367
NPNLH108 2013 NLH General Rate Application Page 1 of 1 Q. Reference: Rates and Regulation Evidence 1 Please provide copies of the current integration studies related to the proposed 2 interconnection of Muskrat Falls to the Island grid. (Rates and Regulation Evidence, 3 page 4.7, lines 79) 4 5 6 A. Please see the attached documents, as listed below, prepared by SNCLavalin as 7 part of the Lower Churchill Project and as required by Hydro’s System Planning 8 department for the integration of the Lower Churchill Project into the Island 9 Interconnected System. 10 Reactive Power Studies (December 7, 2011) NPNLH108, Attachment 1 11 Stability Studies (March 6, 2012) NPNLH108, Attachment 2 12 Harmonic Impedance Studies (March 6, 2012) NPNLH108, Attachment 3 13 Load Flow and Short Circuit Studies (April 5, 2012) NPNLH108, Attachment 4 14 HVdc System Modes of Operation and Control Strategies Study (April 17, 15 2012) NPNLH108, Attachment 5 16

NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

NP‐NLH‐108 2013 NLH General Rate Application

Page 1 of 1

Q. Reference: Rates and Regulation Evidence 1

Please provide copies of the current integration studies related to the proposed 2

interconnection of Muskrat Falls to the Island grid. (Rates and Regulation Evidence, 3

page 4.7, lines 7‐9) 4

5

6

A. Please see the attached documents, as listed below, prepared by SNC‐Lavalin as 7

part of the Lower Churchill Project and as required by Hydro’s System Planning 8

department for the integration of the Lower Churchill Project into the Island 9

Interconnected System. 10

Reactive Power Studies (December 7, 2011) NP‐NLH‐108, Attachment 1 11

Stability Studies (March 6, 2012) NP‐NLH‐108, Attachment 2 12

Harmonic Impedance Studies (March 6, 2012) NP‐NLH‐108, Attachment 3 13

Load Flow and Short Circuit Studies (April 5, 2012) NP‐NLH‐108, Attachment 4 14

HVdc System Modes of Operation and Control Strategies Study (April 17, 15

2012) NP‐NLH‐108, Attachment 5 16

Page 2: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

+) SNC· LAVALIN

Lower Churchill Project

REACTIVE POWER STUDIES

SLI Document No.: 505573-4S0A-47ER-0006-01

Nalcor Reference No.: LCP-SN-CD-SOOO-EL-SY -0001-01-82

Date: 07 -Dec-2011

Prepared by: UmarAhmed

Verified by: Peter Anderson

Approved by: J~~J-J-Satish Sud

NP-NLH-108, Attachment 1 Page 1 of 50, NLH 2013 GRA

Page 3: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 i

SNC-Lavalin Inc.

Revision

Remarks

No By Verif. Appr. Date

Issued for Use

Issued for Use

01 UA PA SS 07-Dec-2011

00 UA PA SS 10-Nov-2011

NP-NLH-108, Attachment 1 Page 2 of 50, NLH 2013 GRA

Page 4: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 ii

SNC-Lavalin Inc.

TABLE OF CONTENTS Page No.

1 INTRODUCTION ................................................................................................................ 1

2 STUDY BASIS .................................................................................................................... 2

3 RESULTS OF THE STUDIES ............................................................................................. 5 3.1 Island Link-Muskrat Falls Converter Station ............................................................... 9 3.2 Island Link-Soldiers Pond Converter Station .............................................................14 3.3 Maritime Link-Bottom Brook Converter Station .........................................................19

4 CONCLUSIONS ................................................................................................................23 4.1 Island Link-Muskrat Falls Converter Station ..............................................................23 4.2 Island Link-Soldiers Pond Converter Station .............................................................24 4.3 Maritime Link-Bottom Brook Converter Station .........................................................24

APPENDIX A ............................................................................................................................. A BASE CASE LOAD FLOWS ............................................................................................ A-1

List of Figures Figure 3-1: BC-2, Winter Peak/LIL 900 MW/ML 239 MW ......................................................... 6 Figure 3-2: BC-7, Intermediate/LIL 900 MW/ML 500 MW ......................................................... 7 Figure 3-3: BC-13, Extreme Light/LIL 435 MW/ML 320 MW ..................................................... 8 Figure 3-4: Muskrat Falls Reactive Power Limits .....................................................................11 Figure 3-5: Muskrat Falls Reactive Power Limits-Seasonal Variations ....................................13 Figure 3-6: Soldiers Pond Reactive Power Limits ....................................................................16 Figure 3-7: Soldiers Pond Reactive Power Limits-Seasonal Variations ...................................18 Figure 3-8: Soldiers Pond Reactive Power Management ........................................................18 Figure 3-9: Bottom Brook Reactive Power Limits ....................................................................20 Figure 3-10: Bottom Brook Reactive Power Limits-Seasonal Variations ....................................22 List of Tables Table 2-1: Base Case Scenarios ................................................................................................ 4 Table 3-1: Muskrat Falls Reactive Power Margins ..................................................................... 9 Table 3-2: Soldiers Pond Reactive Power Margins ...................................................................14 Table 3-3: Bottom Brook Reactive Power Margins ....................................................................19

NP-NLH-108, Attachment 1 Page 3 of 50, NLH 2013 GRA

Page 5: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 1

SNC-Lavalin Inc.

1 INTRODUCTION

This Report presents the results of the reactive power studies carried out to examine

the steady-state reactive power capabilities of the ac systems at the converter ac

buses with the HVdc interconnections between Muskrat Falls and Soldiers Pond

(Labrador Island Link(LIL)) and between Bottom Brook and the Nova Scotia power

system (Maritime Link(ML)). The present Basis of Design considers, for the LIL, a dc

voltage level of ±350 kV and a nominal bipole rating of 900 MW and, for the ML, a dc

voltage level of ±200 kV and a nominal bipole rating of 500 MW. This is interpreted

to mean that these rated power levels and rated voltages apply at the rectifier ends

(Muskrat Falls and Bottom Brook).

The LIL will be essentially uni-directional from Labrador to Newfoundland, although

there will be nothing in the design of the link to prevent operation in the reverse

direction. The ML is required to have a 500 MW continuous capability in bipolar

mode in both directions.

Starting from the base case scenarios provided by Nalcor, the present studies are

designed to determine the maximum and minimum levels of reactive power that can

be provided/absorbed by the ac systems in both normal and single contingency

outage conditions. These limits will be used by the converter manufacturer in the

design of both the converters themselves and the associated harmonic filter banks, if

these are required.

NP-NLH-108, Attachment 1 Page 4 of 50, NLH 2013 GRA

Page 6: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 2

SNC-Lavalin Inc.

2 STUDY BASIS

Nalcor provided nineteen base case scenarios for examination. These scenarios are

presented in Table 2-1.

Load flow studies were carried out for each scenario, considering normal system

conditions (all equipment in service) and outage conditions. In addition to pole

outages on the two dc links, the automatic sequential contingency feature of PSS®E

was used to examine all single contingency outages on the ac systems.

In these studies, the converter station was represented by a fixed MW load, equal to

the dc power level (positive for a rectifier, negative for an inverter) and an infinitely

variable reactive power source using a static var compensator or generator with zero

MW output connected to the system ac bus of the converter station. The target

voltage at the system ac bus of the converter station was set at the upper and lower

limits, defined by the system planning and operating criteria and the output of the

reactive power source was recorded. This was carried out for each converter station

for normal and all single contingency outages on the ac system. For cases where

voltage violations occurred on system buses close to the converter station, the target

voltage was adjusted slightly to bring these neighbouring buses within the voltage

criteria. This process was repeated over the feasible operating range of the

converters to produce reactive capability curves for each converter station. The MW

levels on the LIL and ML were adjusted within feasible limits for each scenario,

based on the system load level and generation available on the Island. Because the

rated power level on the LIL represents more than 50% of the winter peak load on

the Island, it was not possible to vary the converter power levels over the full range

(rated power to zero power) in all cases without exceeding the capabilities of the

Island generation. The power range for the LIL was extended as far as possible by

reducing the export over the ML, thus allowing a reduction in the power imported

over the LIL. These power levels do not necessarily represent desirable or realistic

operating conditions.

The base case load flows for each scenario are presented in Appendix A.

NP-NLH-108, Attachment 1 Page 5 of 50, NLH 2013 GRA

Page 7: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 3

SNC-Lavalin Inc.

To support the dc infeed, NLH will operate a number of thermal generating units as

synchronous condensers. Of relevance to these studies are the Holyrood units 1-3,

out of which unit 2 (194.4 MVA) and unit 3 (177.2 MVA) will be operated as

synchronous condensers, with unit 1 (194.4 MVA) assumed out of service for

maintenance. Two gas turbines at Hardwoods will also be in place by 2017 each

with a rating of 63.5 MVA and both of these units will normally be operated as

synchronous condensers. There is a similar unit at Stephenville but this was

considered to be out of service.

The generators at Muskrat Falls (4x206 MW) were represented by units with a rated

power factor of 0.9.

NP-NLH-108, Attachment 1 Page 6 of 50, NLH 2013 GRA

Page 8: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 4

Table 2-1: Base Case Scenarios

No. NLH System Load NS Export

Bottom Brook

Island Import Muskrat

Falls/Soldiers Pond Island Generation Comments

BC-1 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak 3-units @ Muskrat Falls

BC-2 Peak-2017(1552MW) 239MW 900/814MW Maximum Winter Peak 3-units @ Muskrat Falls

BC-3 Peak-2017(1552MW) 158MW 798/730MW Maximum Winter Peak

BC-4 Peak-2041(1900MW) 0MW 900/814MW Maximum Winter Peak

BC-5 Intermediate-2017(1100MW) 158MW 900/814MW Economic Dispatch Spring/Fall day

BC-6 Intermediate-2017(1100MW) 158MW 276/268 Maximum Spring/Fall day

BC-7 Intermediate-2017 (1100MW) 500MW 900/814MW Economic Dispatch Spring/Fall day

BC-8 Light (700MW) 158MW 420/400MW Minimum Summer day

BC-9 Light (700MW) 158MW 81/80MW Economic Dispatch Summer day

BC-10 Light (700MW) 500MW 900/814MW Economic Dispatch Summer day

BC-11 Extreme Light (420MW) 0MW 81/80MW Economic Dispatch Summer night

BC-12 Extreme Light (420MW) 320MW 81/80MW Economic Dispatch Summer night

BC-13 Extreme Light (420MW) 320MW 457/435MW Minimum Summer night

BC-14 Peak-2017 (1552MW) -260MW 286/260MW-Monopole Maximum Winter Peak

BC-15 Intermediate-2017(1100MW) 158MW 378/333MW-Monopole Economic Dispatch Spring/Fall day

BC-16 Light (700MW) 500MW 638/518MW-Monopole Minimum Summer day

BC-17 Extreme Light (420MW) 0MW 215/200MW-Monopole Minimum Summer night

BC-18 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak 4-units @ Muskrat Falls

BC-19 Intermediate-2017(1100MW) 500MW 900/814MW Economic Dispatch Winter Peak 4-units @ Muskrat Falls

NP-NLH-108, Attachment 1 Page 7 of 50, NLH 2013 GRA

Page 9: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 5

3 RESULTS OF THE STUDIES

The base case and contingency load flow results for each scenario were examined.

The following figures present the reactive limits for a number of representative cases.

Figure 3-1: BC-2, Winter Peak/LIL 900 MW/ML 239 MW

Figure 3-2: BC-7, Intermediate/LIL 900 MW/ML 500 MW

Figure 3-3: BC-13, Extreme Light/LIL 435 MW/ML 320 MW

The plots show the reactive power that can be absorbed by the ac system at different

levels of dc power at the converter bus. Thus, positive values represent reactive

power absorption by the ac system and negative values represent reactive power

supplied by the ac system.

NP-NLH-108, Attachment 1 Page 8 of 50, NLH 2013 GRA

Page 10: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 6

Figure 3-1: BC-2, Winter Peak/LIL 900 MW/ML 239 MW

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

650 700 750 800 850 900

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 2 Muskrat Falls Reactive Power Limits

Upper Limit 105% MF Lower Limit 95% MF Contingency Lower Limit 90% MF Contingency Upper Limit 110% MF

-200

-100

0

100

200

300

400

650 700 750 800 850 900MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 2 Soldiers Pond Reactive Power Limits

Upper Limit 105% SP Lower Limit 95% SP Contingency Lower Limit 90% SP Contingency Upper Limit 110% SP

-150

-100

-50

0

50

100

150

200

0 50 100 150 200 250

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 2 Bottom Brook Reactive Power Limits

Upper Limit 105% BB Lower Limit 95% BB Contingency Lower Limit 90% BB Contingency Upper Limit 110% BB

NP-NLH-108, Attachment 1 Page 9 of 50, NLH 2013 GRA

Page 11: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 7

Figure 3-2: BC-7, Intermediate/LIL 900 MW/ML 500 MW

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600 650 700 750 800 850 900

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 7 Muskrat Falls Reactive Power Limits

Upper Limit 105% MF Lower Limit 95% MF Contingency Lower Limit 90% MF Contingency Upper Limit 110% MF

-400

-300

-200

-100

0

100

200

300

600 650 700 750 800 850 900 950

MV

ar

Ab

sorb

ed

by

AC

Sy

ste

m

Power (MW)

BC 7 Soldier's Pond Reactive Power Limits

Upper Limit 105% SP Lower Limit 95% SP Contingency Lower Limit 90% SP Contingency Upper Limit 110% SP

-300

-200

-100

0

100

200

300

400

0 100 200 300 400 500 600

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 7 Bottom Brook Reactive Power Limits

Upper Limit 105% BB Lower Limit 95% BB Contingency Lower Limit 90% BB Contingency Upper Limit 110% BB

NP-NLH-108, Attachment 1 Page 10 of 50, NLH 2013 GRA

Page 12: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 8

Figure 3-3: BC-13, Extreme Light/LIL 435 MW/ML 320 MW

-600

-500

-400

-300

-200

-100

0

100

200

300

400

0 50 100 150 200 250 300 350 400 450

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 13 Muskrat Falls Reactive Power Limits

Upper Limit 105% MF Lower Limit 95% MF Contingency Lower Limit 90% MF Contingency Upper Limit 110% MF

-500

-400

-300

-200

-100

0

100

0 50 100 150 200 250 300 350 400 450 500

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 13 Soldier's Pond Reactive Power Limits

Upper Limit 105% SP Lower Limit 95% SP Contingency Lower Limit 90% SP Contingency Upper Limit 110% SP

-250

-200

-150

-100

-50

0

50

100

0 50 100 150 200 250 300 350

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

BC 13 Bottom Brook Reactive Power Limits

Upper Limit 105% BB Lower Limit 95% BB Contingency Lower Limit 90% BB Contingency Upper Limit 110% BB

NP-NLH-108, Attachment 1 Page 11 of 50, NLH 2013 GRA

Page 13: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 9

These figures demonstrate that the minimum levels of reactive power capability

occurred under base case conditions with the lower margin on acceptable voltages

(±5%). The reactive power capability of the ac system was equal to or greater under

contingency conditions with the higher voltage margin (±10%). Therefore, all

subsequent results are shown for base case conditions only.

For the Bottom Brook converter under Scenarios BC-2 and BC-7, it may be noticed

that the reactive power being absorbed by the reactive source at the converter bus

under contingency conditions changes its direction above a certain dc power level.

This reversal of the direction of change in reactive power is an indicator of voltage

instability at that bus. This suggests that some form of dynamic reactive control,

such as a static var compensator or the use of VSC technology in the converter, may

be required at Bottom Brook.

3.1 Island Link-Muskrat Falls Converter Station

For normal system conditions, with all equipment in service, the voltage limits were

taken as ±5% of nominal voltage. The dc power level was varied between 900 MW

and zero. This variation in power level was achieved by considering a number of the

base case load flows from peak load down to minimum load as the starting points.

The resulting reactive power limits are shown in Figure 3-4.

It can be seen that the margin between the upper and lower reactive limits is fairly

constant over the whole range of dc power for each season. The following

approximate average margins were observed between the upper and lower reactive

limits:

Table 3-1: Muskrat Falls Reactive Power Margins

Season/ Load Level Margin (upper-lower)-MVAr

Winter/Peak 575

Spring-Fall/Intermediate 570

Summer Day/Light 695

Summer Night/Extreme Light 580

NP-NLH-108, Attachment 1 Page 12 of 50, NLH 2013 GRA

Page 14: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 10

There is little variation in the absolute values of reactive power or the margin over the

different seasons except for the summer day light load condition where a larger

margin is observed. As shown in Figure 3-5, the variation between seasons is

relatively small over the entire dc power range. Thus it would be feasible to consider

a single set of upper and lower limits that would apply over the whole year and at any

load level. The minimum margin of 570 MVAr from above represents 63% of the

rated converter power of 900 MW.

NP-NLH-108, Attachment 1 Page 13 of 50, NLH 2013 GRA

Page 15: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 11

Figure 3-4: Muskrat Falls Reactive Power Limits

-500

-400

-300

-200

-100

0

100

200

300

200 300 400 500 600 700 800 900

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Winter Peak - Muskrat Falls Reactive Power Limits

Lower Limit (95%) MF Upper Limit (105%) MF

-500

-400

-300

-200

-100

0

100

200

300

0 100 200 300 400 500 600 700 800 900 1000

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Spring/Fall Intermediate - Muskrat Falls Reactive Power Limits

Lower Limit (95%) MF Upper Limit (105%) MF

NP-NLH-108, Attachment 1 Page 14 of 50, NLH 2013 GRA

Page 16: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 12

Figure 3-4: Muskrat Falls Reactive Power Limits

-600

-500

-400

-300

-200

-100

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900 1000

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Summer Day Light - Muskrat Falls Reactive Power Limits

Lower Limit (95%) MF Upper Limit (105%) MF

-500

-400

-300

-200

-100

0

100

200

0 50 100 150 200 250 300 350 400 450 500

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Summer Night Extreme Light - Muskrat Falls Reactive Power Limits

Lower Limit (95%) MF Upper Limit (105%) MF

NP-NLH-108, Attachment 1 Page 15 of 50, NLH 2013 GRA

Page 17: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 13

Figure 3-5: Muskrat Falls Reactive Power Limits-Seasonal Variations

-600

-500

-400

-300

-200

-100

0

100

200

300

400

200 300 400 500 600 700 800 900

MV

ar A

bso

rbed

by

AC

Sys

tem

Power (MW)

Muskrat Falls Reactive Power Limits

Winter Intermediate Light Extreme Light

NP-NLH-108, Attachment 1 Page 16 of 50, NLH 2013 GRA

Page 18: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 14

3.2 Island Link-Soldiers Pond Converter Station

The variations in reactive power limits for the Soldiers Pond converter station are

shown in Figure 3-6.

It can be seen that the margin between the upper and lower reactive limits is fairly

constant over the whole range of dc power for each season. The following

approximate average margins were observed between the upper and lower reactive

limits:

Table 3-2: Soldiers Pond Reactive Power Margins

Season/ Load Level Margin (upper-lower)-MVAr

Winter/Peak 220

Spring-Fall/Intermediate 210

Summer Day/Light 210

Summer Night/Extreme Light 215

There is little variation in the margin over the different seasons. The margin at

Soldiers Pond is seen to be significantly lower (less than 40%) than the margin at

Muskrat Falls. The minimum value of 210 MVAr from above represents 23% of the

rated dc power of 900 MW. During the winter peak season, the reactive limits of the

system differ widely between the condition when the ML is either exporting power or

importing power.

As seen in Figure 3-7, there are significant variations in the absolute values of the

limits in different seasons. Under extreme light load conditions, the system is unable

to absorb any reactive power and must provide at least 50 MVAr to the converter to

maintain the voltage below 105%.

It would appear, therefore that at Soldiers Pond it will not be possible to use a single

composite reactive power limit for all seasons or all system conditions and that a

flexible reactive management system will be required at this converter station.

An illustrative example of a reactive power management scheme is shown in Figure

3-8. This figure shows the ac system upper and lower reactive limits, the converter

NP-NLH-108, Attachment 1 Page 17 of 50, NLH 2013 GRA

Page 19: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 15

reactive power requirements (assumed to be 50% of the dc power), the net reactive

power requirements using filters (equal to 50% of the converter reactive requirement,

switched in three stages depending on the dc power level) and the final reactive

power requirement when an adjustable 200 MVAr reactive source (switched

capacitors, SVC, or synchronous condenser) is added at the converter bus. The

converter reactive power requirement is well below the system lower limit over the

whole range of dc power. The addition of the switched filters brings the net reactive

closer to the lower limit but there are still dc power levels at which the operating point

is outside the system limits. The addition of an adjustable reactive power source can

bring the operating point within the system capabilities over the complete range of dc

power. In this example, the additional reactive source was taken as 200 MVAr and

was adjusted according to the dc power level in the following manner:

DC Power(MW) Reactive Support(MVAr)

900 200

800 150

700 100

600 100

500 100

270 100

200 150

160 175

130 200

110 200

It is emphasized that this example is purely illustrative and does not represent any

suggested or recommended scheme for reactive power management.

NP-NLH-108, Attachment 1 Page 18 of 50, NLH 2013 GRA

Page 20: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 16

Figure 3-6: Soldiers Pond Reactive Power Limits

-200

-100

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900 1000

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Winter Peak - Soldiers Pond Reactive Power Limits

BC14 Lower Limit (95%) SP BC14 Upper Limit (105%) SP

BC1 & BC2 Lower Limit (95%) SP BC1 & BC2 Upper Limit (105%) SP

-200

-100

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900 1000

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Spring/Fall Intermediate - Soldiers Pond Reactive Power Limits

Lower Limit (95%) SP Upper Limit (105%) SP

NP-NLH-108, Attachment 1 Page 19 of 50, NLH 2013 GRA

Page 21: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 17

Figure 3-6: Soldiers Pond Reactive Power Limits

-300

-250

-200

-150

-100

-50

0

50

100

150

0 100 200 300 400 500 600 700 800 900 1000

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Summer Day Light - Soldiers Pond Power Limits

Lower Limit (95%) SP Upper Limit (105%) SP

-350

-300

-250

-200

-150

-100

-50

0

0 50 100 150 200 250 300 350 400 450 500

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Summer Night Extreme Light - Soldiers Pond Reactive Power Limits

Lower Limit (95%) SP Upper Limit (105%) SP

NP-NLH-108, Attachment 1 Page 20 of 50, NLH 2013 GRA

Page 22: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 18

Figure 3-7: Soldiers Pond Reactive Power Limits-Seasonal Variations

-400

-300

-200

-100

0

100

200

300

400

0 200 400 600 800 1000

MV

ar

Ab

sorb

ed

by

AC

Sy

ste

m

Power (MW)

Soldiers Pond Reactive Power Limits

Winter Intermediate Light Extreme Light

Figure 3-8: Soldiers Pond Reactive Power Management

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

100 200 300 400 500 600 700 800 900

MV

ar

Ab

sorb

ed

by

AC

Sy

ste

m

Power (MW)

Spring/Fall Intermediate - Soldiers Pond Reactive Power Management

Lower Limit Upper Limit Converter-Q Converter/Filter Net Q Net Q 200MVAr Compensation

NP-NLH-108, Attachment 1 Page 21 of 50, NLH 2013 GRA

Page 23: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 19

3.3 Maritime Link-Bottom Brook Converter Station

The variations in reactive power limits for the Bottom Brook converter station are

shown in Figure 3-9.

It can be seen that the margin between the upper and lower reactive limits is fairly

constant over the whole range of dc power for each season. The following

approximate average margins were observed between the upper and lower reactive

limits:

Table 3-3: Bottom Brook Reactive Power Margins

Season/ Load Level Margin (upper-lower)-MVAr

Winter/Peak 110

Spring-Fall/Intermediate 120

Summer Day/Light 100

Summer Night/Extreme Light 80

There is little variation in the margin over the different seasons except for the

extreme light load condition. The margin at Bottom Brook is seen to be much

smaller than the margin at either Muskrat Falls or Soldiers Pond. The minimum

value of 80 MVAr from above represents 16% of the rated converter power of

500 MW.

As seen in Figure 3-10, there is a significant variation in the absolute values of the

reactive power limits in different seasons. As with Soldiers Pond, this would suggest

the need for a flexible reactive power management scheme.

NP-NLH-108, Attachment 1 Page 22 of 50, NLH 2013 GRA

Page 24: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 20

Figure 3-9: Bottom Brook Reactive Power Limits

-100

-50

0

50

100

150

200

-300 -200 -100 0 100 200 300

MV

ar A

bso

rbed

by

AC

Sys

tem

Power (MW)

Winter Peak - Bottom Brook Reactive Power Limits

Lower Limit (95%) BB Upper Limit (105%) BB

-150

-100

-50

0

50

100

150

200

250

300

0 100 200 300 400 500 600

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Spring/Fall Intermediate - Bottom Brook Reactive Power Limits

Lower Limit (95%) BB Upper Limit (105%)BB

NP-NLH-108, Attachment 1 Page 23 of 50, NLH 2013 GRA

Page 25: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 21

Figure 3-9: Bottom Brook Reactive Power Limits

-150

-100

-50

0

50

100

150

200

250

300

0 100 200 300 400 500 600

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Summer Day Light - Bottom Brook Power Limits

Lower Limit (95%) BB Upper Limit (105%) BB

-200

-150

-100

-50

0

50

100

0 50 100 150 200 250 300 350

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Summer Night Extreme Light - Bottom Brook Reactive Power Limits

Lower Limit (95%) BB Upper Limit (105%) BB

NP-NLH-108, Attachment 1 Page 24 of 50, NLH 2013 GRA

Page 26: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 22

Figure 3-10: Bottom Brook Reactive Power Limits-Seasonal Variations

-200

-150

-100

-50

0

50

100

150

200

250

300

-300 -200 -100 0 100 200 300 400 500 600

MV

ar A

bso

rbe

d b

y A

C S

yste

m

Power (MW)

Bottom Brook Reactive Power Limits

Winter Intermediate Light Extreme Light

NP-NLH-108, Attachment 1 Page 25 of 50, NLH 2013 GRA

Page 27: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 23

4 CONCLUSIONS

The reactive power capability of the ac systems at Muskrat Falls, Soldiers Pond and

Bottom Brook were determined from the normal system condition voltage limits of

±5% of nominal voltage. These results are based on the present system definition

and configuration. Subsequent stability studies and/or modifications to the system

configuration may alter these limits significantly. Although the reactive limits

developed in this study are suitable for use by manufacturers in preparing

comparable bids for converter stations, these limits will need to be re-calculated by

the selected converter manufacturer at the design stage, using the latest available

system information so that adequate reactive power management strategies can be

developed by the converter manufacturer using the actual converter characteristics

and filter arrangements.

