26
Novel Proof of Concept to Assess Multifocal Neuronal Disease in Individuals Using MRI Abby Hentel

Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Novel Proof of Concept to Assess Multifocal Neuronal Disease in Individuals

Using MRI

Abby Hentel

Page 2: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

White Matter Tracts

• Altered by neurodegenerative disorders, medications, or neuropsychological conditions(Croteau-Chonka, et al. 2015)

• $1.5 trillion of U.S. Economy annually (Thakur, et al. 2016)

• Traumatic Brain Injury (TBI) • 30% all injury deaths• 2013- 50,000 deaths• (Wintermark, et al. 2015)

Introduction Methods Results Discussion References

http://www.cannabisoils.ca/wp-content/uploads/2014/11/neurodegenerative-diseases.jpg

http://www.tbibraininjurysurvivor.com/what-is-tbi/

2

Page 3: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Traumatic Axonal Injury

https://www.lyslaw.com/Spine-Injury-Traumatic-Brain-Injury-Support/Two-Primary-Types-Brain-Injuries.aspx

Introduction Methods Results Discussion References

3

Page 4: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Problem with TBI• Mild Traumatic Brain Injury

(mTBI) – 80% all TBI• Does not typically show up

on conventional imaging

Introduction Methods Results Discussion References

http://blog.cincinnatichildrens.org/wp-content/uploads/2015/08/CTandMR_head_blog20150805C.jpg

4

Page 5: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Solution: DTI• Diffusion Tensor Imaging (DTI)

• Extremely sensitive to changes in white matter microstructure (Jones, et al. 2010) (Lerner, et al. 2013)

• How does this work?• Measures diffusion of water molecules

throughout white matter tracts • Quantitatively analyzed

• Fractional Anisotropy (FA)

Introduction Methods Results Discussion Bibliography

5

Page 6: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Limitations of Quantitative DTI

• Assessment of data • Control group• Same hardware, parameters, software• Demographics• Impossible/Costly• No clinical usage

• Clinically used for visualization

Introduction Methods Results Discussion References

6

Page 7: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Clinically used for visualization

Normal Brain Tumor

Page 8: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Tract Visualization with DTI

Normal Brain Tumor

Page 9: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Objective

3 scanners should show

same deviations

Quantify homogeneity of

each tract

Individual assessment

7

Introduction Methods Results Discussion References

Page 10: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Data Collection

Anonymized normative database

under medical college IRB

Subjects agreed to have MRI/DTI scan up to 3 different scanners•33 Direction GE DTI•55 Direction GE DTI•64 Direction Siemens DTI

All subjects had no history of brain abnormalities

Introduction Methods Results Discussion References

9

Page 11: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Data Breakdown

40 Total Participants

23 Male17 Female

Age range: 23-79 yearsMean: 40

yearsSD: 17 years

30 subjects 55 direction

GE75%

40 subjects64 direction

Siemens100%

11 subjects 33 direction

GE28%

Introduction Methods Results Discussion References

10

Page 12: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Analysis• Reproducible Objective

Quantification Scheme (ROQS) (Niogi, et al. 2007)

• 6 regions:1. Corpus Callosum (CC)2. Corticospinal Tract (CST) 3. Cingulum Bundle (CB)4. Superior Longitudinal Fasciculus

(SLF)5. Anterior Corona Radiata (ACR)6. Uncinate Faciculus (UF)

Introduction Methods Results Discussion References 11

Page 13: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Statistical Analysis

• Average fractional anisotropy scores • Wilcoxon-Mann-Whitney test

• Test statistical difference between groups

• Performed using SPSS Version 25.0• Local Variance

Introduction Methods Results Discussion References

12

Page 14: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Cingulum Bundle

Introduction Methods Results Discussion References

13

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7 8

Frac

tiona

l Ani

sotr

topy

Cingulum Bundle

55 Direction 64 Direction 33 Direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

Loca

l Var

ianc

e

Cingulum Bundle - Local Variance

55 Direction 64 Direction 33 Direction

Page 15: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Corticospinal Tract

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Frac

tiona

l Ani

sotr

opy

Corticospinal Tract

55 Direction 64 Direction 33 Direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

Loca

l Var

ianc

e

Corticospinal Tract - Local Variance

55 Direction 64 Direction 33 Direction

Introduction Methods Results Discussion References

14

Page 16: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Superior Longitudinal Fasciculus

