47
University of Texas at El Paso DigitalCommons@UTEP Open Access eses & Dissertations 2009-01-01 Nondestructive Testing For Finding Out e Displacement Of Crack In Silicon Nitride Sriharsha Kurra University of Texas at El Paso, [email protected] Follow this and additional works at: hps://digitalcommons.utep.edu/open_etd Part of the Industrial Engineering Commons is is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access eses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. Recommended Citation Kurra, Sriharsha, "Nondestructive Testing For Finding Out e Displacement Of Crack In Silicon Nitride" (2009). Open Access eses & Dissertations. 297. hps://digitalcommons.utep.edu/open_etd/297

Nondestructive Testing For Finding Out The Displacement Of

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nondestructive Testing For Finding Out The Displacement Of

University of Texas at El PasoDigitalCommons@UTEP

Open Access Theses & Dissertations

2009-01-01

Nondestructive Testing For Finding Out TheDisplacement Of Crack In Silicon NitrideSriharsha KurraUniversity of Texas at El Paso, [email protected]

Follow this and additional works at: https://digitalcommons.utep.edu/open_etdPart of the Industrial Engineering Commons

This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertationsby an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected].

Recommended CitationKurra, Sriharsha, "Nondestructive Testing For Finding Out The Displacement Of Crack In Silicon Nitride" (2009). Open Access Theses& Dissertations. 297.https://digitalcommons.utep.edu/open_etd/297

Page 2: Nondestructive Testing For Finding Out The Displacement Of

NONDESTRUCTIVE TESTING FOR FINDING OUT THE DISPLACEMENT

OF CRACK IN SILICON NITRIDE

SRI HARSHA KURRA

Department of Industrial Engineering

APPROVED:

Jianmei Zhang, Ph.D., Chair

Tzu-Liang (Bill) Tseng, Ph.D.

Tao Xu, Ph.D.

Patricia D. Witherspoon, Ph.D.

Dean of the Graduate School

Page 3: Nondestructive Testing For Finding Out The Displacement Of

Copyright ©

by

Sri Harsha Kurra

2009

Page 4: Nondestructive Testing For Finding Out The Displacement Of

Dedication

This thesis is dedicated all my teachers and professors who have taught me till date. Special

mention of Dr. C.Nagaraju who was very supportive and encouraged me to do my Masters after

my Bachelors degree. I personally thank Dr. Jenny who was very supportive and helped me learn

many things which I was never aware of. Can never forget the unconditional love, guidance and

support given by all my family members and friends.

Page 5: Nondestructive Testing For Finding Out The Displacement Of

NONDESTRUCTIVE TESTING FOR FINDING OUT THE DISPLACEMENT

OF CRACK IN SILICON NITRIDE

by

SRI HARSHA KURRA, B.TECH

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Industrial Engineering

THE UNIVERSITY OF TEXAS AT EL PASO

August 2009

Page 6: Nondestructive Testing For Finding Out The Displacement Of

v

Abstract

Nondestructive testing (NDT) has become an increasingly vital factor in the effective conduct of

research, development, design and manufacturing. Only with the appropriate use of nondestructive

testing techniques, the benefits of advanced materials science can be fully realized. NDT has a wide

range of industrial applications and various methods and techniques are employed to perform the

nondestructive testing. The current work aims to demonstrate the nondestructive testing technique

applied to determine the damage in silicon nitride. Ceramics are brittle materials and non destructive

evaluation methods are required to assess the quality and reliability of them. A nondestructive

evaluation technique has been developed to study the inspection of silicon nitride using the laser

scattering method. Failure analysis is done by collecting and analyzing the data to determine the location

of the damage. Nondestructive evaluation can detect the damage in the sample and give us information

about the nature and the location of it. An important feature in nondestructive evaluation is that it does

not cause any further damage to the sample. Failure criteria by fracture mechanics is also discussed by

simulating the value of stress intensity factor and comparing it with manual solution. In addition,

existing NDT techniques have been reviewed and a flowchart to determine the most suitable evaluation

technique based on their working mechanism and applications has been generated.

Page 7: Nondestructive Testing For Finding Out The Displacement Of

vi

Table of Contents

Abstract ............................................................................................................................................ v

Table of Contents ............................................................................................................................ vi

List of Figures ............................................................................................................................... vii

List of tables ................................................................................................................................... ix

Chapter 1: Introduction .................................................................................................................... 1

1.1 Motivation of my research ............................................................................................. 2

1.2 Thesis overview ............................................................................................................. 2

1.3 Thesis organization ........................................................................................................ 3

Chapter 2: Literature review on nondestructive testing ................................................................... 4

2.1 Nondestructive testing ............................................................................................... …4

2.2 Silicon nitride and NDT of silicon nitride ..................................................................... 5

2.3 Biomaterials ................................................................................................................... 8

Chapter 3 Background and experimental setup of laser scattering technology ........................... 12

3.1 Theory of laser ............................................................................................................. 12

3.2 Theory and application of optical scattering ............................................................... 12

3.3 Application of cross polarization principle to detect subsurface scattering ................ 15

3.4 Experimental setup of laser scattering system ............................................................ 16

Chapter 4 Experimental results from optical scattering ............................................................... 21

Chapter 5 Fracture analysis of advanced ceramics ...................................................................... 23

5.1 Failure criteria .............................................................................................................. 23

5.2 Simulation of fracture for advanced ceramics ............................................................. 24

5.3 Displacement of crack in silicon nitride due to tensile loading .................................. 29

Chapter 6 Discussion .................................................................................................................... 32

Chapter 7 Conclusions and future direction of research .............................................................. 33

References ..................................................................................................................................... 34

Vita………………………………………………………….……………………………………37

Page 8: Nondestructive Testing For Finding Out The Displacement Of

vii

List of Figures

Figure 2.1: Structure of silicon nitride ............................................................................................. 7

Figure 2.2: Flowchart for NDT of biomaterials ............................................................................. 11

Figure 3.1: Polarization of light ..................................................................................................... 13

Figure 3.2: Difference caused by surface roughness ..................................................................... 14

Figure 3.3: Experimental setup of laser scattering system ............................................................ 17

Figure 3.4: Linear stage ................................................................................................................. 18

Figure 3.5:ESP 300 three axis controller ....................................................................................... 19

Figure 3.6: Nonpolarizing beam splitter ........................................................................................ 19

Figure 3.7:Power meter ................................................................................................................. 20

Figure 4.1 (a): Optical scattering image of subsurface damage under loading of 2000N ............. 21

Figure 4.1 (b): Optical scattering image of subsurface damage under loading of 3000N ............. 21

Figure 4.1 (c): Optical scattering image of subsurface damage under loading of 4000N ............. 21

Figure 4.2: Image analysis of the damaged profile ........................................................................ 22

Figure 5.1: Location of edge crack on the sample ......................................................................... 23

Figure 5.2: Geometric modeling .................................................................................................... 25

Figure 5.3: Boundary conditions ................................................................................................... 25

Figure 5.4: Applying load on the boundary ................................................................................... 26

Figure 5.5: Material selection ....................................................................................................... 26

Figure 5.6: Boundary expressions ................................................................................................. 27

Figure 5.7: Boundary integration variables ................................................................................... 27

Figure 5.8: Applying the scalar expressions .................................................................................. 28

Figure 5.9: Mesh generation ......................................................................................................... 28

Figure 5.10: Value of stress intensity factor .................................................................................. 29

