�&]'(� EC� �^_��,��`"� >� EC� �ab�)c� de$fg'-�`��AVS MN���9:;<=���*hC:i�&j+� k,-lR�m0�n��R�/�R�"%o&p./�q06'�r1�s��t�� CR+*X ; Camp-

bell Scientificu�� ( /�� +Pv1!?�itw�x��&,-��� y�P1;Q:�z{?��|�m0�n��R � *hC:i!&j+ V-$%+-}$ 2* cm~��P1;Q:(�'-��� z�$ ��%4`�v�:w�/�O+���234�5��� � hC�hLR���/ cm���!`�� >' � �� -. +. +���?�z���L�6�'�.���#� ?`g�� hC�hLR���/ cm(AVS

$%�MN��������� ,�(+-� �����$34(78,� hC�hLR���/ cm!`�!�&j+ V+( +*9G�3� m0�n��R!/�R�: ?�>!����$P1;Q:�L7� /?�� r2� �����( ��~�$�;,� hC

�hLR���/ cm���� &j+ V,� +*9G��-/�R�<]$�=,� ���P1;Q:(<]k

$��T>!��*$/(Og'`T`�� ~��%4$,-E��>�C9:;Dit�nv���,� ?@��?>!`T34�/U?�%4$,��

,�, ��������� �,�,�+ ������z��f�,�AU�����F�BC�@�DT!�E�,$�?%4$�L`P1;Q:�-��<3`��F(G -,¡4>!(H�L��+�� ,�(+-� P1;Q:��&�%#¢I$O4>!!,�J�£����Z��FK�L�itw�x���HYDRUS-,D ver. ,.*/ ; S‘imu‡nek et al., +333 ; U¤���� ,**.� �M�,-;�W¥�;Q:�O�� 8���L�MN����¦N,�� `"� ;�W¥�;Q:� � SCFS�%4$���P1;Q:�EF�&?�%4`§¨O�(P©Q���>!�dR,� ~��%4` �!,��ª /* cm«¬ ,* cm��­�F�®�J�£ST��0,� . cm���� 7����(�­�F�$U 6'-��!,�� ���!K$ � MN����9:;<=���%4$¯�V� 7� 8�WV�@AB01C9:;D�°±-��X²,�� ���P1;Q: /* cmr�� ���K��³´§¨.P1;Q: /* cmr�!,�� HYDRUS-,D��,,�Y­�µ¶�=�� van Genuchten-Mualem

Model� � �­�F : qr�*.*.20� qs�*..+-,� a�*.*-

cm�+� n�/./� Ks�10*..2 cmd�+� l�*./� /��� : qr�*.*,2-� qs�*.--� a�*.*+ cm�+� n�/.*� Ks�/*.31 cmd�+� l�*./���� ·¸��§¨�Z[!,

��+ �������¹ºTable + Specification of the glass filter

Filter No. G.

Diameter (cm)

Thickness (cm)

Pore size (mm)

Air entry value (cm)

+*

*42

/»+*

3*»+-*

Saturated hydraulicconductivity (cms�+)

/42 ¼*4-�«+*�.

��, AU�����BC�@Fig. , Water retention curve of the Tottori

dune sand.

\] : EFP1;Q:�&$%�PZ[�­�F���234/U^_��` 29

Page 4: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

� +���������� �� ,* mmh�+���� +�������� �� ,����������

,�,�, ��������� ������������� �!"�#�$%&'�()*

+,��-.!"�� ���+/*�0� 1����23��� 4Kosugi and Katsuyama, ,**.5 ���6�78�����2� �9�� :;�6�3�<2�=17>���+/*�9?2�� @A 4��B�,**-5� ���+/*�9?2C�7D�EF����F��+/*��G�H2(*I�3�JKLBE2 � +M)N�OP1QRS2�=1� CC�7T'�U"�V�3�<2C�1��� <FWX� (*I�3��V���1T'�U"�V���� 4 �+5� ���V� Y1>���+/*�!Z[\1�G��� CE1[A� (*I]"^1�_�_`BE2abFc#�� �E1$\abF��+/*%d�&eC� �H2�fgh����' -,/** cm-�T'�U"�V��(i(*I1[�� +/)�jk<2�lm*+��+/*7 -** cm�@��� n�� ,o:p:��6�-.�qr s�tuvCBFwF2��+/*7 2* cm