Introduction Methods Results Discussion References

15

Page 17: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Anterior Corona Radiata

0.03

0.035

0.04

0.045

0.05

0.055

0 1 2 3 4 5 6 7

Loca

l Var

ianc

e

Anterior Corona Radiata – Local Variance

55 Direction 64 Direction 33 Direction

Introduction Methods Results Discussion References

16

Page 18: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Uncinate Fasciculus

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1 2 3 4 5 6 7 8

Frac

tiona

l Ani

sotr

opy

Uncinate Fasciculus

55 Direction 64 Direction 33 Direction

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8

Loca

l Var

ianc

e

Uncinate Fasciculus - Local Variance

55 Direction 64 Direction 33 Direction

Introduction Methods Results Discussion References

17

Page 19: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Corpus Callosum

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Loca

l Var

ianc

e

Corpus Callosum – Local Variance

55 Direction 64 Direction 33 Direction

Introduction Methods Results Discussion References

18

Page 20: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Findings

Confirmed Findings• Systematic parameters impact

FA measurement• gradient directions, slice

thickness, voxel size, hardware

• Variations are not predictable and vary per tract

• Combining data = invalid• (Papadakis, et al. 1999) (Skare, et al. 2000) (Lebel,

et al. 2012)

Novel Findings• Homogeneity of the white

matter are scanner/system independent

• Alternate Approach• Combine data• Individual assessment

• Patent Submission in Progress

Introduction Methods Results Discussion References

19

Page 21: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

TBI patient, example• 27 year old professional

football player• Grade II concussion

(symptoms for more than 15 minutes without loss of consciousness

• Trace hemorrhage in the lateral ventricles on acute conventional MRI. No direct or indirect evidence of axonal injury on conventional MRI

• DTI local variance measure strongly suggests axonal injury involving the genu of the corpus callous, a frequently injured tract 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corpus Callosum VarianceAnterior to Posterior

Page 22: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Limitations

• Data Sets were Cross-sectional• Not every subject scanned on every scanner

• Local variance estimates were based on regions of interest• Future application of this technique will work as a continuous measure along

tractograms.

Introduction Methods Results Discussion References

20

Page 23: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Future Research/Work

• Validate findings with optimized algorithm and data on multi-institutional datasets

• Patient testing:• Retrospective study on Professional Boxers• Prospective study on both controls and TBI patients

• Complete patent application• Seek Licensing to industry partners

• We already have potential buyers (Athlemetrics, LLC)

Introduction Methods Results Discussion References

21

Page 24: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Acknowledgements

I would like to thank my my mentor, Science Research teachers, and parents for their continued support.

Page 25: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

References• 1. Croteau-Chonka EC, Dean DC, Remer J, Dirks H, O’Muircheartaigh J, Deoni SCL. Examining the relationships

between cortical maturation and white matter myelination throughout early childhood. Neuroimage. 2016;125:413-421. doi:10.1016/j.neuroimage.2015.10.038.

• 2. Thakur KT, Albanese E, Giannakopoulos P, et al. Neurological Disorders.; 2016. http://www.ncbi.nlm.nih.gov/pubmed/27227247. Accessed September 6, 2017.

• 3. Niogi SN, Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil. 2010;25(4):241-255. doi:10.1097/HTR.0b013e3181e52c2a.

• 4. Wintermark M, Sanelli PC, Anzai Y, et al. Imaging evidence and recommendations for traumatic brain injury: Advanced neuro- and neurovascular imaging techniques. Am J Neuroradiol. 2015;36(2):E1-E11. doi:10.3174/ajnr.A4181.

