25
1.- Normal flow rate to real flow rate Normal flow rate data Operation absolute pressure 7.53 80 kPa 101,325 Pa 600 kPa (g) 273.15 K 680.00 kPa 680,000 Pa Local atmospheric pressure 80 kPa Real volumetric flow rate V = Operating conditions 101,325 Pa 600 kPa (g) 273.15 K 10 °C 680,000 Pa 283.15 °C Operation absolute temperature 7.53 V = 1.16 10 °C 283.15 K Rev. cjc 26.02.2013 Normal flow rate data Operation conditions 7.53 680,000 Pa 10 °C 283 K 1949 m.a.s.l. 600.0 kPa (g) Normal conditions 101,325 Pa 273.15 K H = 1949 m.a.s.l. 80.00 kPa (abs) Real volumetric flow rate Operation pressure V = 101,325 Pa 600.00 kPa (g) 273 K 80.00 kPa 680,000 Pa 680.00 kPa 283.15 °C 680,000 Pa 7.53 V = 1.16 Operation absolute temperature Pop = Patm_loc + Pop Vn = Nm 3 /h Patm_loc = Pn = Pop = Tn = Pop = Pop = Patm_loc = (Pn/Pop) * (Top/Tn) * Vn Pn = Pop = Tn = top = Pop = Top = Vn = Nm 3 /h Top = top + 273.15 m 3 /h top = Top = 3.- Normal flow rate to real flow rate Patm_oc = f(H) Vn = Nm 3 /h Pop = top = Top = Hloc = Pop_g = Pn = Patm_Loc = 101,325* (1 -2,25577E-5 * H)^5,25588 Tn = Patm_loc = (Pn/Pop) * (Top/Tn) * Vn Pop = Pop_g + Patm_loc Pn = Pop_g = Tn = Patm_loc = Pop = Pop = Top = Pop = Vn = Nm 3 /h m 3 /h

Normal to Real Flow Rate and FAD Flow Rate

Embed Size (px)

DESCRIPTION

FAD flow rate

Citation preview

Page 1: Normal to Real Flow Rate and FAD Flow Rate

1.- Normal flow rate to real flow rate 2.- Real flow rate to normal flow rate

Normal flow rate data Operation absolute pressure Real flow rate data

7.53 80 kPa V =

101,325 Pa 600 kPa (g)

273.15 K 680.00 kPa

680,000 PaLocal atmospheric pressure Local atmospheric pressure

80 kPa Real volumetric flow rate

V =

Operating conditions 101,325 Pa Normal conditions

600 kPa (g) 273.15 K

10 °C 680,000 Pa

283.15 °C

Operation absolute temperature 7.53 Operation absolute temperature

V = 1.16

10 °C

283.15 K

Rev. cjc 26.02.2013

Normal flow rate data Operation conditions Real flow rate data

7.53 680,000 Pa V =

10 °C 283 K

1949 m.a.s.l.

600.0 kPa (g) Normal conditions

101,325 Pa

273.15 KH = 1949 m.a.s.l. H =

80.00 kPa (abs)

Real volumetric flow rate

Operation pressure V = Operation pressure

101,325 Pa

600.00 kPa (g) 273 K

80.00 kPa 680,000 Pa

680.00 kPa 283.15 °C

680,000 Pa 7.53

V = 1.16Operation absolute temperature Operation absolute temperature

Pop = Patm_loc + Pop

Vn = Nm3/h Patm_loc =

Pn = Pop = Pop =

Tn = Pop = top =

Pop =

Patm_loc = Patm_loc =

(Pn/Pop) * (Top/Tn) * Vn

Pn =

Pop = Tn = Pn =

top = Pop = Tn =

Top =

Vn = Nm3/h

Top = top + 273.15 m3/h Top =

top = top =

Top = Top =

3.- Normal flow rate to real flow rate Patm_oc = f(H)

Vn = Nm3/h Pop =

top = Top = top =

Hloc = Hloc =

Pop_g = Pop_g =

Pn =

Patm_Loc = 101,325* (1 -2,25577E-5 * H)^5,25588 Tn = Patm_Loc = 101,325* (1 -2,25577E-5 * H)^5,25588