4.1 Island Link-Muskrat Falls Converter Station

The ac system supplying the Muskrat Falls converter station is relatively strong and

has ample reactive power capability to absorb approximately 150 MVAr and supply

approximately 400 MVAr of reactive power over the complete range of converter

power levels. As an example of this, under Scenario BC-1 (see Figure A-1 in

Appendix-A), the ac system is supplying a total of 132 MVAr. Of this total, 70 MVAr

is supplied by the three units at Muskrat Falls (133 MVAr at the generator voltage

level) and 62 MVAr is supplied by the 2x315 kV lines connected to the Muskrat Falls

tap substation. At Churchill Falls 315 kV, the total reactive power being sent to

Churchill Falls is 81 MVAr, indicating that the all of the reactive power being supplied

in addition to the generators at Muskrat Falls is being produced by the 315 kV lines

between Churchill Falls and Muskrat Falls.

The margin between the upper and lower reactive power limits of the ac system is

approximately 570 MVAr which represents 63% of the rated dc power of 900 MW.

There is little variation in the reactive power limits over the different seasons and

load levels. This should allow the use of a single composite reactive power

management scheme for all load conditions. It can be concluded that no additional

reactive power source is required at Muskrat Falls.

NP-NLH-108, Attachment 1 Page 26 of 50, NLH 2013 GRA

Page 28: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 24

4.2 Island Link-Soldiers Pond Converter Station

The ac system at Soldiers Pond is not as strong as that at Muskrat Falls and for the

normal operating situation (LIL providing power to the Island, the ML exporting power

to Nova Scotia), under winter peak load conditions, the ac system can provide

virtually no reactive power to the converter station although the system can absorb

between 200-300 MVAr depending on the dc power level. The situation improves

with lower load levels. For intermediate load levels, the ac system can provide 100-

150 MVAr of reactive power over the upper part of the dc power range while being

able to absorb less than 100 MVAr over the same range. For light load levels, the ac

system can provide between 50-250 MVAr and for the extreme light load level, the

ac system can provide between 250-300 MVAr of reactive power. The system

absorption capability is very limited or less than zero for both these load levels. The

margin between the upper and lower reactive power limits of the ac system is

approximately 210 MVAr which represents 23% of the rated dc power of 900 MW.

The significant variations in the reactive power limits over the different seasons and

load levels suggests that a flexible reactive power management scheme will be

required at Soldiers Pond to cater to this wide variation in reactive power capabilities.

With the addition of a +300/-180 MVAr of high-inertia synchronous condenser at

Soldiers Pond 230 kV, the ac system limits calculated in this report will be increased

by the rating of the synchronous condenser. The upper limit curves (absorption) will

move in the positive direction by 180 MVAr and the lower limit curves will move in the

negative direction by 300 MVAr over the whole range of power levels. This adds

480 MVAr to the margin between the upper and lower limits.

4.3 Maritime Link-Bottom Brook Converter Station

The ac system at Bottom Brook is the weakest of the three examined. Above an

export level of 250 MW, the ac system is unable to provide any reactive power

except under extreme light load conditions. At lower export levels, for winter peak

and intermediate load levels, the reactive support capability of the system only

reaches approximately 50 MVAr. The margin between the upper and lower reactive

power limits of the ac system is approximately 80 MVAr which represents 16% of the

rated dc power of 500 MW.

NP-NLH-108, Attachment 1 Page 27 of 50, NLH 2013 GRA

Page 29: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 25

The significant variations in the reactive power limits over the different seasons and

load levels suggests that a flexible reactive power management scheme will be

required at Bottom Brook to cater to this wide variation in reactive power capabilities.

The use of VSC technology for the Bottom Brook converter would enable the

converter to produce and absorb reactive power. Typically, VSC converters can

absorb or produce reactive power at a value equal to 50% of the rated dc power.

Thus 2x250 MW converters could absorb/produce up to 250 MVAr of reactive power,

increasing the margin between the upper and lower limits by 500 MVAr.

NP-NLH-108, Attachment 1 Page 28 of 50, NLH 2013 GRA

Page 30: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A

APPENDIX A

BASE CASE LOAD FLOWS

NP-NLH-108, Attachment 1 Page 29 of 50, NLH 2013 GRA

Page 31: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-1

LIST OF FIGURES

Figure A- 1 BC-1 Winter Peak 2017/ Island Link @ 900MW/ Maritime Link @ 158MW/ Economic Dispatch/3 units @ Muskrat Falls ........................................................................................... A-2 Figure A- 2 BC-2 Winter Peak 2017/ Island Link @ 900MW/ Maritime Link @ 239MW/ Maximum Dispatch/3 units @ Muskrat Falls ............................................................................................ A-3 Figure A- 3 BC-5 Intermediate 2017/ Island Link @ 900MW/ Maritime Link @ 158MW/ Economic Dispatch ................................................................................................................. A-4 Figure A- 4 BC-6 Intermediate 2017/ Island Link @ 276MW/ Maritime Link @ 158MW/ Maximum Dispatch ................................................................................................................. A-5 Figure A- 5 BC-7 Intermediate 2017/ Island Link @ 900MW/ Maritime Link @ 500MW/ Economic Dispatch ................................................................................................................. A-6 Figure A- 6 BC-8 Light 2017/ Island Link @ 420MW/ Maritime Link @ 158MW/ Minimum Dispatch .................................................................................................................................. A-7 Figure A- 7 BC-9 Light 2017/ Island Link @ 81MW/ Maritime Link @ 158MW/ Economic Dispatch .................................................................................................................................. A-8 Figure A- 8 BC-10 Light 2017/ Island Link @ 900MW/ Maritime Link @ 500MW/ Economic Dispatch ................................................................................................................................. A-9 Figure A- 9 BC-13 Extreme Light 2017/ Island Link @ 457MW/ Maritime Link @ 320MW/ Minimum Dispatch ................................................................................................................ A-10 Figure A- 10 BC-14 Winter Peak 2017/ Island Link @ 286MW Monopole/ Maritime Link @ -260MW/ Maximum Dispatch ................................................................................................. A-11

Note: The sign convention used in the load flow plots is:

Positive flows (P and Q) are from the bus and generator, and

Negative flows (P and Q) are toward the bus and generator.

NP-NLH-108, Attachment 1 Page 30 of 50, NLH 2013 GRA

Page 32: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-2

Figure A- 1

BC-1 Winter Peak 2017/ Island Link @ 900MW/ Maritime Link @ 158MW/ Economic Dispatch/3 units @ Muskrat Falls

NP-NLH-108, Attachment 1 Page 31 of 50, NLH 2013 GRA

Page 33: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

80.6

-16.2

-42.8

26.7

43.0

-34.6

-104.6

-38.1

-76.4

9.6

4.2

MASSEY DRIVE

TL211

TL235

34.5

TL231

-18.5

-2.7

TL263

TL209

44.7

8.4

-82.2 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

-4.0

184.8

55.2

-5.6 -3.2

201.4

34.6

-200.3

-31.2

37.8

-22.2

-37.8

-34.6

21.4

-35.0

21.6

TL201E

HVDC:

GENERATION:

69.6

-12.3 -12.0

-68.4

-183.8

-51.2

SW

15.2

11.9

-123.4

63.9

62.9

-4.8

34.6

-23.1

-63.5

-23.4

35.0TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 934.6 MW

STAR LAKE - EXPLOITS = 92.5 MWNLH GENERATION = 857.5 MW

-62.5

20.3

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -38.9 MW

236HWD B1B2

0.990-12.9

OXEN POND

238OPD B1

38.2

193.6

-35.1

-192.7

TL218E

11.5

247.3

405USL L34

216STB B1B2

261ACG GFL

6.2

-14.1 18.5

-6.8

44.7

11.7

STEPHENVILLE

208MDR B1B5

1.012-18.9

135DLK B3

-98.6

-20.0

152.1

76.4

7300CHF TS

1127.0

-224.7

1127.0

-224.7

1127.0

-224.7

0.9875

197.0

-32.4

0.9875

197.0

-32.4

1.0548

-2.1

45.5

2306CHF B23

1.0445.0

2.1

-45.2

2330WABUSH TS

0.921-19.5

205.9

48.2

-190.3

4.6

205.9

48.2

-190.3

4.6

-3361.7

-133.5

R

SW

499.0

-1120.6

-210.8

1.0040.0

1

-1120.6

-210.8

-1120.6

-210.8 3420

CHF 315-196.8

40.7

3401MFA TS

-193.4

-31.0

-40.7

-193.4

-31.0

196.8

-40.7

-196.8

40.7

3400MFA 315

-150.0

-31.0

150.1

29.3

-31.0

150.1

29.3

86.7

3.3

-150.0

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

178.6

42.8

-75.1

-18.0

75.1

18.0

TL234

4.1

-95.4

96.3

-11.1

-131.9

4.6

-131.6

4.5

133.6

-7.0133.3

-7.0

82.8

-19.3

77.2

-14.5

-44.7

-11.7

55.8

84.1

230LHR B1

83.9

56.8

TL208

VALE INCO

-14.5

95.5

95.6

-14.5

-93.8

1.3

1.3

221BDE TS

-8.3

21.7

8.4

-29.1

229WAV B1B3

SW

-116.7

TL203

TL237

222SSD B1

SUNNYSIDE

-62.4

23.6

35.7

24.6

172.3

38.1

TL207

CBC

227CBC B1B2

291GCL L63

127.3

-16.4

DEER LAKE

1.000-23.4

1.005-17.5

215BUC B1

BUCHANS

1.004-13.8

1.004-13.9

NEWFOUNDLAND

1.003-13.9

0.993-13.5

0.984-14.2

1.011-7.1

1.007-11.0

0.997-23.9

0.9955.0

1.000-8.0

1.001-7.8

1.007-14.0

1.002-11.5

NATIVE GENERATION = 934.6 MW

LOADS:

205BBK B1

P = 4219.0 MW

Q = 577.0 MvarP = 602.0 MW

196.81.015

2.77380MONTAGNAIS

HYDRO-QUEBEC

P = 76.0 MW

Q = 27.5 Mvar

7.5

99.7TL248

1.039-12.9

136CAT L47

CAT ARM

P = 100.0 MW

Q = 15.4 Mvar

TL228 -3.8

92.1

-79.4

0.1

BOTTOM BROOK

105.2 -75.1

-18.0

P = 32.0 MW

Q = 6.4 Mvar

GRANITE CANAL

P = 78.0 MW

Q = -4.5 Mvar

UPPER SALMON

-93.9

TL

20

6

TL

20

2

P = 569.1 MW

Q = 10.8 Mvar

BAY D ESPOIR

TL201W

TL217W

89.7

32.9-37.8

12.2

1.000-11.3

-54.0

-145.4

145.7

54.7

TL236

TL242E

105.2

329.1 0.983

-13.7

P = 0.0 MW

Q = 37.7 MvarHARDWOODS

26.4

107.3

234HRD TS

HOLYROOD

Q = 93.1 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

7.2

21.2

-14.5

-6.6

Q = 6.7 Mvar

P = 80.0 MW

-90.6

-3.7 0.988

-21.9

TOTAL GENERATION = 1748.6 MWTOTAL NLH SALES = 1073.7 MW

GROSS AVALON LOAD = 842.8 MW

HYDRO RURAL = 92.7 MWNEWFOUNDLAND POWER = 740.6 MW

TOTAL INDUSTRIAL = 80.4 MW

3.5

40.8

- Base Case

1.011-6.6

HAPPY VALLEY

1

0.0

-131.6

R

1

34001MFA 315 SVC

1.000-8.0

-0.0

131.6

0.0

-131.6

1

0.0

51.3R

1

-814.0

0.0

1

0.0

1

0.0

50.6

R

1.000-11.3

-0.0

-51.3

0.0

51.3

1.000-23.4

-0.0

-50.6

0.0

50.61

60.0

20501BBK B1 SVC

Q = 133.4 MvarMF Q = -131.6 Mvar

SP Q =51.3 Mvar

BB Q = 50.6 Mvar

Bulk System Losses =39.8 MW

LABRADOR EXPORT = 900.0 MWISLAND IMPORT = 814.0 MW

NS EXPORT = 160.0 MWNET HVDC = 654.0 MW

900.0

0.0

24901SPD SVC

BC1 -2017 PEAK - NLH SYS LOAD 1552MW, 814MW IMP, 158MW EXPLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:26

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 32 of 50, NLH 2013 GRA

Page 34: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-3

Figure A- 2

BC-2 Winter Peak 2017/ Island Link @ 900MW/ Maritime Link @ 239MW/ Maximum Dispatch/3 units @ Muskrat Falls

NP-NLH-108, Attachment 1 Page 33 of 50, NLH 2013 GRA

Page 35: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

101.9

-19.9

-80.9

41.0

81.7

-45.8

-134.8

-27.9

-89.5

12.8

6.5

MASSEY DRIVE

TL211

TL235

27.9

TL231

-27.8

2.4

TL263

TL209

44.7

8.4

-96.4 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

-4.7

184.8

55.2

-6.3 -2.4

201.4

34.6

-200.3

-31.2

37.8

-22.1

-37.8

-34.6

21.3

-35.0

21.6

TL201E

HVDC:

GENERATION:

70.1

-12.7 -11.4

-68.9

-183.8

-51.2

SW

0.017.8

-144.7

63.9

62.9

-4.1

34.6

-23.1

-63.5

-23.3

35.0TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 1021.4 MW

STAR LAKE - EXPLOITS = 92.5 MWNLH GENERATION = 944.2 MW

-62.5

20.2

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -36.0 MW

236HWD B1B2

0.990-13.4

OXEN POND

238OPD B1

38.2

193.6

-35.1

-192.7

TL218E

11.5

247.3

405USL L34

216STB B1B2

261ACG GFL

6.4

-14.1 27.8

-11.6

44.7

11.7

STEPHENVILLE

208MDR B1B5

1.006-20.2

135DLK B3

-127.7

-14.1

149.5

74.4

7300CHF TS

1134.1

-224.7

1134.1

-224.7

1134.1

-224.7

0.9875

191.4

-33.2

0.9875

191.4

-33.2

1.0548

-3.2

45.5

2306CHF B23

1.0445.1

3.2

-45.2

2330WABUSH TS

0.921-19.4

205.9

48.2

-190.3

4.6

205.9

48.2

-190.3

4.6

-3382.7

-129.8

R

SW

499.0

-1127.6

-209.6

1.0040.0

1

-1127.6

-209.6

-1127.6

-209.6 3420

CHF 315-191.2

41.0

3401MFA TS

-187.9

-32.6

-41.0

-187.9

-32.6

191.2

-41.0

-191.2

41.0

3400MFA 315

-144.6

-32.7

144.6

31.0

-32.7

144.6

31.0

86.7

3.3

-144.6

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

176.5

43.8

-75.1

-18.3

75.1

18.2

TL234

12.6

-110.3

111.6

-17.4

-144.8

4.9

-144.4

4.8

146.9

-3.6146.5

-3.6

97.1

-20.4

90.7

-14.7

-44.7

-11.7

55.8

84.1

230LHR B1

83.9

56.8

TL208

VALE INCO

-14.9

96.1

96.3

-14.9

-94.4

2.0

2.0

221BDE TS

-8.6

21.2

8.6

-28.6

229WAV B1B3

SW

-116.5

TL203

TL237

222SSD B1

SUNNYSIDE

-62.7

23.4

35.7

24.6

174.0

37.6

TL207

CBC

227CBC B1B2

291GCL L63

150.2

-12.1

DEER LAKE

1.000-26.8

1.000-19.4

215BUC B1

BUCHANS

1.000-15.0

1.000-15.1

NEWFOUNDLAND

1.003-14.4

0.993-14.1

0.983-14.7

1.012-7.8

1.011-12.3

0.997-27.3

0.9955.0

1.000-7.5

1.001-7.4

1.006-14.5

1.002-12.0

NATIVE GENERATION = 1021.4 MW

LOADS:

205BBK B1

P = 4229.0 MW

Q = 578.8 MvarP = 613.0 MW

191.21.015

2.87380MONTAGNAIS

HYDRO-QUEBEC

P = 76.0 MW

Q = 27.8 Mvar

9.2

129.6TL248

1.034-12.2

136CAT L47

CAT ARM

P = 130.0 MW

Q = 22.8 Mvar

TL228 -5.8

98.2

-99.9

9.0

BOTTOM BROOK

135.8 -75.1

-18.2

P = 40.0 MW

Q = 5.8 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -4.3 Mvar

UPPER SALMON

-94.5

TL

20

6

TL

20

2

P = 606.8 MW

Q = 20.5 Mvar

BAY D ESPOIR

TL201W

TL217W

89.7

32.7-37.4

12.4

1.000-11.8

-54.0

-145.4

145.7

54.7

TL236

TL242E

105.2

329.1 0.983

-14.2

P = 0.0 MW

Q = 37.7 MvarHARDWOODS

26.5

107.3

234HRD TS

HOLYROOD

Q = 93.2 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

7.2

21.2

-13.8

-8.1

Q = 7.0 Mvar

P = 80.0 MW

-96.4

-0.6 0.984

-24.1

TOTAL GENERATION = 1835.4 MWTOTAL NLH SALES = 1156.5 MW

GROSS AVALON LOAD = 842.8 MW

HYDRO RURAL = 92.7 MWNEWFOUNDLAND POWER = 740.5 MW

TOTAL INDUSTRIAL = 83.3 MW

3.5

40.8

- Base Case

1.010-7.1

HAPPY VALLEY

1

0.0

-133.7

R

1

34001MFA 315 SVC

1.000-7.5

0.0

133.7

-0.0

-133.7

1

0.0

52.9R

1

-814.0

0.0

1

0.0

1

0.0

79.7

R

1.000-11.8

0.0

-52.9

0.0

52.9

1.000-26.8

0.0

-79.7

-0.0

79.72

40.0

20501BBK B1 SVC

Q = 134.3 MvarMF Q = -133.7 Mvar

SP Q =52.9 Mvar

BB Q = 79.7 Mvar

Bulk System Losses =46.3 MW

LABRADOR EXPORT = 900.0 MWISLAND IMPORT = 814.0 MW

NS EXPORT = 240.0 MWNET HVDC = 574.0 MW

900.0

0.0

24901SPD SVC

BC2 -2017 PEAK - NLH SYS LOAD 1552MW, 814MW IMP, 239MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:26

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 34 of 50, NLH 2013 GRA

Page 36: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-4

Figure A- 3

BC-5 Intermediate 2017/ Island Link @ 900MW/ Maritime Link @ 158MW/ Economic Dispatch

NP-NLH-108, Attachment 1 Page 35 of 50, NLH 2013 GRA

Page 37: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

81.5

-9.5

-22.8

11.5

22.9

-20.5

-31.7

-53.1

-84.0

6.0

-0.2

MASSEY DRIVE

TL211

TL235

44.7

TL231

-15.4

-7.5

TL263

TL209

30.1

6.7

-90.0 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

31.3

124.1

32.9

27.8 -22.1

135.1

16.2

-134.6

-16.2

34.5

-26.3

-34.5

-31.2

25.1

-31.6

25.4

TL201E

HVDC:

GENERATION:

-26.0

-1.7 -29.9

26.2

-123.6

-33.7

SW

15.35.8

-114.0

165.3

162.2

-26.0

31.2

-26.9

-162.8

-27.1

31.6TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 470.5 MW

STAR LAKE - EXPLOITS = 92.6 MWNLH GENERATION = 387.2 MW

-159.3

24.4

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -31.2 MW

236HWD B1B2

0.9945.0

OXEN POND

238OPD B1

18.8

130.0

-19.0

-129.6

TL218E

-4.1

166.6

405USL L34

216STB B1B2

261ACG GFL

6.4

-15.0 15.4

-2.1

30.1

10.2

STEPHENVILLE

208MDR B1B5

1.020-16.4

135DLK B3

0.1

-32.3

114.2

76.4

7300CHF TS

1592.7

-242.2

1592.7

-242.2

1592.7

-242.2

1.0000

117.3

-51.9

1.0000

117.3

-51.9

1.0548

-577.3

53.5

2306CHF B23

1.04411.2

578.0

-12.5

2330WABUSH TS

0.921-13.3

205.9

48.1

-190.3

4.7

205.9

48.1

-190.3

4.7

-4739.8

219.7

R

SW

499.0

-1579.9

-93.1

1.0040.0

1

-1579.9

-93.1

-1579.9

-93.1 3420

CHF 315-117.3

55.5

3401MFA TS

-116.0

-37.7

-55.5

-116.0

-37.7

117.3

-55.5

-117.3

55.5

3400MFA 315

-72.7

-37.9

72.7

35.9

-37.9

72.7

35.9

86.7

3.6

-72.7

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

108.0

29.5

-75.2

-12.7

75.2

12.7

TL234

1.5

-89.4

90.2

-9.4

-104.4

4.0

-104.1

3.9

105.4

-13.3105.1

-13.3

90.6

-15.2

85.0

-9.6

-30.1

-10.2

55.7

84.1

230LHR B1

83.9

56.9

TL208

VALE INCO

-10.4

-4.4

-4.4

-10.4

4.4

-15.2

-15.2

221BDE TS

-90.1

54.6

91.1

-57.8

229WAV B1B3

SW

-119.5

TL203

TL237

222SSD B1

SUNNYSIDE

-38.7

-48.4

35.7

24.5

129.7

14.5

TL207

CBC

227CBC B1B2

291GCL L63

117.4

-14.7

DEER LAKE

1.000-17.9

1.013-12.1

215BUC B1

BUCHANS

1.017-8.2

1.017-8.2

NEWFOUNDLAND

1.016-2.2

1.0000.2

0.991-0.4

1.017-3.0

1.011-6.6

0.997-18.2

0.9927.1

1.000-0.7

1.001-0.7

1.019-2.1

1.0025.9

NATIVE GENERATION = 470.5 MW

LOADS:

205BBK B1

P = 5465.0 MW

Q = 858.5 MvarP = 757.0 MW

117.31.003

5.77380MONTAGNAIS

HYDRO-QUEBEC

P = 76.0 MW

Q = 21.9 Mvar

9.2

-0.0TL248

1.043-16.5

136CAT L47

CAT ARM

P = 0.0 MW

Q = 9.3 Mvar

TL228 -2.6

107.5

-80.3

-6.7

BOTTOM BROOK

31.9 -75.2

-12.7

P = 28.0 MW

Q = 4.7 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -8.3 Mvar

UPPER SALMON

4.4

TL

20

6

TL

20

2

P = 207.8 MW

Q = -30.7 Mvar

BAY D ESPOIR

TL201W

TL217W

35.8

33.7-60.8

84.9

1.0006.1

-39.9

-97.5

97.6 39.2

TL236

TL242E

73.6

221.1 0.989

4.5

P = 0.0 MW

Q = 40.9 MvarHARDWOODS

13.8

97.2

234HRD TS

HOLYROOD

Q = 92.1 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

6.3

16.1

-12.4

-31.9

Q = 5.2 Mvar

P = 80.0 MW

-105.4

-2.8 0.994

-17.1

TOTAL GENERATION = 1284.5 MWTOTAL NLH SALES = 815.5 MW

GROSS AVALON LOAD = 599.0 MW

HYDRO RURAL = 70.4 MWNEWFOUNDLAND POWER = 497.0 MW

TOTAL INDUSTRIAL = 88.1 MW

-4.6

27.0

- Base Case

1.019-2.6

HAPPY VALLEY

1

0.0

-174.3

R

1

34001MFA 315 SVC

1.000-0.7

-0.0

174.3

0.0

-174.3

1

0.0

-60.6R

1

-814.0

0.0

1

0.0

1

0.0

12.6

R

1.0006.1

0.0

60.6

0.0

-60.6

1.000-17.9

0.0

-12.6

-0.0

12.61

60.0

20501BBK B1 SVC

Q = 174.4 MvarMF Q = -174.3 Mvar

SP Q =-60.6 Mvar

BB Q = 12.6 Mvar

Bulk System Losses =30.0 MW

LABRADOR EXPORT = 900.0 MWISLAND IMPORT = 814.0 MW

NS EXPORT = 160.0 MWNET HVDC = 654.0 MW

900.0

0.0

24901SPD SVC

BC5 -2017 INTR - NLH SYS LOAD 1100MW, 814MW IMP, 158MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:27

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 36 of 50, NLH 2013 GRA

Page 38: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-5

Figure A- 4

BC-6 Intermediate 2017/ Island Link @ 276MW/ Maritime Link @ 158MW/ Maximum Dispatch

NP-NLH-108, Attachment 1 Page 37 of 50, NLH 2013 GRA

Page 39: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

58.4

-8.2

-70.9

21.4

71.4

-27.8

-140.1

-27.7

-41.2

-1.4

-4.8

MASSEY DRIVE

TL211

TL235

28.0

TL231

32.9

-4.8

TL263

TL209

30.1

6.7

-44.1 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

-30.1

124.2

34.3

-28.4 21.9

134.9

15.8

-134.4

-15.8

16.5

-23.4

-16.5

-14.3

21.2

-14.5

21.5

TL201E

HVDC:

GENERATION:

150.2

-7.3 13.6

-144.5

-123.7

-35.2

SW

15.4

-3.3

-88.5

-84.1

-82.1

23.6

14.4

-23.1

84.9

-23.3

14.5TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 1027.9 MW

STAR LAKE - EXPLOITS = 92.6 MWNLH GENERATION = 944.5 MW

82.9

21.4

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -26.8 MW

236HWD B1B2

0.994-26.4

OXEN POND

238OPD B1

18.5

129.8

-18.6

-129.4

TL218E

-8.8

165.3

405USL L34

216STB B1B2

261ACG GFL

6.4

-15.0 -32.8

-4.4

30.1

10.2

STEPHENVILLE

208MDR B1B5

1.015-10.6

135DLK B3

-127.7

-9.9

110.2

76.6

7300CHF TS

1387.2

-231.8

1387.2

-231.8

1387.2

-231.8

0.9875

-124.9

-19.4

0.9875

-124.9

-19.4

1.0548

-17.3

42.4

2306CHF B23

1.0436.3

17.3

-42.1

2330WABUSH TS

0.921-18.2

205.9

48.0

-190.3

5.0

205.9

48.0

-190.3

5.0

-4132.7

41.9

R

SW

499.0

-1377.6

-152.4

1.0040.0

1

-1377.6

-152.4

-1377.6

-152.4 3420

CHF 315125.0

22.7

3401MFA TS

126.5

-69.0

-22.7

126.5

-69.0

-125.0

-22.7

125.0

22.7

3400MFA 315

169.9

-66.5

-169.9

65.0

-66.5

-169.9

65.0

86.8

7.9

169.9

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

130.5

30.6

-75.2

-14.1

75.2

14.1

TL234

-0.3

-50.6

50.9

-11.4

-70.6

2.6

-70.4

2.6

71.1

-17.370.9

-17.3

44.2

-12.0

41.4

-9.7

-30.1

-10.2

55.8

84.1

230LHR B1

83.9

56.8

TL208

VALE INCO

-12.6

164.7

164.9

-12.5

-159.5

22.8

22.9

221BDE TS

107.5

5.8

-106.5

-8.6

229WAV B1B3

SW

-116.9

TL203

TL237

222SSD B1

SUNNYSIDE

-73.3

124.9

35.7

24.5

86.9

21.7

TL207

CBC

227CBC B1B2

291GCL L63

90.5

-14.9

DEER LAKE

1.000-16.9

1.013-12.8

215BUC B1

BUCHANS

1.015-10.9

1.015-10.9

NEWFOUNDLAND

1.004-19.6

0.992-22.2

0.983-22.8

1.014-6.2

1.013-8.2

0.997-17.3

0.9946.2

1.00014.7

1.00114.5

1.008-20.1

1.002-25.4

NATIVE GENERATION = 1027.9 MW

LOADS:

205BBK B1

P = 4357.0 MW

Q = 629.1 MvarP = 618.0 MW

-125.01.012

7.67380MONTAGNAIS

HYDRO-QUEBEC

P = 76.0 MW

Q = 23.3 Mvar

4.4

129.6TL248

1.038-2.7

136CAT L47

CAT ARM

P = 130.0 MW

Q = 17.8 Mvar

TL228 8.0

41.8

-57.7

-12.1 BOTTOM BROOK

141.2 -75.2

-14.1

P = 40.0 MW

Q = 5.4 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -5.4 Mvar

UPPER SALMON

-159.7

TL

20

6

TL

20

2

P = 607.1 MW

Q = 9.6 Mvar

BAY D ESPOIR

TL201W

TL217W

87.6

20.9-23.1

-88.4

1.000-25.3

-43.9

-98.3

98.5 43.3

TL236

TL242E

79.1

222.1 0.989

-26.9

P = 0.0 MW

Q = 39.0 MvarHARDWOODS

24.8

45.3

234HRD TS

HOLYROOD

Q = 92.4 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

6.3

16.1

-18.2

-13.5

Q = 4.8 Mvar

P = 80.0 MW

-41.5

-21.1 0.994

-14.6

TOTAL GENERATION = 1295.9 MWTOTAL NLH SALES = 820.3 MW

GROSS AVALON LOAD = 594.7 MW

HYDRO RURAL = 70.4 MWNEWFOUNDLAND POWER = 497.4 MW

TOTAL INDUSTRIAL = 92.5 MW

-4.6

27.0

- Base Case

1.012-7.0

HAPPY VALLEY

1

0.0

-200.6

R

1

34001MFA 315 SVC

1.00014.7

-0.0

200.6

0.0

-200.6

1

0.0

44.2R

1

-268.0

0.0

1

0.0

1

0.0

8.1

R

1.000-25.3

0.0

-44.2

0.0

44.2

1.000-16.9

0.0

-8.1

0.0

8.1

160.0

20501BBK B1 SVC

Q = 134.7 MvarMF Q = -200.6 Mvar

SP Q =44.2 Mvar

BB Q = 8.1 Mvar

Bulk System Losses =41.0 MW

LABRADOR EXPORT = 276.0 MWISLAND IMPORT = 268.0 MW

NS EXPORT = 160.0 MWNET HVDC = 108.0 MW

276.0

0.0

24901SPD SVC

BC6 -2017 INTR - NLH SYS LOAD 1100MW, 268MW IMP, 158MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:27

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 38 of 50, NLH 2013 GRA

Page 40: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-6

Figure A- 5

BC-7 Intermediate 2017/ Island Link @ 900MW/ Maritime Link @ 500MW/ Economic Dispatch

NP-NLH-108, Attachment 1 Page 39 of 50, NLH 2013 GRA

Page 41: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

191.5

-30.9

-163.3

83.9

166.6

-74.7

-105.4

-33.7

-168.9

29.9

18.5

MASSEY DRIVE

TL211

TL235

30.5

TL231

-128.4

0.9

TL263

TL209

30.1

6.7

-181.8 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

20.7

124.2

33.2

17.1 -11.5

134.9

14.4

-134.4

-14.4

34.5

-26.4

-34.5

-31.2

25.1

-31.5

25.4

TL201E

HVDC:

GENERATION:

-21.8

-6.9 -24.5

22.0

-123.8

-34.0

SW

0.066.2

-209.6

165.3

162.5

-15.5

31.2

-26.9

-162.8

-27.2

31.5TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 853.2 MW

STAR LAKE - EXPLOITS = 92.5 MWNLH GENERATION = 769.9 MW

-159.6

24.5

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -23.6 MW

236HWD B1B2

0.9941.0

OXEN POND

238OPD B1

17.1

129.8

-17.3

-129.4

TL218E

-11.0

165.5

405USL L34

216STB B1B2

261ACG GFL

6.9

-15.0 129.2

-2.5

30.1

10.2

STEPHENVILLE

208MDR B1B5

0.995-31.5

135DLK B3

-69.2

-34.3

107.1

71.4

7300CHF TS

1294.2

-224.3

1294.2

-224.3

1294.2

-224.3

0.9875

188.8

-33.8

0.9875

188.8

-33.8

1.0548

-431.0

43.1

2306CHF B23

1.0468.8

431.4

-20.3

2330WABUSH TS

0.921-15.6

205.8

49.0

-190.2

3.5

205.8

49.0

-190.2

3.5

-3857.4

-40.4

R

SW

499.0

-1285.8

-179.8

1.0040.0

1

-1285.8

-179.8

-1285.8

-179.8 3420

CHF 315-188.6

41.4

3401MFA TS

-185.4

-33.1

-41.4

-185.4

-33.1

188.6

-41.4

-188.6

41.4

3400MFA 315

-142.1

-33.2

142.1

31.4

-33.2

142.1

31.4

86.7

3.3

-142.1

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

108.5

27.7

-75.1

-21.9

75.1

21.9

TL234

20.3

-195.1

199.2

-5.2

-195.9

9.8

-195.4

9.7

199.9

10.0199.3

9.9

184.6

-18.7

173.3

-6.5

-30.1

-10.2

55.7

84.1

230LHR B1

83.9

56.8

TL208

VALE INCO

-14.7

1.7

1.7

-14.7

-1.6

-10.3

-10.3

221BDE TS

-92.5

47.3

93.4

-50.4

229WAV B1B3

SW

-117.3

TL203

TL237

222SSD B1

SUNNYSIDE

-43.0

-50.3

35.7

24.5

146.1

16.2

TL207

CBC

227CBC B1B2

291GCL L63

222.1

-11.2

DEER LAKE

1.000-40.2

0.979-25.7

215BUC B1

BUCHANS

0.984-17.2

0.984-17.2

NEWFOUNDLAND

1.007-6.3

0.994-3.8

0.984-4.4

0.998-9.6

0.987-17.8

0.997-40.6

0.9955.7

1.000-6.7

1.001-6.5

1.010-6.1

1.0021.9

NATIVE GENERATION = 853.2 MW

LOADS:

205BBK B1

P = 4706.0 MW

Q = 658.6 MvarP = 618.0 MW

188.61.015

3.57380MONTAGNAIS

HYDRO-QUEBEC

P = 76.0 MW

Q = 32.0 Mvar

17.5

69.9TL248

1.033-27.3

136CAT L47

CAT ARM

P = 70.0 MW

Q = 21.7 Mvar

TL228 -24.4

174.2

-184.3

56.2

BOTTOM BROOK

106.1 -75.1

-21.9

P = 27.0 MW

Q = 12.0 Mvar

GRANITE CANAL

P = 71.0 MW

Q = 3.4 Mvar

UPPER SALMON

-1.7

TL

20

6

TL

20

2

P = 527.5 MW

Q = 44.1 Mvar

BAY D ESPOIR

TL201W

TL217W

36.2

35.5-54.1

86.8

1.0002.1

-43.3

-98.2

98.3 42.7

TL236

TL242E

77.4

221.9 0.989

0.5

P = 0.0 MW

Q = 43.4 MvarHARDWOODS

13.5

97.0

234HRD TS

HOLYROOD

Q = 92.1 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

6.3

16.1

3.7

-36.8

Q = 2.0 Mvar

P = 80.0 MW

-168.3

37.0 0.973

-34.6

TOTAL GENERATION = 1667.2 MWTOTAL NLH SALES = 1164.5 MW

GROSS AVALON LOAD = 599.0 MW

HYDRO RURAL = 70.3 MWNEWFOUNDLAND POWER = 498.4 MW

TOTAL INDUSTRIAL = 95.7 MW

-4.5

27.0

- Base Case

1.004-6.1

HAPPY VALLEY

1

0.0

-133.9

R

1

34001MFA 315 SVC

1.000-6.7

-0.0

133.9

0.0

-133.9

1

0.0

-42.8R

1

-814.0

0.0

1

0.0

1

0.0

208.4

R

1.0002.1

0.0

42.8

0.0

-42.8

1.000-40.2

0.0

-208.4

-0.0

208.4500.0

20501BBK B1 SVC

Q = 134.7 MvarMF Q = -133.9 Mvar

SP Q =-42.8 Mvar

BB Q = 208.4 Mvar

Bulk System Losses =71.0 MW

LABRADOR EXPORT = 900.0 MWISLAND IMPORT = 814.0 MW

NS EXPORT = 500.0 MWNET HVDC = 314.0 MW

900.0

0.0

24901SPD SVC

BC7 -2017 INTR - NLH SYS LOAD 1100MW, 814MW IMP, 500MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:28

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 40 of 50, NLH 2013 GRA

Page 42: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-7

Figure A- 6

BC-8 Light 2017/ Island Link @ 420MW/ Maritime Link @ 158MW/ Minimum Dispatch

NP-NLH-108, Attachment 1 Page 41 of 50, NLH 2013 GRA

Page 43: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

66.9

-1.4

-31.3

1.4

31.4

-10.4

-38.2

-51.2

-64.2

-2.6

-7.8

MASSEY DRIVE

TL211

TL235

42.9

TL231

3.5

-8.3

TL263

TL209

17.6

5.0

-68.4 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

18.2

72.3

17.4

17.0 -25.8

78.4

2.5

-78.2

-4.3

18.3

-27.6

-18.3

-15.8

25.3

-16.0

25.6

TL201E

HVDC:

GENERATION:

23.7

-8.3 -24.3

-23.6

-72.2

-20.8

SW

0.0-9

.6

-95.5

62.6

61.1

-27.1

15.8

-27.1

-62.2

-27.4

16.0TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 468.7 MW

STAR LAKE - EXPLOITS = 62.1 MWNLH GENERATION = 410.4 MW

-60.7

25.6

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -30.2 MW

236HWD B1B2

0.998-6.9

OXEN POND

238OPD B1

4.2

75.6

-6.1

-75.4

TL218E

-20.3

96.4

405USL L34

216STB B1B2

261ACG GFL

6.7

-15.7 -3.5

-1.6

17.6

8.7

STEPHENVILLE

208MDR B1B5

1.026-16.3

135DLK B3

-35.8

-25.8

86.9

76.3

7300CHF TS

831.2

-194.9

831.2

-194.9

831.2

-194.9

1.0000

-111.7

-29.1

1.0000

-111.7

-29.1

1.0548

-37.2

57.1

2306CHF B23

1.0463.9

37.2

-56.6

2330WABUSH TS

0.921-20.5

205.8

48.7

-190.2

3.9

205.8

48.7

-190.2

3.9

-2483.0

-361.0

R

SW

499.0

-827.7

-286.6

1.0040.0

1

-827.7

-286.6

-827.7

-286.6 3420

CHF 315111.8

32.0

3401MFA TS

112.9

-62.2

-32.0

112.9

-62.2

-111.8

-32.0

111.8

32.0

3400MFA 315

156.4

-60.5

-156.3

58.9

-60.5

-156.3

58.9

86.8

6.5

156.4

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

76.7

15.5

-44.7

-7.0

44.7

6.9

TL234

4.9

-70.8

71.3

-15.3

-82.8

3.0

-82.6

2.9

83.5

-16.683.2

-16.6

68.7

-9.4

64.7

-5.1

-17.6

-8.7

55.8

84.1

230LHR B1

83.9

56.9

TL208

VALE INCO

-13.8

37.4

37.5

-13.8

-37.2

-10.4

-10.4

221BDE TS

-15.6

36.4

15.8

-43.6

229WAV B1B3

SW

-80.4

TL203

TL237

222SSD B1

SUNNYSIDE

-18.6

16.8

35.7

24.5

73.2

3.1

TL207

CBC

227CBC B1B2

291GCL L63

97.8

-7.1

DEER LAKE

1.000-18.2

1.023-13.6

215BUC B1

BUCHANS

1.029-10.7

1.029-10.8

NEWFOUNDLAND

1.023-9.1

1.007-8.6

0.998-9.2

1.026-6.3

1.026-9.1

0.998-18.4

0.9983.7

1.00011.3

1.00111.1

1.024-9.2

1.003-6.4

NATIVE GENERATION = 468.7 MW

LOADS:

205BBK B1

P = 2707.0 MW

Q = 318.3 MvarP = 735.0 MW

-111.81.005

5.07380MONTAGNAIS

HYDRO-QUEBEC

P = 45.0 MW

Q = 9.5 Mvar

3.6

35.9TL248

1.046-14.2

136CAT L47

CAT ARM

P = 36.0 MW

Q = 5.6 Mvar

TL228 5.1

81.3

-66.1

-17.7 BOTTOM BROOK

38.4 -44.7

-6.9

P = 27.0 MW

Q = 0.1 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -14.7 Mvar

UPPER SALMON

-37.2

TL

20

6

TL

20

2

P = 272.0 MW

Q = -36.1 Mvar

BAY D ESPOIR

TL201W

TL217W

27.5

22.6-45.7

19.1

1.000-6.3

-32.1

-57.2

57.3 30.7

TL236

TL242E

52.9

129.4 0.994

-7.2

P = 0.0 MW

Q = 43.1 MvarHARDWOODS

11.6

49.9

234HRD TS

HOLYROOD

Q = 91.5 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

4.5

9.4

-17.1

-2.6

Q = 3.2 Mvar

P = 80.0 MW

-80.1

-14.7 1.000

-17.3

TOTAL GENERATION = 868.7 MWTOTAL NLH SALES = 577.2 MW

GROSS AVALON LOAD = 381.3 MW

HYDRO RURAL = 40.8 MWNEWFOUNDLAND POWER = 287.3 MW

TOTAL INDUSTRIAL = 89.1 MW

-9.6

15.3

- Base Case

1.028-6.4

HAPPY VALLEY

1

0.0

-222.2

R

1

34001MFA 315 SVC

1.00011.3

-0.0

222.2

0.0

-222.2

1

0.0

-111.0R

1

-400.0

0.0

1

0.0

1

0.0

-30.5

R

1.000-6.3

0.0

111.0

0.0

-111.0

1.000-18.2

-0.0

30.5

0.0

-30.51

60.0

20501BBK B1 SVC

Q = 172.8 MvarMF Q = -222.2 Mvar

SP Q =-111.0 Mvar

BB Q = -30.5 Mvar

Bulk System Losses =15.5 MW

LABRADOR EXPORT = 420.0 MWISLAND IMPORT = 400.0 MW

NS EXPORT = 160.0 MWNET HVDC = 240.0 MW

420.0

0.0

24901SPD SVC

BC8 -2017 LIGHT - NLH SYS LOAD 700MW, 400MW IMP, 158MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:29

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 42 of 50, NLH 2013 GRA

Page 44: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-8

Figure A- 7

BC-9 Light 2017/ Island Link @ 81MW/ Maritime Link @ 158MW/ Economic Dispatch

NP-NLH-108, Attachment 1 Page 43 of 50, NLH 2013 GRA

Page 45: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

54.6

-1.4

-64.6

7.8

65.0

-15.0

-101.1

-43.1

-38.7

-6.1

-9.5

MASSEY DRIVE

TL211

TL235

38.8

TL231

20.9

-3.3

TL263

TL209

17.6

5.0

-41.1 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

-10.1

72.3

17.4

-8.0 1.0

78.3

2.5

-78.2

-4.3

7.8

-25.7

-7.8

-6.0

22.8

-6.1

23.1

TL201E

HVDC:

GENERATION:

126.6

-12.2 5.8

-122.6

-72.1

-20.8

SW

0.0

-15.6

-74.3

-83.8

-82.2

2.9

6.0

-24.7

84.4

-25.0

6.1TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 802.0 MW

STAR LAKE - EXPLOITS = 62.1 MWNLH GENERATION = 743.7 MW

83.0

23.6

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -19.3 MW

236HWD B1B2

0.998-21.7

OXEN POND

238OPD B1

4.2

75.5

-6.1

-75.4

TL218E

-20.3

96.3

405USL L34

216STB B1B2

261ACG GFL

6.6

-15.7 -20.9

-6.3

17.6

8.7

STEPHENVILLE

208MDR B1B5

1.026-9.3

135DLK B3

-71.3

-19.7

76.7

81.9

7300CHF TS

746.1

-237.0

746.1

-237.0

746.1

-237.0

0.9875

-316.3

50.6

0.9875

-316.3

50.6

1.0548

413.7

113.2

2306CHF B23

1.0350.4

-413.3

-90.9

2330WABUSH TS

0.919-24.5

206.1

45.4

-190.3

8.7

206.1

45.4

-190.3

8.7

-2229.9

-260.4

R

SW

499.0

-743.3

-253.1

1.0040.0

1

-743.3

-253.1

-743.3

-253.1 3420

CHF 315316.8

-29.2 3401

MFA TS

326.5

-34.1

29.2

326.5

-34.1

-316.8

29.2

316.8

-29.2

3400MFA 315

370.2

-29.8

-369.9

30.3

-29.8

-369.9

30.3

86.8

7.6

370.2

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

76.2

17.4

-44.7

-9.0

44.7

8.9

TL234

5.2

-48.7

48.9

-17.3

-55.9

2.5

-55.7

2.4

56.2

-19.356.0

-19.3

41.2

-7.9

38.9

-5.4

-17.6

-8.7

55.7

84.1

230LHR B1

83.9

56.9

TL208

VALE INCO

-21.4

135.8

135.9

-21.4

-132.3

19.3

19.3

221BDE TS

103.2

19.7

-102.3

-23.2

229WAV B1B3

SW

-121.0

TL203

TL237

222SSD B1

SUNNYSIDE

-65.1

120.9

35.7

24.5

40.6

6.8

TL207

CBC

227CBC B1B2

291GCL L63

75.6

-7.3

DEER LAKE

1.000-14.1

1.022-10.4

215BUC B1

BUCHANS

1.026-8.6

1.026-8.6

NEWFOUNDLAND

1.023-15.8

1.005-18.1

0.995-18.7

1.023-5.1

1.026-7.1

0.998-14.3

0.9953.3

1.00025.3

1.00024.9

1.025-16.2

1.002-21.1

NATIVE GENERATION = 802.0 MW

LOADS:

205BBK B1

P = 2041.0 MW

Q = 264.3 MvarP = 824.0 MW

-316.81.001

7.17380MONTAGNAIS

HYDRO-QUEBEC

P = 45.0 MW

Q = 11.7 Mvar

1.4

71.9TL248

1.046-5.1

136CAT L47

CAT ARM

P = 72.0 MW

Q = 5.5 Mvar

TL228 10.5

40.9

-54.0

-19.5 BOTTOM BROOK

101.7 -44.7

-8.9

P = 27.0 MW

Q = 0.3 Mvar

GRANITE CANAL

P = 70.0 MW

Q = -12.9 Mvar

UPPER SALMON

-132.5

TL

20

6

TL

20

2

P = 500.3 MW

Q = -44.2 Mvar

BAY D ESPOIR

TL201W

TL217W

57.9

15.8-36.1

-84.5

1.000-21.1

-32.1

-57.2

57.3 30.7

TL236

TL242E

52.9

129.3 0.994

-22.0

P = 0.0 MW

Q = 43.2 MvarHARDWOODS

18.7

19.8

234HRD TS

HOLYROOD

Q = 91.7 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

4.5

9.4

-19.1

-30.4

Q = 1.3 Mvar

P = 80.0 MW

-40.6

-23.8 1.000

-12.1

TOTAL GENERATION = 882.0 MWTOTAL NLH SALES = 589.1 MW

GROSS AVALON LOAD = 381.9 MW

HYDRO RURAL = 40.8 MWNEWFOUNDLAND POWER = 288.2 MW

TOTAL INDUSTRIAL = 100.0 MW

-9.6

15.3

- Base Case

1.021-5.6

HAPPY VALLEY

1

0.0

-149.7

R

1

34001MFA 315 SVC

1.00025.3

-0.0

149.7

0.0

-149.7

1

0.0

-47.4R

1

-80.0

0.0

1

0.0

1

0.0

-31.9

R

1.000-21.1

0.0

47.4

-0.0

-47.4

1.000-14.1

-0.0

31.9

0.0

-31.91

60.0

20501BBK B1 SVC

Q = 179.6 MvarMF Q = -149.7 Mvar

SP Q =-47.4 Mvar

BB Q = -31.9 Mvar

Bulk System Losses =27.3 MW

LABRADOR EXPORT = 81.0 MWISLAND IMPORT = 80.0 MW

NS EXPORT = 160.0 MWNET HVDC = -80.0 MW

81.0

0.0

24901SPD SVC

BC9 -2017 LIGHT - NLH SYS LOAD 700MW, 80MW IMP, 158MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:30

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 44 of 50, NLH 2013 GRA

Page 46: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-9

Figure A- 8

BC-10 Light 2017/ Island Link @ 900MW/ Maritime Link @ 500MW/ Economic Dispatch

NP-NLH-108, Attachment 1 Page 45 of 50, NLH 2013 GRA

Page 47: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

187.9

-30.8

-146.2

68.9

148.7

-64.0

-55.4

-47.7

-170.2

33.3

22.1

MASSEY DRIVE

TL211

TL235

40.6

TL231

-124.9

8.6

TL263

TL209

17.6

5.0

-183.4 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

30.3

72.4

17.3

24.7 3.0

78.5

2.5

-78.3

-4.3

32.0

-28.2

-31.9

-28.7

26.7

-29.0

27.0

TL201E

HVDC:

GENERATION:

-97.4

13.6 -27.0

100.1

-72.2

-20.8

SW

0.065.7

-205.7

250.8

247.0

-3.4

28.7

-28.5

-245.1

-28.8

29.0TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 464.8 MW

STAR LAKE - EXPLOITS = 62.0 MWNLH GENERATION = 406.6 MW

-240.3

26.3

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -24.6 MW

236HWD B1B2

0.99812.6

OXEN POND

238OPD B1

4.2

75.6

-6.1

-75.5

TL218E

-20.3

96.5

405USL L34

216STB B1B2

261ACG GFL

5.6

-15.7 125.7

-10.3

17.6

8.7

STEPHENVILLE

208MDR B1B5

1.004-33.4

135DLK B3

-35.7

-35.9

81.6

66.6

7300CHF TS

786.4

-181.8

786.4

-181.8

786.4

-181.8

1.0000

83.4

-48.1

1.0000

83.4

-48.1

1.0548

-431.5

61.7

2306CHF B23

1.0486.5

431.9

-38.9

2330WABUSH TS

0.922-17.9

205.8

49.6

-190.2

2.7

205.8

49.6

-190.2

2.7

-2349.8

-418.4

R

SW

499.0

-783.3

-305.8

1.0040.0

1

-783.3

-305.8

-783.3

-305.8 3420

CHF 315-83.3

50.1

3401MFA TS

-82.7

-50.2

-50.1 -82.7

-50.2

83.3

-50.1

-83.3

50.1

3400MFA 315

-39.3

-50.2

39.3

48.2

-50.2

39.3

48.2

86.7

3.9

-39.3

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

59.7

26.3

-44.6

-26.5

44.6

26.4

TL234

23.4

-190.8

194.8

-9.1

-188.2

15.7

-187.7

15.6

191.9

1.7191.4

1.7

186.2

-21.6

174.7

-9.5

-17.6

-8.7

55.9

84.1

230LHR B1

83.9

56.9

TL208

VALE INCO

2.2

-77.7

-77.8

2.2

79.0

-18.3

-18.3

221BDE TS

-161.1

64.0

163.7

-58.5

229WAV B1B3

SW

-114.8

TL203

TL237

222SSD B1

SUNNYSIDE

-28.2

-110.5

35.7

24.6

113.6

0.8

TL207

CBC

227CBC B1B2

291GCL L63

217.8

-13.5

DEER LAKE

1.000-39.9

0.980-25.6

215BUC B1

BUCHANS

0.983-17.1

0.982-17.1

NEWFOUNDLAND

0.996-0.0

0.9844.3

0.9743.7

0.993-9.7

0.984-17.8

0.998-40.1

0.9993.5

1.000-2.0

1.001-2.0

0.9990.3

1.00213.1

NATIVE GENERATION = 464.8 MW

LOADS:

205BBK B1

P = 2963.0 MW

Q = 337.3 MvarP = 824.0 MW

83.31.009

2.47380MONTAGNAIS

HYDRO-QUEBEC

P = 45.0 MW

Q = 30.2 Mvar

14.9

35.9TL248

1.037-31.3

136CAT L47

CAT ARM

P = 36.0 MW

Q = 17.1 Mvar

TL228 -30.3

181.3

-181.0

54.3

BOTTOM BROOK

55.6 -44.6

-26.4

P = 27.0 MW

Q = 12.8 Mvar

GRANITE CANAL

P = 70.0 MW

Q = 7.0 Mvar

UPPER SALMON

79.1

TL

20

6

TL

20

2

P = 266.2 MW

Q = 45.2 Mvar

BAY D ESPOIR

TL201W

TL217W

-10.7

33.5-58.9

148.3

1.00013.3

-32.1

-57.2

57.3 30.7

TL236

TL242E

52.9

129.4 0.994

12.3

P = 0.0 MW

Q = 43.1 MvarHARDWOODS

8.1

89.5

234HRD TS

HOLYROOD

Q = 91.6 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

4.5

9.4

-4.7

-19.9

Q = 4.6 Mvar

P = 80.0 MW

-174.9

45.1 0.978

-34.9

TOTAL GENERATION = 1278.8 MWTOTAL NLH SALES = 928.3 MW

GROSS AVALON LOAD = 394.5 MW

HYDRO RURAL = 40.8 MWNEWFOUNDLAND POWER = 292.8 MW

TOTAL INDUSTRIAL = 94.7 MW

-9.6

15.3

- Base Case

0.994-6.3

HAPPY VALLEY

1

0.0

-190.7

R

1

34001MFA 315 SVC

1.000-2.0

-0.0

190.7

0.0

-190.7

1

0.0

-62.0R

1

-814.0

0.0

1

0.0

1

0.0

184.3

R

1.00013.3

0.0

62.0

0.0

-62.0

1.000-39.9

0.0

-184.3

-0.0

184.3500.0

20501BBK B1 SVC

Q = 179.6 MvarMF Q = -190.7 Mvar

SP Q =-62.0 Mvar

BB Q = 184.3 Mvar

Bulk System Losses =79.6 MW

LABRADOR EXPORT = 900.0 MWISLAND IMPORT = 814.0 MW

NS EXPORT = 500.0 MWNET HVDC = 314.0 MW

900.0

0.0

24901SPD SVC

BC10 -2017 LIGHT - NLH SYS LOAD 700MW, 814MW IMP, 500MW EXLABRADOR MODEL INCLUDED

TUE, DEC 06 2011 13:31

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 46 of 50, NLH 2013 GRA

Page 48: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-10

Figure A- 9

BC-13 Extreme Light 2017/ Island Link @ 457MW/ Maritime Link @ 320MW/ Minimum Dispatch

NP-NLH-108, Attachment 1 Page 47 of 50, NLH 2013 GRA

Page 49: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

117.4

-3.8

-102.2

10.9

103.2

-14.7

-54.3

-47.0

-102.1

4.5

-3.2

MASSEY DRIVE

TL211

TL235

39.2

TL231

-96.9

6.4

TL263

TL209

8.8

0.2

-109.1 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

16.1

36.8

-6.5

13.0 -12.4

38.5

-22.7

-38.4

20.3

17.4

-31.9

-17.4

-14.7

29.3

-14.9

29.7

TL201E

HVDC:

GENERATION:

-41.6

6.6 -35.8

42.1

-36.7

2.0

SW

15.46.1

-119.3

138.8

136.4

-15.7

14.7

-31.2

-137.0

-31.5

14.9TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 327.7 MW

STAR LAKE - EXPLOITS = 62.1 MWNLH GENERATION = 265.7 MW

-134.3

29.9

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -20.3 MW

236HWD B1B2

1.0022.9

OXEN POND

238OPD B1

-21.1

37.7

18.6

-37.6

TL218E

-55.6

46.9

405USL L34

216STB B1B2

261ACG GFL

6.4

-16.2 97.3

-11.9

8.8

3.9

STEPHENVILLE

208MDR B1B5

1.027-19.7

135DLK B3

-35.8

-17.8

59.1

63.1

7300CHF TS

817.5

-182.1

817.5

-182.1

817.5

-182.1

1.0000

34.8

-47.4

1.0000

34.8

-47.4

1.0548

-430.4

61.5

2306CHF B23

1.0486.6

430.7

-38.8

2330WABUSH TS

0.922-17.7

205.8

49.6

-190.2

2.7

205.8

49.6

-190.2

2.7

-2442.2

-406.3

R

SW

499.0

-814.1

-301.8

1.0040.0

1

-814.1

-301.8

-814.1

-301.8 3420

CHF 315-34.8

48.1

3401MFA TS

-34.6

-57.4

-48.1 -34.6

-57.4

34.8

-48.1

-34.8

48.1

3400MFA 315

8.7

-56.1

-8.7

54.0

-56.1

-8.7

54.0

86.8

6.7

8.7

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

28.8

-3.4

-44.7

-6.4

44.7

6.3

TL234

-0.9

-95.9

96.9

-6.4

-99.0

12.9

-98.7

12.8

99.9

-23.599.7

-23.4

110.0

-11.6

103.6

-4.4

-8.8

-3.9

55.9

84.1

230LHR B1

83.9

56.9

TL208

VALE INCO

5.9

-29.1

-29.1

5.9

29.3

-29.8

-29.8

221BDE TS

-78.0

34.1

78.6

-38.7

229WAV B1B3

SW 0.0

TL203

TL237

222SSD B1

SUNNYSIDE

48.0

-37.3

35.7

24.6

56.6

-22.5

TL207

CBC

227CBC B1B2

291GCL L63

122.9

-13.0

DEER LAKE

1.000-24.3

1.022-16.1

215BUC B1

BUCHANS

1.030-11.5

1.030-11.5

NEWFOUNDLAND

1.004-3.8

0.995-1.7

0.985-2.3

1.022-8.7

1.014-12.5

0.999-24.4

0.9993.6

1.0001.3

1.0011.3

1.001-3.6

1.0033.2

NATIVE GENERATION = 327.7 MW

LOADS:

205BBK B1

P = 2959.0 MW

Q = 337.0 MvarP = 476.0 MW

34.81.009

3.27380MONTAGNAIS

HYDRO-QUEBEC

P = 45.0 MW

Q = 9.0 Mvar

-4.4

35.9TL248

1.039-17.6

136CAT L47

CAT ARM

P = 36.0 MW

Q = -2.4 Mvar

TL228 -4.0

110.1

-114.9

-4.0

BOTTOM BROOK

54.6 -44.7

-6.3

P = 27.0 MW

Q = 3.9 Mvar

GRANITE CANAL

P = 0.0 MW

Q = 0.0 Mvar

UPPER SALMON

29.4

TL

20

6

TL

20

2

P = 202.3 MW

Q = -16.9 Mvar

BAY D ESPOIR

TL201W

TL217W

-7.1

19.1-29.5

73.5

1.0003.3

-18.4

-29.1

29.2 16.7

TL236

TL242E

16.4

65.9 1.000

2.8

P = 0.0 MW

Q = 45.9 MvarHARDWOODS

-1.8

46.8

234HRD TS

HOLYROOD

Q = 90.4 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

1.5

4.7

-21.3

-18.8

Q = 0.5 Mvar

P = 80.0 MW

-107.9

-1.4 1.003

-21.1

TOTAL GENERATION = 762.7 MWTOTAL NLH SALES = 583.2 MW

GROSS AVALON LOAD = 237.0 MW

HYDRO RURAL = 20.6 MWNEWFOUNDLAND POWER = 143.5 MW

TOTAL INDUSTRIAL = 99.0 MW

-14.5

7.6

- Base Case

1.022-6.2

HAPPY VALLEY

1

0.0

-196.4

R

1

34001MFA 315 SVC

1.0001.3

-0.0

196.4

0.0

-196.4

1

0.0

-172.9R

1

-435.0

0.0

1

0.0

1

0.0

-1.5

R

1.0003.3

0.0

172.9

0.0

-172.9

1.000-24.3

0.0

1.5

-0.0

-1.5

320.0

20501BBK B1 SVC

Q = 124.8 MvarMF Q = -196.4 Mvar

SP Q =-172.9 Mvar

BB Q = -1.5 Mvar

Bulk System Losses =26.0 MW

LABRADOR EXPORT = 457.0 MWISLAND IMPORT = 435.0 MW

NS EXPORT = 320.0 MWNET HVDC = 115.0 MW

457.0

0.0

24901SPD SVC

BC13 -2017 ELIGHT - NLH SYS LOAD 420MW, 435MW IMP, 320MW EXRPS-BC13 EXTREME LIGHT

TUE, DEC 06 2011 13:32

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 48 of 50, NLH 2013 GRA

Page 50: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

REACTIVE POWER STUDIES Revision

Nalcor Doc. No. LCP-SN-CD-8000-EL-SY-0001-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0006 01 07-Dec-2011 A-11

Figure A- 10

BC-14 Winter Peak 2017/ Island Link @ 286MW Monopole/ Maritime Link @ -260MW/ Maximum Dispatch

NP-NLH-108, Attachment 1 Page 49 of 50, NLH 2013 GRA

Page 51: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

-65.5

0.0

89.4

5.1

-88.6

-10.2

-108.1

-36.4

57.7

-13.1

-9.6

MASSEY DRIVE

TL211

TL235

33.1

TL231

133.5

-4.1

TL263

TL209

44.7

8.5

61.6 TL232

TL205

STONY BROOK

TL204

SYSTEM OVERVIEW

TL233

CORNER BROOK COGEN =0.0 MW

AUR RESOURCES = 0.0 MW

-68.3

159.4

49.4

-65.7 70.9

165.5

25.9

-164.8

-24.5

22.1

-56.7

-22.0

-17.7

53.3

-17.9

53.9

TL201E

HVDC:

GENERATION:

222.4

16.5 39.2

-209.6

-158.7

-47.5

SW

0.0

-30.5

18.2

-143.0

-138.8

73.2

17.7

-54.9

145.4

-55.5

17.9TL242W

TL217E

TL218W

NARL = 35.6 MW

RATTLE BROOK = 3.6 MW

VALE INCO = 83.7 MW

SYSTEM TOTAL = 1058.4 MW

STAR LAKE - EXPLOITS = 92.5 MWNLH GENERATION = 1031.2 MW

141.5

55.0

ST LAWRENCE = -0.0 MWFERMEUSE = 0.0 MW

206SVL B1

KRUGER = -43.6 MW

236HWD B1B2

0.992-36.9

OXEN POND

238OPD B1

29.0

159.1

-27.8

-158.5

TL218E

-6.1

185.0

405USL L34

216STB B1B2

261ACG GFL

5.7

-14.1 -132.7

2.7

44.7

11.8

STEPHENVILLE

208MDR B1B5

1.0110.8

135DLK B3

-124.8

-12.8

156.6

76.2

7300CHF TS

1180.0

-218.3

1180.0

-218.3

1180.0

-218.3

0.9875

-98.6

-23.8

0.9875

-98.6

-23.8

1.0548

-6.6

47.2

2306CHF B23

1.0445.3

6.6

-46.9

2330WABUSH TS

0.921-19.2

205.9

48.3

-190.3

4.5

205.9

48.3

-190.3

4.5

-3518.8

-125.4

R

SW

499.0

-1172.9

-208.1

1.0040.0

1

-1172.9

-208.1

-1172.9

-208.1 3420

CHF 31598.7

25.9

3401MFA TS

99.6

-71.6

-25.9 99.6

-71.6

-98.7

-25.9

98.7

25.9

3400MFA 315

143.0

-69.3

-143.0

67.7

-69.3

-143.0

67.7

86.8

7.9

143.0

SOLDIERS POND

2490SPD

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

203.5

59.4

-75.1

-18.4

75.1

18.4

TL234

-0.6

50.0

-49.7

-11.3

-4.9

-19.8

-4.9

-19.8

4.9

0.94.9

0.8

-61.3

1.5

-57.2

-2.9

-44.7

-11.8

56.0

84.1

230LHR B1

83.9

56.8

TL208

VALE INCO

14.2

240.9

241.2

14.2

-229.6

39.0

39.1

221BDE TS

162.9

-13.8

-160.5

18.3

229WAV B1B3

SW

-148.4

TL203

TL237

222SSD B1

SUNNYSIDE

-115.8

174.1

35.7

24.7

122.5

51.6

TL207

CBC

227CBC B1B2

291GCL L63

-18.1

-0.7

DEER LAKE

1.0000.5

1.000-4.4

215BUC B1

BUCHANS

0.997-7.1

0.997-7.1

NEWFOUNDLAND

0.978-25.7

0.971-29.9

0.961-30.6

1.012-3.4

1.021-1.4

0.9970.0

0.9965.2

1.00011.9

1.00111.8

0.984-26.4

1.005-35.7

NATIVE GENERATION = 1058.4 MW

LOADS:

205BBK B1

P = 3784.5 MW

Q = 507.2 MvarP = 574.0 MW

-98.71.014

6.47380MONTAGNAIS

HYDRO-QUEBEC

P = 76.0 MW

Q = 28.0 Mvar

6.7

126.6TL248

1.0368.6

136CAT L47

CAT ARM

P = 127.0 MW

Q = 19.6 Mvar

TL228 17.0

-39.7

66.3

-18.5 BOTTOM BROOK

108.8 -75.1

-18.4

P = 32.0 MW

Q = 2.1 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -4.5 Mvar

UPPER SALMON

-229.9

TL

20

6

TL

20

2

P = 604.8 MW

Q = 131.1 Mvar

BAY D ESPOIR

TL201W

TL217W

135.5

25.7-5.2

-136.5

1.000-35.6

-57.9

-138.0

138.3

58.4

TL236

TL242E

105.4

296.7 0.984

-37.7

P = 100.0 MW

Q = 48.2 MvarHARDWOODS

37.4

57.1

234HRD TS

HOLYROOD

Q = 217.1 Mvar

P = 0.0 MW

SVC Q = 0.0 Mvar

- Bipolar operation of NL-LAB HVDC

- Generation: Economic dispatch

7.3

21.2

-20.4

16.0

Q = 6.5 Mvar

P = 80.0 MW

40.1

-29.6 0.987

-2.2

TOTAL GENERATION = 1318.4 MWTOTAL NLH SALES = 699.9 MW

GROSS AVALON LOAD = 847.6 MW

HYDRO RURAL = 92.7 MWNEWFOUNDLAND POWER = 791.5 MW

TOTAL INDUSTRIAL = 75.7 MW

6.9

41.4

- Base Case

1.008-6.9

HAPPY VALLEY

1

0.0

-211.8

R

1

34001MFA 315 SVC

1.00011.9

-0.0

211.8

0.0

-211.8

1

0.0

81.2R

1

-260.0

0.0

1

0.0

1

0.0

-28.5

R

1.000-35.6

-0.0

-81.2

0.0

81.2

1.0000.5

-0.0

28.5

0.0

-28.5-2

60.0

20501BBK B1 SVC

Q = 131.3 MvarMF Q = -211.8 Mvar

SP Q =81.2 Mvar

BB Q = -28.5 Mvar

Bulk System Losses =73.5 MW

LABRADOR EXPORT = 286.0 MWISLAND IMPORT = 260.0 MW

NS EXPORT = -260.0 MWNET HVDC = 520.0 MW

286.0

0.0

24901SPD SVC

BC14 -2017 PEAK - NLH SYS LOAD 1552MW, 260MW IMP, -260 EXPLABRADOR MODEL INCLUDED - MONOPOLE METALLIC RETURN

TUE, DEC 06 2011 13:33

WESTERN AVALON

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEC1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

NP-NLH-108, Attachment 1 Page 50 of 50, NLH 2013 GRA

Page 52: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

+)) SNC•LAVALIN

nal or energy

Lower Churchill Project

STABILITY STUDIES

SLI Document No.: 505573-480A-47ER-0004-01

Nalcor Reference No.: ILK-SN-CD-8000-EL-RP-0001-01-82

Date: 06-Mar-2012

Prepared by:

Verified by: Peter Anderson

Approved by: Salish Sud

NP-NLH-108, Attachment 2 Page 1 of 169, NLH 2013 GRA

Page 53: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 ii

Revision

Remarks

No By Verif. Appr. Date

Re-Issued for use

Issued for use

01 MEC PA SS 06-Mar-2012

00 MEC PA SS 07-Dec-2011

NP-NLH-108, Attachment 2 Page 2 of 169, NLH 2013 GRA

Page 54: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 iii

SNC-Lavalin Inc.

TABLE OF CONTENTS

Page No.

1 INTRODUCTION ................................................................................................................. 1

1.1 Overview of the System .................................................................................. 1

1.2 Objectives of the Studies ................................................................................ 4

2 STUDY BASIS ..................................................................................................................... 5

2.1 Study Criteria .................................................................................................. 6

2.2 System Models ..............................................................................................11

3 RESULTS OF THE STUDIES ............................................................................................ 12

3.1 Winter Peak Load Conditions.........................................................................12

3.1.1 BC2-ST01: Temporary Bipole Fault on the Island Link ..................................13

3.1.2 BC2-ST02: Permanent Pole Fault on the Island Link .....................................22

3.1.3 BC2-ST03: Three Phase Fault at Muskrat Falls 315 kV on line to Churchill Falls ...............................................................................................................25

3.1.4 BC2-ST04: Three Phase Fault at Bay d’Espoir 230 kV on line to Western Avalon ...........................................................................................................30

3.1.5 BC2-ST05: Three Phase Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W) ...........................................................................................39

3.1.6 BC2-ST06: Three Phase Fault at Bottom Brook 230 kV on line to Granite Canal .............................................................................................................44

3.1.7 BC2-ST07: Three Phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204) ..........................................................................................................47

3.1.8 BC2-ST08: Three Phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202) ..........................................................................................................50

3.1.9 BC2-ST09: Three Phase Fault at Bay d’Espoir 230 kV-Generator Outage G7 53

3.2 Spring/Fall Intermediate Load Conditions ......................................................56

3.2.1 BC7-ST01: Temporary Bipole Fault on the Island Link ..................................56

3.2.2 BC7-ST02: Permanent Pole Fault on the Island Link .....................................59

3.2.3 BC7-ST03: Three Phase Fault at Muskrat Falls 315 kV on line to Churchill Falls ...............................................................................................................62

3.2.4 BC7-ST04: Three Phase Fault at Bay d’Espoir 230 kV on line to Western Avalon ...........................................................................................................65

3.2.5 BC-7: Remaining Fault Cases........................................................................68

3.3 Summer Day Light Load Conditions...............................................................79

3.4 Summer Night Extreme Light Load Conditions ..............................................98

3.5 Optimization of High Inertia Synchronous Condensers ................................ 117

3.6 Sensitivity of the Temporary Bipole Fault Re-Start Time .............................. 121

4 CONCLUSIONS AND RECOMMENDATIONS ................................................................ 124

4.1 Introduction .................................................................................................. 124

4.2 Study Objectives .......................................................................................... 125

4.3 Results of the Studies .................................................................................. 125

4.4 Recommendations ....................................................................................... 130

NP-NLH-108, Attachment 2 Page 3 of 169, NLH 2013 GRA

Page 55: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 iv

SNC-Lavalin Inc.

APPENDIX A ............................................................................................................................. A

BASE CASE LOAD FLOWS ............................................................................................... A

BC2 – Winter Peak 2017 ........................................................................................ A-2

BC7 – Spring / Fall Intermediate 2017 .................................................................... A-3

BC10 – Summer Day Light 2017............................................................................. A-4

BC 13 – Summer Night Extreme Light 2017 ........................................................... A-5

APPENDIX B ............................................................................................................................. B

SYSTEM MODELS ............................................................................................................. B

APPENDIX C ............................................................................................................................. C

PQ CURVES OF TYPICAL VSC ......................................................................................... C

NP-NLH-108, Attachment 2 Page 4 of 169, NLH 2013 GRA

Page 56: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 v

SNC-Lavalin Inc.

List of Figures

Figure 1-1: Project Area Map .................................................................................................... 2

Figure 1-2: Provincial Transmission Grid ................................................................................... 3

Figure 3-1: BC2-ST01, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary

Bipole Fault on the Island Link/150MVAr SC at Soldiers Pond ..................................................14

Figure 3-2: BC2-ST01-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary

Bipole Fault on the Island Link/300MVAr SC at Soldiers Pond ..................................................17

Figure 3-3: BC2-ST01-2, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary

Bipole Fault on the Island Link/300MVAr SC at Soldiers Pond Island Link re-started in 3 Stages

.................................................................................................................................................20

Figure 3-4: BC2-ST02, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Permanent

Pole Outage on the Island Link/300MVAr SC at Soldiers Pond .................................................23

Figure 3-5: BC2-ST03, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Muskrat Falls 315 kV on line to Churchill Falls ...................................................27

Figure 3-6: BC2-ST03-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Muskrat Falls 315 kV on line to Churchill Falls (Power Order

Reduction+Frequency Controller Delayed Operation) ...............................................................28

Figure 3-7: BC2-ST04, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Bay d’Espoir 230 kV on line to Western Avalon .................................................32

Figure 3-8: BC2-ST04-4, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Bay d’Espoir 230 kV on line to Western Avalon +/-250MVAR-SVC at Bay

d’Espoir+3-SC at Holyrood ........................................................................................................36

Figure 3-9: BC2-ST04-3, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Bay d’Espoir 230 kV on line to Western Avalon 450MVAR-SC at Soldiers

Pond+3-SC at Holyrood ............................................................................................................38

NP-NLH-108, Attachment 2 Page 5 of 169, NLH 2013 GRA

Page 57: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 vi

SNC-Lavalin Inc.

Figure 3-10: BC2-ST05, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle,

3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W) ...........................40

Figure 3-11: BC2-ST05-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle,

3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W), Island Link re-start

delayed 42

Figure 3-12: BC2-ST06, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Bottom Brook 230 kV on line to Granite Canal ...................................................45

Figure 3-13: BC2-ST07, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204) ..........................................48

Figure 3-14: BC2-ST08-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle,

3-phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202) .........................................51

Figure 3-15: BC2-ST09-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle,

3-phase Fault at Bay d’Espoir 230 kV-Generator Outage G7 450MVAr-SC at Soldiers Pond+3-

SC at Holyrood 54

Figure 3-16: BC7-ST01, Intermediate/Island Link 900 MW/Maritime Link 500 MW Temporary

Bipole Fault on Island Link ........................................................................................................57

Figure 3-17: BC7-ST02, Intermediate/Island Link 900 MW/Maritime Link 500 MW Permanent

Pole Outage on Island Link .......................................................................................................60

Figure 3-18: BC7-ST03, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Muskrat Falls 315 kV on line to Churchill Falls ...................................................63

Figure 3-19: BC7-ST04, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Bay d’Espoir 230 kV on line to Western Avalon .................................................66

Figure 3-20: BC7-ST05-1, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W) ..............................69

NP-NLH-108, Attachment 2 Page 6 of 169, NLH 2013 GRA

Page 58: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 vii

SNC-Lavalin Inc.

Figure 3-21: BC7-ST06, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Bottom Brook 230 kV on line to Granite Canal ...................................................71

Figure 3-22: BC7-ST07, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204) ..........................................73

Figure 3-23: BC7-ST08, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202) ............................................75

Figure 3-24: BC7-ST09, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-

phase Fault at Bay d’Espoir 230 kV-Generator Outage G7 .......................................................77

Figure 3-25: BC10-ST01, Light/Island Link 900 MW/Maritime Link 500 MW Temporary Bipole

Fault on Island Link ...................................................................................................................80

Figure 3-26: BC10-ST02, Light/Island Link 900 MW/Maritime Link 500 MW Permanent Pole

Outage on Island Link ...............................................................................................................82

Figure 3-27: BC10-ST03, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Muskrat Falls 315 kV on line to Churchill Falls .............................................................84

Figure 3-28: BC10-ST04, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Bay d’Espoir 230 kV on line to Western Avalon ............................................................86

Figure 3-29: BC10-ST05-1, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W) .........................................88

Figure 3-30: BC10-ST06, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Bottom Brook 230 kV on line to Granite Canal .............................................................90

Figure 3-31: BC10-ST07, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204) ....................................................92

Figure 3-32: BC10-ST08, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202) .......................................................94

NP-NLH-108, Attachment 2 Page 7 of 169, NLH 2013 GRA

Page 59: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 viii

SNC-Lavalin Inc.

