17
Nonstationary regimes in gravity wave turbulence S Lukaschuk 1 , R Bedard 1 , S Nazarenko 2 1 Fluid Dynamics Laboratory, University of Hull 2 Mathematics Institute, University of Warwick

Nonstationary regimes in gravity wave turbulence

Embed Size (px)

DESCRIPTION

S Lukaschuk 1 , R Bedard 1 , S Nazarenko 2. 1 Fluid Dynamics Laboratory, University of Hull 2 Mathematics Institute, University of Warwick. Nonstationary regimes in gravity wave turbulence. Experiment. 8-panel Wave Generator. C 2. CCD. M. Laser. C 1. - PowerPoint PPT Presentation

Citation preview

Page 1: Nonstationary regimes in gravity wave turbulence

Nonstationary regimes in gravity wave turbulence

S Lukaschuk1 , R Bedard1, S Nazarenko2

1 Fluid Dynamics Laboratory, University of Hull2 Mathematics Institute, University of Warwick

Page 2: Nonstationary regimes in gravity wave turbulence

Experiment

8-panel Wave Generator

C1

C2

M

Laser

CCD

Horizontal size: 8 x 12 m, water depth: up to 1 m

Page 3: Nonstationary regimes in gravity wave turbulence

Wave generation

HztrkatrA iji

ii ]2.15.045.0,4.0[ , sin,,

jk

Page 4: Nonstationary regimes in gravity wave turbulence

1. Weak turbulence theory (Zakharov, 1966 )

2. Breaking waves (Phillips ,1958)sharp wave crestsstrong nonlinearity

2K. Breaking waves (Kuznetsov , 2004)slope breaks occurs in 1D lineswave crests are propagating with a preserved shape

3. Finite size effects (Zakharov 2005; Nazarenko et al 2006)

Theoretical predictions for spectra of stationary surface gravity waves

353 , kEgE k

) of instead( gkk

44 , kEE k

rdtrxtxeEtdttxtxeE rki

k

ti ,,;,,

2

743

12 ,

kEgE k

2962127 , kELgE k

,1 41kL

Page 5: Nonstationary regimes in gravity wave turbulence

1D k- and -spectra

Page 6: Nonstationary regimes in gravity wave turbulence

Set of experimental dataWaveAmplitudea.u.

StationaryWave height RMS, cm

Coef. of Nonlinearity

k - Slope

- Slope

1 0.2 2.0 0.09 -5.7 -6.68

2 0.25 2.7 0.125 -3.85 -5.38

3 0.3 2.9 0.134 -3.66 -5.4

4 0.35 3.3 0.150 -3.58 -4.91

5 0.4 3.3 0.15 -3.53 -5.03

6 0.45 3.9 0.18 -3.46 -4.88

7 0.5 4.8 0.225 -3.13 -4.69

8 0.55 4.6 0.21 -2.97 -4.56

9 0.6 5.2 0.24 -2.92 -4.55

R S D D D

0 30 60 t, min100

Images:

One-point measurements

Page 7: Nonstationary regimes in gravity wave turbulence

Rising waves: characteristic time estimates

Page 8: Nonstationary regimes in gravity wave turbulence

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

t-domain, rise filtered elevation

Characteristic time

Page 9: Nonstationary regimes in gravity wave turbulence

F1: 5 m-1

F2: 10 m-1

F3: 80 m-1

F4: 160 m-1

F5: 320 m-1

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

k-domain, Rise, small amplitudes(frozen turbulence)

Page 10: Nonstationary regimes in gravity wave turbulence

k-domain, Rise, medium amplitudes

F1: 5 m-1

F2: 10 m-1

F3: 80 m-1

F4: 160 m-1

F5: 320 m-1

Frontpropagation

Breaking waves

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

Page 11: Nonstationary regimes in gravity wave turbulence

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

k-domain, Rise, high amplitudes

F1: 5 m-1

F2: 10 m-1

F3: 80 m-1

F4: 160 m-1

F5: 320 m-1

Page 12: Nonstationary regimes in gravity wave turbulence

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

k-domain, Stationary, low & high amplitudes

F1: 5 m-1

F2: 10 m-1

F3: 80 m-1

F4: 160 m-1

F5: 320 m-1

Page 13: Nonstationary regimes in gravity wave turbulence

Decay characteristics estimates

WT decay:

Decay due to wall friction:

Crossover amplitude:

Page 14: Nonstationary regimes in gravity wave turbulence

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

-domain, decay of the main peak (~1 Hz)back wall 0 and 30 deg

Page 15: Nonstationary regimes in gravity wave turbulence

t-domain, decay elevation RMS (t)

0 500 1000 1500 2000 2500 30000.01

0.22

0.42

0.62

0.82

1.02

1.22

1.42

1.62

0502_03 (0.25, 27.92 mm)0502_01 (0.45, 42.68 mm)0502_02 (0.35, 38.56 mm)0902_02 (0.55, 46.82 mm)

Time (s)

Stan

dard

dev

iatio

n (m

m)

RMS cm

Nlin Coeff

k - Slope

1 2.0 0.09 -5.7

2 2.7 0.125 -3.85

3 2.9 0.134 -3.66

4 3.3 0.150 -3.58

5 3.3 0.15 -3.53

6 3.9 0.18 -3.46

7 4.8 0.225 -3.13

8 4.6 0.21 -2.97

9 5.2 0.24 -2.92

Filter 4-7Hz

Page 16: Nonstationary regimes in gravity wave turbulence

Conclusions• At the developing stage our experiment shows front propagation of turbulent

energy along the k-spectra towards high k. In addition to this we observed a instantaneous injection of spectral energy into high k’s due to breaking events

• At the late decay stage wave turbulent energy decreases exponentially in our case of an essentially small size flume, which due to significant contribution of wall friction

• Finite size effects are responsible for non-monotonic decay of the wave spectrum tail. This effect is much more strong for “underdeveloped” turbulent regimes and not such significant for the case were initial state is characterized by a wide spectrum

• Wave turbulence comprises a mixture of smooth chaotic waves and breaks which interact and influence each other

• This influence were observed in our experiment as propagation of spectral humps down and up along the k-spectrum,

Page 17: Nonstationary regimes in gravity wave turbulence