Figure 5.11 (a): Displacement due to load of 200N/m2 ................................................................. 30

Figure 5.11 (b): Displacement due to load of 800N/m2 ................................................................. 30

Page 9: Nondestructive Testing For Finding Out The Displacement Of

viii

Figure 5.11(c): Displacement due to load of 1200N/m2 ................................................................ 30

Page 10: Nondestructive Testing For Finding Out The Displacement Of

ix

List of Tables

Table 5.1: Displacement of crack due to loading. ......................................................................... 31

Page 11: Nondestructive Testing For Finding Out The Displacement Of

1

Chapter 1: Introduction

Science and technology are advancing at an increasingly rapid pace and the ways in which they

interact with economy, society and environment are becoming increasingly complex [1]. Silicon is the

primary semiconductor used to fabricate microchips. Traditional manufacturing processes are slicing,

edge contour grinding, flattening, etching, polishing and cleaning. Some of these manufacturing

processes like the lapping and grinding will lead to the introduction of surface and subsurface damage

[2]. There are many methods applicable to assess subsurface damage in silicon wafers. A few are

destructive methods like the cross sectional microscopy, drop weight testing or any other method where

the material to be tested is destroyed during measurement. Nondestructive testing methods like the

micro raman spectroscopy, ultrasonic testing and laser scattering can be used to measure the damage on

the material without the destruction or damage to the tested material.

Silicon nitride has attracted considerable interest because of its excellent combination of

properties like high toughness, good strength even at high temperatures, outstanding thermal shock

resistance, remarkable resistance to wear, low thermal expansion, medium thermal conductivity and

good chemical resistance [3]. Optical techniques have been widely applied for nondestructive

measurements of surface roughness and subsurface damage. Laser scattering technique has been used to

detect the surface and near surface defects in ceramics [4-5]. Laser scattering has the ability to scan the

whole wafer and detect the damage of various depths across the whole material. The experimental

results of the study are presented and discussed in the following chapters. Analysis on the sample can

also be performed using the comsol software. Various loads are applied on the sample and the

displacement of the crack with respect to the loading along the crack length has been studied using the

analytical software.

The existing nondestructive evaluation techniques in biomaterials have been reviewed and a

flowchart has been drafted to determine the suitable evaluation techniques. Biomaterials are nonviable

materials used in medical devices and they are intended to interact with a biological system. These

biomaterials must be compatible with the body so that the body does not reject them. In general there are

three types of biomaterials - bio inert materials like stainless steel, titanium, alumina which have the

Page 12: Nondestructive Testing For Finding Out The Displacement Of

2

minimum interaction when placed inside the human body with its surrounding tissues; bio active

materials like hydroxyapatite, glass ceramic, bio glass which have significant interaction with the

surrounding bones and tissues; bio resorbable materials like tricalcium phosphate, calcium oxide,

calcium carbonate which when placed inside the human body dissolve and are placed by advancing

tissues [6]. The major applications of biomaterials and the critical needs of testing are presented in

section 2.3.

1.1 Motivation of my research

This research aims at proving that nondestructive evaluation techniques can be applied to

evaluate the damage of silicon nitride by laser scattering. The location and size of the damage can be

determined using the laser scattering technique. It helps researchers to accurately determine the

subsurface damage in silicon nitride using the nondestructive technique. The displacement of the

damage (crack) on silicon nitride due to tensile loading can be analyzed using the comsol software. The

displacement of crack with respect to the loading has been calculated along the length of the crack. This

can be very useful in studying the behavior of the crack propagation due to loading. Finally a study on

the existing NDE techniques has been performed to frame a flowchart for a close and long follow up

observation of the biomaterials which are to be implanted into the human body. This research on a

whole aims at demonstrating the application of nondestructive evaluation in science and engineering.

1.2 Thesis overview

The overall objective of this research is to use the nondestructive evaluation in determining the

damage in silicon nitride and to suggest that laser scattering can be successfully implemented in locating

the damage and determining the size of the damage. Laser scattering experiment gives us two

dimensional laser scatter intensity images. These images help us in determining the location, size and

severity of subsurface defects. The defects along the crack length with respect to various loading are

analyzed using the comsol software. Nondestructive evaluation techniques have been very helpful in

locating and analyzing the damage in silicon nitride.

Page 13: Nondestructive Testing For Finding Out The Displacement Of

3

1.3 Thesis organization

This thesis is organized into seven chapters. Chapter 1 gives the introduction, thesis overview

and thesis organization. A formal literature review on Non destructive testing has been done in chapter

2. The third chapter explains about the background and experimental setup of the laser scattering

technology. Chapter 4 explains about the experimental results from optical scattering. Chapter 5 deals

with the fracture analysis of ceramics. Discussion and conclusions are made in the final chapters.

Page 14: Nondestructive Testing For Finding Out The Displacement Of

4

Chapter 2: Literature Review On Nondestructive Testing

2.1 Nondestructive testing

Nondestructive testing (NDT) is an analysis technique used in scientific fields to determine the

state or function of a system by comparing a known input with a measured output, without the use of

invasive approaches like disassembly or failure testing. NDT saves both money and time in product

evaluation, troubleshooting, and research. The physical system does not need to be sacrificed or

damaged for NDT tests and such techniques are valued for saving time and money. NDT methods do not

always reveal hidden defects, and skill is usually needed in interpreting the results. NDT is commonly

used in forensic engineering, mechanical engineering, electrical engineering, civil engineering, systems

engineering, and medicine.

NDT has a wide range of industrial activity. NDT can be used to test for engine parts and frames

in automobile industry. Nondestructive techniques can be used in the construction and maintenance of

bridges and structures. It has a wide range of applicability with propellers, reciprocating engines,

pressure vessels, storage tanks, welds, boilers, heat exchangers, inline inspection of pipes for any

leakages, rail inspection, wheel inspection and in medical imaging applications.

Choosing the right method and technique is an important part of the performance for any

nondestructive testing. The various methods and techniques currently available are Optical microscopy,

scanning electron microscopy, liquid penetrant testing, radiographic testing, ultrasonic testing,

electromagnetic testing, acoustic emission testing, infrared and thermal testing, laser testing, leak

detection, magnetic resonance and visual inspection. A few of the methods are explained in this chapter.

Optical microscope uses visible light and a system of lenses to magnify images of small samples.

The scanning electron microscope (SEM) is a type of electron microscope that images the sample

surface by scanning it with a high-energy beam of electrons in a raster scan pattern. The electrons

interact with the atoms that make up the sample producing signals that contain information about the

sample's surface topography, composition and other properties such as electrical conductivity.

Dye penetrant inspection (DPI), also called liquid penetrant inspection (LPI), is a widely applied

and low-cost inspection method used to locate surface-breaking defects in all non-porous materials

Page 15: Nondestructive Testing For Finding Out The Displacement Of

5

(metals, plastics, or ceramics). LPI is used to detect casting and forging defects, cracks, and leaks in new

products, and fatigue cracks on in-service components.

Radiographic testing is a nondestructive testing (NDT) method of inspecting materials for hidden

flaws by using the ability of short wavelength electromagnetic radiation (high energy photons) to

penetrate various materials. Since the amount of radiation emerging from the opposite side of the

material can be detected and measured, variations in this amount (or intensity) of radiation are used to

determine thickness or composition of material.

In ultrasonic testing, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-

15 MHz and occasionally up to 50 MHz are launched into materials to detect internal flaws or to

characterize materials. The technique is also commonly used to determine the thickness of the test

object, for example, to monitor pipe work corrosion.