Figure 3-33: BC10-ST09, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase

Fault at Upper Salmon 230 kV-Generator Outage G1 ...............................................................96

Figure 3-34: BC13-ST01, Extreme Light/Island Link 435 MW/Maritime Link 320 MW Temporary

Bipole Fault on Island Link ........................................................................................................99

Figure 3-35: BC13-ST02, Extreme Light/Island Link 435 MW/Maritime Link 320 MW Permanent

Pole Outage on Island Link ..................................................................................................... 101

Figure 3-36: BC13-ST03, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-

phase Fault at Muskrat Falls 315 kV on line to Churchill Falls ................................................. 103

Figure 3-37: BC13-ST04, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-

phase Fault at Bay d’Espoir 230 kV on line to Western Avalon ............................................... 105

Figure 3-38: BC13-ST05, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-

cycle/3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W) ................ 107

Figure 3-39: BC13-ST06, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-

phase Fault at Bottom Brook 230 kV on line to Granite Canal ................................................. 109

Figure 3-40: BC13-ST07, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-

phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204) ........................................ 111

Figure 3-41: BC13-ST08, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-

phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202) .......................................... 113

Figure 3-42: BC13-ST09, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-

phase Fault at Bay d’Espoir 230 kV-Generator Outage G7 ..................................................... 115

Figure 3-43: BC2-ST10, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Soldiers Pond 230 kV-1x150 MVAr SC Outage ............................................... 118

Figure 3-44: BC2-ST10-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-

phase Fault at Soldiers Pond 230 kV-1x300 MVAr SC Outage ............................................... 120

NP-NLH-108, Attachment 2 Page 8 of 169, NLH 2013 GRA

Page 60: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 ix

SNC-Lavalin Inc.

Figure 3-45: BC2-ST01-3/4, Winter Peak/Island Link 900 MW/Maritime Link 239 MW

Temporary Bipole Fault-Synchronous Condenser Capacity at Soldiers Pond ......................... 123

List of Tables

Table 2-1: Base Case Scenarios ................................................................................................ 9

Table 2-2: Generation Dispatch Levels .....................................................................................10

Table 3-1: High-Inertia Synchronous Condenser Data ..............................................................13

NP-NLH-108, Attachment 2 Page 9 of 169, NLH 2013 GRA

Page 61: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 x

SNC-Lavalin Inc.

NLH Index of Terminal Station Names

Location ID Location ID

Barachoix BCX Holyrood HRD Bay d’Espoir BDE Howley HLY Bay L’Argent BLA Indian River IRV Bear Cove BCV Jackson’s Arm JAM Berry Hill BHL Linton Lake LLK Bottom Brook BBK Long Harbour LHR Bottom Waters BWT Main Brook MBK Buchans BUC Massey Drive MDR Cat Arm CAT Monkstown MKS Churchill Falls CFA Muskrat Falls MFA Come-by-Chance CBC Oxen Pond OPD Coney Arm CAM Paradise River PRV Conne River CRV Parson’s Pond PPD Corner Brook Freq. Conv. CBF Peter’s Barren PBN Cow Head CHD Plum Point PPT Daniels Harbour DHR Rattle Brook RBK Deer Lake DLK Rocky Harbour RHR Doyles DLS Roddicton Woodchip RWC Duck Pond DPD Sally’s Cove SCV English Harbour West EHW Soldiers Pond SPD Farewell Head FHD South Brook SOK Glenburnie GLB Springdale SPL Glenwood GWD St.Anthony Airport STA Grand Bay GBY St.Anthony Diesel Plant SDP Grandy Brook GBK Star Lake SLK Grand Falls Freq. Conv. GFC Stephenville SVL Granite Canal GCL Stony Brook STB Hampden HDN Sunnyside SSD Happy Valley HVY Upper Salmon USL Hardwoods HWD Western Avalon WAV Hawkes Bay HBY Wiltondale WDL Hinds Lake HLK

NP-NLH-108, Attachment 2 Page 10 of 169, NLH 2013 GRA

Page 62: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 1

SNC-Lavalin Inc.

1 INTRODUCTION

1.1 Overview of the System

This Report presents the results of the stability studies carried out to examine the

dynamic performance of the ac and dc systems including the HVdc interconnections

between Muskrat Falls and Soldiers Pond (Island Link) and between Bottom Brook

and the Nova Scotia power system (Maritime Link). The present Design Basis

considers, for the Island Link, a dc voltage level of ±350 kV and a nominal bipole

rating of 900 MW and, for the Maritime Link, a dc voltage level of ±200 kV and a

nominal bipole rating of 500 MW. This is interpreted to mean that these rated power

levels and rated voltages apply at the rectifier ends (Muskrat Falls and Bottom

Brook).

The Island Link will be essentially uni-directional from Labrador to Newfoundland,

although there will be nothing in the design of the link to prevent operation in the

reverse direction. The Maritime Link is required to have a 500 MW continuous

capability in bipolar mode in both directions.

Figure 1-1 provides an overview of the areas considered in these studies. The

connection to the Hydro-Quebec (TransEnergie) 735 kV system was represented by

a simple equivalent at the Montagnais Substation. The Emera system in Nova

Scotia was represented by a simple equivalent at the inverter station of the Maritime

Link. The ac system between Churchill Falls and Muskrat Falls and the Island ac

system were modelled in detail.

Starting from the base case scenarios provided by Nalcor Energy (Nalcor), the

present studies are designed to determine the dynamic performance of the ac/dc

systems following major faults on either the ac or dc systems. The faults considered

result in the outage of a single element in either the ac or dc system. Because of the

relative importance of the Island Link in the overall supply capability of the Island

load, the temporary loss of both poles of the Island Link bipole was also considered.

NP-NLH-108, Attachment 2 Page 11 of 169, NLH 2013 GRA

Page 63: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 2

SNC-Lavalin Inc.

Figure 1-1: Project Area Map

NP-NLH-108, Attachment 2 Page 12 of 169, NLH 2013 GRA

Page 64: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 3

SNC-Lavalin Inc.

Figure 1-2: Provincial Transmission Grid

NP-NLH-108, Attachment 2 Page 13 of 169, NLH 2013 GRA

Page 65: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 4

SNC-Lavalin Inc.

1.2 Objectives of the Studies

The stability studies were designed to achieve the following objectives:

• To verify that the interconnected systems of Newfoundland and Labrador with

interconnections into Quebec and Nova Scotia can operate satisfactorily

through a wide range of faults resulting in outages on the transmission

network,

• To determine the requirements in terms of control functions that will be

required on the Island and Maritime dc links,

• To determine the requirements for additional equipment, in the form of static

var compensators and/or synchronous condensers, that will be required at or

near the converter stations to ensure satisfactory dynamic performance,

• To verify that load shedding on the Island will not occur for the range of fault

cases examined, and

• To determine any operating requirements that must be applied to the Island

and Maritime dc links to ensure stable operation.

NP-NLH-108, Attachment 2 Page 14 of 169, NLH 2013 GRA

Page 66: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 5

SNC-Lavalin Inc.

2 STUDY BASIS

Nalcor provided nineteen base case scenarios for examination. These scenarios are

presented in Table 2-1. Scenarios BC-14 to BC-17 considered monopole operation

of the Island Link. Since these scenarios already represent a single contingency

outage on the system, they were not considered as the starting condition for any of

the stability studies.

The major additions to the existing (2011) system planned by Nalcor consist of:

• A new 230 kV line from Granite Canal to Bottom Brook (name not yet designated) to strengthen the supply to Bottom Brook and the Western region, and

• A new 230 kV line from Bay d’Espoir to Western Avalon (name not yet

designated) to increase system transfer capability and improve system stability.

The 230 kV supply to the Wabush/ Labrador City area in Western Labrador has been

identified in Nalcor’s five-year plan to require reinforcement to relieve low voltage

conditions and improve system stability. As a result, this area was the source of

stability problems for all the initial cases considered. Since the plans for this area

are still under investigation, the supply to this area was represented as a fixed,

lumped load at the Churchill Falls 230 kV bus.

Following the conclusions derived from the Load Flow and Short-circuit Studies

(Nalcor ILK-SN-CD-8000-EL-SY-0001-01/ SLI 505573-480A-47ER-0003), a

+320/-100 MVAr SVC was placed at Bottom Brook in all cases to ensure sufficient

reactive power was provided to the system with the connection of the Maritime Link.

Any fixed shunts representing reactive compensation were removed and only those

representing ac filters were retained.

Load flow studies were carried out for each scenario, considering normal system

conditions (all equipment in service) and outage conditions. In addition to pole

outages on the Island dc link, the automatic sequential contingency feature of PSS®E

was used to examine all single contingency outages on the ac systems. The results

of these load flow studies were presented in the Load Flow and Short-circuit Studies

report (Nalcor ILK-SN-CD-8000-EL-SY-0001-01/ SLI 505573-480A-47ER-0003) and

NP-NLH-108, Attachment 2 Page 15 of 169, NLH 2013 GRA

Page 67: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 6

SNC-Lavalin Inc.

are not repeated here. However, for each stability study carried out, the base case

load flows, showing the initial network conditions, are included in Appendix A.

2.1 Study Criteria

The criteria generally used to carry out stability studies are taken from the NLH

Transmission Planning Manual and are summarized below.

• The system will be able to sustain the single contingency loss of any

transmission element without loss of system stability,

• The system is able to sustain a successful single pole reclose for a line to

ground fault,

• Multi-phase 230 kV faults shall be cleared in a maximum clearing time of

6-cycles,

• Load shedding should not occur for the loss of the largest generator in

Newfoundland,

• Load shedding should not occur for the temporary loss of a pole or bipole of

an HVdc link,

• The system response should be stable and well damped,

• Post-fault recovery voltages on the ac system shall be as follows:

o Transient under-voltages following fault clearing should not drop below

0.7 pu,

o The duration of voltage below 0.8 pu following fault clearance should

not exceed 20-cycles,

• Post-fault frequencies should not drop below 59 Hz,

• Under-frequency load shedding should be minimized.

NP-NLH-108, Attachment 2 Page 16 of 169, NLH 2013 GRA

Page 68: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 7

SNC-Lavalin Inc.

The above criteria have been in general use for Newfoundland and Labrador Hydro

(NLH). Once commissioned, the Island Link will bring 900 MW from Muskrat Falls to

Soldiers Pond with a delivered capacity of approximately 814 MW, allowing for

losses on the nearly 1,100 km long link. Of this delivered power to the Island it is

planned to export 158 MW over the Maritime Link while maintaining an economic

dispatch of the Island generation. Under maximum Island dispatch conditions, the

export over the Maritime Link could be increased to 239 MW. In 2017, when the

peak Island load is forecast to be 1,552 MW, the net import on the Island Link (814-

158=656 MW) will represent approximately 42% of the Island peak load. Given this

relatively high level it is considered essential that the Island Link be designed to a

very high level of reliability and availability and that the system should remain stable

and able to operate without load shedding through the most severe single

contingencies. Consequently, the system was studied for a series of permanent pole

outages, temporary bipole outages and three-phase faults on the ac system to

determine the dynamic performance of the system and to determine the additional

equipment that would be required, in terms of dynamic support, to ensure stable

performance. Given the above, it was not considered necessary to examine the

system performance for a successful single pole re-closure of a single-line-to-ground

fault as this is much less severe than a three-phase fault.

Given the above requirements to avoid load shedding on the Island for all system

disturbances and in view of the limited spinning reserve that would be available on

the Island, it was agreed with Nalcor that, in the event of a system disturbance that

would result in a frequency depression, the export to Nova Scotia over the Maritime

Link would be reduced to zero as quickly as possible, effectively providing additional

spinning reserve to the Island system. In discussions with Emera, the Nova Scotia

system would be operated with sufficient spinning reserve to maintain operations

through such an event. Following system recovery, the Maritime Link could then be

manually re-started at a level consistent with the available capacity from

Newfoundland.

The only other modification to the above criteria concerns the post-fault ac system

voltage. Inverters are susceptible to commutation failure when the ac voltage

changes rapidly. Such failures can occur even for relatively small voltage changes,

NP-NLH-108, Attachment 2 Page 17 of 169, NLH 2013 GRA

Page 69: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 8

SNC-Lavalin Inc.

but the probability of a commutation failure is considered small if the post-fault

recovery voltage does not fall below 90% (CIGRE, Document 103, “Causes and

Consequences of Commutation Failures”, November 1995). Since the models used

in the PSS®E program cannot automatically account for commutation failures, it is

necessary to manually track the inverter ac voltage to check for compliance with the

voltage criterion. An ac voltage criterion of 90% was therefore applied to the

Soldiers Pond 230 kV bus.

The generation dispatch levels for each scenario considered are given in Table 2-2.

NP-NLH-108, Attachment 2 Page 18 of 169, NLH 2013 GRA

Page 70: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 9

SNC-Lavalin Inc.

Table 2-1: Base Case Scenarios

No. NLH System Load

NS Export

Bottom Brook

Island Import

Muskrat Falls/Soldiers Pond

Island Generation Comments

BC-1 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak 3-units @ Muskrat Falls

BC-2 Peak-2017(1552MW) 239MW 900/814MW Maximum Winter Peak 3-units @ Muskrat Falls

BC-3 Peak-2017(1552MW) 158MW 798/730MW Maximum Winter Peak

BC-4 Peak-2041(1900MW) 0MW 900/814MW Maximum Winter Peak

BC-5 Intermediate-2017(1100MW) 158MW 900/814MW Economic Dispatch Spring/Fall day

BC-6 Intermediate-2017(1100MW) 158MW 276/268 Maximum Spring/Fall day

BC-7 Intermediate-2017 (1100MW) 500MW 900/814MW Economic Dispatch Spring/Fall day

BC-8 Light (700MW) 158MW 414/400MW Minimum Summer day

BC-9 Light (700MW) 158MW 81/80MW Economic Dispatch Summer day

BC-10 Light (700MW) 500MW 900/814MW Economic Dispatch Summer day

BC-11 Extreme Light (420MW) 0MW 81/80MW Economic Dispatch Summer night

BC-12 Extreme Light (420MW) 320MW 81/80MW Economic Dispatch Summer night

BC-13 Extreme Light (420MW) 320MW 457/435MW Minimum Summer night

BC-14 Peak-2017 (1552MW) -260MW 286/260MW-Monopole Maximum Winter Peak

BC-15 Intermediate-2017(1100MW) 158MW 378/333MW-Monopole Economic Dispatch Spring/Fall day

BC-16 Light (700MW) 500MW 638/518MW-Monopole Minimum Summer day

BC-17 Extreme Light (420MW) 0MW 215/200MW-Monopole Minimum Summer night

BC-18 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak 4-units @ Muskrat Falls

BC-19 Intermediate-2017(1100MW) 500MW 900/814MW Economic Dispatch Winter Peak 4-units @ Muskrat Falls

NP-NLH-108, Attachment 2 Page 19 of 169, NLH 2013 GRA

Page 71: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 10

SNC-Lavalin Inc.

Table 2-2: Generation Dispatch Levels

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12 BC13 BC14 BC15 BC16 BC17 BC18 BC19

MW MVA

NLH System Load (MW) 1552 1552 1552 1900 1100 1100 1100 700 700 700 420 420 420 1552 1100 700 420 1552 1100

HVDC Export BBK (MW) 158 239 158 0 158 158 500 158 158 500 0 320 320 -260 158 500 0 158 500

Generation Dispatch

6050 6722 4219 4229 4199 5031 5465 4357 4706 2707 2041 2963 2794 3330 2959 4205 4505 3330 2794 4219 4706

824 916 602 613 618 618 757 618 618 735 824 824 378 415 476 574 618 415 378 824 824

HVDC at Soldiers Pond 815 815 730 815 815 268.5 815 400 80 815 80 80 435 260 333 518 200 815 815

NLH - Hydro

Bay d'Espoir Unit 1 76.5 85 70 75 75 75 68 75 65 67 60.5 65.7 67 66 off 75 72 60 61 70 65

Bay d'Espoir Unit 2 76.5 85 70 75 75 75 off 75 65 off 60.5 off off 66 66 75 72 off off 70 65

Bay d'Espoir Unit 3 76.5 85 70 75 75 75 68 75 65 67 60.5 65.7 67 66 off 75 72 60 61 70 65

Bay d'Espoir Unit 4 76.5 85 70 75 75 75 off 75 65 off 60.5 off off 66 off 75 72 60 off 70 65

Bay d'Espoir Unit 5 76.5 85 70 75 75 75 68 75 65 off 60.5 65.7 off 66 off 75 72 60 off 70 65

Bay d'Espoir Unit 6 76.5 85 70 75 75 75 off 75 65 off 60.5 65.7 off 66 off 75 72 60 off 70 65

Bay d'Espoir Unit 7 155 172 145 154 154 154 off 154 135 135 135 off sc off 135 154 150 124 sc 145 135

Cat Arm Unit 1 68 75.5 50 65 65 65 sc 65 35 36 36 36 46 39 36 63.5 54 36 36 50 35

Cat Arm Unit 2 68 75.5 50 65 65 65 sc 65 35 sc 36 sc off off off 63.5 54 36 off 50 35

Upper Salmon 84 88.4 78 84 84 84 75 84 71 75 70 70 75 75 off 84 75 70 off 78 71

Hinds Lake 75 83 70 75 75 75 69 75 67 off 67 off off 69 off 75 69 67 off 70 67

Granite Canal 40.5 45 32 40 40 40 28 40 27 27 27 27 27 30 27 32 28 27 off 32 27

Paradise River 9 10 8 8 8 8 7 8 7 off 7 7 off 7 off 8 7 7 off 8 7

NLH - Thermal

Hardwoods GT1/2 57 63.5 sc sc sc 45 sc sc sc sc sc sc sc sc sc 50 sc sc sc sc sc

Stephenville GT1 57 63.5 off off off 25 off off off off off off off off off off off off off off off

Holyrood Unit 1 175 194.4 off off off off off off off off off off off off off off off off off off off

Holyrood Unit 2 175 194.4 sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc

Holyrood Unit 3 159 177.2 sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc

Holyrood CT1 16 17.7 - - - - - - - - - - - - - - - - - - -

Holyrood CT2 16 17.7 - - - - - - - - - - - - - - - - - - -

NUGS

Star Lake 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4

Rattle Brook 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

CBP&P 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

Exploits 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76

Wind

St. Lawrence off off off off off off off off off off off off off off off off off off off

Fermeuse off off off off off off off off off off off off off off off off off off off

Total Generation 1783 1871 1786 1986 1313 1325 1697 922 936 1333 477 811 814 1405 1317 1300 473 1783 1697

Churchill Falls Plant

Muskrat Falls Plant

Unit Size

NP-NLH-108, Attachment 2 Page 20 of 169, NLH 2013 GRA

Page 72: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 11

SNC-Lavalin Inc.

2.2 System Models

In terms of system modelling, the ac system was represented by conventional

models common to both steady-state and stability studies. This data was provided

by Nalcor in the form of PSS®E data files.

All generators in the system were modelled by their sub-transient, 2-axis models as

provided in the PSS®E model library. The data for each generator was provided by

Nalcor and is shown in Appendix B. For each generator, Nalcor provided the exciter,

stabilizer and governor models as appropriate. These models with their parameters

are presented in Appendix B. The system loads were modeled as constant current

loads for real power and constant admittance loads for reactive power.

The HVdc links (Island and Maritime) were modelled using the PSS®E library model

CDC4T. The details of this model are provided in Appendix B. Both links were

modeled as Line Commutated Converters (LCC).

Voltage Source Converters (VSC) are usually associated with dc cables since

reclosing is not normally used for dc cable faults. Currently, the only method to clear

a fault on the dc circuit is by opening the ac breakers. The duration of the fault

clearance is at least 500 ms and can reach up to 1,500 ms. Therefore, ac systems

can collapse due to frequency deviation.

Frequency controllers were applied at the Soldiers Pond (inverter) converter and the

Bottom Brook (rectifier) converter using the PSS®E library model PAUX1T. The

details of this model are provided in Appendix B. The purpose of these frequency

controllers is as follows:

• The frequency controller at Bottom Brook was configured to reduce the dc

power on the Maritime Link to zero in the event that the frequency at Bottom

Brook falls below 60 Hz.

• The frequency controller at Soldiers Pond was configured to increase the dc

power on the Island Link in the event that the frequency at Soldiers Pond falls

below 60 Hz.

NP-NLH-108, Attachment 2 Page 21 of 169, NLH 2013 GRA

Page 73: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 12

SNC-Lavalin Inc.

3 RESULTS OF THE STUDIES

3.1 Winter Peak Load Conditions

The forecast peak load on the Island system in 2017-18 is 1,552 MW. The first

scenario to be examined under these conditions was BC-2, since this scenario

involves the rated transfer across the Island Link (900 MW from Muskrat Falls) and

the maximum transfer across the Maritime Link (239 MW from Bottom Brook) under

peak load conditions. Figure A-1 in Appendix A shows the load flow of the initial

conditions.

The following fault cases were examined:

BC2-ST01: Temporary Bipole Fault on the Island Link

BC2-ST02: Permanent Pole Fault on the Island Link with post-fault mono-polar

operation

BC2-ST03: 3-phase/6-cycle fault at Muskrat Falls 315 kV on 315 kV line to

Churchill Falls (name not yet designated)

BC2-ST04: 3-phase/6-cycle fault at Bay d’Espoir 230 kV on 230 kV line to

Western Avalon (name not yet designated)

BC2-ST05: 3-phase/6-cycle fault at Soldiers Pond 230 kV on 230 kV line to

Western Avalon (TL217W)

BC2-ST06: 3-phase/6-cycle fault at Bottom Brook 230 kV on 230 kV line to

Granite Canal (name not yet designated)

BC2-ST07: 3-phase/6-cycle fault at Stony Brook 230 kV on 230 kV line to Bay

d’Espoir (TL204)

BC2-ST08: 3-phase/6-cycle fault at Bay d’Espoir 230 kV on 230 kV line to

Sunnyside (TL202)

BC2-ST09: 3-phase/6-cycle fault at Bay d’Espoir 230 kV with post-fault outage

of Bay d’Espoir G7

NP-NLH-108, Attachment 2 Page 22 of 169, NLH 2013 GRA

Page 74: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 13

SNC-Lavalin Inc.

The dynamic performance of the system is presented in a series of figures for each case showing:

• machine angles,

• ac and dc bus voltages,

• dc power levels,

• active and reactive output of synchronous condensers,

• system frequency.

3.1.1 BC2-ST01: Temporary Bipole Fault on the Island Link

This case represents the condition where a transient fault occurs on both poles of the

Island Link. The fault duration was taken as 200 ms (12 cycles), composed of 25 ms

(1.5 cycles) to detect the fault and reduce the dc current to zero plus a de-ionization

time of 175 ms (10.5 cycles). After this period, the dc power can be ramped back up

to any desired value. The ramp rates were selected to result in a ramp-up time to full

power of 100 ms (6 cycles), giving a total time from fault initiation to a return to

scheduled power of 300 ms (18 cycles).

Previous studies of the use of HVdc to supply the Island load showed a need for

additional reactive support and inertia at the Soldiers Pond converter station. The

study was therefore carried out with a high-inertia, synchronous condenser

connected at Soldiers Pond as shown below (data provided by Hatch report

“DC1210 – HVdc System Sensitivity and VSC Risk Analysis” based on the Toshiba

synchronous condenser).

Table 3-1: High-Inertia Synchronous Condenser Data

Parameter Value Parameter Value

Rating +300/-165 MVAr Xl 0.09 pu

H 7.84 kW-s/kVA S(1.0) 0.04

Xd 1.24 pu S(1.2) 0.14

Xq 0.85 pu T’d0 11 s

Xd’ 0.27 pu T”d0 0.08 s

Xd” 0.165 pu T”q0 0.29 s

Xq” 0.177 pu

NP-NLH-108, Attachment 2 Page 23 of 169, NLH 2013 GRA

Page 75: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 14

SNC-Lavalin Inc.

For the first case, the above model was scaled to represent a 150 MVAr synchronous

condenser.

The results (machine angles, voltages and dc power flow) are shown in Figure 3-1.

Figure 3-1: BC2-ST01, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary Bipole Fault on the Island Link/150MVAr SC at Soldiers Pond

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180

Ma

ch

ine

An

gle

(de

g)

wrt

Mo

nta

gn

ais

CyclesCHF-A1 MFA-G1 BC2-ST01

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180

Mac

hin

e A

ngle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST01

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

SPD-SC HWD-SC HRP-SC BC2-ST01

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

61.2

61.4

0 30 60 90 120 150 180

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST01

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST01

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST01

NP-NLH-108, Attachment 2 Page 24 of 169, NLH 2013 GRA

Page 76: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 15

SNC-Lavalin Inc.

These results clearly demonstrate that the synchronous condensers at Soldiers

Pond, Holyrood and Hardwoods quickly lose synchronism with the rest of the Island

machines. As a result, the system voltages oscillate wildly and the dc link repeatedly

by-passes or blocks.

To improve this performance, the rating of the synchronous condenser at Soldiers

Pond was increased to 300 MVAr. The results are shown in Figure 3-2. The

improvement in performance is significant in that all machines retain their

synchronism and the system voltages recover quickly and in a stable and damped

manner following the temporary fault. The contribution of the high-inertia

synchronous condenser at Soldiers Pond amounted to 400 MW at the instant of the

fault, when the Island Link is blocked. This contribution decays to zero over 15-

cycles and then reverses as the system replaces the power extracted from the inertia

of this machine. The reactive contribution of the high-inertia synchronous condenser

is also significant, starting from a steady-state output of 250 MVAr and peaking at

over 350 MVAr following the restart of the Island Link. The two Holyrood units,

operating as synchronous condensers, contributed 110 MW of active support and

110 MVAr of reactive support over the same period.

The ramping down of the export over the Maritime Link to zero by the frequency

controller at Bottom Brook is critical to the satisfactory recovery of the system. The

export power level reduced from 239 MW to zero in approximately 200 ms/ 12-cycles

after fault inception.

