Nonlinear dynamics in Atomic Force

  • Upload
    liakman

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    1/24

    Arvind Raman, Associate Professor

    Mechanical EngineeringBirck Nanotechnology Center

    Students: Shuiqing Hu, M. Moreno-Moreno (UAM, Spain), S. Ruetzel(Darmstadt, Germany)

    Collaborators: Steve Howell (Sandia), Scott Crittenden (ARL)Soo-Il Lee (U of Seoul, Korea), Ron Reifenberger (Physics, Purdue)

    J. Gomez-Herrero (UAM, Spain)

    Nonlinear dynamics in

    Atomic Force M icroscopy

    Nonlinear dynamics inNonlinear dynamics in

    Atomic Force M icroscopyAtomic Force M icroscopy

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    2/24

    OutlineOutline

    Nonlinearities everywhere

    Whither chaos?

    Parametric resonance- medieval physics in theAtomic Force Microscope

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    3/24

    BifurcationsBifurcations

    40 42 44 46 48 500

    100

    200

    300

    400

    TipAmplitude(nm)

    40 42 44 46 48 50-3

    -2

    -1

    0

    Excitation Frequency (kHz)

    Ph

    ase(rad)

    43 44 45

    150

    170

    190

    43 44-1.2

    -0.5

    EG&G 7260Lock-In

    Deflection

    Detector

    GPIB

    NanoTecController

    Piezotube

    ADC

    Z

    PiezoControl

    Oscillator

    Sample

    Bimorph

    Non-Contact

    Signal

    Laser

    A. Si tip / HOPG sample z=90 nm, frequency sweep

    NanotecTMAFMLee, Raman et al, Phys Rev B (2002),

    Ultramicroscopy (2003)Also Khle et al, Garca et al, Stark, et al

    Aim et al, L. Wang*)B. If experiment is repeated much closer to sample the tipsuddenly sticks to the sample in certain frequency ranges

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    4/24

    Computed responseComputed response

    40 42 44 46 48 500

    100

    200

    300

    TipAm

    plitude(nm)

    40 42 44 46 48 50-3

    -2

    -1

    0

    Excitation Frequency (kHz)

    Phase(rad)

    44.3 44.7178

    183

    43.4 43.7172

    176

    180

    43.3 43.7-1.2

    -1.1

    SN3

    SN1

    SN2 SN4

    SN3

    SN4SN1

    SN2

    Further from sample, 4 bifurcations (SN1 - SN4) Closer to sample 2 SNs & 2 PDs near fundamental resonance Identifying bifurcation really needs knowledge of unstable branch

    Z=90nm Z=2nm

    AUTO computation

    Lee, Raman et al, Phys Rev B (2002)

    0 20 40 60 800

    1

    2

    3

    Tipam

    plitude(nm)

    0 20 40 60 80-3

    -2

    -1

    0

    Excitation Freq (kHz)

    Phase(rad)

    PD's

    PDPD

    PD PD PD's

    SN

    SN

    SN

    SN

    Ruetzel, Raman et al, Proc. Roy. Soc. (2003)Lee, Raman et al, Ultramicroscopy (2003)

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    5/24

    Analyt ical approachesAnalyt ical approaches

    Analytical analysis for nonlinear dynamics in AM-AFM:

    Chen et al. (1995), Whangbo et al. (1998) -harmonic

    approximation method Nony et al. (1999) a variational approachbased on

    the principle of least action

    Wang (1998) - Krylov-Bogoliubov-Mitroposky (KBM)asymptotic approximation, Sebastian & Salapaka,Hlscher & Schwarz, Belikov, Magonov

    Yagasaki (2004) - averaging methodand anextended version of the subharmonic Melnikov

    Others for chaotic oscillations

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    6/24

    The averaging methodThe averaging method

    From Sanders and Verhurlst

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    7/24

    Internal resonance* based AFMInternal resonance* based AFM Experiments performed using

    47kHz microcantilever on wild

    and

    mutant bacteriorhodopsinmembrane

    2nd bending mode freq ~7*1st

    1st

    and 2nd mode couple onlyin the presence of nonlinearinteraction forces (local van

    derWaals and electrostatic forces)

    0 2 4 6 8 10 12

    -60

    -40

    -20

    0

    20

    40

    c)