Electromagnetic testing is the process of inducing electric currents or magnetic fields or both

inside a test object and observing the electromagnetic response. If the test is set up properly, a defect

inside the test object creates a measurable response.

Acoustic Emission (AE) is a naturally occurring phenomenon whereby external stimuli, such as

mechanical loading, generate sources of elastic waves. AE occurs when a small surface displacement of

a material is produced. This occurs due to stress waves generated when there is a rapid release of energy

in a material, or on its surface. The wave generated by the AE source, or, of practical interest, in

methods used to stimulate and capture AE in a controlled fashion for study and/or use in inspection,

quality control, system feedback, process monitoring and others.

2.2 Silicon nitride and NDT of silicon nitride

Silicon nitride was developed in the 1960’s and 70’s in a search for fully dense, high strength

and high toughness material. Silicon nitride (Si3N4) is a hard, solid substance. It is the main component

in silicon nitride ceramics, which have good shock resistance and other mechanical and thermal

properties as compared to other ceramics. This material is used for structural applications at high

temperatures and its application extent from vessels for chemical reactions to heat exchanger bearings,

engines and gas turbine components [7-9]. It is also used in the optical and semiconductor industries

Page 16: Nondestructive Testing For Finding Out The Displacement Of

6

[10]. Silicon nitride nanotubes and nanowires have attracted much attention because of their enhanced

hardness associated with their unique optical and mechanical properties [11-12].

Silicon nitride is difficult to produce as a fully dense material. This covalently bonded material

does not readily sinter and cannot be heated over 1850oC as it dissociates into silicon and nitrogen.

Dense silicon nitride can only be made using methods that give bonding through indirect methods, such

as small chemical additions to aid densification. These chemicals are known as sintering aids, which

commonly induce a degree of liquid phase sintering.

2.2.1 Types of silicon nitride

The different types of silicon nitride are:

Reaction bonded silicon nitride (BRSN)

Hot pressed silicon nitride (HPSN)

Sintered reaction bonded silicon nitrides (SRBSN)

Sintered silicon nitride (SSN)

These types result from their methods of fabrication, which governs their resulting properties and

applications.

Reaction bonded silicon nitride (BRSN) is made by carefully nitriding a silicon (Si) dough or

compact at about 1450°C. During the reaction the Si3N4 grows in the porosity in the compact. This

results in little dimensional change accompanied by an increase in density. This feature is the biggest

benefit of RBSN, as it often allows parts to be made to near net shape without the need for subsequent

expensive grinding operations. A consequence of this reaction is that the final product contains porosity

and as such its mechanical properties are inferior to those of the other types of silicon nitride. The

material is relatively cheap to produce.

Hot pressed silicon nitride (HPSN) was developed in the 1960s and 1970s with the aim of

allowing engineers to utilize some of the outstanding properties of, Si3N4 which couldn't be achieved

with RBSN. HPSN is made by adding a flux (usually magnesia) to a fine Si3N4 powder and then

pressing the powder in a graphite die typically at 1800°C and 40MPa of pressure. The resultant body is

fully dense with excellent mechanical properties. HPSN parts tend to be expensive.

Page 17: Nondestructive Testing For Finding Out The Displacement Of

7

Sintered reaction bonded silicon nitrides (SRBSN) is a development on RBSN aimed at reducing

the final porosity of the product and therefore improving its mechanical properties. This is achieved by

adding sintering additives to the starting powder mix which allows the material to be sintered after the

reaction–bonding stage. Although there is now a significant shrinkage, it is smaller than for SSNs and

allows greater control. As with RBSN, the starting raw materials for SRBSN, principally silicon metal,

are relatively cheap compared to high quality silicon nitride powders and so SRBSN is therefore cheaper

to manufacture than both HPSN and SSN.

Sintered silicon nitride (SSN) covers silicon nitride materials which are densified by pressure

less sintering in a nitrogen atmosphere at around 1750°C. In order to aid densification, various

combinations of sintering additives such as yttrium oxide, magnesium oxide and aluminum oxide are

used. Where there is an addition of an aluminum containing additive the sintered material can be classed

as a sialon. Sialons are ceramic alloys based on the elements silicon, aluminum, oxygen and nitrogen

and the term is often used interchangeably with SSN. SSN and sialon generally offer the best

mechanical properties available for a silicon nitride and are the most widely used in industrial

applications such as molten metal handling, industrial wear, metal forming, the oil and gas industries

and the chemical and process industries.

2.2.2 Crystal structure of silicon nitride

There are three crystallographic structures of silicon nitride namely α, β and γ phases. The α and

β phases are the most common forms of Si3N4, and can be produced under normal pressure condition.

The γ phase can only be synthesized under high pressures and temperatures and has a hardness of 35

GPa. α phase has a trigonal structure and β phase has a hexagonal structure.

Figure 2.1: Structure of α and β silicon nitride.

Page 18: Nondestructive Testing For Finding Out The Displacement Of

8

The important advantage of Si3N4 is the ability to tailor their microstructures and properties, by

controlling the α to β phase transformation that occurs during sintering at high temperature of the mostly

α phase original Si3N4 powders [13-15].

2.2.3 Nondestructive testing of silicon nitride

The critical flaws are located just beneath the surface. Traditional nondestructive evaluation

methods like the dye penetrant inspection, x-ray radiography, computer tomography and ultrasonics are

not suitable to detect the flaws in ceramics. Dye penetrant can only detect surface opening flaws and is

not effective for very rough surfaces [16]. High resolution x-ray radiography and computer tomography

are mainly sensitive to interior flaws and as a result of this, they are relatively insensitive to surface or

near surface flaws [17]. Ultrasonics are highly sensitive to the surface or near surface region through the

use of surface waves. Ultrasonic surface wave was reported capable of detecting simulated surface flaws

as small as 20 micro meters. But it could not resolve the flaw size because it is much smaller than the

ultrasonic wavelength [18-21].

A more sensitive and high resolution method of nondestructive evaluation was needed to

characterize the materials. For this purpose an optical laser backscatter method which utilizes a low

power, continuous wave laser, polarized optics and automated translation as well as rotation stages to

achieve the entire inspection of the surface was developed. It provides a two dimensional optical

scattering intensity image of the surface to reveal the location, size and severity of the surface and

subsurface flaws. The experimental setup is described in the next chapter.

2.3 Biomaterials

A biomaterial is a nonviable material used in medical device, so it’s intended to interact with a

biological system. Biomaterials must be compatible with the body so that the body does not reject them.

There are three types of biomaterials - bio inert materials like stainless steel, titanium, alumina which

have the minimum interaction when placed inside the human body with its surrounding tissues; bio

active materials like hydroxyapatite, glass ceramic, bio glass which have an interaction with the

surrounding bones and tissues; bio resorbable materials like tricalcium phosphate, calcium oxide,

Page 19: Nondestructive Testing For Finding Out The Displacement Of

9

calcium carbonate which when placed inside the human body dissolve and are placed by advancing

tissues.

Bio inert, bio active or bio resorbable materials are selected to carry out the non destructive

testing. They are tested for parameters like cracks, crystal structure, cavities, inclusions, degree of

impregnation, structure of composites, wear, composition, chemical analysis and biomaterial modeling

using the available NDT methods like analytical, electromagnetic, electronic, ultrasonic, infrared and

image generation before they are actually implanted inside the body [22].