The frequency at Soldiers Pond fell quickly to a value of 59.14 Hz in

200 ms/ 12-cycles and then recovered quickly to 59.8 Hz in the next

100 ms/ 6-cycles. An overshoot of frequency to 60.25 Hz occurred between 1 and

2 s after fault initiation due to the action of the frequency controller on the Soldiers

Pond converter. Following this the frequency settled down to a steady-state value of

60.15 Hz. This is well above the 1st-stage load shedding setting of 58.8 Hz, currently

used on the system. The frequency at Muskrat Falls is essentially the frequency of

the Hydro-Quebec system since Muskrat Falls is synchronously tied to this network

via Churchill Falls. The equivalent model of the Hydro-Quebec system used the

GENCLS model of PSS®E and as such it cannot be fitted with a governor control

model. The governors applied at Muskrat Falls and Churchill Falls are very slow-

NP-NLH-108, Attachment 2 Page 25 of 169, NLH 2013 GRA

Page 77: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 16

SNC-Lavalin Inc.

acting and cannot bring the frequency down quickly enough. In practice, the post-

fault frequency at Muskrat Falls will be controlled by the overall frequency control

scheme of Hydro-Quebec. Since this is not modeled in these simulations, the post-

fault frequency at Muskrat Falls is not accurately determined. At some stage, it will

be necessary for the frequency control of the Hydro Quebec system to be modeled

correctly for such cases to confirm that the frequency at Churchill Falls and Muskrat

Falls can be returned to a nominal value within a reasonable time frame.

Immediately following the interruption of the bipole, the 315 kV voltage at Muskrat

Falls increased to 119% and then decreased back to 100% over the next

267 ms/ 16-cycles. This temporary over-voltage is not considered particularly

severe.

However, even with the reactive support provided by the high-inertia synchronous

condensers at Soldiers Pond and the synchronous condensers at Holyrood and

Hardwoods, the Soldiers Pond 230 kV ac bus voltage fell momentarily to 80% after

fault clearance. At this level there is a significant risk of commutation failure of the

inverter.

NP-NLH-108, Attachment 2 Page 26 of 169, NLH 2013 GRA

Page 78: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 17

SNC-Lavalin Inc.

Figure 3-2: BC2-ST01-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary Bipole Fault on the Island Link/300MVAr SC at Soldiers Pond

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST01-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST01-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST01-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

61.2

61.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST01-1

0

50

100

150

200

250

300

350

400

450

500

550

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST01-1

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST01-1

NP-NLH-108, Attachment 2 Page 27 of 169, NLH 2013 GRA

Page 79: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 18

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST01-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST01-1

-50

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST01-1

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Acti

ve

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST01-1

NP-NLH-108, Attachment 2 Page 28 of 169, NLH 2013 GRA

Page 80: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 19

SNC-Lavalin Inc.

In order to alleviate this problem, the re-start of the Island Link was modified so that

the dc power was ramped up in three stages:

• At 12-cycles/200 ms after fault inception, the dc power was ramped up to

175 MW per pole,

• 18-cycles/300 ms later (30-cycles/500 ms after fault inception), the dc power was

ramped up to 260 MW per pole,

• 18-cycles/300 ms later (48-cycles/800 ms after fault inception), the dc power was

ramped up to 320 MW per pole,

The resulting performance is shown in Figure 3-3. It can be seen that delaying the

recovery of the dc power as described above, allows the voltage at Soldiers Pond

230 kV to recover without falling below 90%, thus minimizing the risk of a

commutation failure. The staged recovery of the dc power described above is a close

approximation to a frequently-used method of controlling the re-start of a dc

converter that modifies the dc power level to maintain the ac voltage at or above a

pre-set level that will minimize the risk of commutation failure.

NP-NLH-108, Attachment 2 Page 29 of 169, NLH 2013 GRA

Page 81: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 20

SNC-Lavalin Inc.

Figure 3-3: BC2-ST01-2, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary Bipole Fault on the Island Link/300MVAr SC at Soldiers Pond

Island Link re-started in 3 Stages

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST01-2

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST01-2

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST01-2

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD Stage I-Load Shed BC2-ST01-2

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST01-2

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST01-2

NP-NLH-108, Attachment 2 Page 30 of 169, NLH 2013 GRA

Page 82: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 21

SNC-Lavalin Inc.

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST01-2

-50

0

50

100

150

200

250

300

350

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST01-2

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST01-2

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST01-2

NP-NLH-108, Attachment 2 Page 31 of 169, NLH 2013 GRA

Page 83: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 22

SNC-Lavalin Inc.

3.1.2 BC2-ST02: Permanent Pole Fault on the Island Link

The next case considered a permanent dc fault on one pole of the Island Link.

Based on the results of the previous case, the high-inertia synchronous condenser at

Soldiers Pond was maintained as a 300 MVAr unit.

Following the fault, the dc resistance of the healthy pole was increased from 26 Ω to

42 Ω to represent the electrode lines as a return path. The overload capability of

each pole can reach 200% in order to compensate for the dc transfer deficit caused

by the loss of one pole.

The results are shown in Figure 3-4, and indicate that the system recovers quickly

from this disturbance. The frequency controller at Soldiers Pond should remain

enabled to ensure a quick response from the healthy pole to compensate for the

permanent pole outage. The healthy pole increased its dc power level from 450 MW

before the fault to 730 MW after fault clearance.

It was observed that the high-inertia synchronous condenser at Soldiers Pond settled

down after the disturbance with an output of 340 MVAr, which is above its rated

value of 300 MVAr. This situation will be temporary until such time as the converter

transformer on the healthy pole makes adjustments to bring the firing angle (γ) back

to its nominal value of 18 degrees. This will reduce the reactive power requirement

of the converter and lower the loading on the synchronous condenser to below its

rated value.

The frequency at Soldiers Pond stabilized at a value of 59.6 Hz. This value

represents the balance point at which the frequency controller at Soldiers Pond

provides a steady ordered value of dc power to the converter since the frequency is

not changing. A slower-acting frequency controller will also be required to correct

the frequency slowly back to 60 Hz if sufficient additional capacity is available on the

Island Link to do this. This type of action can wait until the system has settled down

after the disturbance and could even be handled manually by adjusting the power

order on the Island Link or adjusting the available Island generation levels.

NP-NLH-108, Attachment 2 Page 32 of 169, NLH 2013 GRA

Page 84: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 23

SNC-Lavalin Inc.

Figure 3-4: BC2-ST02, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Permanent Pole Outage on the Island Link/300MVAr SC at Soldiers Pond

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST02

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST02

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST02

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST02

0

100

200

300

400

500

600

700

800

900

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST02

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST02

NP-NLH-108, Attachment 2 Page 33 of 169, NLH 2013 GRA

Page 85: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 24

SNC-Lavalin Inc.

-100

-50

0

50

100

150

200

250

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST02

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST02

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST02

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST02

0.0

10.0

20.0

30.0

40.0

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k F

irin

g A

ngle

s(d

eg)

Cycles

Alpha-R Gamma-I BC2-ST02

NP-NLH-108, Attachment 2 Page 34 of 169, NLH 2013 GRA

Page 86: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 25

SNC-Lavalin Inc.

3.1.3 BC2-ST03: Three Phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

A 100 ms/ 6-cycle, 3-phase fault was applied at Muskrat Falls 315 kV resulting in the

outage of one 315 kV circuit between Churchill Falls and Muskrat Falls. The voltage

depression at the Muskrat Falls converter station will result in blocking of the

converters at Muskrat Falls and an interruption of the export over the Island Link, in

much the same way as the temporary bipole fault discussed earlier. However, in this

case, because there are only 3 units operating at Muskrat Falls, the balance of the

900 MW pre-fault export and the load at Happy Valley is supplied from Churchill

Falls. After fault clearance, restoration of the export level means that all the balance

of power from Churchill Falls now has to flow down a single circuit from Churchill

Falls. This is to some extent offset by the fact that the export over the Maritime Link

will have been reduced to zero. However, when the Island Link first comes back into

service after the block, the frequency controller at Soldiers Pond will not be

operational since it was delayed for 500 ms in BC2-ST01-1. This delay represented

the minimum time to allow for satisfactory recovery of the ac system. Deactivating

the frequency controller helps the recovery of the ac system during faults at nearby

buses. This means that the Island Link will return to its previous export level of

900 MW. The results are shown in Figure 3-5.

It can be seen that the system appears to perform reasonably through the duration of

the fault and that recovery is being achieved when at the instant that the frequency

controller at Soldiers Pond is enabled (1.50 s in the plots below) the frequency at

Soldiers Pond is marginally below 60 Hz and the controller signals an increase in the

dc power. This increase is sufficient to result in a depression of the dc and ac

voltages to the point where the converters block momentarily, re-start and then block

again. To avoid this situation which could, in practice lead to multiple commutation

failures, the response of the frequency controller was modified such that:

• 500 ms after the initiation of the fault, the power order on the Island Link was

reduced from 450 MW per pole to 320 MW per pole. This value is based on the

fact that the Maritime Link has been shut down and the Island Link can be

reduced by approximately 240-250 MW to accommodate this.

NP-NLH-108, Attachment 2 Page 35 of 169, NLH 2013 GRA

Page 87: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 26

SNC-Lavalin Inc.

• The frequency controller was disabled until such time as the frequency at

Soldiers Pond returned to 60 Hz.

The results are shown in Figure 3-6 where it can be seen that the system recovers

satisfactorily with the reduction in the dc power order allowing the ac and dc voltages

to recover to satisfactory levels where a block will not occur. The frequency

controller actually came into operation approximately 4 s/ 240-cycles after fault

initiation. During the fault period, the frequency at Soldiers Pond fell to 59.4 HZ and

during the recovery period, before the frequency controller is re-activated, the

frequency varied with a minimum value of 59.8 Hz. Under the action of the

frequency controller, the dc power was slightly reduced from 320 MW per pole to

315 MW per pole to maintain the frequency at 60 Hz.

This type of control will require an auxiliary input signal to inform the converter

control that the 315 kV line from Churchill Falls to Muskrat Falls has been tripped.

This will be used to trigger the reduction in power order. Since the line is tripped at

100 ms/ 6-cycles and the power order reduction does not occur until

500 ms/ 30-cycles after fault initiation, there is ample time to acquire and process

this information.

NP-NLH-108, Attachment 2 Page 36 of 169, NLH 2013 GRA

Page 88: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 27

SNC-Lavalin Inc.

Figure 3-5: BC2-ST03, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST03

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST03

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST03

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST03

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST03

NP-NLH-108, Attachment 2 Page 37 of 169, NLH 2013 GRA

Page 89: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 28

SNC-Lavalin Inc.

Figure 3-6: BC2-ST03-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

(Power Order Reduction+Frequency Controller Delayed Operation)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST03-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST03-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST03-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST03-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST03-1

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST03-1

NP-NLH-108, Attachment 2 Page 38 of 169, NLH 2013 GRA

Page 90: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 29

SNC-Lavalin Inc.

-50

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST03-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST03-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST03-1

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST03-1

NP-NLH-108, Attachment 2 Page 39 of 169, NLH 2013 GRA

Page 91: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 30

SNC-Lavalin Inc.

3.1.4 BC2-ST04: Three Phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

In this case a 6-cycle, 3-phase fault was applied at Bay d’Espoir 230 kV with a post-

fault outage of the 230 kV line to Western Avalon.

The results are shown in Figure 3-7.

Since the voltage at Bay d’Espoir falls to zero during the fault, the voltages at Bottom

Brook and Soldiers Pond suffer major depressions (below 80%). This will cause the

Bottom Brook and Soldiers Pond converters to block immediately, reducing the

power on the Island and Maritime Links to zero. However, as in previous cases, the

Maritime Link was then held at zero power for the duration of the simulation. It may

be noticed that the Island Link rectifier power does not reduce to zero in this case.

This is a result of the type of model used in the program. The inverter model cannot

model a commutation failure, such as would occur when the ac system voltage is

depressed due to an ac fault. To get around this problem the inverter model has a

feature that automatically bypasses (short-circuits) the inverter on the dc side. When

this occurs, the rectifier increases its firing angle to reduce the dc current to its

minimum value. This accounts for the small amount of power seen at the rectifier

end due to the minimum dc current circulating around the two poles. This current

does not pass through the inverter.

The system remained in synchronism and recovered quickly from the fault with

300 MVAr of synchronous condensers operating at Soldiers Pond. The power on the

Island Link was reduced from 900 MW to approximately 640 MW as a result of the

removal of the Maritime Link export. The frequency at Soldiers Pond fell

momentarily to 59.2 Hz and following the re-start of the Island Link rose for a short

period to 60.6 Hz at which time the frequency controller at Soldiers Pond was re-

activated (500 ms following the fault) and stabilized the frequency between 60.1-

60.2 Hz by reducing the Island Link dc power.

The high-inertia synchronous condenser at Soldiers Pond contributed up to 450 MW

and 450 MVAr to the system during and after fault clearance.

The rapid frequency decline at Soldiers Pond (0.8 Hz) occurred over the fault period

(6-cycles/100 ms). This corresponds to a rate of change of frequency of 8 Hz/s,

NP-NLH-108, Attachment 2 Page 40 of 169, NLH 2013 GRA

Page 92: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 31

SNC-Lavalin Inc.

higher than the normal rate of change on the system, which is closer to 3 Hz/s. The

reason for this higher rate of change of frequency is attributed to the fact that the

three-phase fault at Bay d’Espoir effectively isolates Soldiers Pond from the inertia of

the Bay d’Espoir generators and all other generators to the west of Bay d’Espoir

during the fault period. The total inertia of the system (9,000 MW-s) is therefore not

available to support the frequency at Soldiers Pond during this time. The only inertia

available to Soldiers Pond comes from the synchronous condensers at Soldiers

Pond itself, Holyrood and Hardwoods. This amounts to approximately 2,000 MW-s.

The total load to the east of Bay d’Espoir is approximately 1,100 MW but, since the

voltage is depressed, the effective load is approximately 800 MW. This gives an

effective inertia constant in that part of the system of 3.45 MWs/MVA with a run-

down time of 6.9 s. This translates to a rate of change of frequency of 8.7 Hz/s

which is close to the value found in the simulation.

However, it can again be noted that following fault clearance and re-establishment of

the Island Link, the voltage at Soldiers Pond 230 kV fell momentarily to less than

90%, raising the possibility of commutation failure on the Island Link inverter. It was

observed that the voltage at Soldiers Pond 230 kV returned to barely above 90%

following fault clearance and decreased from that value to 80% as the dc power was

re-started. The main cause of this poor post-fault voltage appears to be even lower

post-fault voltages at Western Avalon and Bay d’Espoir.

NP-NLH-108, Attachment 2 Page 41 of 169, NLH 2013 GRA

Page 93: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 32

SNC-Lavalin Inc.

Figure 3-7: BC2-ST04, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST04

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST04

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST04

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST04

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST04

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST04

NP-NLH-108, Attachment 2 Page 42 of 169, NLH 2013 GRA

Page 94: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 33

SNC-Lavalin Inc.

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST04

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST04

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST04

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST04

NP-NLH-108, Attachment 2 Page 43 of 169, NLH 2013 GRA

Page 95: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 34

SNC-Lavalin Inc.

Various strategies were investigated to alleviate this under-voltage:

• staging of the dc re-start,

• replacement of the exciters at Bay d’Espoir with high-gain, high ceiling exciters,

• the application of 50% series compensation to the 230 kV lines from Bay d’Espoir

to Sunnyside [TL202 &TL206] and from Bay d’Espoir to Western Avalon [new

line],

• the application of an SVC at Western Avalon,

• the application of an SVC at Bay d’Espoir, and

• increasing the number of synchronous condensers at Soldiers Pond and

Holyrood.

The only effective solutions were:

• the application of an SVC at Bay d’Espoir or Western Avalon together with the

third synchronous condenser at Holyrood, and

• to connect the third synchronous condenser at Holyrood and to increase the

synchronous condenser rating at Soldiers Pond to 450 MVAr.

The other strategies failed to correct the voltage dip at Soldiers Pond sufficiently to

remove the risk of commutation failure following the fault clearance.

The system performance with the SVC connected at Bay d’Espoir is shown in Figure

3-8 and the performance with the additional synchronous condensers at Holyrood

and Soldiers Pond is shown in Figure 3-9.

The SVC at Bay d’Espoir produced up to 250 MVAr following the fault clearance. It

is worth noting that the rating of ±250 MVAr for this SVC corresponds exactly to the

reactive capability of a 500 MW VSC converter, similar to one that could be

employed at Bottom Brook for the Maritime Link.

NP-NLH-108, Attachment 2 Page 44 of 169, NLH 2013 GRA

Page 96: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 35

SNC-Lavalin Inc.

The synchronous condensers at Soldiers Pond produced close to 500 MW and

375 MVAr during and immediately after the fault, maintaining the voltage at Soldiers

Pond 230 kV to 90% or above following fault clearance.

It can be seen that this fault case constitutes the defining case for the synchronous

condenser requirements at Soldiers Pond.

NP-NLH-108, Attachment 2 Page 45 of 169, NLH 2013 GRA

Page 97: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 36

SNC-Lavalin Inc.

Figure 3-8: BC2-ST04-4, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

+/-250MVAR-SVC at Bay d’Espoir+3-SC at Holyrood

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST04-4

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST04-4

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST04-4

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD Stage I-Load Shed BC2-ST04-4

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST04-4

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST04-4

NP-NLH-108, Attachment 2 Page 46 of 169, NLH 2013 GRA

Page 98: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 37

SNC-Lavalin Inc.

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesSPD-SC HWD-SC HRP-SC BC2-ST04-4

-300

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

Cycles

BDE-SVC HWD-SC HRP-SC SPD-SC BC2-ST04-4

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST04-4

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BDE-230 SPD-230 BC2-ST04-4

NP-NLH-108, Attachment 2 Page 47 of 169, NLH 2013 GRA

Page 99: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 38

SNC-Lavalin Inc.

Figure 3-9: BC2-ST04-3, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

450MVAR-SC at Soldiers Pond+3-SC at Holyrood

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST04-3

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD Stage I-Load Shed BC2-ST04-3

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST04-3

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST04-3

-800

-600

-400

-200

0

200

400

600

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST04-3

-50

0

50

100

150

200

250

300

350

400

450

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST04-3

NP-NLH-108, Attachment 2 Page 48 of 169, NLH 2013 GRA

Page 100: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 39

SNC-Lavalin Inc.

3.1.5 BC2-ST05: Three Phase Fault at Soldiers Pond 230 kV on line to Western Avalon (TL217W)

In the case of a 6-cycle, 3-phase fault at Soldiers Pond 230 kV on the line to Western

Avalon, TL217W (Figure 3-10), the voltage depression at Soldiers Pond was

sufficient to cause the Island Link to block. However, the voltage and frequency

depressions at Bottom Brook were not severe enough to cause automatic blocking of

the Maritime Link.

Following fault clearance, both dc links recovered quickly to their pre-fault levels and

the system remained in synchronism with the system voltages recovering quickly.

With only 300 MVAr of high-inertia synchronous condensers at Soldiers Pond and

two synchronous condensers running at Holyrood, the same problem with the

Soldiers Pond 230 kV voltage falling below 90% following fault clearance was seen

in this case as in the previous case. To alleviate this problem it was necessary to

reduce the export over the Maritime Link to zero and to delay the re-start of the

Island Link until the voltage had recovered sufficiently at Soldiers Pond. This again

approximates the control function that regulates the timing, level and rate at which

the dc is ramped up as a function of the inverter ac bus voltage. The system

performance is shown in Figure 3-11.

It was not found necessary to increase the rating of the synchronous condenser at

Soldiers Pond.

A similar result was found for a 3-phase fault at Sunny Side on the line to Western

Avalon [TL203].

NP-NLH-108, Attachment 2 Page 49 of 169, NLH 2013 GRA

Page 101: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 40

SNC-Lavalin Inc.

Figure 3-10: BC2-ST05, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon

(TL217W)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST05

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST05

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST05

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST05

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST05

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST05

NP-NLH-108, Attachment 2 Page 50 of 169, NLH 2013 GRA

Page 102: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 41

SNC-Lavalin Inc.

-150

-100

-50

0

50

100

150

200

250

300

350

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST05

-150

-100

-50

0

50

100

150

200

250

300

350

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST05

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST05

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST05

NP-NLH-108, Attachment 2 Page 51 of 169, NLH 2013 GRA

Page 103: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 42

SNC-Lavalin Inc.

Figure 3-11: BC2-ST05-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon

(TL217W), Island Link re-start delayed

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST05-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST05-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST05-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD Stage I-Load Shed BC2-ST05-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST05-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST05-1

NP-NLH-108, Attachment 2 Page 52 of 169, NLH 2013 GRA

Page 104: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 43

SNC-Lavalin Inc.

-150

-100

-50

0

50

100

150

200

250

300

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST05-1

-50

0

50

100

150

200

250

300

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST05-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST05-1

0%

20%

40%

60%

80%

100%

120%

140%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST05-1

NP-NLH-108, Attachment 2 Page 53 of 169, NLH 2013 GRA

Page 105: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 44

SNC-Lavalin Inc.

3.1.6 BC2-ST06: Three Phase Fault at Bottom Brook 230 kV on line to Granite Canal

In this case, the voltage at Bottom Brook collapsed to zero, resulting in blocking of

the Maritime Link (Figure 3-12). The Island Link continued to operate through the

fault and the system recovered quickly. The dc power level on the Island Link was

subsequently reduced due to the loss of the Maritime Link and the system frequency

stabilized at 60.1-60.2 Hz.

Due to action of the SVC at Bottom Brook in response to the fault, the post-fault

voltage at Bottom Brook increased to approximately 130% for a few cycles until the

SVC was able to reduce its output. This temporary over-voltage lasted only for a few

cycles and is well within the temporary over-voltage capability of zinc oxide arresters

(160% of maximum system voltage for 1s) and the substation equipment. The exact

duration will depend upon the design of the SVC itself, but clearly, as shown in the

plot of the reactive output of the Bottom Brook SVC reactive power, a fast-acting

device is required. The steady-state rating of this SVC was determined in the load

flow studies report to be +320/-100 MVAr. If VSC technology is employed for the

Bottom Brook converter, the inherent reactive control properties of such converters

can be usefully employed to avoid the need for an SVC at this location. Typically,

VSC converters can provide or absorb reactive power. In Appendix C, two PQ-

curves from ABB and Siemens show that the reactive power can reach 30%-40%

and 25% of the rated power respectively when the VSC operates at rated power.

For a 500 MW converter this would translate to a reactive capability of ±125 MVAr.

The balance of 195 MVAr for the reactive production requirements could then be met

with a smaller SVC or even shunt capacitors.

NP-NLH-108, Attachment 2 Page 54 of 169, NLH 2013 GRA

Page 106: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 45

SNC-Lavalin Inc.

Figure 3-12: BC2-ST06, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Bottom Brook 230 kV on line to Granite Canal

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST06

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST06

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST06

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST06

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST06

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST06

NP-NLH-108, Attachment 2 Page 55 of 169, NLH 2013 GRA

Page 107: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 46

SNC-Lavalin Inc.

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST06

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST06

0%

20%

40%

60%

80%

100%

120%

140%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST06

-100

0

100

200

300

400

500

600

700

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC

SPD-SC BBK-SVCBC2-ST06

NP-NLH-108, Attachment 2 Page 56 of 169, NLH 2013 GRA

Page 108: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 47

SNC-Lavalin Inc.

3.1.7 BC2-ST07: Three Phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204)

The voltage depression at Bottom Brook was severe enough to result in blocking of

the Maritime Link but did not cause interruption of the Island Link. The system

recovered quickly. The temporary over-voltage at Bottom brook was 120% for a few

cycles. The results are shown in Figure 3-13.

NP-NLH-108, Attachment 2 Page 57 of 169, NLH 2013 GRA

Page 109: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 48

SNC-Lavalin Inc.

Figure 3-13: BC2-ST07, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Stony Brook 230 kV on line to Bay d’Espoir

(TL204)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST07

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST07

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST07

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC2-ST07

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST07

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST07

NP-NLH-108, Attachment 2 Page 58 of 169, NLH 2013 GRA

Page 110: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 49

SNC-Lavalin Inc.

-120

-100

-80

-60

-40

-20

0

20

40

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST07

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST07

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC2-ST07

0%

20%

40%

60%

80%

100%

120%

140%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST07

NP-NLH-108, Attachment 2 Page 59 of 169, NLH 2013 GRA

Page 111: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 50

SNC-Lavalin Inc.

3.1.8 BC2-ST08: Three Phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202)

This case was similar to, though not as severe as, the case of a fault at Bay d’Espoir

on the line to Western Avalon. As with the fault at Bay d’Espoir on the line to

Western Avalon however, it was necessary to either:

• increase the high-inertia synchronous condenser at Soldiers Pond to

450 MVAr and connect the third synchronous condenser at Holyrood, or

• install a ±250 MVAr SVC at Bay d’Espoir and connect the third synchronous

condenser at Holyrood, to avoid a voltage reduction at Soldiers Pond

following the fault clearance. The results with 450 MVAr of high-inertia

synchronous condensers at Soldiers Pond are shown in Figure 3-14.

NP-NLH-108, Attachment 2 Page 60 of 169, NLH 2013 GRA

Page 112: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 51

SNC-Lavalin Inc.

Figure 3-14: BC2-ST08-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g)

wrt

Mon

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST08-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST08-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST08-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD Stage I-Load Shed BC2-ST08-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST08-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST08-1

NP-NLH-108, Attachment 2 Page 61 of 169, NLH 2013 GRA

Page 113: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 52

SNC-Lavalin Inc.

-600

-400

-200

0

200

400

600

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST08-1

-50

0

50

100

150

200

250

300

350

400

450

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST08-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST08-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST08-1

NP-NLH-108, Attachment 2 Page 62 of 169, NLH 2013 GRA

Page 114: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 53

SNC-Lavalin Inc.