4 �,xy5�KLBE2��C��� �!"��+/*� *z2* cm��G<2�=� � �!"1992��+/*7 2* cm R{�F2[\� T'�U"�V���+/*7 2*z-** cm1/0��� |}17� (*I ]1����+/* -** cm1F��T'�U"�V7� 3��V12��E231����+/*�q~� ��+/* 2* cm��g���C����(*I ]1�� -** cmn�jk�E2��\C���A4<�T'�U"�V�3������ 3��V T'

�U"�V[A5H<�2�3�1�-F��+/*�� �!"16��H�� �B1� 3��V173o��78��9:��2;<J@2C��KL2��V a��J3� �=�F2� C�[\13��V�5H�1Z���><2�� @2�KLBE�� �C��0-*� +,/**� -,/**� .,-**� 0,0** cm-�?@�AF�V����� B=��+/* 2*@2�7 -** cm1!�E�T'�U"�V� +*)�2���}1� ��V *+<2��+/*�C�� l�F�'�3��V�D����

,�- ��������� �-1���6��N|���E��<���,* cm�m� +*/ cm� PVC��N1 *.2/ mm�F1G��,o:p:��H?� +.// Mgm�-�F2[\���I��� <�nA�&e�=��N�J 4K� +*/ cm5 9BK� 1* cmn�7L�:���� 1* cm�R7L���

�F�M�:�h���� SFD�� �!"NO K� /* cm� jkP��)*+��"! -Q7K� .1./

cm1F2[\����� ��N��RSTU �6�-.%d�¡¢<2�=� B=£V�� TDR¤*�"4I¥"¦W� +.2 cm� ¥'§X 0 cm� ¥'§Y -Q :

�*¨�Zd[5 �K� ,*� -*� .*� .0� 1* cm1� $��¥)*+��"!4UNSUC : �*¨�Zd[5�K� ,*� -*� .*� 1* cm1\]��� ��N�J1JN�+1���©�M� �!"�^~J��ª�&�¤��«������ ����+/*� +/ cm¬����U.(*I12���_­�`������ ��NRa9B�� 4qi5 ,@2�7 +* mmh�+�F2[\b:��®¯��� Run-+7 qi°, mm h�+�����ST1±�Y²c�@A� SCFS�AVS�h���� � �!"��+/*7 +/ cm1«�������� Run-,³[� Run--7� �E´E q i°, mm

h�+� +* mm h�+������ �!"��+/*�AVS1[A�G��µ¶�/·�� SCFS�3�¸¹"

��- ���6��N|��E º de7K� /* cmn���-9:.%d 4qs5 ���f»���a-º

Fig. - Schematic of the soil column experimental

set up. Upper part of the column indicates

the area of the qs for WCE estimation.

�6�gZh i +*+¼ 4,**/530

Page 5: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

��������������� /* cm��� �������������������������� ���� ������������ �������� !"�#

,�. ��������$%&�'�( !� ��������)*+,*-��./0�&��&1��)2���/�/���� �34�5)�6 � SCFS�����)7���8���9� :Water-Collecting Efficiency ; 7;WCE< )=��>��?�@ �# AB� C'���DE�F"� RunG :+Run� +,HI< ��JC'� Qr :cm-< )K3L��M�N RunHI&O �C'�34�5 qr :cmhP+< Q�# A�� SCFS�R��J��� Qe :cm-< )�������� RunHI&O ����34�5 qe :cmhP+< )JSQ�# T��>+R����U���� !��VWX+����TDRY����?=�R+���"��U����#Z�R� K3L� *[/* cm� :$�-�\%&'%�< �M]�(^HI��� !�#Z qs :cmhP+< )JS �# >� qs)_)�*+� SCFS�WCE)�`��?=��#

