39
Non-Linear Eigenvalue Problems. Manchester 2007 Non-Linear Aeroelastic Modelling and Prediction Jonathan Cooper, Greg Dimitriadis and Gareth Vio School of Mechanical, Aerospace and Civil Engineering University of Manchester

Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Non-Linear Aeroelastic Modelling and Prediction

Jonathan Cooper, Greg Dimitriadis and Gareth VioSchool of Mechanical, Aerospace and Civil Engineering

University of Manchester

Page 2: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Outline • Overview of Aeroelasticity• Outline of several aeroelastic phenomena• Flutter

– Prediction of stability bounds• Effect of non-linearities

– Structural– Aerodynamic– Control system

• Limit Cycle Oscillations– Determination of LCO characteristics

• Future Directions

Page 3: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

104 Years Ago in the USA

• Wright brothers were perfecting their “Flyer” at Kitty Hawk.

• Samuel Langley, backed by the Smithsonian Institute, attempted to fly his “Aerodrome” off a houseboat on the Potomac River.

Page 4: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Langley’s Tests• Structural failure

Page 5: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Wright Brothers

• Success• Wing warping

for roll control

Page 6: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Langley - First Known Aeroelastic Failure

• Wings were not stiff enough• “Divergence” – torsional loads overcome

structural restoring forces• “Aerodrome” rebuilt some years later by Curtis

with stiffer wings – it flew• Interaction of flexible structure and aerodynamic

forces need to be considered• Science of Aeroelasticity

Page 7: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Collar’s Aeroelastic Triangle

Aerodynamic Forces

Elastic Forces Inertia Forces

Aeroelasticity

Vibration

Static Aeroelasticity

Stability and Control

Page 8: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Aeroelastic Phenomena• Mostly undesirable • Often catastrophic

– Flutter / Divergence• Response

– Gusts / Manoeuvres / Control surface inputs

– Buffet• Linear and non-linear

response• Key criteria for aircraft

design and certification– Many (1000s) of cases

need to be considered• Still unable to accurately

predict some types of behaviour

Page 9: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Aeroelastic Equations

•2nd order differential equation cf.

•Stiffness and damping change with speed and height

•Matrices of order 80 x 80

•Right hand side for gusts / control inputs

Inertia Structural Damping

Structural Stiffness

Aerodynamic Damping

Aerodynamic Stiffness

2Ay ( VB D)y ( V C E)y 0+ ρ + + ρ + =&& &

Mx Cx Kx 0+ + =&& &

Page 10: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Flutter• Violent unstable vibration often resulting in

structural failure• Two modes interact with each other

Freq

uen

cyD

ampin

g

Speed

Speed

Flutter PointSTABLE

UNSTABLE

Page 11: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Aeroelasticity at its Worst

Page 12: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Prediction of Aeroelastic Stability

• Aeroelastic equations

• First order form

• Eigenvalue problem

• Eigenvalues of Q

2V Vρ ρAq + ( B + D)q + ( C + E)q = 0&& &

( ) ( )2V V

ρ ρ

-1 -1

0 Iq q- = 0

-A C + E -A B + Dq q

&

&& &

x - Qx = 0&

2j j j j ji 1 j 1,2 Nλ = −ζ ω ± ω − ζ = K

teλ0x = x ( )λ 0Q - I x = 0

Page 13: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Unsteady Aerodynamics• Steady lift

proportional to angle of incidence

• Consider sudden change in incidence

-5 0 5 10 15 20 25 30 350.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Semi-Chords Travelled

Nor

mal

ised

Lift

Quasi-steadyUnsteady

Steady aerodynamics

Unsteady aerodynamics

Page 14: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Effect of Harmonic Motion• Oscillatory motion of

aerofoil

• Lift depends upon the reduced frequency

• B and C are reduced frequency dependent

0 0.5 1 1.5 2 2.5 3 3.5 4-1

0

1

k =

.05

0 0.5 1 1.5 2 2.5 3 3.5 4-1

0

1k

= .2

0 0.5 1 1.5 2 2.5 3 3.5 4-1

0

1

k =

.35

Quasi-steadyUnsteady

b ckV 2Vω ω

= =

Page 15: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Frequency Matching• Aeroelastic equations

• If A,B,C,D,E are known– Typically using “panel methods”– Find ω and ζ from eigen problem

• But, need to know ω and ζ– To find B and C

• “Chicken and Egg” situation– Frequency matching problem– Consider individual harmonics

2V Vρ ρAq + ( B + D)q + ( C + E)q = 0&& &

Page 16: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

PK Method• At each speed and

frequency– Guess frequency– Calculate B and C– Solve eigenproblem– Repeat process with

new frequency• Exact at flutter

condition• Sub-critical behaviour

not exact

0 50 100 150 200 2502

4

6

8

10

Freq

uenc

y [H

z]

0 50 100 150 200 250-5

0

5

10

15

20

Dam

ping

[%]

Velocity [m/s]

Page 17: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Control Surface Flutter• Interaction of control surface and wing• F-117 Stealth Fighter

– Freeplay of control surfaces

Page 18: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Effect of Non-Linearities

• Non-linear phenomena change aeroelastic behaviour– Structural

• Cubic stiffening - joints• Freeplay – control surfaces

– Aerodynamic• Transonic behaviour • Moving shocks• Stall flutter

– Control• Control surface rate and deflection limits• Control circuit time delays