• 5. Welch RD, Ayaz SI, Lewis LM, et al. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury. J Neurotrauma. 2016;33(2):203-214. doi:10.1089/neu.2015.4149.

• 6. Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol. 24(6):1049-1056. http://www.ncbi.nlm.nih.gov/pubmed/12812926. Accessed September 25, 2017.

• 7. Niogi SN, Mukherjee P, Ghajar J, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: A 3T diffusion tensor imaging study of mild traumatic brain injury. Am J Neuroradiol. 2008;29(5). doi:10.3174/ajnr.A0970.

• 8. Niogi SN, Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil. 2010;25(4). doi:10.1097/HTR.0b013e3181e52c2a.

• 9. Shenton ME, Hamoda HM, Schneiderman JS, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):137-192. doi:10.1007/s11682-012-9156-5.

• 10. Jones D, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803-820. doi:10.1002/nbm.1543.

• 11. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M. Clinical Applications of Diffusion Tensor Imaging. World Neurosurg. August 2013. doi:10.1016/j.wneu.2013.07.083.

• 12. Song S, Sun S, Ju W, Lin S. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinalischemia. Neuroimage. 2003;20(3):1714-1722. doi:10.1016/j.neuroimage.2003.07.005.

• 13. Nir TM, Jahanshad N, Villalon-Reina JE, et al. Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. NeuroImage Clin. 2013;3:180-195. doi:10.1016/j.nicl.2013.07.006.

• 14. Douaud G, Jbabdi S, Behrens TEJ, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage. 2011;55(3):880-890. doi:10.1016/j.neuroimage.2010.12.008.

• 15. Reas ET, Hagler DJ, White NS, et al. Sensitivity of restriction spectrum imaging to memory and neuropathology in Alzheimer’s disease. Alzheimers Res Ther. 2017;9(1):55. doi:10.1186/s13195-017-0281-7.

• 16. Ishida T, Donishi T, Iwatani J, et al. Interhemispheric disconnectivity in the sensorimotor network in bipolar disorder revealed by functional connectivity and diffusion tensor imaging analysis. Heliyon. 2017;3(6):e00335. doi:10.1016/j.heliyon.2017.e00335.

• 17. Squarcina L, Houenou J, Altamura AC, Soares J, Brambilla P. Association of increased genotypes risk for bipolar disorder with brain white matter integrity investigated with tract-based spatial statistics. J Affect Disord. 2017;221:312-317. doi:10.1016/j.jad.2017.06.031.

• 18. Kurumaji A, Itasaka M, Uezato A, et al. A distinctive abnormality of diffusion tensor imaging parameters in the fornix of patients with bipolar II disorder. Psychiatry Res Neuroimaging. 2017;266:66-72. doi:10.1016/j.pscychresns.2017.06.005.

• 19. Onay A, Yapici Eser H, Ulasoglu Yildiz C, Aslan S, Tali ET. A combined VBM and DTI study of schizophrenia: bilateral decreased insula volume and cerebral white matter disintegrity corresponding to subinsular white matter projections unlinked to clinical symptomatology. Diagnostic Interv Radiol. 2017;23(5):390-397. doi:10.5152/dir.2017.16519.

• 20. Fox WC, Park MS, Belverud S, Klugh A, Rivet D, Tomlin JM. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage. Neurol Res. 2013;35(3):223-232. doi:10.1179/1743132813Y.0000000162.

• 21. Mac Donald C, Johnson A, Cooper D, et al. Cerebellar white matter abnormalities following primary blast injury in US military personnel. PLoS One. 2013;8(2):e55823. doi:10.1371/journal.pone.0055823.

• 22. Wilde EA, Ayoub KW, Bigler ED, et al. Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav. 2012;6(3):404-416. doi:10.1007/s11682-012-9150-y.

• 23. Niogi SN, Mukherjee P, Ghajar J, et al. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain. 2008;131(12). doi:10.1093/brain/awn247.