Patm_loc = Patm_loc =

(Pn/Pop) * (Top/Tn) * Vn

Pop = Pop_g + Patm_loc Pn = Pop =

Pop_g = Tn = Pop_g =

Patm_loc = Pop = Patm_loc =

Pop = Top = Pop =

Pop = Vn = Nm3/h Pop =

m3/h

Page 2: Normal to Real Flow Rate and FAD Flow Rate

10 °C

283.15 K

Top = top +273.15 Top =

top = top =

Top = Top =

Page 3: Normal to Real Flow Rate and FAD Flow Rate

Rev. cjc. 01.08.2013

2.- Real flow rate to normal flow rate

Real flow rate data Operation absolute pressure

1.16 80 kPa

600 kPa (g) 600 kPa (g)

10 °C 680 kPa

680,000 PaLocal atmospheric pressure

80 kPa Normal volumetric flow rate

Normal conditions 680,000 Pa

101,325 Pa 101,325 Pa

273.15 K 273.15 K

283.15 °C

Operation absolute temperature V = 1.2

7.53

10 °C

283.15 K

Real flow rate data Operation conditions

1.2 680,000 Pa

10 °C 283.15 K

1949 m.a.s.l.

600 kPa (g) Normal conditions

101,325 Pa

273.15 K1949 m.a.s.l.

80.00 kPa (abs) Normal volumetric flow rate

Operation pressure 679,999.9 Pa

101,325 Pa

600.00 kPa (g) 273.15 K

80.00 kPa 283.15 °C

680.00 kPa V = 1.2

680,000 Pa 7.53

Operation absolute temperature

Pop = Patm_loc + Pop

m3/h Patm_loc =

Pop =

Pop =

Pop =

Vn = (Pop/Pn) * (Tn/Top) * V

Pop =

Pn =

Tn =

Top =

m3/h

top + 273.15 Vn = Nm3/h

4.- Real flow rate to normal flow rate Ploc = f(H)

m3/h Pop =

Top =

Pn =

atm_Loc = 101,325* (1 -2,25577E-5 * H)^5,25588 Tn =

Vn = (Pop/Pn) * (Tn/Top) * V

Pop =

Pop_g + Patm_loc Pn =

Tn =

Top =

m3/h

Vn = Nm3/h

Page 4: Normal to Real Flow Rate and FAD Flow Rate

10 °C

283.15 K

top +273.15

Page 5: Normal to Real Flow Rate and FAD Flow Rate

FAD volume flow rate

Free air delivery (FAD) is the volume of air delivered under the conditions of temperature and pressure existing at the compressor's intake (state 2).

1.- Normal flow rate (state 1) to FAD flow rate (state 2)

Normal air conditions (State 1)

480

101,325 Pa

0 -

0 °C

273 K

609.6 Pa

FAD conditions (State 2))

73,400 Pa

0.42 -

22 °C

2645.1 Pa

295 K

726.99 Rev. cjc 26.02.2013

100000 * EXP(153.5411 + 0.066953 *(D36) - 0.0000505796 * (D36)^ 2 + 0.00000002183911 * (D36) ^ 3 - 8990.134 * (D36) ^ -1 - 25.07797 * LN((D17+273.15)))

0 °C

273 K

609.6 Pa

Free air delivered (FAD)

Free air delivery is the volume of air delivered under the conditions of

V2 = V1 * (P1 - RH1 * Psat.water_1) / (P2 - RH2 * Psat.water_2) * (T2 / T1)

V1 = Nm3/h

P1 =

RH1 =

t1=

T1 =

Psat.water_1 = f(T1)

Psat.water_1 =

P2 =

RH2 =

t2=

Psat.water_2 = f(T2)

Psat.water_2 =

T2 =

V2 = m3/h (FAD)

Psat.water1 =

t1=

T1 =

Psat.water1 =

Page 6: Normal to Real Flow Rate and FAD Flow Rate

temperature and pressure existing at the compressor`s intake (state 2).