3.1.9 BC2-ST09: Three Phase Fault at Bay d’Espoir 230 kV-Generator Outage G7

This case, shown in Figure 3-15, considered a 6-cycle, 3-phase fault at Bay d’Espoir

230 kV that resulted in the loss of the largest generator on the Island system (unit

G7). As with other faults at Bay d’Espoir, a commutation failure can occur at the

inverter of the LIL and the export to Nova Scotia is reduced to zero due to the

voltage depression at Bottom Brook, and it was necessary to either:

• increase the high-inertia synchronous condenser at Soldiers Pond to 450 MVAr

and connect the third synchronous condenser at Holyrood, or

• install a ±250 MVAr SVC at Bay d’Espoir and connect the third synchronous

condenser at Holyrood.

NP-NLH-108, Attachment 2 Page 63 of 169, NLH 2013 GRA

Page 115: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 54

SNC-Lavalin Inc.

Figure 3-15: BC2-ST09-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV-Generator Outage G7

450MVAr-SC at Soldiers Pond+3-SC at Holyrood

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST09-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST09-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST09-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD Stage I-Load Shed BC2-ST09-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST09-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST09-1

NP-NLH-108, Attachment 2 Page 64 of 169, NLH 2013 GRA

Page 116: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 55

SNC-Lavalin Inc.

-600

-400

-200

0

200

400

600

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST09-1

0

50

100

150

200

250

300

350

400

450

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST09-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST09-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST09-1

NP-NLH-108, Attachment 2 Page 65 of 169, NLH 2013 GRA

Page 117: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 56

SNC-Lavalin Inc.

3.2 Spring/Fall Intermediate Load Conditions

The forecast load on the Island system for the intermediate load level corresponding

to Spring and Fall in 2017-18 is 1,100 MW. The first scenario to be examined under

these conditions was BC-7, since this scenario involves the rated transfer across the

Island Link (900 MW from Muskrat Falls) and the maximum transfer across the

Maritime Link (500 MW from Bottom Brook). Figure A-2 in Appendix A shows the

load flow of the initial conditions.

The same fault cases were examined for this load level as for the peak load level.

3.2.1 BC7-ST01: Temporary Bipole Fault on the Island Link

The results for this case are shown in Figure 3-16.

The voltage and frequency depression at Bottom Brook resulted in a ramping down

of the Maritime export from 500 MW to zero. The Island Link returned to full power

shortly after fault clearance as in previous cases, and the enabling of the Island Link

frequency controller after 500 ms resulted in a reduction of the dc power over the

Island Link to approximately 320 MW due to the loss of the Maritime export. The

frequency at Soldiers Pond stabilized at approximately 60.3 Hz and the system

returned to stable operation quickly.

NP-NLH-108, Attachment 2 Page 66 of 169, NLH 2013 GRA

Page 118: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 57

SNC-Lavalin Inc.

Figure 3-16: BC7-ST01, Intermediate/Island Link 900 MW/Maritime Link 500 MW Temporary Bipole Fault on Island Link

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST01

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST01

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST01

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST01

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST01

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST01

NP-NLH-108, Attachment 2 Page 67 of 169, NLH 2013 GRA

Page 119: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 58

SNC-Lavalin Inc.

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST01

-100

-50

0

50

100

150

200

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST01

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST01

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST01

NP-NLH-108, Attachment 2 Page 68 of 169, NLH 2013 GRA

Page 120: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 59

SNC-Lavalin Inc.

3.2.2 BC7-ST02: Permanent Pole Fault on the Island Link

The results for this case are shown in Figure 3-17.

This case was seen to be less severe than the same fault in the BC2 Scenario in that

the Maritime Link was not reduced to zero but fell to a value of approximately

160 MW from its initial value of 500 MW. The Island Link healthy pole was ramped

up to a value of approximately 520 MW from its initial value of 450 MW (a 115%

overload). The frequency at Soldiers Pond stabilized at approximately 59.85 Hz.

Once the system has settled down, it would be possible to manually reschedule the

Island Link up to 675 MW (150% of its rated value) to allow the Maritime export to be

increased from 160 MW to approximately 300 MW.

NP-NLH-108, Attachment 2 Page 69 of 169, NLH 2013 GRA

Page 121: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 60

SNC-Lavalin Inc.

Figure 3-17: BC7-ST02, Intermediate/Island Link 900 MW/Maritime Link 500 MW Permanent Pole Outage on Island Link

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST02

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST02

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST02

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST02

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST02

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST02

NP-NLH-108, Attachment 2 Page 70 of 169, NLH 2013 GRA

Page 122: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 61

SNC-Lavalin Inc.

-100

-50

0

50

100

150

200

250

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST02

0

20

40

60

80

100

120

140

160

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST02

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST02

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST02

NP-NLH-108, Attachment 2 Page 71 of 169, NLH 2013 GRA

Page 123: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 62

SNC-Lavalin Inc.

3.2.3 BC7-ST03: Three Phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

As with the permanent pole outage on the Island Link, this case (shown in Figure

3-18) was not as severe as the same fault under Scenario BC2. The Maritime Link

did not fall to a zero export and was able to recover to an export level of

approximately 380 MW, the Island Link decreasing from 900 MW to approximately

720 MW following the introduction of the frequency controller 500 ms following the

fault. The Island frequency stabilized at just below 60 Hz.

NP-NLH-108, Attachment 2 Page 72 of 169, NLH 2013 GRA

Page 124: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 63

SNC-Lavalin Inc.

Figure 3-18: BC7-ST03, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST03

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST03

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST03

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST03

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST03

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST03

NP-NLH-108, Attachment 2 Page 73 of 169, NLH 2013 GRA

Page 125: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 64

SNC-Lavalin Inc.

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST03

-100

-50

0

50

100

150

200

250

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST03

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST03

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST03

NP-NLH-108, Attachment 2 Page 74 of 169, NLH 2013 GRA

Page 126: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 65

SNC-Lavalin Inc.

3.2.4 BC7-ST04: Three Phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

As with the permanent pole outage on the Island Link, this case (shown in Figure

3-19) was not as severe as the same fault under Scenario BC2. The Maritime Link

still fell to a zero export due to the voltage depression at Bottom Brook. The Island

Link decreased from 900 MW to approximately 300 MW as a result. The Island

frequency stabilized at just 60.3 Hz.

A temporary over-voltage was seen at Bottom Brook following the blocking of the

Maritime Link and the subsequent fault clearance. This over-voltage which lasted

only a few cycles was at a value of 125%.

NP-NLH-108, Attachment 2 Page 75 of 169, NLH 2013 GRA

Page 127: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 66

SNC-Lavalin Inc.

Figure 3-19: BC7-ST04, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST04

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST04

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST04

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST04

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST04

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST04

NP-NLH-108, Attachment 2 Page 76 of 169, NLH 2013 GRA

Page 128: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 67

SNC-Lavalin Inc.

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST04

-50

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST04

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST04

0%

20%

40%

60%

80%

100%

120%

140%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST04

NP-NLH-108, Attachment 2 Page 77 of 169, NLH 2013 GRA

Page 129: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 68

SNC-Lavalin Inc.

3.2.5 BC-7: Remaining Fault Cases

The remaining fault cases under BC-7 are shown in the following figures and indicate

that the faults were not as severe as under Scenario BC-2 and that, in cases where

the voltage depression at Bottom Brook was not too severe, the Maritime Link could

be retained at a reduced power level. In general, for faults east of Bay d’Espoir the

voltage at Bottom Brook remains high enough to allow continued operation of the

Maritime Link. Faults at or west of Bay d’Espoir will result in a shutting down of the

Maritime Link.

NP-NLH-108, Attachment 2 Page 78 of 169, NLH 2013 GRA

Page 130: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 69

SNC-Lavalin Inc.

Figure 3-20: BC7-ST05-1, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon

(TL217W)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST05-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST05-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST05-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD Stage I-Load Shed BC7-ST05-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST05-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST05-1

NP-NLH-108, Attachment 2 Page 79 of 169, NLH 2013 GRA

Page 131: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 70

SNC-Lavalin Inc.

-150

-100

-50

0

50

100

150

200

250

300

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST05-1

-300

-200

-100

0

100

200

300

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST05-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC7-ST05-1

0%

20%

40%

60%

80%

100%

120%

140%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST05-1

NP-NLH-108, Attachment 2 Page 80 of 169, NLH 2013 GRA

Page 132: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 71

SNC-Lavalin Inc.

Figure 3-21: BC7-ST06, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Bottom Brook 230 kV on line to Granite Canal

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST06

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST06

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST06

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST06

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST06

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST06

NP-NLH-108, Attachment 2 Page 81 of 169, NLH 2013 GRA

Page 133: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 72

SNC-Lavalin Inc.

-80

-60

-40

-20

0

20

40

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST06

-100

-50

0

50

100

150

200

250

300

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST06

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST06

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST06

NP-NLH-108, Attachment 2 Page 82 of 169, NLH 2013 GRA

Page 134: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 73

SNC-Lavalin Inc.

Figure 3-22: BC7-ST07, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Stony Brook 230 kV on line to Bay d’Espoir

(TL204)

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST07

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST07

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST07

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST07

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST07

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC7-ST07

NP-NLH-108, Attachment 2 Page 83 of 169, NLH 2013 GRA

Page 135: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 74

SNC-Lavalin Inc.

-100

-80

-60

-40

-20

0

20

40

60

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST07

-100

-50

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST07

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST07

0%

20%

40%

60%

80%

100%

120%

140%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST07

NP-NLH-108, Attachment 2 Page 84 of 169, NLH 2013 GRA

Page 136: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 75

SNC-Lavalin Inc.

Figure 3-23: BC7-ST08, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202)

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST08

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST08

-120

-90

-60

-30

0

30

60

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST08

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST08

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST08

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC7-ST08

NP-NLH-108, Attachment 2 Page 85 of 169, NLH 2013 GRA

Page 137: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 76

SNC-Lavalin Inc.

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST08

-50

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST08

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC7-ST08

0%

20%

40%

60%

80%

100%

120%

140%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST08

NP-NLH-108, Attachment 2 Page 86 of 169, NLH 2013 GRA

Page 138: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 77

SNC-Lavalin Inc.

Figure 3-24: BC7-ST09, Intermediate/Island Link 900 MW/Maritime Link 500 MW 6-cycle, 3-phase Fault at Bay d’Espoir 230 kV-Generator Outage G7

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC7-ST09

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC7-ST09

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC7-ST09

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC7-ST09

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC7-ST09

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC7-ST09

NP-NLH-108, Attachment 2 Page 87 of 169, NLH 2013 GRA

Page 139: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 78

SNC-Lavalin Inc.

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST09

-100

-50

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC7-ST09

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC7-ST09

0%

20%

40%

60%

80%

100%

120%

140%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC7-ST09

NP-NLH-108, Attachment 2 Page 88 of 169, NLH 2013 GRA

Page 140: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 79

SNC-Lavalin Inc.

3.3 Summer Day Light Load Conditions

For summer daytime, light load conditions, an Island load of 700 MW was

considered. Scenario BC-10 was selected for analysis as this scenario has the

highest dc link loadings. The same fault cases were studied as for Scenarios BC-2

and BC-7. The faults were seen to be generally less severe under BC-10 and the

general observations made for the previous scenarios apply to these results. The

results under BC-10 are presented in the following figures.

The only item of major significance from these studies is that the temporary over-

voltages seen at Bottom Brook when the Maritime Link is blocked and the fault

removed were higher than in the previous scenarios, reaching a maximum value of

170% for a fault at Bottom Brook 230 kV on the line to Granite Canal (Figure 3-30).

As before, this temporary over-voltage lasts for only a few cycles and is within the

temporary over-voltage capability of zinc oxide arresters (180% of maximum system

voltage for 0.1 s) and the substation equipment.

NP-NLH-108, Attachment 2 Page 89 of 169, NLH 2013 GRA

Page 141: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 80

SNC-Lavalin Inc.

Figure 3-25: BC10-ST01, Light/Island Link 900 MW/Maritime Link 500 MW Temporary Bipole Fault on Island Link

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST01

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST01

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST01

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST01

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST01

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST01

NP-NLH-108, Attachment 2 Page 90 of 169, NLH 2013 GRA

Page 142: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 81

SNC-Lavalin Inc.

-500

-400

-300

-200

-100

0

100

200

300

400

500

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST01

-200

-150

-100

-50

0

50

100

150

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST01

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST01

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST01

NP-NLH-108, Attachment 2 Page 91 of 169, NLH 2013 GRA

Page 143: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 82

SNC-Lavalin Inc.

Figure 3-26: BC10-ST02, Light/Island Link 900 MW/Maritime Link 500 MW Permanent Pole Outage on Island Link

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST02

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST02

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST02

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST02

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST02

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST02

NP-NLH-108, Attachment 2 Page 92 of 169, NLH 2013 GRA

Page 144: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 83

SNC-Lavalin Inc.

-100

-50

0

50

100

150

200

250

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST02

-100

-50

0

50

100

150

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST02

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST02

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST02

NP-NLH-108, Attachment 2 Page 93 of 169, NLH 2013 GRA

Page 145: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 84

SNC-Lavalin Inc.

Figure 3-27: BC10-ST03, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST03

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST03

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST03

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST03

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST03

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST02

NP-NLH-108, Attachment 2 Page 94 of 169, NLH 2013 GRA

Page 146: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 85

SNC-Lavalin Inc.

-400

-300

-200

-100

0

100

200

300

400

500

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST03

-150

-100

-50

0

50

100

150

200

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST03

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST03

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST03

NP-NLH-108, Attachment 2 Page 95 of 169, NLH 2013 GRA

Page 147: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 86

SNC-Lavalin Inc.

Figure 3-28: BC10-ST04, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST04

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST04

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST04

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST04

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST04

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST04

NP-NLH-108, Attachment 2 Page 96 of 169, NLH 2013 GRA

Page 148: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 87

SNC-Lavalin Inc.

-400

-300

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST04

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST04

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST04

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST04

NP-NLH-108, Attachment 2 Page 97 of 169, NLH 2013 GRA

Page 149: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 88

SNC-Lavalin Inc.

Figure 3-29: BC10-ST05-1, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon

(TL217W)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ng

le(d

eg)

wrt

Mon

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST05-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC10-ST05-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST05-1

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD Stage I-Load Shed BC10-ST05-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST05-1

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC10-ST05-1

NP-NLH-108, Attachment 2 Page 98 of 169, NLH 2013 GRA

Page 150: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 89

SNC-Lavalin Inc.

-150

-100

-50

0

50

100

150

200

250

300

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST05-1

-400

-300

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST05-1

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC10-ST05-1

0%

20%

40%

60%

80%

100%

120%

140%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST05-1

NP-NLH-108, Attachment 2 Page 99 of 169, NLH 2013 GRA

Page 151: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 90

SNC-Lavalin Inc.

Figure 3-30: BC10-ST06, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Bottom Brook 230 kV on line to Granite Canal

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST06

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST06

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST06

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST06

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST06

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

61.2

61.4

61.6

61.8

62.0

62.2

62.4

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST06

NP-NLH-108, Attachment 2 Page 100 of 169, NLH 2013 GRA

Page 152: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 91

SNC-Lavalin Inc.

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST06

-200

-150

-100

-50

0

50

100

150

200

250

300

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST06

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST06

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST06

NP-NLH-108, Attachment 2 Page 101 of 169, NLH 2013 GRA

Page 153: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 92

SNC-Lavalin Inc.

Figure 3-31: BC10-ST07, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204)

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST07

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST07

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST07

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST07

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST07

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST07

NP-NLH-108, Attachment 2 Page 102 of 169, NLH 2013 GRA

Page 154: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 93

SNC-Lavalin Inc.

-150

-130

-110

-90

-70

-50

-30

-10

10

30

50

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST07

-200

-100

0

100

200

300

400

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST07

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST07

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST07

NP-NLH-108, Attachment 2 Page 103 of 169, NLH 2013 GRA

Page 155: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 94

SNC-Lavalin Inc.

Figure 3-32: BC10-ST08, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202)

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST08

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g)

wrt

BD

E-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST08

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST08

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST08

0

50

100

150

200

250

300

350

400

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC10-ST08

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST08

NP-NLH-108, Attachment 2 Page 104 of 169, NLH 2013 GRA

Page 156: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 95

SNC-Lavalin Inc.

-400

-300

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST08

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST08

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

MFA-315 CHF-735 BC10-ST08

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

ag

e

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST08

NP-NLH-108, Attachment 2 Page 105 of 169, NLH 2013 GRA

Page 157: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 96

SNC-Lavalin Inc.

Figure 3-33: BC10-ST09, Light/Island Link 900 MW/Maritime Link 500 MW 6-cycle/3-phase Fault at Upper Salmon 230 kV-Generator Outage G1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC10-ST09

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC10-ST09

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC10-ST09

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC10-ST09

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC10-ST09

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BC10-ST09

NP-NLH-108, Attachment 2 Page 106 of 169, NLH 2013 GRA

Page 158: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 97

SNC-Lavalin Inc.

-120

-100

-80

-60

-40

-20

0

20

40

60

0 60 120 180 240 300 360 420 480 540 600

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST09

-200

-100

0

100

200

300

400

0 60 120 180 240 300 360 420 480 540 600

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC10-ST09

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC10-ST09

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC10-ST09

NP-NLH-108, Attachment 2 Page 107 of 169, NLH 2013 GRA

Page 159: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 98

SNC-Lavalin Inc.

3.4 Summer Night Extreme Light Load Conditions

For summer night-time, extreme light load conditions, an Island load of 420 MW was

considered. Scenario BC-13 was selected for analysis as this scenario has the

highest dc link loadings. The same fault cases were studied as for Scenarios BC-2,

BC-7 and BC-10. The faults were seen to be generally less severe under BC-13 and

the general observations made for the previous scenarios apply to these results.

The results under Scenario BC-13 are presented in the following figures.

The only item of major significance from these studies is that the temporary over-

voltages seen at Bottom Brook when the Maritime Link is blocked and the fault

removed were higher than in the previous scenarios, reaching a maximum value of

180% for a fault at Bottom Brook 230 kV on the line to Granite Canal (Figure 3-39).

As before, this temporary over-voltage lasts for only a few cycles and is within the

temporary over-voltage capability of zinc oxide arresters (180% for 0.1 s) and the

substation equipment.

NP-NLH-108, Attachment 2 Page 108 of 169, NLH 2013 GRA

Page 160: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 99

SNC-Lavalin Inc.

Figure 3-34: BC13-ST01, Extreme Light/Island Link 435 MW/Maritime Link 320 MW Temporary Bipole Fault on Island Link

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST01

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST01

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST01

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST01

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST01

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST01

NP-NLH-108, Attachment 2 Page 109 of 169, NLH 2013 GRA

Page 161: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 100

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST01

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST01

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST01

-120

-100

-80

-60

-40

-20

0

20

40

60

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST01

NP-NLH-108, Attachment 2 Page 110 of 169, NLH 2013 GRA

Page 162: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 101

SNC-Lavalin Inc.

Figure 3-35: BC13-ST02, Extreme Light/Island Link 435 MW/Maritime Link 320 MW Permanent Pole Outage on Island Link

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST02

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST02

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST02

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST02

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST02

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST02

NP-NLH-108, Attachment 2 Page 111 of 169, NLH 2013 GRA

Page 163: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 102

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST02

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST02

-40

-20

0

20

40

60

80

100

120

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST02

-80

-60

-40

-20

0

20

40

60

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST02

NP-NLH-108, Attachment 2 Page 112 of 169, NLH 2013 GRA

Page 164: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 103

SNC-Lavalin Inc.

Figure 3-36: BC13-ST03, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Muskrat Falls 315 kV on line to Churchill Falls

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST03

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST03

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST03

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST03

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST03

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST03

NP-NLH-108, Attachment 2 Page 113 of 169, NLH 2013 GRA

Page 165: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 104

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST03

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST03

-200

-150

-100

-50

0

50

100

150

200

250

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST03

-100

-80

-60

-40

-20

0

20

40

60

80

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST03

NP-NLH-108, Attachment 2 Page 114 of 169, NLH 2013 GRA

Page 166: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 105

SNC-Lavalin Inc.

Figure 3-37: BC13-ST04, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Bay d’Espoir 230 kV on line to Western Avalon

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST04

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST04

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST04

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST04

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST04

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST04

NP-NLH-108, Attachment 2 Page 115 of 169, NLH 2013 GRA

Page 167: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 106

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST04

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST04

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST04

-150

-100

-50

0

50

100

150

200

250

300

350

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST04

NP-NLH-108, Attachment 2 Page 116 of 169, NLH 2013 GRA

Page 168: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 107

SNC-Lavalin Inc.

Figure 3-38: BC13-ST05, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Soldiers Pond 230 kV on line to Western Avalon

(TL217W)

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST05

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST05

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST05

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy

(Hz)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST05

0

50

100

150

200

250

300

350

400

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST05

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC13-ST05

NP-NLH-108, Attachment 2 Page 117 of 169, NLH 2013 GRA

Page 169: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 108

SNC-Lavalin Inc.

-50

0

50

100

150

200

0 30 60 90 120 150 180 210 240 270 300

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST05

-300

-200

-100

0

100

200

300

400

0 30 60 90 120 150 180 210 240 270 300

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST05

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST05

0%

20%

40%

60%

80%

100%

120%

140%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST05

NP-NLH-108, Attachment 2 Page 118 of 169, NLH 2013 GRA

Page 170: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 109

SNC-Lavalin Inc.

Figure 3-39: BC13-ST06, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Bottom Brook 230 kV on line to Granite Canal

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST06

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST06

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

61.2

61.4

61.6

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST06

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST06

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST06

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST06

NP-NLH-108, Attachment 2 Page 119 of 169, NLH 2013 GRA

Page 171: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 110

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST06

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST06

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST06

-150

-100

-50

0

50

100

150

200

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST06

NP-NLH-108, Attachment 2 Page 120 of 169, NLH 2013 GRA

Page 172: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 111

SNC-Lavalin Inc.

Figure 3-40: BC13-ST07, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Stony Brook 230 kV on line to Bay d’Espoir (TL204)

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST07

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST07

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST07

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST07

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST07BC13-ST07

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST07

NP-NLH-108, Attachment 2 Page 121 of 169, NLH 2013 GRA

Page 173: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 112

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST07

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST07

-80

-60

-40

-20

0

20

40

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST07

-150

-100

-50

0

50

100

150

200

250

300

0 30 60 90 120 150 180 210 240 270 300

Re

ac

tive

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST07

NP-NLH-108, Attachment 2 Page 122 of 169, NLH 2013 GRA

Page 174: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 113

SNC-Lavalin Inc.

Figure 3-41: BC13-ST08, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Bay d’Espoir 230 kV on line to Sunnyside (TL202)

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST08

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST08

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST08

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST08

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST08

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST08

NP-NLH-108, Attachment 2 Page 123 of 169, NLH 2013 GRA

Page 175: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 114

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST08

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST08

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST08

-150

-100

-50

0

50

100

150

200

250

300

350

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST08

NP-NLH-108, Attachment 2 Page 124 of 169, NLH 2013 GRA

Page 176: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 115

SNC-Lavalin Inc.

Figure 3-42: BC13-ST09, Extreme Light/Island Link 435 MW/Maritime Link 320 MW 6-cycle/3-phase Fault at Bay d’Espoir 230 kV-Generator Outage G7

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC13-ST09

-90

-60

-30

0

30

60

90

0 30 60 90 120 150 180 210 240 270 300

Ma

ch

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

ACG-G9 CAT-G1 GCL-G1 BDE-G7 BC13-ST09

-150

-120

-90

-60

-30

0

30

0 30 60 90 120 150 180 210 240 270 300

Mach

ine

An

gle

(de

g) w

rt B

DE

-G1

-6

Cycles

HWD-SC HRP-SC SPD-SC BC13-ST09

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

60.6

60.8

61.0

0 30 60 90 120 150 180 210 240 270 300

Fre

qu

en

cy(H

z)

Cycles

BBK SPD MFA Stage I-Load Shed BC13-ST09

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC13-ST09

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270 300

Isla

nd

Lin

k D

C V

olt

age

(kV

)

Cycles

Inverter Rectifier BC13-ST09

NP-NLH-108, Attachment 2 Page 125 of 169, NLH 2013 GRA

Page 177: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 116

SNC-Lavalin Inc.

0%

20%

40%

60%

80%

100%

120%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC13-ST09

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0 30 60 90 120 150 180 210 240 270 300

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC13-ST09

-250

-200

-150

-100

-50

0

50

100

150

200

0 30 60 90 120 150 180 210 240 270 300

Ac

tive

Po

we

r(M

W)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST09

-300

-200

-100

0

100

200

300

400

0 30 60 90 120 150 180 210 240 270 300

Re

acti

ve

Po

we

r(M

VA

r)

CyclesHWD-SC HRP-SC SPD-SC BC13-ST09

NP-NLH-108, Attachment 2 Page 126 of 169, NLH 2013 GRA

Page 178: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 117

SNC-Lavalin Inc.

3.5 Optimization of High Inertia Synchronous Condensers

In order to refine the selection of the high-inertia synchronous condensers at Soldiers

Pond, a number of studies were conducted considering the temporary bipole fault

under Scenario BC-2, which appeared to be one of the defining cases for the

synchronous condenser requirements. The studies described above considered

300 MVA of synchronous condensers with an inertia constant of 7.84 kW-s/kVA.

The studies below showed that the minimum requirement for the synchronous

condensers was:

• 300 MVA of condensers with an inertia constant of 6.76 kW-s/kVA,

• 255 MVA of condensers with an inertia constant of 7.84 kW-s/kVA.