2.3.1 Damage evaluation of bio materials

Damage evaluation can be carried out in the dental implants using the image generation and

analysis method. A 3D finite element analysis model is developed based on the computerized

tomography (CT) scan technology to investigate the load induced damage in bone tissues and implants

at different stages of the healing process. Damage analysis on the FE model reveals the damage in the

surrounding bone tissues and bone implant interfaces at different stages of the healing process [23].

Synchrotron radiation based spectroscopy can help in the study of micro damage to canine

vertebrae [24]. Fourier transform infrared (FT-IR) microscopy and imaging techniques are utilized for

analyses of micro and molecular structure of bone, cartilage and other related engineered constructs in

healthy and diseased tissues [25]. Structure of ceramic scaffolds and tissue engineered bones are

obtained based on two X-ray techniques namely microtomography (micro CT) and microdiffraction.

MicroCT investigations provide 3D images and quantitative data like the kinetics of newly formed bone

growth, replacement of resorbable scaffold by tissue engineered bone to micro resolution.

Microdiffraction provides useful information on interfaces to the atomic scale [26].

Acoustic emission (AE) technique can be used in the assessment of bone cement failure [27]. By

using high frequency ultrasound transducers and applying various signal processing algorithms, a 3D

representation of the enamel layer and the dentine junction can be constructed for accurate

characterization of cracks and lesions [28].

An attempt has been made to determine the common objectives of biomaterial testing and also

the NDT technologies which can be employed to examine whether these objectives are met. The

Page 20: Nondestructive Testing For Finding Out The Displacement Of

10

methodology is explained in detail in the flowchart for NDT of biomaterials (Fig 2.2). The applicable

testing technology can be determined to test the desired parameters in the biomaterial which needs to be

implanted inside the body. Based on the NDT results we can determine if it is safe to implant these

biomaterials. Look at the available database if any of the methods to carry out the NDT in biomaterials

is not listed in the flowchart.

By following the step by step procedures provided in the flowchart, the biomaterial to be

implanted can be tested, using the available NDT technologies. If the tested parameters are within the

specification limits, we can conclude that the biomaterial is safe to be implanted in the body. Otherwise,

the biomaterial should be rejected. If possible, the reasons for rejection should be investigated and

analyzed based on the tests, recommendation for reworking could be proposed if any, and the feasibility

of reworking could be evaluated. If it is feasible, rework this biomaterial and continue the testing

procedures again. If not feasible, discard the biomaterial. Necessary precautions should be taken so that

the rejected implant will be disposed carefully.

Page 21: Nondestructive Testing For Finding Out The Displacement Of

11

Fig. 2.2: Flowchart for NDT of biomaterials.

Page 22: Nondestructive Testing For Finding Out The Displacement Of

12

Chapter 3: Background And Experimental Setup Of Laser Scattering Technology

3.1 Theory of laser

A laser is a device that emits light through stimulated emission. The term laser is an acronym for

light amplification by stimulated emission of radiation [29-30]. A laser consists of a gain medium inside

a highly reflective optical cavity, as well as a means to supply energy to the gain medium. The gain

medium is a material with properties that allow it to amplify light by stimulated emission. In its simplest

form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing

through the gain medium. Typically one of the two mirrors, the output coupler, is partially transparent.

The output laser beam is emitted through this mirror. Light of a specific wavelength that passes through

the gain medium is amplified; the surrounding mirrors ensure that most of the light makes many passes

through the gain medium, being amplified repeatedly. Part of the light that is between the mirrors,

passes through the partially transparent mirror and escapes as a beam of light [31-32].

A HeNe laser is a small type of gas laser which have many industrial and scientific uses, and are

often used in laboratory demonstrations of optics. The usual operating wave length of a helium-neon

laser is 632.8 nm, in the red portion of the visible spectrum [33]. The gain medium in this laser is a

mixture of helium and neon gases contained at low pressure in a glass envelope [34]. The energy source

of the laser is provided by an electrical discharge of around 1000 volts through an anode and cathode at

each end of the tube. A current of 5 to 100 mA is typical for continuous wave operation [35]. The optical

cavity of the laser typically consists of a plane, high-reflecting mirror at one end of the laser tube, and a

concave output coupler mirror of approximately 1% transmission at the other end.

When a light is incident on a surface between two media, part of the light is reflected from the

surface and part is refracted. If the surface is perfectly smooth and reflective, the incident light and the

reflection angle will be numerically equal, which is called a specular reflection or else it is called as

diffuse reflection or scattering [36-37].

3.2 Theory and application of optical scattering

Light scattering is used by the semiconductor, optical, and data storage industries to inspect

materials for surface quality [38]. Several studies have shown that the polarization of scattered light can

Page 23: Nondestructive Testing For Finding Out The Displacement Of

13

be used to characterize and distinguish amongst different types of defects, such as particulate

contaminants, surface roughness and subsurface defects [39-41]. Many optical scattering techniques

have been used for evaluation and measurement of surface topography.

Total integrated scatter approach can be used to measure the surface topography and can be

defines as the ratio of the total intensity of the diffusely scattered light measured by the detector to the

total intensity of the reflected radiation. TIS is related to the surface roughness parameter Rq. Rq

represents the standard deviation of the profile about the mean line defined by the equation

Where x is the distance along the surface, y (x) defines the height of the surface profile about the

mean line and L is the sampling length. But this method is practical only for very smooth surfaces with

Rq< < λ (wavelength of light) [42-43].

An other method which can be used to measure the surface roughness is bidirectional scatter

distribution function which can be defined as the surface radiance divided by the incident surface

irradiance. The surface radiance is the light intensity scattered through the scatter angle per unit

illuminated surface area. The incident surface radiance is the light intensity incident on the surface per

unit illuminated surface area.

Figure 3.1: Polarization of light.

Page 24: Nondestructive Testing For Finding Out The Displacement Of

14

The bidirectional scatter intensity can be calculated by using the formula

where Pi is the incident light, Ps the scattered light, Pr the specularly reflected light, Ωs the

illuminated surface area, θi the incident angle, θs the scatter angle and Фs the angle between the scatter

direction and x axis. A uniformly illuminated nontransparent isotropic surface is assumed for this

technique and so BSDF is not capable for the anisotropic surface [44].

Speckle contrast method is also used for surface analysis. When the coherent light illuminates

the rough surface, the reflected beam accounts for part of the random patterns of bright and dark regions

known as speckle. The speckle pattern is created by the interference of wavelets scattered from points of

different heights within the illuminated area.

Figure 3.2: Difference caused by surface roughness.

In speckle contrast measurement, the average contrast, defined as the normalized standard

deviation of intensity variations at the observed surface, has a strong , linear correlation with the surface

roughness parameter Ra [45-47]. Roughness average Ra represents the average deviation of a surface

profile about its mean line.

Page 25: Nondestructive Testing For Finding Out The Displacement Of

15

x represents the distance along the surface, y (x) defines the height of the surface profile about

the mean line and L is the sampling length.

The methods described above are useful to detect the surface roughness measurements and are

not suitable to assess the subsurface damage. So, the polarization property can be used to separate the

combined effects of surface and subsurface. Figure 3.1 shows the polarization of light, where Pi is the

incident light, Ps the scattered light, Pr the specularly reflected light, Ωs the illuminated surface area, θi

the incident angle, θs the scatter angle and Фs the angle between the scatter direction and x axis. Each

light beam has two perpendicular components (S and P) in the plain normal to the light propagation

direction. For a relatively smooth surface, the polarization of the surface scattered or reflected light will

only be changed mildly from that of the illuminating beam. For the subsurface, multiple interactions

occur between the light and material grain boundaries or microstructural discontinuities, thereby

completely randomizing the polarization of the scattered light [48]. By properly selecting the source and

detector polarization, the subsurface effects can be separated from the surface effects.