• 24. Niogi SN, Mukherjee P, Ghajar J, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(5):967-973. doi:10.3174/ajnr.A0970.

• 25. Bendlin BB, Ries ML, Lazar M, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage. 2008;42(2):503-514. doi:10.1016/j.neuroimage.2008.04.254.

• 26. Kunz N, Zhang H, Vasung L, et al. Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage. 2014;96:288-299. doi:10.1016/j.neuroimage.2014.03.057.

• 27. Xu D, Mukherjee P, Barkovich a J. Pediatric brain injury: can DTI scalars predict functional outcome? Pediatr Radiol. 2013;43(1):55-59. doi:10.1007/s00247-012-2481-4.

• 28. Schneider JFL, Il’yasov KA, Hennig J, Martin E. Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology. 2004;46(4):258-266. doi:10.1007/s00234-003-1154-2.

• 29. Pfefferbaum A, Adalsteinsson E, Sullivan E V. Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging. Neuroimage. 2005;26(3):891-899. doi:10.1016/j.neuroimage.2005.02.034.

• 30. Abe O, Aoki S, Hayashi N, et al. Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. NeurobiolAging. 23(3):433-441. http://www.ncbi.nlm.nih.gov/pubmed/11959406. Accessed September 6, 2017.

• 31. Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E. Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol. 2007;28(2):226-235. http://www.ncbi.nlm.nih.gov/pubmed/17296985. Accessed September 6, 2017.

• 32. Pfefferbaum A, Adalsteinsson E, Sullivan E V. Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J Magn Reson Imaging. 2003;18(4):427-433. doi:10.1002/jmri.10377.

• 33. Vollmar C, O’Muircheartaigh J, Barker GJ, et al. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010;51(4):1384-1394. doi:10.1016/j.neuroimage.2010.03.046.

• 34. Alexander AL, Lee JE, Wu Y-C, Field AS. Comparison of Diffusion Tensor Imaging Measurements at 3.0 T versus 1.5 T with and without Parallel Imaging. Neuroimaging Clin N Am. 2006;16(2):299-309. doi:10.1016/j.nic.2006.02.006.

• 35. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208-S219. doi:10.1016/j.neuroimage.2004.07.051.

• 36. Niogi SN, Mukherjee P, McCandliss BD. Diffusion tensor imaging segmentation of white matter structures using a Reproducible Objective Quantification Scheme (ROQS). Neuroimage. 2007;35(1):166-174. doi:10.1016/j.neuroimage.2006.10.040.

• 37. Skare S, Hedehus M, Moseley ME, Li TQ. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson. 2000;147(2):340-352. doi:10.1006/jmre.2000.2209.

• 38. Papadakis NG, Xing D, Huang CL-H, Hall LD, Carpenter TA. A Comparative Study of Acquisition Schemes for Diffusion Tensor Imaging Using MRI. J Magn Reson. 1999;137(1):67-82. doi:10.1006/jmre.1998.1673.

• 39. Lebel C, Benner T, Beaulieu C. Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magn Reson Med. 2012;68(2):474-483. doi:10.1002/mrm.23254.

• 40. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol. 2006;27(8):1776-1781. http://www.ncbi.nlm.nih.gov/pubmed/16971635. Accessed September 6, 2017.

• 41. Thomsen FSL, Delrieux CA, de Luis-García R. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain. Int J Comput Assist Radiol Surg. 2017;12(3):389-398. doi:10.1007/s11548-016-1505-1.

Page 26: Novel Proof of Concept to Assess Multifocal Neuronal Disease in … · 2018. 6. 25. · White Matter Tracts • Altered by neurodegenerative disorders, medications, or neuropsychological

Concussion is a subset of mild TBI. Generally, concussion is limited to the very mild end of mild TBI resulting specifically from an impact to the head. On the other hand, the severe end of mild TBI can manifest with loss of consciousness, severe symptoms, amnesia, dizziness, and headache. It also includes trauma from acceleration forces not associated with a direct impact.