Page 19: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Effect of Transonic Flow on Flutter Speed

Need high fidelity aerodynamics to model accurately

Page 20: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Limit Cycle Oscillations

• Non-linearities cause a bounded flutter to occur

• Not disastrous– Fatigue problem– Other problems

• weapon aiming• pilot control

Page 21: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Typical Parameter Space Behaviour

Page 22: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

LCO Amplitude Behaviour

Page 23: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Limit Cycle Oscillations• Interaction of control surface and wing• Example here is limited amplitude

– Limit Cycle Oscillation (LCO)

Page 24: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Stall Flutter• If angle of incidence gets too high

– Flow separates– Lift is lost– Incidence reduces– Flow reattaches– Incidence increases

• LCO results• Occurs at wing tips

Page 25: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Military Aircraft with Stores

• Cannot predict LCO using current methods

• Problems if unpredicted vibration occurs in flight test

• Lots of (expensive) testing needed

Page 26: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Prediction of Stability Boundaries and Characteristics

• Possible to compute coupled FE/CFD models but very expensive in transonic region

• Many design cases need to be considered• Aim to use non-linear dynamics methods to

determine regions of interest• Direct interesting areas where the FE/CFD

analysis should be used• Interested in

– Stability boundaries– Amplitudes– Frequencies

Page 27: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Non-Linear Aeroelastic Prediction

• Continuous Non-linearities (Normal Form)– structural and aerodynamic non-linearities– determination of LCO frequencies and amplitudes

• Discontinuous Non-linearities (Normal Form / Harmonic Balance methods / Cell Mapping / numerical continuation)– structural and control system non-linearities

Page 28: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Aeroelastic Equations of Motion

• F – nonlinearity• Several methods used

– Normal Form– Higher Order Harmonic Balance– Numerical Continuation

2V V F( , )ρ ρ +Aq + ( B + D)q + ( C + E)q q q = 0&& & &

( ) ( )2V V F

+ ρ ρ -1 -1

0 Iq q 0 0- =

-A C + E -A B + Dq q 0

&

&& &

Page 29: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Normal Form Theory• Technique to obtain the local post-critical behaviour on

a 1DOF undergoing Hopf Bifurcation• Requires Centre manifold theory to simplify system

from MDOF to 1DOF• Applied to structural discontinuous non-linearities

– Curve-fit the non-linearity– Define the equation of motion– Define the linear flutter condition– Reduce the model (Centre Manifold)– Apply Normal Form Theory– Determine amplitude and frequency of LCO

Page 30: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

NFT Solution• 18 DOF aeroelastic

model• Bi-linear non-linearity

with various ratio of inner / outer stiffness

35 36 37 38 39 40 410

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Velocity (m/s)

LCO

am

plitu

de (r

ad)

Normal Form SolutionNumerical Integration

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-20

-15

-10

-5

0

5

10

15

20

δ=0.5

K1

K2

K2

Page 31: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Higher Order Harmonic Balance• Various types of bifurcation can be treated using

Harmonic Balance methods– Hopf (sub-critical and super-critical)– Period Doubling– Folds

• Harmonic Balance– Approximates LCO with single sinusoidal component– Implementation

• Describing function• Equivalent linearisation

– Accuracy reduced if significant higher order components exists

• Higher Order Harmonic Balance– Similar to HB but higher order terms included– Approximates LCO with multiple sinusoids

Page 32: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

BAH Aeroelastic Model• Bisplinghoff, Ashley and

Halfman (BAH) wing• 12 Finite Element nodes, 72

degrees of freedom• 9 modes• Unsteady aerodynamics with

4 aerodynamic lags• A total of 54 states• Piecewise linear nonlinearity

in control surface rotation degree of freedom

Page 33: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Bifurcation plots from HOHB• Bifurcation plots from

HB 5 and HB 17 for lower LCO branch

• 17th order HB results are more accurate but slower

Page 34: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Numerical Continuation• Numerical Continuation is a method designed

to solve nonlinear algebraic equations that depend on one or more parameters

• Having achieved a solution, can then change the parameters slightly and track the new solution

x or

m

ax(x

(t))

λ

Stable equilibriumsolutions

Unstable equilibriumsolutions

Stable periodicsolutions

Page 35: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

NC applied to full aircraft• 9 structural modes• 4 aerodynamic lag roots• DOF-2-DOF cubic /

freeplay non-linearity applied to control surface

Page 36: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Frequency-damping plot• M,C,K, AIC extracted

from Nastran• Roger approximation

applied to transform AIC matrices to time domain

Page 37: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Cubic non-linearity

Page 38: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

Freeplay non-linearity

Page 39: Non-Linear Aeroelastic Modelling and Prediction · 2014. 6. 13. · N on-Lin ear E ig e n va lu e P r o b l ems. M a n c h es t er 2007 Non-Linear Aeroelastic Modelling and Prediction

Non

-Lin

ear E

igen

valu

e Pr

oble

ms.

Man

ches

ter 2

007

• A number of different approaches have been described for modeling and prediction of linear and non-linear aeroelastic behaviour

• Prediction of non-linear aeroelastic phenomena presents a number of challenges for analysis, testing and FE/CFD modelling

• Further work involves the extension to larger order models and transonic aerodynamics

Conclusions