3.3 Application of cross polarization principle to detect subsurface scattering

The backscattered light from a ceramic surface is always dominated by the surface reflection and

scattering. To evaluate the subsurface scattering of a ceramic component, the combined effects of the

surface and subsurface scatter must be separated. The separation can be done by examining the

polarization state of a polarized illumination and the detection paths. The polarization state of the

surface scatter will change very mildly from that of the illuminating beam if the roughness slope on the

surface is considerably small to permit only a single interaction of each photon with the surface. But for

subsurface scatter, if the scatter population is sufficiently dense, multiple interactions will occur with

each photon and hence completely randomizes the polarization of the scattered light. As a result, half of

the subsurface scattering has a polarization perpendicular to the incident polarization and the other half

has the same polarization as the incident. By using a linearly polarized light source and selecting only

the cross polarized backscattered light, we can separate the subsurface scattering from those originated

from the surface [49].

Page 26: Nondestructive Testing For Finding Out The Displacement Of

16

3.4 Experimental set up of laser scattering system

Based on the cross polarization detection principle, an automated laser scattering scanning

system was developed for nondestructive characterization of the entire surface of a valve. The

experimental arrangement of laser scattering system is illustrated in Figure 3.3 where laser scanning is

performed at the same location and on each sample. A translation/rotation stage unit controls the

position and orientation of the sample such that the laser beam is always focused normally on the sample

surface. One optical fiber is used to deliver the incident laser beam and another optical fiber is used to

bring the collected scattered light to the detector. The data acquisition program controls the motion of

the stages to follow the profile of the sample surface and synchronously collects laser scattering data

during the scan.

A vertically polarized laser beam is directed through a polarizing beam splitter cube onto the

sample surface. Light reflected from the sample surface will not undergo change in polarization and will

be reflected back in the PBS and directed back to the laser. The subsurface backscattered light becomes

horizontally polarized and is transmitted through the PBS onto a detector. The detector signal is

processed by a power meter and recorded in the PC. The backscatter intensity is recorded at every pixel

during the scan of the surface and the resulting data is composed into a 2D laser scatter intensity image

according to pixel positions on the surface [50-51]. Subsurface scattering becomes stronger at regions

with subsurface defects and damage. The two dimensional scattering data can be used to identify the

location, size and severity of subsurface defects.

Page 27: Nondestructive Testing For Finding Out The Displacement Of

17

Fig 3.3: Experimental setup of laser scattering system.

A sample is placed on the stages such that the laser beam is focused normally on the surface. The

arrangement of laser source, focusing lens, PBS cube, collimator lens, detector and stages is illustrated

in Figure 3.7. By scanning the entire surface of the NT551 silicon nitride, a two dimensional scatter

image is created and the surface/subsurface defects can be identified from the image.

A wide range of apparatus is required for the experimentation. Some of the important

components are table top, isolators, helium neon laser, laser mount, stages, clamp posts, rotation mounts,

stages, posts, post holders, collimators, universal motion controller, power meter, detectors and lens.

The table top rests on four isolators which are 28 inches in height and can carry a load of about

8000 lb. The isolators are connected to an air supply for continuous supply of pressurized air and to

make sure that the table floats.

The model number of the He-Ne laser used in the experiment is R-30995. It is mounted on a

mount to fix conveniently on the flotation table. Specifications of the laser are Min output power: 17

mW, Polarization: 500:1, Beam Diameter: 0.98mm

Laser line polarizing cube beam splitters provide efficient narrowband polarization for higher

power lasers. Their extinction ratio is better than 1000:1, and they are recommended for use in pulsed

Page 28: Nondestructive Testing For Finding Out The Displacement Of

18

laser systems and for purifying polarization in multimode, high-power lasers. Cube holders are used to

hold these cubes. Laser beam must always enter the prism on the side marked with a dot.

This linear stage with a DC Motor (Fig 3.4) has a ultra-high resolution 20,000 cts/rev rotary

encoder with index pulse for precision homing and is the recommended choice for applications requiring

accurate bi-directional positioning. For tightest position control, the rotary encoder is directly mounted

on the lead screw. This eliminates the majority of drive train error sources that affect other stages with

indirect position read-out. A high-torque DC motor provides the highest dynamic speed control and

allows for linear speeds up to 40 mm/s. An 11:4 belt reduction between the motor and the lead screw

increases the available output torque, reduces the servo sensitivity and ensures 0.3 mm incremental

motion capability with all Newport motion controllers and drivers. All UTS series linear stages feature

all-steel construction with preloaded linear ball bearing slides. Steel has an almost 3-times greater

stiffness than Aluminum, and provides the UTS stages comparable stiffness to the popular ILS series,

but in a much more compact and significantly lower profile package. In addition, because the bearings,

the body, the carriage and the lead screw are all made of steel, the UTS has a completely homogenized

design minimizing thermal stress or thermal bending effects. The result is more consistent performance

than other Aluminum stage designs.

Figure 3.4: Linear stage.

The ESP300 (Fig 3.5) is an integrated controller and driver in one chassis, which simplifies

system hookup and improves reliability. The ESP300 can drive and control up to three axes of motion

using any combination of DC and/or stepper motors. Each driver module will drive 2 or 4-phase stepper

and brush DC servo motors at 3 A (maximum) per axis.

Page 29: Nondestructive Testing For Finding Out The Displacement Of

19

Figure 3.5: ESP300 three axis controller.

The ESP300 uses a 32-bit, floating point, DSP processor for high precision synchronized control.

A digital PID-FF (feed-forward) servo loop ensures precise velocity profile tracking and accurate

positioning. A 1000x micro-step programmable resolution provides ultra-smooth low-speed stepper

positioning capability, and 18-bit DC motor command output ensures improved stability for precision

applications.

Figure 3.6: Nonpolarising beam splitter.

Laser line non-polarizing cube beam splitter (Fig 3.6)provide true 50/50 beam splitting without

altering the beam polarization, with the s- and p-polarized components matched to within 3%. They

exhibit virtually zero absorption for true 50/50 beam splitting. Incoming beams are both transmitted and

reflected 50%, with the s and p-polarized components matched to within 3%. These beamsplitters

consist of a pair of precision right-angle prisms carefully cemented together to minimize wavefront

distortion. The hypotenuse of one of the prisms is coated with a multilayer all-dielectric non-polarizing

beamsplitter coating optimized for specific laser lines. The four faces are antireflection coated with a

multilayer dielectric coating to minimize surface reflection losses at the laser lines.

Page 30: Nondestructive Testing For Finding Out The Displacement Of

20

Figure 3.7: Power meter.

For applications requiring measurement of low-power light sources, Newport’s models 1931-

C/2931-C instruments (Fig 3.7) have broken the barrier of temporal measurement performance with

calibrated results. This series of power/energy meters have the ability to handle repetition-rates of up to

20 kHz at a sampling rate of 250 kHz. Peak-to-peak and DC source measurements can be displayed in

units of W, dBm, dB, and A. Simultaneous measurements of a variety of light sources operating at

different power levels and wavelengths can be performed with our Dual-Channel 2931-C Optical Power

Meter.