    H3H2

    B2/H7

    H1

    PSD

    (dB)

    Frequency (kHz)

    On mica (50 % setpoint)

    Probing attractive forces at the nanoscale using higher harmonic dynamic force microscopy,Crittenden, Raman, Reifenberger (PRB, 2005)

    * Nayfeh and Mook (1979)

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    8/24

    Internal resonance based AFMInternal resonance based AFM3500 nm x 3500 nm scans

    proteins Lipid deposits

    Topography Second harmonic image

    Seventh harmonic image

    Clear distinction between lipids and proteins

    Presence of internal resonance critical in themethod The method shows promise for themeasurement of

    local attractive forces of soft biomolecules Can be extended to electrostatic forceProbing attractive forces at the nanoscale using higher harmonic dynamic force microscopy,Crittenden, Raman, Reifenberger (PRB 2005)

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    9/24

    OutlineOutline

    Nonlinearities everywhere

    Whither chaos?

    Parametric resonance- medieval physics in theAtomic Force Microscope

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    10/24

    Internal resonance* based AFMInternal resonance* based AFM Experiments performed using

    47kHz microcantilever on wild

    and

    mutant bacteriorhodopsinmembrane

    2nd bending mode freq ~7*1st

    1st

    and 2nd mode couple onlyin the presence of nonlinearinteraction forces (local van

    derWaals and electrostatic forces)

    0 2 4 6 8 10 12

    -60

    -40

    -20

    0

    20

    40

    c)

    H3H2

    B2/H7

    H1

    PSD

    (dB)

    Frequency (kHz)

    On mica (50 % setpoint)

    Probing attractive forces at the nanoscale using higher harmonic dynamic force microscopy,Crittenden, Raman, Reifenberger (PRB, 2005)

    * Nayfeh and Mook (1979)

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    11/24

    f0 2f0 3f0

    Realistic Case

    3f0/2f0/2

    Ideal Case

    f0

    Dynamic AFM uses the 1st harmonic amplitude(A) ofcantilever oscillation as control feedback

    Subharmonics and chaoscan introduce metrology errors

    Urban myth? (Burnham et al1995, Salapaka et al2001)

    Homoclinic chaos

    Grazing bifurcations (non-smooth, discontinuous interaction forces)

    Strong forcing

    MotivationMotivation

    Frequency

    Amplitud

    e

    A

    Z0 A

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    12/24

    Experiments performedExperiments performed

    Cantilever set Force Modulation Ultrasharp NSC12-C TESP

    Resonance Frequency (kHz) 66.32.1 130.21.8 310.15.9

    Stiffness (N/m) 1.50.1 2.90.2 32.00.4Quality factor 1428 13011 1485

    Under nitrogen, 1st harmonic Amplitude equals 80nm

    Under nitrogen, 1st

    harmonic Amplitude equals 140nm

    In air, 1st harmonic Amplitude equals 80nm

    Experimental condition

    (=0.980,=0, and

    =1.020)In air, 1st harmonic Amplitude equals 140nm

    Summary of the properties and experimental conditions for 3 sets ofmicrocantilevers (the stiffness, resonance frequency and qualityfactors are ascertained from experimental data and are averagedover the 10 microcantilevers within each set).

    More than 30 microcantilevers are operated under 3 drivefrequency, with various operating conditions and each set ofexperiment is repeated 3-6 times . Results are consistent.

    S. Hu and A. Raman, Phys. Rev. Lett (2006)

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    13/24

    0 2 4 6 8 10 12 14 160

    0.05

    0.1

    0.15

    LyapunovExpo

    nent

    0 2 4 6 8 10 12 14 160

    10

    20

    30

    Drive Amplitude (nm)

    NoiseLimit(%)

    Lyapunov Exponent

    Noise Limit

    Attactive Regime Attractive-Repulsive Regime

    Period-1 Chaotic Period-2 Chaotic

    Response at resonanceResponse at resonance

    0 100 200 300 400 500 600 700

    0

    0.2

    0.4

    0.6

    0.8

    1

    -50

    0

    50

    100

    DriveAmplitude(Volt)

    Tip Deflection Power Spectral Density

    Frequency (kHz)PowerSpectralDensity(dB/Hz)

    Attractive

    Repulsive

    Setpoint amplitude constant, setpoint ratio increased

    Grazing bifurcations similar to those in impact oscillators

    under reasonable operating conditions

    S. Hu and A. Raman, Phys. Rev. Lett (2006) Also Stark et al. Nanotechnology (2006)

    O l

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    14/24

    OutlineOutline

    Nonlinearities everywhere

    Whither chaos?