To obtain the volume flow rate at the intake conditions (2), knowing the

volume flowrate at the standard conditions (1), one applicates Boyle-Mariot

law between both cases. Since we want a value of dry air, Boyle-Mariot is

to be applied to the dry air.

Thus, dry air partial pressures are to be used.

- Since normal air is a dry air (da), the total air pressure at this conditions is

the same as the partial dry air pressure

with an air without water vapor

0

thus

- The partial pressure of the dry air (da) in the ambient air (2) is

Total pressure of ambient air (state 2)

Partial pressure of water vapor in sate 2

where the water vapor pressure is calculated as

with

Relative humidity of ambient air (Also, indicated as RH)

Thus, Boyle-Mariot is applied as

480

Normal conditions (1) Intake or local conditions (2)

0 °C 22 °C

273.15 K 295 K

101,325 Pa 73,400 Pa

0 - 0.42 -

609.6 Pa 2645.1 Pa

Pda_1 = P1 - Pw_1

Pw_1 =

Pda_1 = P1

Pda_2 = P2 - Pw_2

P2 :

Pw_2 :

Pw_2 = f2 * Psat.water_2

f2 :

Psat.water_2 = Pressure of saturated water vapor at ambient temperatute "t2"

Determination of dry air flowrate (V2) that is to be sucked at the compressor's

intake to obtain the desired volume flowrate (V1)

V1 = Nm3/h

t1 = t2 =

T1 = T2 =

P1 = P2 =

RH1 = RH2 =Psat.water_1 = Psat.water_2 =

V2 = V1 * (P1 - RH1 * Psat.water_1) / (P2 - RH2 * Psat.water_2) * (T2 / T1)

Page 7: Normal to Real Flow Rate and FAD Flow Rate

480

101,325 Pa

0 -

0 °C

609.6 Pa

73,400 Pa

0.42 -

22 °C

2645.1 Pa

295 K

273 K

726.99

Saturation pressure of water100000 * Exp(153.5411 + 0.066953 *(C3+273.15) - 0.0000505796 * (C3+273.15)^ 2 + 0.00000002183911 * (C3+273.15) ^ 3 - 8990.134 * (C3+273.15) ^ -1 - 25.07797 * Ln((C3+273.15)))

Valid 0 ºC < t < 100 ºCt = 0 ºC

609.6 Pa

V1 = Nm3/h

P1 =

RH1 =

t1=

Psat.wate1 =

P2=

RH2 =

t2=

Psat.wate_2 =

T2 =

T1 =

V2 = m3/h (FAD)

Psat =

Psat=

Page 8: Normal to Real Flow Rate and FAD Flow Rate

2.- FAD flow rate (state 2) to Normal flow rate (state 1)

FAD conditions (State 2))

726.99

73,400 Pa

0.42 -

22 °C

2645.1 Pa

295 K

Normal air conditions (State 1)

101,325 Pa

0 -

0 °C

273 K

609.6 Pa

480

100000 * EXP(153.5411 + 0.066953 *(D36) - 0.0000505796 * (D36)^ 2 + 0.00000002183911 * (D36) ^ 3 - 8990.134 * (D36) ^ -1 - 25.07797 * LN((D17+273.15)))

Water vapor pressure

V1 = V2 * (P2 - RH2 * Psat.water_2) / (P1 - RH1 * Psat.water_1) * (T1 / T2)

V2 = m3/h (FAD)

P2 =

RH2 =

t2=

Psat.water_2 = f(T2)

Psat.water_2 =

T2 =

P1 =

RH1 =

t1=

T1 =

Psat.water_1 = f(T1)

Psat.water_1 =

V1 = m3/h

P1 y P2 son presiones absolutas totales

Page 9: Normal to Real Flow Rate and FAD Flow Rate

de la mezcla de aire y vapor de agua

La presión parcial del vapor de agua a

La humedad relativa del aire seco es RH1 = 0

Air at normal conditions (state "1")

f

0 -

0 °C

609.6 Pa

Air at ambient conditions (estado "2")

f

0.42 -

22 °C

2645.1 Pa

FAD volume flowrate

La presión parcial del aire seco es Pa_1

La temperatura normal es t1 = 0°C

la temperatura normal es Pw_1

Pw_1 = (Pw_2 / Psat.water_2) * Psat.water_2

(Pw_1 / Psat.water_1) =

with "f" : air Relative Humidity (RH)

