34
Nonholonomic Motion Planning: Steering Using Sinusoids R. M. Murray and S. S. Sastry

Nonholonomic Motion Planning: Steering Using Sinusoids

  • Upload
    pules

  • View
    29

  • Download
    1

Embed Size (px)

DESCRIPTION

Nonholonomic Motion Planning: Steering Using Sinusoids. R. M. Murray and S. S. Sastry. Motion Planning without Constraints. Obstacle positions are known and dynamic constrains on robot are not considered. - PowerPoint PPT Presentation

Citation preview

Page 1: Nonholonomic  Motion Planning: Steering Using Sinusoids

Nonholonomic Motion Planning: Steering Using Sinusoids

R. M. Murray and S. S. Sastry

Page 2: Nonholonomic  Motion Planning: Steering Using Sinusoids

Motion Planning without Constraints

• Obstacle positions are known and dynamic constrains on robot are not considered.

From Planning, geometry, and complexity of robot motion By Jacob T. Schwartz, John E. Hopcroft

Page 3: Nonholonomic  Motion Planning: Steering Using Sinusoids

Problem with Planning without Constraints

Paths may not be physically realizable

Page 4: Nonholonomic  Motion Planning: Steering Using Sinusoids

Mathematical Background

• Nonlinear Control System

mm uxguxgx )()( : 11

• Distribution

)(,),(1 xgxgspan m

Page 5: Nonholonomic  Motion Planning: Steering Using Sinusoids

Lie Bracket

• The Lie bracket has the properties

gx

ff

x

ggf

],[

• The Lie bracket is defined to be

],[],[ fggf 1.)

2.) 0]],[,[]],[,[]],[,[ gfhfhghgf (Jacobi identity)

Page 6: Nonholonomic  Motion Planning: Steering Using Sinusoids

Physical Interpretation of the Lie Bracket

Page 7: Nonholonomic  Motion Planning: Steering Using Sinusoids

Controllability

• Chow’s Theorem

Uxx 10 ,

mRTuandT ],0[:0

10 )()0(.. xTxandxxsatisfiests

• A system is controllable if for any

UxallforRIf nx

Uonlecontrollabissystemthethen

)( bracketingLieunderofclosuretheis

Page 8: Nonholonomic  Motion Planning: Steering Using Sinusoids

Classification of a Lie Algebra

• Construction of a Filtration

)(,),(11 xgxgspanGIf m

],[ 111 iii GGGG

1111 ,:],[],[ ii GhGghgspanGGWhere

Page 9: Nonholonomic  Motion Planning: Steering Using Sinusoids

Classification of a Lie Algebra

• Regular

Page 10: Nonholonomic  Motion Planning: Steering Using Sinusoids

Classification of a Lie Algebra

• Degree of Nonholonomy

Page 11: Nonholonomic  Motion Planning: Steering Using Sinusoids

Classification of a Lie Algebra• Maximally Nonholonomic

iip rankGrZr ,

0,, 01 rrrZ iiip

• Growth Vector

• Relative Growth Vector

Page 12: Nonholonomic  Motion Planning: Steering Using Sinusoids

Nonholonomic Systems• Example 1

Page 13: Nonholonomic  Motion Planning: Steering Using Sinusoids

Nonholonomic Systems• Example 2

Page 14: Nonholonomic  Motion Planning: Steering Using Sinusoids

Phillip Hall Basis

The Phillip Hall basis is a clever way of imposing the skew-symmetry of Jacobi identity

Page 15: Nonholonomic  Motion Planning: Steering Using Sinusoids

Phillip Hall Basis• Example 1

Page 16: Nonholonomic  Motion Planning: Steering Using Sinusoids

Phillip Hall Basis

• A Lie algebra being nilpotent is mentioned • A nilpotent Lie algebra means that all Lie

brackets higher than a certain order are zero• A lie algebra being nilpotent provides a

convenient way in which to determine when to terminate construction of the Lie algebra

• Nilpotentcy is not a necessary condition

Page 17: Nonholonomic  Motion Planning: Steering Using Sinusoids

Steering Controllable Systems Using Sinusoids: First-Order Systems

• Contract structures are first-order systems with growth vector

• Contact structures have a constraint which can be written

• Written in control system form

Page 18: Nonholonomic  Motion Planning: Steering Using Sinusoids

Steering Controllable Systems Using Sinusoids: First-Order Systems

More general version

Page 19: Nonholonomic  Motion Planning: Steering Using Sinusoids

Derive the Optimal Control: First-Order Systems

• To find the optimal control, define the Lagrangian

• Solve the Euler-Lagrange equations

Page 20: Nonholonomic  Motion Planning: Steering Using Sinusoids

Derive the Optimal Control: First-Order Systems

Example

Lagrangian:

Euler-Lagrange equations:

Page 21: Nonholonomic  Motion Planning: Steering Using Sinusoids

• Optimal control has the form

Derive the Optimal Control: First-Order Systems

• Which suggests that that the inputs are sinusoid at various frequencies

where is skew symmetric

Page 22: Nonholonomic  Motion Planning: Steering Using Sinusoids

Steering Controllable Systems Using Sinusoids: First-Order Systems Algorithm

yields

Page 23: Nonholonomic  Motion Planning: Steering Using Sinusoids

Hopping Robot (First Order)• Kinematic Equations

• Taylor series expansion at l=0

• Change of coordinates ll mm 1/

Page 24: Nonholonomic  Motion Planning: Steering Using Sinusoids

• Applying algorithm 1 a. Steer l and ψ to desired values by

b. Integrating over one period

Hopping Robot (First Order)

Page 25: Nonholonomic  Motion Planning: Steering Using Sinusoids

• Nonholonomic motion for a hopping robot

Hopping Robot (First Order)

Page 26: Nonholonomic  Motion Planning: Steering Using Sinusoids

Steering Controllable Systems Using Sinusoids: Second-Order Systems

Canonical form:

Page 27: Nonholonomic  Motion Planning: Steering Using Sinusoids

Front Wheel Drive Car (Second Order)• Kinematic Equations

• Change of coordinates

Page 28: Nonholonomic  Motion Planning: Steering Using Sinusoids

Front Wheel Drive Car (Second Order)• Sample trajectories for the car applying

algorithm 2

Page 29: Nonholonomic  Motion Planning: Steering Using Sinusoids

Maximal Growth System

• Want vectorfields for which the P. Hall basis is linearly independent

Page 30: Nonholonomic  Motion Planning: Steering Using Sinusoids

Maximal Growth Systems

Page 31: Nonholonomic  Motion Planning: Steering Using Sinusoids

Chained Systems

Page 32: Nonholonomic  Motion Planning: Steering Using Sinusoids

Possible ExtensionsCanonical form associated with maximal growth 2 input systems look

similar to a reconstruction equation

Page 33: Nonholonomic  Motion Planning: Steering Using Sinusoids

Possible Extensions

• Pull a Hatton…plot vector fields and use the body velocity integral as a height function

• The body velocity integral provides a decent approximation of the system’s macroscopic motion

Page 34: Nonholonomic  Motion Planning: Steering Using Sinusoids

Plot Vector Fields