WCE:�<a+**bqe�:qrPqs< (+)

WCEc +**�+,�H�����-.c SFD)/]��8�0X+����cd"!"��_eR+� f� +**�7\�gh� SFD�1ij�R�U�)2!k�� A��_eR+�# "M� K3L3%�R��J4��) Qd :cm-< � '��5Q���M�N4���lh)� K3L67��� !��8m)nQ� :Change of Water Storage in the column ; 7;CWS< �7���`��?JS � o_� �'p �# CWSc +**�+,&q+rK3L67��� !�c8s� CWSc +**�)9e�t+cmd �/�>�"�#

CWS:�<a+**b:QeuQd<�Qr (,)

-� �� ��

-�+ ���������������� !-�+�+ "#$%&>+A&�� vw:;�) :hCPhLR<ax*./ cmQ�y :Inoue and Dirksen, ,***< z� hC hLRc6!���"��8�<{Q�y :|=� ,***< c>}X+�/�#/B+�gh(� :hCPhLR< a*c?~&q�>c@A&q�# � � HYDRUS-,D��������������$�.�a��8��BCC'�& hC hLR

�T;��)D��?~"?� :hCPhLR<a*"R"

/>cER�"��# ���U��� ���������F�U��������c����/� �(� @�����G�;�&1�HIJ%�c���AA :$�.�b< ����c�>���� ��������I����K���c�>��/�:$�.�c<# ���� ���������� :$�.�a< �M/�� hC hLR���M�t ,./ cm&q�c� L���3��z��DE��;�)#ZX���(M1!"��# �������& ,* mmhP+/8N���/C'��)O; �gh&Xe(� ����P\��i�?(�Q �0�&?~"��# �c��� K3L��&�; ��8"C'��&� ( vw:;��) :hCPhLR<a* cm �/�� ���cRS �/��(���RB� / A&(��TUcS"/>�"�� A8# >+R�>�R� ���&�vw:;�¡� hC hLR)6!���h����&�"!� �������i�?( / cmV���������)�]���Q�>c¢W���)Xe�:Y � vw:;�) :hCPhLR<aP/ cm£; �# TZ���i��U6!���c���� �_ezQ/c� �¤@.A��4�;[.�¥\���� HIJ%�c����\�¦?�X+�ghcq�>cER�"��#

-�+�, '()*+,-��.��,-�/01¢�RS�����c 1** cm(q��8"]�§�¨)©^ �gh&(� � -,/** cm-�ª4�« ) +/_vwQ�>&`� 2*[-** cm������)D¬� >+�� )aC �Iab�����������)�]�>��?� cd"­e<{c®�"��#$�/��� ¢������ -** cm� q�/�¢f����� 2* cm&�� �aC �1��¯&1������)n �# ����� -**

cm�1�/B+� &(°�"vw�e)n �c� 2* cm�H� cM1!"�°�"�����)g±&1"���#�U��h�².:$�,<�R�®\������������� /* cmA&�ij_e� ª4�« c����� 2* cm�gh&(��®�" /* cmck³X+��� ��)l��$�/�RER�"�8� 0-*M�N +,/** cm-:Y&1�# �¦ ����� !������� �M1/�cW/>� ¦?´/�µX(_) � � +,/** cm-� c�� �¢m:Y �#A���� ª4�« �aCHI� +*_I&¶�&q�>)·n �#

-�+�- '()*+,-.��,-�2345AVS�¸n)Xe�¹��º�¨�»3L�$�

op : -\�����<{���HIJ���U��������¦q��¼g 31

Page 6: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

0�������� Flag,� ON�� ���������������������� Count,� .**

�� !+"#�$ *./%& ������� ''(

)*+���,-�.�/0123 V+� Count+

� ++/04 +-/��� 567 +*%�8 � 9�)*+��/:;<�=23 V,� +*%�8> 6?�@A)B�CDE/F%��=0 V-/8G="#�$ !H�0( Count+� ,**I,-*� +/%& (J�K� LMN(O�P?AVS(QRSTS�UP�VWXYZ[R/��23 �\]����,-�.� 2*