Pw_1 = f1 * Psat.water_1

Pw_1 = RH1 * Psat_1

RH1 =

t1 =

Pw_1=

Pw_2 = (Pw_2 / Psat.water_2) * Psat.water_2

(Pw_2 / Psat.water_2) =

with "f" : air Relative Humidity (RH)

Pw_2 = f2 * Psat.water_2

Pw_2 = RH2 * Psat_2

RH2 =

t2 =

Pw_2=

V2 = V1 * (P1 - RH1 * Psat.water_1) / (P2 - RH2 * Psat.water_2) * (T2 / T1)

Page 10: Normal to Real Flow Rate and FAD Flow Rate

480

101,325 Pa State 1: Normal air conditions

0 - State 2: Local ambient air conditions

0 °C and also compressor intake conditions

609.6 Pa

73,400 Pa Free air delivery (FAD) is the volume of

0.42 - air delivered under the conditions of

22 °C temperature and pressure existing at

2645.1 Pa the compressor's intake (state 2).

295 K

273 K

726.99

100000 * Exp(153.5411 + 0.066953 *(C3+273.15) - 0.0000505796 * (C3+273.15)^ 2 + 0.00000002183911 * (C3+273.15) ^ 3 - 8990.134 * (C3+273.15) ^ -1 - 25.07797 * Ln((C3+273.15)))

V1 = Nm3/h

P1 =

RH1 =

t1=

Psat.wate1 =

P2=

RH2 =

t2=

Psat.wate_2 =

T2 =

T1 =

V2 = m3/h (FAD)

Page 11: Normal to Real Flow Rate and FAD Flow Rate

Air density and mass flow rates

Air constantR = 287.0 J/(kg*K)

1.-Normal flow rate to mass flow rate. SI 3.- Mass flow rate imperial to Normalflow rate. SI

1,000 m = 0.792m = 0.359

Mass flowrate m = 1293.2

m =

1000

1.29 m = 1,293.2

m = 1293 kg/h 1.29

m = 0.3592 kg/s 1,000

2.- Mass flow rate to Normal flow rate. SI 4.- Normal flow rate to mass flow

rate imperial

m = 0.3592 kg/s

1000m = 1293.2 kg/h Mass flowrate

m =

1000

m = 1,293.2 kg/h 1.29

1.29 m = 1293

1,000 m = 0.3592

m = 0.792

Normal density 1 kg = 2.20

p / ( R * T) m = 0.3592p = 101,325 Pa m = 0.7920R = 287.0 J/(kg*K)T = 273 K

1.29

Vn = Nm3/h

Vn * rn

Vn = Nm3/h Vn = m / rn

rn = kg/Nm3

rn =

Vn =

Vn =

Vn * rn

Vn = m / rn Vn =

rn =

rn = kg/Nm3

Vn = Nm3/h

rn =

rn = kg/Nm3

Page 12: Normal to Real Flow Rate and FAD Flow Rate

Air constant3.- Mass flow rate imperial to Normal 5.- Actual density R =

Rg =

10 ºC MM =

lb/s 450.0 kPa (g) R =kg/s H = 1730 m.a.s.l.kg/h

101,325* (1 -2,25577E-5 * H)^5,25588 Nitrogen constant

82.20 kPa R =

kg/h Rg =

T = MM =

10 ºC R =T = 283.15 K

Molecular masses from [1]

4.- Normal flow rate to mass flow P =

450.0 kPa (g)