    Parametric resonance- medieval physics in theAtomic Force Microscope

    C d l d S i d C l

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    15/24

    J. San Martn-O Botafumeiro-parametric pumping in the middle ages, Am. J. Phys.

    Censer

    The pumping friars

    Catedral de Santiago de Compostela

    Parametric excitation-theoryParametric excitation-theory

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    16/24

    22 200 02

    cos( ) ( ) 0,d d

    G t t G

    dt Q dt

    + + + =

    Parametric excitation-theoryParametric excitation-theory

    For G=0, homogeneous solution A e(-0t/2Q)cos(0t+) decaysexponentially

    For G>Gthreshold, a homogenous solution A cos(/2 t+) growswhen n~20 n=1,2,3..

    00

    G

    0 /2Gthreshold=0/Q

    Growingperiodic

    oscillations

    Decaying

    quasi-periodicoscillations

    A

    G>Gthreshold

    20

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    17/24

    Parametric excitation-theoryParametric excitation-theory

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    18/24

    22 200 02

    cos( ) ( ) 0,d d

    G t t G

    dt Q dt

    + + + =

    Parametric excitation theoryParametric excitation theory

    For G=0, homogeneous solution A e(-0t/2Q)cos(0t+) decaysexponentially

    For G>Gthreshold, a homogenous solution A cos(/2 t+) growswhen n~20 n=1,2,3..

    00

    G

    0 /2Gthreshold=0/Q

    Growingperiodic

    oscillations

    Decaying

    quasi-periodicoscillations

    A

    G>Gthreshold

    20

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    19/24

    parametrically?

    parametrically?

    Rugar and Gruetter, PRL, 67(6), 1991

    Dougherty et al., Meas. Sci. Tech., 7, 1733, 1996

    K. L. Turner et al., APL (2006)

    Others:

    M. Stark et al., PRB (2005)Patil and Dharmadhikari,Appl. Surf. Sci. (2003)

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    20/24

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    21/24

    ExcitationExcitation

    282500 283000 283500 284000 284500 285000

    0

    10

    20

    30

    40

    50

    60

    70

    Am

    plitude(nm)

    Driving Frequency (Hz)

    Conventional

    Excitation

    Parametric

    Excitation

    Non-Lorentzian, extremely sharp, controllable widthresonance peak

    60 Hz

    ()conventional(/2)parametric

    Why does this circuit work?Why does this circuit work?

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    22/24

    Why does this circuit work?Why does this circuit work?

    [ ] 0( ) ( ) ( ) ( ) ( , ) ( , ) ( , , )cantilever fluidic tip samplemx t k x t z t cx t F x x F x x F x x d + + = + +&& & & & &

    [ ] ( )( ) ( ) ( ) cosz t G x t z t t =

    z(t)

    x(t)

    2( )cos( )1 ( ) ~ ( ) cos( ) ( )

    1 cos( )

    Gx t t If G z t Gx t t O G

    G t

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    23/24

    The Instabi lity TongueThe Instabili ty Tongue

    The instability tongues can be computed in Gparameter space.Assuming , and small damping , then

    Experimental results are from Moreno-Moreno et al. APL (200286.3 286.4 286.5 286.6 286.7 286.8 286.9

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1.35

    1.40

    Experimental Data

    Theoretical prediction

    Self-Sustained

    Parametric

    Oscillation

    Half of excitation frequency (kHz)

    G/Gth

    If , then the equation of motionbecomes the linear damped Mathieu's equation.

    Potential ApplicationsPotential Applications

  • 8/7/2019 Nonlinear dynamics in Atomic Force

    24/24

    Potential ApplicationsPotential Applications

    DNA on mica Topography

    High sensitivity attractive mode and tapping mode

    imaging, dissipation maps Dynamic AFM in liquids

    Mass sensing using microcantilevers

    Silicon grating