I-** cm�@A)B�CD� +,/** cm-�[ZCD/+*%�^_='��`abc�d�[Z�e�f���? �@A)B�CD�gh�i�: K� �[ZCD�: K�^_j�� �k�lmn/F%8>0�"#�$o���� -p/qrKs'���7� K6t6���uv/w7x='��( yzZ{|}~������(� �i4>`a��[Z��P����4�STS����� �]=���bc�>[Z��(��?'�04� uv/q�'�(���yz�AVS/��Ks'�������4�

-�, SCFS������Eyz"�fMN�� SCFS�[Z��/H�1���xP?WCE/��,��=Run-+( qi�, mmh�+

��. HYDRUS-,D��)*+��,-�.� /* cm��j�������.���a : SFDE���$ A-¡���¢+�q£¤b : ¥¦§Zj�yzZ{{¨¤c : ,* mmh�+©_ª«V�yzZ{{¨¤

Fig. . Results of the calculation by HYDRUS-,D with /* cm constant suction at the filter.

a : Changes of the matric potential inside and outside of the SFD.

b : Soil water content under free drainage.

c : Soil water content under continuous rainfall with ,* mmh-+

��/ ¬­,-�.� 2* cm !®& � -** cm !¯& /°�?@A)B�CD�� ±�C²�[ZCD�/ +*%�^_P?³�´µ,-�.�

Fig. / Maximum suction in di#erent sampling bot-

tles connected with the bu#er container.

yz�¶·} ¸ +*+¹ !,**/&32

Page 7: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

���������� � *�/* cm������������ q�*.--�*.*- m- m�- ���� CWS!++.��"#$ %&'()*��+��,,-.�"��/���0 hC� hLR�1�234!56789:;�1�+�a<$ WCE! /0./��"�� :=�,< WCE�>?

!$ @A��%&'()BCDE����6�FG78� /8�AVSBH�IJKLMBNOPQE$RSBT?�UV�BWXYZ[�"0 Run-, �!$ CWS� +++�$ *�/* cm������

���! q�*.+3�*.*, m- m�- ��#$ WCE! 3-.0�

��0 AVS��0\]PQ^_`��Fig. 0 Time schedule for the suction control by the AVS.

��1 ����abc� SCFS��0@A�V�dea : fghijkMKlm)(�niE�opqrJskMKt'�uvwb : V�xy�z{V��wc : V�|}�~r%�)|} �IJKLMuvw

Fig. 1 Infiltration water sampling by SCFS under continuous rainfall.

a : Matric potential for suction control.

b : Sampling intensity and cumulative amount of sampled water.

c : Suction in the sampling bottle and the bu#er container.

�� : NOIJKLMPQ��0���������c�@A�V������ 33

Page 8: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

���� ���,�� ����� ���� Run-,�Run-+�� ��WCE������� AVS�������� !"#$%&'(��)*�+,��-.�Run-,�WCE� +**�������/�0�� ��0�� !"#�1.�2�3���4� �*���/���564.� 78�� hC�� hL9 hR� / cm

�:�������2��;*�<� ���1�,�a�� =>?@AB<��C��)�D�4��./��E*����,mmhF+��*�G����*H.mmhF+