82.20 kPa

P = 532.2 kPaP = 532,197 Pa

p / ( R * T)

p = 532,197 Pa

kg/h R = 287.0 J/(kg*K)

kg/s T = 283 K

lb/s 6.55

Rev. cjc. 30.05.2013

lb

kg/slb/s

tact =

Pact_g =

patm_loc =

patm_loc =

kg/Nm3 tact + 273.15

Nm3/h tact =

Pact_g + Patm_loc

Pact_g =

patm_loc =

Nm3/h

Nm3/h ract =

kg/Nm3

ract = kg/m3

Page 13: Normal to Real Flow Rate and FAD Flow Rate

Rg / MM8314.41 [ J / (kmol*K)]

28.97 kg/kmol

287.0 J/(kg*K)

Nitrogen constant

Rg / MM

8314.41 [ J / (kmol*K)]

28.0134 kg/kmol

296.8 J/(kg*K)

Molecular masses from [1]

Page 14: Normal to Real Flow Rate and FAD Flow Rate

Nitrogen density and mass flow rates

Nitrogen constantR = 296.8 J/(kg*K)

1.-Normal flow rate to mass flow rate. SI 3.- Mass flow rate imperial to Normalflow rate. SI

1,000 m = 0.766m = 0.347

Mass flowrate m = 1250.5

m =

1000

1.25 m = 1,250.5

m = 1251 kg/h 1.25

m = 0.3474 kg/s 1,000

2.- Mass flow rate to Normal flow rate. SI 4.- Normal flow rate to mass flow

rate imperial

m = 0.3474 kg/s

1000m = 1250.5 kg/h Mass flowrate

m =

1000

m = 1,250.5 kg/h 1.25

1.25 m = 1251

1,000 m = 0.3474

m = 0.766

Normal density 1 kg = 2.20

p / ( R * T) m = 0.3474p = 101,325 Pa m = 0.7658R = 296.8 J/(kg*K)T = 273 K

1.25

Vn = Nm3/h

Vn * rn

Vn = Nm3/h Vn = m / rn

rn = kg/Nm3

rn =

Vn =

Vn =

Vn * rn

Vn = m / rn Vn =

rn =

rn = kg/Nm3

Vn = Nm3/h

rn =

rn = kg/Nm3

Page 15: Normal to Real Flow Rate and FAD Flow Rate

Air constant3.- Mass flow rate imperial to Normal 5.- Actual density R =

Rg =

10 ºC MM =

lb/s 450.0 kPa (g) R =kg/s H = 1730 m.a.s.l.kg/h

101,325* (1 -2,25577E-5 * H)^5,25588 Nitrogen constant

82.20 kPa R =

kg/h Rg =

T = MM =

10 ºC R =T = 283.15 K

Molecular masses from [1]

4.- Normal flow rate to mass flow P =

450.0 kPa (g)

82.20 kPa

P = 532.2 kPaP = 532,197 Pa

p / ( R * T)

p = 532,197 Pa

kg/h R = 296.8 J/(kg*K)

kg/s T = 283 K

lb/s 6.33

Rev. cjc. 03.07.2013

lb

kg/slb/s

tact =

Pact_g =

patm_loc =

patm_loc =

kg/Nm3 tact + 273.15

Nm3/h tact =

Pact_g + Patm_loc

Pact_g =

patm_loc =

Nm3/h

Nm3/h ract =

kg/Nm3

ract = kg/m3

Page 16: Normal to Real Flow Rate and FAD Flow Rate

Rg / MM8314.41 [ J / (kmol*K)]

28.97 kg/kmol

287.0 J/(kg*K)

Nitrogen constant

Rg / MM

8314.41 [ J / (kmol*K)]

28.0134 kg/kmol

296.8 J/(kg*K)

Molecular masses from [1]

Page 17: Normal to Real Flow Rate and FAD Flow Rate

Imperial standard flow rate to Normal flow rate

Imperial standard flow rate data Normal absolute pressure

101,325 Pa

1.0 Normal absolute temperature

273.15 KImperial standard temperature

60 °F Standard volumetric flow rate to

15.56 °C Normal volumetric flow rate

Imperial standard pressure

101,325 kPa 101,325 Pa

101,325 Pa

273.15 K

Standard conditions (Imperial) 288.71 °C

101,325 Pa 1.0

288.71 K 0.9461

1 = 0.9461

1 = 1.057

PN =

VS = Sm3/h

TN =

tS =

tS =

Vn = VS * (PS/Pn) * (Tn/TS)