Page 31: Nondestructive Testing For Finding Out The Displacement Of

21

Chapter 4: Experimental Results From Optical Scattering

The following damage was observed in NT551 silicon nitride after performing the laser

scattering experiment. A load of 2000N is applied on the silicon nitride sample and later tested for

subsurface damage by laser scattering method. There is no significant damage due to this amount of load

as shown in figure 4.1(a). A load of 3000N is applied randomly on the sample surface and it is then

tested. There are deformations found due to the application of this amount of load on the subsurface as

shown in figure 4.1(b). There are three layers of damage seen in this second figure. The intensity of

damage in the top part of the image is high when compared with the other sections.

Figure 4.1: Optical scatter image of subsurface damage under loading of (a) 2000N and (b) 3000N.

Figure 4.1(c): Damage under loading of 4000N.

When the load is increased to 4000N the damage is severe as shown in figure 4.1(c). The damage

is significantly high when more load is applied.

Page 32: Nondestructive Testing For Finding Out The Displacement Of

22

Figure 4.1(b) is then subjected to image analysis and the graph is plotted which gives the

relationship between the distance and the gray value. In figure 4.2, we can observe three regions of the

subsurface damage. The graph shows the width of three lines with the damage.

Figure 4.2: Image analysis of the damaged profile.

The value begins to increase till a distance of 35 pixels and then starts decreasing again. This is

the data for the first damage region. The value is low at a distance of 57 pixels. The difference between

these two gives us the width of the damage for the first layer. The width of damage is 57-35 = 22 or

110µm. By adopting the similar principle, the second damage region has a width of 90-70 = 20 pixels or

100µm and the third damage region has a width of 113-99 = 14 pixels or 70µm.

Page 33: Nondestructive Testing For Finding Out The Displacement Of

23

Chapter 5: Fracture Analysis Of Advanced Ceramics

5.1 Failure criteria

Stress intensity factor K, is used in fracture mechanics to accurately predict the stress state or the

stress intensity near the tip of the crack by remote load or residual stresses. It is useful for providing

failure criterion for brittle materials. The magnitude of K depends on sample geometry, the size and

location of the crack and the modal distribution of load on the materials. Stress Intensity, K, is a

parameter that amplifies the magnitude of the applied stress that includes the geometrical parameter Y

load type [52]. If a very sharp crack can be made in a material, the minimum value of K can be

determined, which is the critical value of stress intensity required to propagate the crack. This critical

value determined is referred to as the critical fracture toughness of the material. Critical fracture

toughness has units of stress times the root of a distance. The units of critical fracture infer that the

fracture stress of the material must be reached over some critical distance in order for the critical

fracture toughness to be reached and crack propagation to occur. This intensity factor is the most often

used engineering design parameter in fracture mechanics.

Fig 5.1: Location of edge crack on the sample.

The stress intensity factor predicts if a specific crack will cause the material to fracture. We can

determine the stress intensity factor using the J-integral. A J-integral is a two dimensional line integral

along a counterclockwise contour surrounding the crack tip. We can perform the analysis by following

the systematic procedure as described below.

First generate the geometry of the sample with the given dimensions. The next step is to plot the

points and define the boundaries of the sample. The model geometry must also have the interior

boundaries. Divide the interior boundaries into sub domains. Apply boundary conditions to the sample

and generate the mesh which can be solved to determine the stress intensity factor.

Page 34: Nondestructive Testing For Finding Out The Displacement Of

24

The sample considered here has a horizontal crack of length 0.4m on the left vertical edge. The

total height of the plate is 2m. Stress intensity factor is determined using the J integral. The analysis

computes the three different contours traversing three different regions around the crack tip. The first

contour follows the exterior boundary of the plate and the second and third contours follow the interior

boundaries. To calculate the J integral, we define boundary integration variables for each contour and

this creates two variables for each contour. The first variable W, contains the integrated strain energy

density, while the second, denoted Tdudx, contains the traction vector times the spatial x-derivative of

the deformation components. The sum of these two variables then provides the J integral value as a

scalar expression variable. When calculating the J-integral, the contour normals must point outward of

the region which the contour encloses. The boundary normals of the plate geometry are all pointing

outward. However, some of the normals of the interior boundaries that are used for the second and third

contour do not point outward of the regions that they enclose. This means that we need to define

additional normals to get the correct alignment of the normals. We define these normals as boundary

expressions and use them in the boundary integration variables. The procedure followed is explained

with the help of some screen shots in section 5.2 under the title, simulation of fracture for advanced

ceramics. Manually KIa can be derived using the equation

where σ is force/area and ‘a’ is the length of the crack and ccf is configuration correction factor

which can be defined as the amount of deviation in a measurement that is accounted for in the

calibration process.

5.2 Simulation of fracture for advanced ceramics

A silicon nitride sample with a width 1m has a single horizontal edge crack of length 0.4m. The

total height of the plate is 2m, but due to symmetry reasons, the model only includes half of the height.

Step.1 A geometry model is created using the analysis software. The screenshot of the model is shown

below (Figure 5.2).

Page 35: Nondestructive Testing For Finding Out The Displacement Of

25

Fig 5.2: Geometric modeling.

Step.2 Apply the point conditions and boundary conditions into the geometry. The boundary conditions

are given by going into the physics menu and choosing the boundary settings in the software as shown in

the Fig 5.3.

Fig 5.3: Boundary conditions.

Page 36: Nondestructive Testing For Finding Out The Displacement Of

26

Step.3 The next step we need to perform is applying the load on the boundary plane. Here we are

applying load on the boundary 3.

Fig 5.4: Applying load on the boundary.

Step.4 Now apply the sub domain settings. From the physics menu chose the sub domain settings edit

field. Chose the desired material from the library material. If the required material is not available in the

library, input the values of the poisons ratio and young’s modulus. The procedure employed in entering

these values is demonstrated in Fig 5.5.

Fig 5.5: Material selection.

Page 37: Nondestructive Testing For Finding Out The Displacement Of

27

Step.5 From the options menu chose Expression and click on Boundary expressions. Specify the

expressions for the boundaries as required. Fig 5.6 shows the procedure to apply the boundary

expressions.

Fig 5.6: Boundary expressions.

Now apply the boundary integration variables. From the options menu, chose integration

coupling variables and click on boundary integration variables. Fig 5.7 shows the screen shot of this

operation.

Fig 5.7: Boundary integration variables.

Now apply the scalar expressions by clicking on the options menu and selecting the scalar

expressions from the expressions (Fig 5.8).

Page 38: Nondestructive Testing For Finding Out The Displacement Of

28

Fig 5.8: Applying the scalar expressions.

STEP.6 Generate the mesh by clicking on Initialize mesh button in the tool bar and refine the mesh to

the required size.

Fig 5.9: Mesh generation.

Solve the design by clicking on the solve option and select solve problem. Apply the post

processing function to arrive at various results.

Page 39: Nondestructive Testing For Finding Out The Displacement Of

29

5.3 Displacement of crack in silicon nitride due to tensile loading

The stress intensity factor for the model when solved by using the formula is equal to 20 x ( Π

0.4)1/2

x 2.1= 470.819 Pa. Ccf value of 2.1 is a standard value for this type of configuration. The stress

intensity factor of the modeled sample in the software is 470.697112 Pa.

Fig 5.10: Value of stress intensity factor.