��;*� ���1�,�b�� G��I��$%&'(�AVS��������)64� J�$%&'(� -/

cm���� ���1�,�c��Run--��� *H/* cmK��L�M���� qN*.,,

O*.*,m- mF-���� AVS�� !"#$%&'(�J� ,1 cm��)*� ���1�-�c�� WCE� Run--� +*2./���P��� ���,� �� Run--� Run-,��*�WCE� +**� ��-� Q0���.�� !"#�R0�3�� PST�/���564�� �� +*mmhF+��*� G���� *H+/mmhF+��;*� ���1�-�b�� �<� Run--������P� 78UV�JW��X@A!"�#$�Y�Z%�����T� CWS� +**��[��0�� ���,�� �6 +*/ cm�\]�MX@A�^&���=>�_`!�a./��bc'd(��.�T� X@A!"��M�����P����� � !"#�)ef.g*��G�++� Run-,� -� � +**�YP�7h*��.��,-�./�i��.�01*��AVS�)�D��0�� Run-+�<���G���

�j2*��� ���1�+�b� ���*� Run-,� -��3�0�G����4i�:�5T�4� ����-.�i ��� ���1�,�b� 1�-�b�� k/�G����l�mi�m��n6*�� 7o�\]7p�2q3rZ%��./��8��� s��X@A78�pt�Run-,<�u Run--��2�9:�D2/����� 2qZ%�a�vf/���i�� K�;�<=*� TDRw($#�>2?0�X@A�� *H/* cmK���@A���;�x��/��y5*� /�2qZ%�G����BzC:�D{*����,�� Run-,�� Run--�E�G����l�mi�4i��� /4����|}�~1��.��-�4�� �������pt� � ��02���. hC��� ���1�,�a� 1�-�a� ����� !"#$%&'(��)������D2/����� Run-,� -����G�++�F��.� AVS�G�-��)�D2�T�G����l�mi��.�� G�++�y�64�<��� !"#$%&'(����)�+,�y5f./���i��

.� � � � �

$%&'(�01�G�f./��H*�\]�M�<��� �E3����G�++�G�d(�IJ�� *�� k��,� G���02? �hCFhLR� ��������2���Q0� �/ cm� �KL�M2f./�� �MN/ �O78�pt�\� ������� ���_#�I�M1./������ !"#�01.$%&'(�PQ�i./�� /4���,���6��G�IJ SCFS�\]�M� 3.H+*3����G�++���./��3�0����� SCFS9w($#���R�*���S�T]��E3��"�(?�D2�T��U��./,�V��i�� �M9W���X��i�/fY�Z[-�\J��fo9� ++-�]^�_`<�u�a�b���E�V f.o�^¡��.&¢£A��.��-��.� ¤W� SCFS����\]7p��cU���.G�78�D�� 7o��E3���]��df.�

� �

� !"#�e2��*�f¥4¦g¦"�hi§j¡¨©��kª�¡«�l��� C��)&¢£A�f¥4¦�KW¬­w("#®R¯°¨© �+333H,***

m� ���� C. Dirksenn±����oa64� ����²p*�� O¬­�³¦¬­qr¡´ ��s¬­B ; +0-2*+/3� <�u ,+tµ COE=>?@A�r¡�~1�/,��.� ¶*�·¸��f.�

��, &¹�º»��� SCFS�G�++Table , Water-collecting e$ciency under various

rainfall conditions

Run + , -

qi (mm hF+)

Qr (cm-)

Qd (cm-)

Qe (cm-)

CWS (�)qs (cmhF+)

qr (cmhF+)

qe (cmhF+)

,

1/-40

10*40

314/

++-43

*4*+1

*4,

*4+*.

,

1/-40

0/,41

+2-41

+++

F*4**2

*4,

*4+3/

+*

-1024*

,,-142

+*-+4*

2042

F*4**2

+4*

+4*3.

Standard deviation(mmhF+)* --- *413 ,4*1

WCE (�) /04/ 3-40 +*24/

* Standard deviation of sampling intensity (mm

hF+) under steady state condition.