PS = PS =

Pn =

Tn =

TS =

PS = VS = m3/h

TS = Vn = Nm3/h

Sm3/h Nm3/h

Nm3/h Sm3/h

Page 18: Normal to Real Flow Rate and FAD Flow Rate
Page 19: Normal to Real Flow Rate and FAD Flow Rate

Approximate methodAproximate equation for calculating the atmosphericpressure as a function of the height above sea level

p = 101,325* (1 -2,25577E-5 * H)^5,25588H = 1730 mp = 82.20 kPa

The Engineering Toolbox

http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html

Esta ecuación es una simplificación de la fórmulahipsométrica [2], en la que la temperatura ambiente se toma con un valor aproximado de 15,2 °CEsta ecuación aproximada produce un error máximode 0.1% cuando se aplica en le rango de alturas 0 m.sn.m. <= H <= 6000 m.s.n.m.

Page 20: Normal to Real Flow Rate and FAD Flow Rate

http://www.engineeringtoolbox.com/molecular-weight-gas-vapor-d_1156.html

Molecular mass of common gases and vapors

The molecular weight of a substance, also called molecular mass, is the

mass of one molecule of that substance, relative to the unified atomic

mass unit u equal to 1/12 the mass of one atom of carbon-12.

Gas or Vapor Gas or Vapor

kg/kmol

26.04

Air 28.966 Hydrogen Chloride

Ammonia (R-717) 17.02 Hydrogen Sulfide

Argon, Ar 39.948 Hydroxyl, OH

Benzene 78.11 Krypton

58.12

Iso-Butane (2-Metyl propane) 58.12 Methyl Alcohol

Butadiene 54.09 Methyl Butane

1-Butene 56.108 Methyl Chloride

cis -2-Butene 56.108 Natural Gas

trans-2-Butene 56.108 Neon, Ne

Isobutene 56.108

44.01

Carbon Disulphide 76.13 Nitrous Oxide

Carbon Monoxide, CO 28.011 N-Octane

Chlorine 70.906

Cyclohexane 84.16 Ozone

Deuterium 2.014 N-Pentane

30.07 Iso-Pentane

Ethyl Alcohol 46.07

Ethyl Chloride 64.515 Propylene

28.054

Fluorine 37.996

Helium, He 4.02

N-Heptane 100.2

Hexane 86.17

Hydrochloric Acid 36.47

Molecular Weight - Gases and Vapors

Molecular Weight

Acetylene, C2H2 Hydrogen, H2

N-Butane, C4H10 Methane, CH4

Nitric Oxide, NO2

Carbon Dioxide, CO2 Nitrogen, N2

Oxygen, O2

Ethane, C2H6

Propane, C3H8

Ethylene, C2H4

Page 21: Normal to Real Flow Rate and FAD Flow Rate

Gas or Vapor

kg/kmol kg/kmol

2.016 R-11 137.37

36.461 R-12 120.92

34.076 R-22 86.48

17.01 R-114 170.93

83.8 R-123 152.93

16.044 R-134a 102.03

32.04 R-611 60.05

72.15 Sulfur 32.02

50.488 Sulfur Dioxide 64.06

19 Sulfuric Oxide 48.1

20.179 Toluene 92.13

30.006 Xenon 131.3

28.0134 18.02

44.012

114.22

31.9988

47.998

72.15

72.15

44.097

42.08

Molecular Weight

Molecular Weight

Water Vapor - Steam, H2O

Page 22: Normal to Real Flow Rate and FAD Flow Rate

[1] The Engineering Toolbox

http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html

also

Atmospheric_temperature_pressure_and_density_as_function_of_the_height_above_sea_level.xlsmwww.piping-tools.net

Page 23: Normal to Real Flow Rate and FAD Flow Rate

Atmospheric_temperature_pressure_and_density_as_function_of_the_height_above_sea_level.xlsm