The value of stress intensity factor calculated is equal to the stress intensity factor from the

software analysis. This indicates that our created model is similar to the real model and the displacement

analysis can be carried out.

When a tensile load of 200 N/m2, 800 N/m

2 and 1200 N/m

2 are applied on the sample, there is a

maximum displacement of 1.7x10-6

m, 6.7x10-6

m and 1x10-5

m along the crack as shown in figure

Page 40: Nondestructive Testing For Finding Out The Displacement Of

30

5.11(a), (b) and (c) respectively. The initial position of the crack without application of tensile load is

seen in figure 5.1.

Fig 5.11: (a) Displacement due to load of 200N/m2 and (b) Displacement due to tensile load of 800N/m

2.

Fig 5.11 (c): Displacement due to 1200N/m2.

By following this procedure, we can determine the displacement of the crack due to application

of different loads on the sample. The values obtained from the graph are tabulated in table 5.1.

Page 41: Nondestructive Testing For Finding Out The Displacement Of

31

Table 5.1: Displacement of crack due to loading.

Material Load (N/m2) Displacement (m)

Silicon nitride 200 1.7x10-6

Silicon nitride 800 6.7x10-6

Silicon nitride 1200 1x10-5

Due to increase in application of load, it is observed that the displacement of crack is increasing.

This indicates that more load causes more displacement along the crack surface and there is a possibility

that the material can lose its stability and break when the load is applied above its capacity.

Page 42: Nondestructive Testing For Finding Out The Displacement Of

32

Chapter 6: Discussion

Traditional nondestructive evaluation methods are not much effective to detect subsurface flaws

with small dimensions. Ceramics are translucent to light and it is because of this property that a new

laser scattering method was developed, which is capable of detecting and characterizing the flaws. For

most flaws, median cracks, their subsurface scatter intensity is considerably stronger than normal dense

material and therefore can easily be identified from the nondestructive evaluation data. The automated

laser scattering nondestructive evaluation system was used to evaluate the NT551 silicon nitride. The

experimental system scans the entire length of the surface to construct a two dimensional laser scatter

intensity image of the surface, from which the location, size and severity of subsurface flaws can be

easily determined. Nondestructive techniques were successfully applied to detect the damage in silicon

nitride and to find the value of the displacement in silicon nitride which has an edge crack on its surface.

Laser scattering was very successful in determining the damage location and size of the damage in

silicon nitride. Comsol software is then used to perform various displacement analysis on the silicon

nitride sample which already has a damage on it. The experiment can help in finding out any damage on

the sample and the analytical software can be very useful in predicting the orientation of the crack for

various loads. Finally we can know the loads at which the material tends to break along the crack and

determine the failure load of the sample for a given width of crack.

Page 43: Nondestructive Testing For Finding Out The Displacement Of

33

Chapter 7: Conclusion And Future Direction Of Research

Results obtained from the laser scattering technique on subsurface damage in silicon nitride,

have been encouraging. Laser scattering technique can reveal the information of the subsurface region.

This technique is an efficient and a nondestructive method to examine the subsurface damage in the

entire length of the silicon nitride sample. The width of the subsurface damage was calculated based on

the laser scattering images. The displacement of the crack with respect to various tensile loading was

analyzed using the comsol software. We could detect the crack and also study the behavior of this crack

under various loading conditions.

More deep damage can be detected by using longer wavelength. So a study could be made in the

future, by changing the wavelength of the laser source. Different laser source can also be used to

determine if they could be more effective in detecting deeper damage, when compared with helium neon

laser.

Page 44: Nondestructive Testing For Finding Out The Displacement Of

34

References

1. Jurgen R, Alain B.N Kounga, Marion Weissenberger-Eibi, Daniel, Antje B, Wolfgang R,

Michaell J.Hoffman, Robert D, Gerhand Schenider. 2009. Development of a roadmap for

advanced ceramics: 2010–2025, Journal of the European Ceramic Society, vol 29, pp 1549–

1560.

2. Zhang J.M, Sun J.G, Pei Z.J. 2003. Application of laser scattering on detection of subsurface

damage in silicon wafers. Proceedings of IMECE, ASME International Mechanical Engineering

Congress and R & D Expo. Nov 15-21, Washington, D.C.

3. Estibaliz Sanchez, Pedro Miranda, Fernando G, Antonia P. 2009. Effect of temperature on pre

creep mechanical properties of silicon nitride, Journal of the European Ceramic Society, vol 29,

pp 2635-2641.

4. Steckernrider J.S, Ellingson W.A. 1994. Surface and subsurface defect detection in Silicon

nitride components by laser scattering. Review of progress in Quantitative Nondestructive

Evaluation, vol 13, pp 1645-1651.

5. Sun J.G, Ellingson W.A, Stechenrider J.S and Ahuja S. 1999. Application of optical scattering

methods to detect damage in ceramics, machining of ceramics and composites, New York.

6. Kurra S.H, Zhang J.M, Pennathur A. 2009. Flowchart for basic nondestructive testing

technologies in biomaterials, 25th Southern Biomedical Engineering Conference, IFMBE

Proceedings, vol 24, pp. 35–38

7. Backhaus-Ricoult M, Guerin V, Huntz A-M and Urbanovich V.S. 2002. High temperature

oxidation behavior of high purity alpha-beta and mixed silicon nitride ceramics, Journal of

American Ceramic Society, vol 85, pp 385.

8. Riley F.L. 2000. Silicon nitride and related materials, Journal of American Ceramic Society, vol

83, pp 245.

9. Buljan S.T, Baldoni J.G. 1998. Silicon nitride based ceramics, Mater. Sci. Forum, vol 47, pp 249.

10. Oba F, Tatsumi K, Tanaka I and Adachi H. 2002. Effective doping in cubic Si3N4 and Ge3N4:

A first-principles study, Journal of American Ceramic Society, vol 85, pp 97.

11. Carduner K R, Blackwell C S, Hammond W B, Reidinger F and Hatfield G R. 1990. Journal of

American Chemical Society, vol 112, pp 4676.

12. Tang C C, Bando Y, Sato T and Kurashima K. 2002. Silicon nitride based composites, J. Mater

Chem, vol 12, pp 1910.

13. Petzow G, Herrmann M. 2002. High performance non oxide ceramics: structure and bonding,

Springer verlag berlin, Berlin, vol 102, pp 47.

14. Dressler W, Kleebe HJ, Hoffmann MJ, Rouhle M, Petzow G. J. 1996. Model experiments

concerning abnormal grain growth in silicon nitride, Journal of the European ceramic society,

vol 16, pp 3.

15. Imamura H, Hirao K, Brito ME, Toriyama M, Kanzaki S. 2000. Further Improvement in

Mechanical Properties of Highly Anisotropic Silicon Nitride Ceramics, Journal of American

Ceramic Society, vol 83, pp 495.

Page 45: Nondestructive Testing For Finding Out The Displacement Of

35

16. R.C. McMaster, Nondestructive Testing Handbook. 1982. American Society for Nondestructive

Testing, Columbus, OH.

17. E.A. Sivers, D.L. Hollway, W.A. Ellingson, and J. Ling. 1993. Development and Application of

Local 3-D CT Reconstruction Software for Imaging Critical Regions in Large Ceramic Turbine

Rotors, Review of Progress in Quantitative Nondestructive Evaluation, QNDE meeting at the

University of California, San Deigo Campus, CA.