�M�Tbu v +*+¼ �,**/�34

Page 9: No. +*+,p.,1-/ ,**/ ˘ˇˆ˙˝˛˚ · DW " E&’(KWK ’ ... Model ˆı›ˇF:q rƒ*.*.20ˆq sƒ*..+-,ˆaƒ*.*-cm–+ˆnƒ/./ˆK ... ¢ŸRS ˘ˇˆ˙c1**cm(q 8"]

� � � �

���������������� �,**,� : ���� �� p. ,-� pp. .,�..� ���� ���

� ������� �,**-� : ����������� !�"#$ �%&'()(#�� �*+,-� ��'� � //.�/��01�2324�561� 0,�0-.

� ���7�89�� :!����� �,**.� : ����������� ()"#$%��; ��� &' +0()�/��0156*<=� -10�-11.

Inoue, M. and Dirksen, C. (,***) : An Automatically

operated soil water flux meter of improved de-

sign� &' +,()�/��0156*<=� 0-0�0-2.

��0=>?1 �+332� : +@A�BCD�EFGH'��0'� pp. 32�33� �/��01� ���

IJK�, �,***� : #$%��� L�M-N #O.PQR/ S0� N1�NTU01V� +- �0� :

.0,�.1+.

Kosugi, K. and Katsuyama, M. (,**.) : Controlled-

suction period lysimeter for measuring vertical

water flux and convective chemical fluxes. Soil

Sci. Soc. Am. J.,02 : -1+�-2,.

W2 3 �+33-� : ()��#XY�4Z5[� \]�62()01V� .* �,� : 11�2*.

�7^_�`� 8�9�:& �,**-� : ";#XY�<= a�bc >d �-� '";��� M-e?

#XY�<=�@'� ";�/� /-0 : ,�3.

�A�f�� :!������BghC �,**-� : *�ijkl�-#m�(�noM-N PQpD�&' +/()�/��0156*<=� --.�--/.

62;oN01 �,**+� : qNM-�;oNEF� pp.

/*�/1� Grst� ���I�uH �,***� : ;oN vwxIb�/Jy� p. ,/�

pp. 00�2,� �z{71"|1� ���S‘imu‡nek, J., Sejna, M. and van Genuchten, M. Th.

(+333) : The HYDRUS-,D software package for

simulating the two-dimensional movement of

water, heat, and multiple solutes in variably-

saturated media. Version ,.*. IGWMC-TPS-/-, In-

ternational Ground Water Modeling Center, Col-

orado School of Mines, Golden, Colorado.

K�}~L�9��� �,**.� : M-N vwM<=N)@���OP;� ��j�"#XY�QR<=��S� 62��TU0�V� 1/ �+� : ./�/,.

Q��V������W �,**.� : Modelling variably

saturated flow with HYDRUS-,D �Japanese

translation�� HYDRUS-,D#m��� #$%X� ��� pp. +.+�+./-� �/��01��5G%&�1 HYDRUS�,���

van Grinsven, J.J.M., Booltink, H.W.G., Dirksen, C.,

van Breemen, N., Bongers, N. and Waringa, N.

(+322) : Automated in situ measurement of unsat-

urated soil water flux.Soil Sci. Soc. Am. J., /, :

+,+/�+,+2.

� �

���;oN xIe?��Y ��E#�� ���@� oZM-N NSXm�N����#[� �\*���� *+,-� �]�^_ ��b�� ��� oZM-NS X`�. �bACPQ���ab�� TU �c kj¡¢£(���#��¤¥��E� *+,-��j¦§� ��>d¦k¨© ªd��«�� ��G�¬�k*+,-�#� �E�j¦§��e«�­@ ®i*¯�f°@�±gh#�j¦§��@Y��b�� ²@A�j¦§�i"���NjS�k�Ci" �(���#X£HoZM-N pDd£PN�³lbA«�� ´mµ�©!¶�nonq· PNMl�p¸G� 3.¹+*3� ¢£PNpD�PN³lAab�S0 ��b�����

º»(¼6 : ,**/( , ¼ ,26ºG(¼6 : ,**/( 1 ¼ +,6

q1 : ���j¦§�>d#m�#$%(���� oZM-NPQab S0 35