18. Y. Shi, J. Hennicke, and U. Netzelmann. 1997. High-Frequency Ultrasound Detection of Small

Defects in Si3N4 Ceramics, Nondestructive Testing Evaluation, vol 13.

19. U. Netzelmann, H. Reiter, Y. Shi, J. Wang, and M. Maisl. 1997. Ceramic Automotive Valves

Chances and Limitations of Nondestructive Testing, NDTnet, vol 2.

20. I. Solodov, N. Krohn, R. Stoessel, and G. Busse. 2001. Ultrasonic Nondestructive Evaluation of

Cylidrical Samples with Surface Acoustic Waves, Nondestr. Eval.

21. H.A. Linder, B. Gaspers, J. Hennicke, H. Feuer, and I. Petezenhauser. 1998. Non destructive

Evaluation of Si3N4 Valves by Ultrasonic Testing, Ceramic Forum International.

22. http://www.asnt.org/

23. Misch C, Bidez M, Sharawy M. 2001. A Bioengineered Implant for a Predetermined Bone

Cellular Response to Loading Forces, a literature review and case report, Journal of

Periodontology, pp 1276.

24. Ruppel M, Burr D, Miller L. 2006. Chemical makeup of microdamaged bone differs from

undamaged bone, Bone 9:318 -24.

25. Boskey A, Camacho N. 2006. FT-IR imaging of native and tissue engineered bone and cartilage,

Biomaterials, vol 28, pp 2465-2478.

26. Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, Mastrogiacomo M, Peyrin F,

Rustichelli F. 2007. Bulk and interface investigations of scaffolds and tissue engineered bones by

X-ray microtomography and X-ray microdiffraction. Biomaterials J vol 28, pp 2505-2524.

27. Roques A, Browne M, Thompson J, Rowland C, Taylor A. 2004. Investigation of fatigue crack

growth in acrylic bone cement using the acoustic emission technique, Biomaterials Journal, vol

25, pp 769-778.

28. Hughes D, Button T, Cochran S, Elgoyhen J, Girkin J, Hughes H, Longbottom C, Meggs C,

Poland S. 2007. 3D Imaging of teeth using High Frequency Ultrasound, IEEE pp 1051-0117.

29. Gould, R. Gordon. 1959. The LASER, Light Amplification by Stimulated Emission of Radiation,

The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18

June. pp. 128. OCLC 02460155.

30. Schawlow and Townes. 1998. Invent the laser lucent technologies, http://www.bell-

labs.com/about/history/laser/

31. G.P. Karman, G.S. McDonald, G.H.C. New, J.P. Woerdman. 1999. Fractal modes in unstable

resonators, Nature, vol 402, pp 138.

32. Steen, W. M, Mazumder J. 1998. Mathematical modeling of laser/material interactions. Defense

technical information center, Springfield.

33. International Union of Pure and Applied Chemistry. Helium–neon laser, Compendium of

Chemical Terminology Internet edition.

Page 46: Nondestructive Testing For Finding Out The Displacement Of

36

34. E.F. Labuda and E.I. Gordon, Bridges W.B. 1964. Continuous visible laser action in singly

ionized argon krypton and xenon, Journal of Applied Physics, vol 35, pp 1647.

35. Verdeyen, J. T. 2000. Laser Electronics, Third edition, Prentice Hall series in solid state physical

electronics, Prentice Hall, Upper Saddle River, pp 326-332.

36. Meyer Arendt Jr. 1989. Introduction to classical and modern optics, Prentice Hall, Englewood

cliffs, New Jersey.

37. Neilson W.A, Knott T.A and Carhart P.W. 1961. Websters new international dictionary of the

English language, G & C. Merriam Co, Springfield, MA.

38. J. C. Stover. 1995. Optical Scattering: Measurement and Analysis, SPIE Optical Engineering

Press, Bellingham, WA.

39. T. A. Germer. 1997. Angular dependence and polarization of out-of-plane optical scattering from

particulate contamination, subsurface defects, and surface microroughness, Appl. Opt.

40. T. A. Germer and C. C. Asmail. 1999. Polarization of light scattered by microrough surfaces and

subsurface defects, J. Opt. Soc. Am, vol 70, 3688-3695.

41. T. A. Germer, C. C. Asmail, and B. W. Scheer. 1997. Polarization of out-of-plane scattering

from microrough silicon, Opt. Lett, vol 22, pp 1284-1286.

42. Vorburger, T.V and Teague E.C. 1981. Optical techniques for on-line measurement of surface

topography, Precision Engineering.

43. Stover J.C. 1990. Optical Scattering Measurement and Analysis, McGraw-Hill, New York.

44. Nicodemus F.E., Richmond J.C., Hsia J.J, Ginsberg I.W., and Limperis T. 1977. Geometric

considerations and nomenclature for reflectance, NBS Monograph 160, U.S. Dept. of

Commerce, Washington, DC.

45. Persson, U. 1992. Real time measurement of surface roughness on ground surfaces using

speckle-contrast technique, Optics and Lasers in Engineering.

46. Asakura, T. 1978. Surface roughness measurement, Speckle Metrology, edited by Erf, R.K.,

Academic Press, New York.

47. Fujii H., and Asakura T.1974. Effect of surface roughness on the statistical distribution of image

speckle intensity, Optics Communications.

48. Hecht, E. 1998. The diffraction grating, Optics, Addison Wesley Longman, Reading, MA.

49. J.G. Sun, W.A. Ellingson, J.S. Steckenrider, and S. Ahuja. 1999. Application of Optical

Scattering Methods to Detect Damage in Ceramics, Machining of Ceramics and Composites,

Part IV, Chapter 19, eds., S. Jahanmir, M. Ramulu, and P. Koshy, Marcel Dekker, New York, pp

669-699.

50. J.G. Sun, J.M. Zhang, and M.J. Andrews. 2004. Laser Scattering Characterization of Subsurface

Defect/Damage in Silicon-Nitride Ceramic Valves, Ceramic Eng. Sci. Proceedings, vol 25, No 4,

pp 307-312.

51. J.G. Sun, A. Wolosewicz, M.H. Haselkorn, and W.A. Ellingson. 1998.Laser Scattering Detection

and Characterization of Defects and Machining Damage in Silicon Nitride Components. China

Int. Conf. on High-Performance Ceramics, Beijing.

52. Abdel-Rahman Ragab, Salah Eldin Bayoumi. 1998. Engineering solid mechanics, CRC Press.

Page 47: Nondestructive Testing For Finding Out The Displacement Of

37

Vita

Sri Harsha Kurra was born and brought up in Vijayawada, India. He received his Bachelors

Degree in Production Engineering from Acharya Nagarjuna Univeristy, India. He is currently doing his

Masters in Industrial Engineering from The University Of Texas at El Paso. He attended the 25th

Southern Biomedical Conference held in Florida, USA and presented his work on the application of non

destructive techniques in biomaterials. He is currently working on the detection and analysis of cracks

using lasers. He served as a Teaching Assistant for the laboratory course in Operations Research and

worked as a Research Assistant under the supervision of Dr. Jianmei Zhang, who is an expert in the area

of detection of cracks using the non destructive techniques. He attended the intensive training program

in lean manufacturing conducted by the Texas Manufacturing Assistance Center (TMAC). He attended

the MAES symposium held in Las Vegas during November 2008. He is an active member of the MAES

student chapter and NSBE student chapter at UTEP.

Permanent address: 1319, Randolph Dr

El Paso, TX, 79902

This thesis was typed by Sri Harsha Kurra.