In both cases, the total inertia is approximately 2,000 MW-s.

Since there will be occasions when a high-inertia synchronous condenser is not

available, due to a fault or routine maintenance, it is essential to have a spare unit

available. The question then arises as to whether this spare unit must be on-line at

all times (hot spare) or whether it can remain off-line until required (cold spare). To

assist in this decision, a study was carried out considering a 6-cycle/3-phase fault at

Soldiers Pond 230 kV that resulted in the loss of 150 MVAr (H=7.84 kW-s/kVA) of

synchronous condenser capacity. Faults at other locations would not result in the

outage of a synchronous condenser. The results of this study are shown in Figure

3-43. It can be seen that the system recovery is satisfactory with the Maritime Link

remaining in service, even though half of the synchronous condenser capacity was

lost as a result of the fault. The same study was repeated with 1x300 MVAr

synchronous condenser. As shown in Figure 3-44, the loss of a single 300 MVAr

unit will result in system collapse.

The implication of this result is that with 1x300 MVA synchronous condenser, a spare

1x300 MVAr unit would need to be operated as a hot spare. If 2x150 MVAr units are

used with 1x150 MVAr spare unit, the spare unit can be used as a cold spare,

resulting in a saving in losses and maintenance requirements.

NP-NLH-108, Attachment 2 Page 127 of 169, NLH 2013 GRA

Page 179: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 118

SNC-Lavalin Inc.

Figure 3-43: BC2-ST10, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Soldiers Pond 230 kV-1x150 MVAr SC Outage

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g)

wrt

Mon

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST10-SC

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST10-SC

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST10-SC

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 60 120 180 240 300 360 420 480 540 600

Fre

qu

en

cy(H

z)

Cycles

BBK SPD Stage I-Load Shed BC2-ST10-SC

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST10-SC

0

50

100

150

200

250

300

350

400

450

500

0 60 120 180 240 300 360 420 480 540 600

Isla

nd

Lin

k D

C V

olt

ag

e(k

V)

Cycles

Inverter Rectifier BC2-ST10-SC

NP-NLH-108, Attachment 2 Page 128 of 169, NLH 2013 GRA

Page 180: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 119

SNC-Lavalin Inc.

-150

-100

-50

0

50

100

150

200

0 60 120 180 240 300 360 420 480 540 600

Ac

tiv

e P

ow

er(

MW

)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST10-SC

-50

0

50

100

150

200

250

300

0 60 120 180 240 300 360 420 480 540 600

Re

ac

tiv

e P

ow

er(

MV

Ar)

CyclesHWD-SC HRP-SC SPD-SC BC2-ST10-SC

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

MFA-315 CHF-735 BC2-ST10-SC

0%

20%

40%

60%

80%

100%

120%

0 60 120 180 240 300 360 420 480 540 600

Bu

s V

olt

age

Cycles

BBK-230 BDE-230 SPD-230 BC2-ST10-SC

NP-NLH-108, Attachment 2 Page 129 of 169, NLH 2013 GRA

Page 181: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 120

SNC-Lavalin Inc.

Figure 3-44: BC2-ST10-1, Winter Peak/Island Link 900 MW/Maritime Link 239 MW 6-cycle, 3-phase Fault at Soldiers Pond 230 kV-1x300 MVAr SC Outage

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt M

on

tagn

ais

CyclesCHF-A1 MFA-G1 BC2-ST10-1

-90

-60

-30

0

30

60

90

0 60 120 180 240 300 360 420 480 540 600

Mac

hin

e A

ngle

(de

g) w

rt B

DE-G

1-6

Cycles

ACG-G9 CAT-G1 GCL-G1 USL-G1 BDE-G7 BC2-ST10-1

-150

-120

-90

-60

-30

0

30

0 60 120 180 240 300 360 420 480 540 600

Ma

ch

ine

An

gle

(de

g) w

rt B

DE-G

1-6

Cycles

HWD-SC HRP-SC SPD-SC BC2-ST10-1

NP-NLH-108, Attachment 2 Page 130 of 169, NLH 2013 GRA

Page 182: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 121

SNC-Lavalin Inc.

3.6 Sensitivity of the Temporary Bipole Fault Re-Start Time

In the studies above, for a temporary bipole fault, the Island Link was blocked for

12-cycles/200 ms. This blocking time was developed from an allowance of

1.5-cycles/25 ms to detect the fault and change the operating mode of the converters

to reduce the dc current to zero and 10.5-cycles/175 ms de-ionization time to ensure

that the fault arcs had extinguished before re-starting the converters in normal

operating mode. The starting time of the converters was approximately 6 –

cycles/100 ms resulting in an overall time of 18-cycles/300 ms between fault initiation

and a return to normal power. The base case considered 2x150 MVAr high-inertia

synchronous condensers at Soldiers Pond.

Since the time required for de-ionization cannot be accurately determined and can

vary with the nature of the fault, a range of studies were carried out to examine the

maximum time that could be tolerated before the dc was re-started as a function of

the number of high-inertia synchronous condensers installed at Soldiers Pond.

A series of study results are presented in Figure 3-45. For each of these cases, the

re-start time was increased until the post-fault recovery was unsuccessful

For case BC2-ST01-3, 3x150 MVAr synchronous condensers were considered at

Soldiers Pond; the second case (BC2-ST01-4) considered 4x150 MVAr units.

In the first case the re-start time was increased until 23-cycles/380 ms after fault

inception and the dc power was ramped back up to 320 MW per pole; in the second

case the re-start time was increased to 45-cycles/750 ms and the dc power was

ramped back to 450 MW per pole following the re-start.

In both cases, the frequency at Soldiers Pond decreased to just above the first stage

load shedding frequency of 58.8 Hz. However, it can be seen that the limiting factor

is, in fact, the frequency to the west of Bay d’Espoir as seen by the frequency at

Bottom Brook, which in the second case fell below the load shedding threshold

frequency. A practical limit would therefore be less than the 45-cycles/750 ms

considered in the study, as shown below:

NP-NLH-108, Attachment 2 Page 131 of 169, NLH 2013 GRA

Page 183: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 122

SNC-Lavalin Inc.

• With 2x150 MVAr synchronous condensers:

o maximum re-start time = 12-cycles/200 ms

• With 3x150 MVAr synchronous condensers”

o maximum re-start time = 23-cycles/380 ms

• With 4x150 MVAr synchronous condensers”

o maximum re-start time = 34-cycles/567 ms

NP-NLH-108, Attachment 2 Page 132 of 169, NLH 2013 GRA

Page 184: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 123

SNC-Lavalin Inc.

Figure 3-45: BC2-ST01-3/4, Winter Peak/Island Link 900 MW/Maritime Link 239 MW Temporary Bipole Fault-Synchronous Condenser Capacity at Soldiers Pond

3-150 MVAr Synchronous Condensers

4-150 MVAr Synchronous Condensers

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST01-3

58.4

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 30 60 90 120 150 180

Fre

qu

en

cy(H

z)

Cycles

BBK SPD Stage I-Load Shed BC2-ST01-4

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

60.2

60.4

0 30 60 90 120 150 180

Fre

qu

en

cy(H

z)

Cycles

BBK SPD Stage I-Load Shed BC2-ST01-3

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180

Re

cti

fie

r D

C P

ow

er(

MW

)

Cycles

Island Maritime BC2-ST01-4

NP-NLH-108, Attachment 2 Page 133 of 169, NLH 2013 GRA

Page 185: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 124

SNC-Lavalin Inc.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Introduction

This report presented the results of the stability studies carried out to examine the

dynamic performance of the ac and dc systems including the HVdc interconnections

between Muskrat Falls and Soldiers Pond (Island Link) and between Bottom Brook

and the Nova Scotia power system (Maritime Link). The present Design Basis

considers, for the Island Link, a dc voltage level of ±350 kV and a nominal bipole

rating of 900 MW and, for the Maritime Link, a dc voltage level of ±200 kV and a

nominal bipole rating of 500 MW. This is interpreted to mean that these rated power

levels and rated voltages apply at the rectifier ends (Muskrat Falls and Bottom

Brook).

The Island Link will be essentially uni-directional from Labrador to Newfoundland,

although there will be nothing in the design of the link to prevent operation in the

reverse direction. The Maritime Link is required to have a 500 MW continuous

capability in bipolar mode in both directions.

The connection to the TransEnergie 735 kV system in Quebec was represented by a

simple equivalent at the Montagnais Substation. The Emera system in Nova Scotia

was represented by a simple equivalent at the inverter station of the Maritime Link.

The ac system between Churchill Falls and Muskrat Falls and the Island ac system

were modelled in detail.

Starting from the base case scenarios provided by Nalcor, the present studies were

designed to determine the dynamic performance of the ac/dc systems following

major faults on either the ac or dc systems. The 6-cycle/3-phase faults considered

resulted in the outage of a single element of either the ac or dc system. Because of

the relative importance of the Island Link in the overall supply capability of the Island

load, the temporary loss of both poles of the Island Link bipole was also considered.

NP-NLH-108, Attachment 2 Page 134 of 169, NLH 2013 GRA

Page 186: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 125

SNC-Lavalin Inc.

4.2 Study Objectives

The stability studies were designed to achieve the following objectives:

Objective 1

To verify that the interconnected systems of Newfoundland and Labrador with

interconnections into Quebec and Nova Scotia can operate satisfactorily through a

wide range of faults resulting in outages on the transmission network.

Objective 2

To determine the requirements in terms of control functions that will be required on

the Island and Maritime dc links,

Objective 3

To determine the requirements for additional equipment, in the form of static var

compensators and/or synchronous condensers, that will be required at or near the

converter stations to ensure satisfactory dynamic performance,

Objective 4

To verify that load shedding on the Island will not occur for the range of fault cases

examined,

Objective 5

To determine any operating requirements that must be applied to the Island and

Maritime dc links to ensure stable operation.

4.3 Results of the Studies

A major change from previous studies centres on the criterion that, in the event of a

major disturbance on the Island or on the Island Link, the export over the Maritime

Link can be discontinued. This means that the export over the Maritime Link is

acting as a form of spinning reserve for the Island system and allows the Island

system to recover quickly and successfully from all the faults considered in this

study. This method of operation was simulated by using a frequency controller on

the Maritime Link at the Bottom Brook converter to reduce the dc power level when

NP-NLH-108, Attachment 2 Page 135 of 169, NLH 2013 GRA

Page 187: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 126

SNC-Lavalin Inc.

the frequency at Bottom Brook falls below 60 Hz. Although not available in the

PSS®E model, this type of controller can operate with a dead-band to allow for

normal frequency fluctuations.

For faults that occur on the Bay d’Espoir 230 kV bus or any other 230 kV bus to the

west of Bay d’Espoir and for a temporary bipole fault on the Island Link, the voltage

and/or frequency depressions at the Bottom Brook 230 kV converter bus will result in

blocking of the Maritime Link. In some cases, faults at Soldiers Pond would also

require that the export over the Maritime Link be temporarily suspended.

In order to survive a temporary bipole fault on the Island Link or a 6-cycle/3-phase

fault at Muskrat Falls, it was found necessary to have 300 MVAr of high-inertia

(H=7.84 kW-s/kVA) synchronous condensers at the Soldiers Pond 230 kV converter

bus, in addition to two synchronous condensers at Holyrood. The Holyrood

synchronous condensers have inertia constants of 1.182 kW-s/kVA and

1.29 kW-s/kVA and contribute approximately 230 MW-s each to the total inertia of

the system. The Soldiers Pond synchronous condensers contribute 2,350 MW-s.

In order to survive a 6-cycle/3-phase fault at Bay d’Espoir during peak load periods

only, it was necessary to have either:

• 450 MVAr of high-inertia synchronous condensers at Soldiers Pond and the three

synchronous condensers at Holyrood to provide support to the voltage at Bay

d’Espoir, or

• ±250 MVAr of reactive support at Bay d’Espoir together with 300 MVAr of high-

inertia synchronous condensers at Soldiers Pond and the three synchronous

condensers at Holyrood.

The application of 50% series compensation to the 230 kV lines from Bay d’Espoir to

Sunny Side [TL203 & TL206] and to Western Avalon [new line] did not provide

sufficient reactive support to enable the system to survive.

NP-NLH-108, Attachment 2 Page 136 of 169, NLH 2013 GRA

Page 188: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 127

SNC-Lavalin Inc.

Objective 1

The study results confirmed that the interconnected systems of Newfoundland and

Labrador with interconnections into Quebec and Nova Scotia can operate

satisfactorily through a wide range of faults resulting in outages on the transmission

network.

Objective 2

The studies indicated that some form of frequency control will be required on both

the Soldiers Pond and Bottom Brook converters. The frequency controller at

Soldiers Pond would act to increase the dc power on the Island Link for a fall in

frequency on the Island. For any fault that results in blocking of the Island Link, the

frequency controller at Soldiers Pond must be disabled for a minimum period of

500 ms following the block and until the time when the frequency at Soldiers Pond is

59.9 Hz or higher. The frequency controller at Bottom Brook would act to decrease

the dc power on the Maritime Link for a fall in frequency on the Island. It should be

noted that the application of a frequency controller at the Bottom Brook converter will

preclude the use of the Maritime Link for frequency control in Nova Scotia as

frequency controllers cannot be used simultaneously at both ends of a dc link. In

addition, for a temporary bipole fault on the Island Link, an increase in the high-

inertia synchronous condenser capacity at Soldiers Pond, would allow for a longer

de-ionization period to be considered for the fault. With 300 MVAr of synchronous

condenser capacity at Soldiers Pond, the maximum time permitted until re-start after

a bipole fault is 12-cycles/200 ms. With 450 MVAr of synchronous condenser

capacity, the re-start time can be extended to 380 ms.

In many of the cases examined, it was found necessary, following a block of the

Island Link during ac system faults, to ramp the dc power back up in a staged

manner. The use of a voltage-dependent recovery control in which the rate of ramp-

up and the target dc power level is determined by the converter ac bus voltage is

recommended.

NP-NLH-108, Attachment 2 Page 137 of 169, NLH 2013 GRA

Page 189: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 128

SNC-Lavalin Inc.

Objective 3

The studies indicated that a minimum of 300 MVAr of high-inertia synchronous

condenser capacity will be required at the Soldiers Pond 230 kV converter bus. The

total inertia requirement is approximately 2,000 MW-s and, allowing for a spare unit,

could be achieved with 2x300 MVAr units; the spare unit running as a hot spare, or

with 3x150 MVAr units; the spare unit being operated as a cold spare. Since there is

a requirement for synchronous condensers at Soldiers Pond, no advantage is seen

in considering VSC technology for this converter station.

The defining cases in terms of synchronous condenser capacity requirements at

Soldiers Pond are those cases that involve a three-phase fault at Bay d’Espoir during

the winter peak load period. In such cases, the voltage recovery at Bay d’Espoir is

relatively weak and this is reflected in the voltage at Soldiers Pond and all the

substations in between. With 300 MVAr of synchronous condenser capacity at

Soldiers Pond, the voltage at Soldiers Pond recovers within the normal 80% post-

fault criterion currently is use in the NLH system and the system recovery is stable

and well damped. However, an ac voltage of less than 90% involves a significant

risk of commutation failure for the inverter when it attempts to re-start. In order to

assist the voltage recovery, it was necessary to increase the synchronous condenser

capacity at Soldiers Pond to 450 MVAr and connect all three synchronous

condensers at Holyrood.

The low probability of a three-phase fault and the fact that this requirement only

applies during the winter peak load period, raises the question of the total capacity

requirements for the synchronous condensers. The minimum synchronous

condenser capacity of 300 MVAr could be achieved with 3x150 MVAr units, which

allows for one spare unit. This would mean that during the winter peak load period,

either the risk of a three-phase fault at Bay d’Espoir is accepted or the third (spare)

synchronous condenser is connected. With such an operating philosophy,

maintenance work on any of the synchronous condensers at Soldiers Pond,

Holyrood and Hardwoods could only be scheduled outside the winter peak load

period. In the event of a synchronous condenser fault, that may involve a long repair

time that extends into the winter season, the system would be placed at risk for a

NP-NLH-108, Attachment 2 Page 138 of 169, NLH 2013 GRA

Page 190: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 129

SNC-Lavalin Inc.

three-phase fault at Bay d’Espoir. If such a fault occurred, extensive high-speed load

shedding would be required to enable the system to recover.

At Bottom Brook, dynamic reactive power control will be required to control the

temporary over-voltages that will occur when the Maritime Link blocks due to low

voltage and/or low frequency. Under extreme light load conditions with a 320 MW

export on this link, the temporary over-voltage can reach as high as 180% and must

be reduced quickly to avoid equipment damage. This dynamic reactive power

control could be achieved either in the form of a static var compensator

(+320/-100 MVAr) or in the form of VSC technology for the Bottom Brook converter.

The use of 2x250 MW VSC converters at Bottom Brook would provide up to

125 MVAr of reactive power control and an additional 195 MVAr of shunt

compensation, in the form of an SVC or switched shunt capacitors would be

required.

Bearing in mind the impact of a three-phase fault at Bay d’Espoir and the inherent

reactive support that can be provided by a VSC converter for the Maritime Link,

raises the question of the benefits that may be associated with locating the Maritime

Link converter at Bay d’Espoir instead of at Bottom Brook. Although outside the

scope of these studies, such a re-location would significantly affect the synchronous

condenser capacity required at Soldiers Pond. For faults at Bay d’Espoir, which

would require an additional 150 MVAr of high-inertia synchronous condenser at

Soldiers Pond, the location of the Maritime Link converter of the VSC type would

provide sufficient reactive support at Bay d’Espoir to enable the system to survive a

three-phase fault at Bay d’Espoir with only 300 MVAr of high-inertia synchronous

condenser capacity at Soldiers Pond.

Objective 4

With the addition of the high-inertia synchronous condensers at Soldiers Pond and

the control functions described above, there will be no necessity for load shedding on

the Island for the range of faults considered. It will be necessary to re-evaluate a

small number of fast-acting, rate-of-change-of-frequency load shedding settings that

are presently enabled on the Island system.

NP-NLH-108, Attachment 2 Page 139 of 169, NLH 2013 GRA

Page 191: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 130

SNC-Lavalin Inc.

Objective 5

The only restrictions identified on the operating modes of the Island and Maritime

Links were as follows:

• For many of the fault cases examined, it was found necessary to reduce the

export over the Maritime Link to zero to ensure a satisfactory recovery of the

Island system. The Maritime Link can be re-started manually after the Island

system has settled down at a level commensurate with the Muskrat Falls and

Island system capabilities following the fault.

• The studies showed that following a major disturbance on either the Island Link

itself or on the Island ac system, the Island Link must be re-started in a controlled

manner to avoid the risk of low voltages at the Soldiers Pond inverter bus that

might lead to commutation failure of the inverter.

It was seen that for certain faults and at specific load levels, the export over the

Maritime Link would need to be temporarily suspended. It may prove to be more

convenient to adopt an operating philosophy that would temporarily suspend this

export for all faults on the Island Link and Island 230 kV ac system. In any event, it

will be necessary for the export level over the Maritime Link to be provided to the

controllers of the Island Link to enable the required power level for a re-start of the

Island Link to be determined.

4.4 Recommendations

Based on the results of the studies described above, the following recommendations

are made:

• LCC converters to be installed for the LIL Link due to the long duration of dc fault

clearance which would also require high-inertia synchronous condensers to avoid

system collapse.

• 3x150 MVAr high-inertia (7.84 kW-s/kVA) synchronous condensers be installed

at the Soldiers Pond converter station to provide active and reactive power

support to the Island system. The normal requirement would be to have two of

these units connected at all times with the third unit used as a cold spare. This

NP-NLH-108, Attachment 2 Page 140 of 169, NLH 2013 GRA

Page 192: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 131

SNC-Lavalin Inc.

would allow maintenance to be carried out on the units at Soldiers Pond as well

as those at Holyrood and Hardwoods.

• The re-start of the Island Link be controlled to account for the temporary

shutdown of the Maritime Link following dc or 230 kV ac faults on the Island

system. The control should take the form of a limit on the dc power level to

maintain the 230 kV ac voltage at Soldiers Pond at 90% or above.

• Consideration be given to re-locating the VSC converter for the Maritime Link

from Bottom Brook to Bay d’Espoir. This would avoid the need to reinforce the

230 kV system between Bay d’Espoir and Bottom Brook and would allow the

Island system to survive a three-phase fault at Bay d’Espoir without having to

install a fourth high-inertia synchronous condenser at Soldiers Pond.

• During periods when lightning activity is forecast along the route of the Island

Link, the starting up of the third high-inertia synchronous condenser at Soldiers

Pond would increase the maximum time delay that could be tolerated before re-

starting the Island Link after a temporary bi-pole fault on the Island Link from

12-cycles/200 ms to 23-cycles/380 ms. This would allow more time for the fault

path to de-ionize.

NP-NLH-108, Attachment 2 Page 141 of 169, NLH 2013 GRA

Page 193: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 A

SNC-Lavalin Inc.

APPENDIX A

BASE CASE LOAD FLOWS

NP-NLH-108, Attachment 2 Page 142 of 169, NLH 2013 GRA

Page 194: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 A-1

SNC-Lavalin Inc.

List of Figures (Appendix A)

BC2 – Winter Peak 2017 ........................................................................................ A-2

BC7 – Spring / Fall Intermediate 2017 .................................................................... A-3

BC10 – Summer Day Light 2017............................................................................. A-4

BC 13 – Summer Night Extreme Light 2017 ........................................................... A-5

NP-NLH-108, Attachment 2 Page 143 of 169, NLH 2013 GRA

Page 195: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 A-2

SNC-Lavalin Inc.

Attachment A-1

BC2 – Winter Peak 2017

1552 MW, 814 MW Import and 239 Export

NP-NLH-108, Attachment 2 Page 144 of 169, NLH 2013 GRA

Page 196: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

101.5

19.9

80.6

40.9

81.4

45.7

134.7

27.9

89.2

12.7

6.5

MASSEY DRIVE

TL211

TL235

27.9

TL231

27.4

2.4

TL263

TL209

44.7

8.4

96.1 TL232

TL205

STONY BROOK

TL204

TL233

4.7

184.8

55.2

6.3 2.5

201.4

34.6

200.3

31.2

37.9

22.1

37.8

34.6

21.3

35.0

21.6

TL201E

70.0

12.7 11.4

68.8

183.8

51.2

SW

0.0

17.6

144.4

63.9

63.0

4.1

34.6

23.1

63.5

23.3

35.0TL242W

TL217E

TL218W

62.5

20.2

206SVL B1

236HWD B1B2

0.990-13.4

OXEN POND

238OPD B1

38.2

193.6

35.1

192.7

TL218E

11.5

247.3

405USL L34

216STB B1B2

261ACG GFL

14.1 27.4

11.6

44.7

11.7

1.0000.0

235.4

100.0

R

3.5

40.8

STEPHENVILLE

1

208MDR B1B5

1.006-20.1

135DLK B3

127.7

14.1

149.5

74.4

40.0

0.0

7300CHF TS

1134.2

338.2

1134.2

338.2

1134.2

338.2

0.9875

191.4

18.0

0.9875

191.4

18.0

1.0548

3.6

87.4

2306CHF B23

1.05214.5

3.6

86.5

2330WABUSH TS

0.923-9.7

SW

519.7

1127.9

116.0

1.0259.5 1

127.9

116.0

1127.9

116.0 3420

CHF 315 191.2

25.5

3401MFA TS

188.0

48.5

25.5

188.0

48.5

191.2

25.5

191.2

25.5

3400MFA 315S

W

222.1

144.6

48.2

144.6

46.6

48.2

144.6

46.6

3.7

144.6

CHURCHILL FALLS

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

176.5

43.8

75.1

18.3

75.1

18.2

TL234

12.6

109.9

111.2

17.5

144.5

4.8

144.1

4.7

146.5

3.7146.1

3.7

96.8

20.4

90.4

14.7

44.7

11.7

1

225.0

0.0

55.8

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

14.9

96.1

96.2

14.9

94.3

1.9

2.0

221BDE TS

8.6

21.2

8.7

28.7

229WAV B1B3

SW

116.6

TL203

TL237

222SSD B1

SUNNYSIDE

62.7

23.4

35.7

24.6

174.0

37.6

TL207

CBC

227CBC B1B2

291GCL L63

149.8

12.1

DEER LAKE

1.000-26.8

1.000-19.3

215BUC B1

BUCHANS

1.000-15.0

1.000-15.0

1.010-7.0

NEWFOUNDLAND

1.003-14.4

0.993-14.0

0.983-14.6

1.012-7.8

1.011-12.2

0.997-27.3

1.00814.4

0.9942.0

0.9952.2

1.007-14.5

1.002-12.0

205BBK B1

P = 4229.0 MW

Q = 276.8 MvarP = 613.0 MW

191.21.024

12.27380MONTAGNAIS

HYDRO-QUEBEC

Q = 27.8 Mvar

9.2

129.6TL248

1.034-12.1

136CAT L47

CAT ARM

P = 130.0 MW

Q = 22.7 Mvar

TL228 5.7

97.9

99.6

8.9 BOTTOM BROOK

135.7 75.1

18.2

P = 40.0 MW

Q = 5.8 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -4.3 Mvar

UPPER SALMON

94.4

TL

20

6

TL

20

2

P = 605.6 MW

Q = 20.1 Mvar

BAY D ESPOIR

TL201W

TL217W

89.7

32.7 37.4

12.4

1.000-11.8

54.0

145.4

145.7

54.7

TL236

TL242E

105.2

329.1 0.983

-14.2

P = 0.0 MW

Q = 37.7 MvarHARDWOODS

26.5

107.3

234HRD TS

HOLYROOD

Q = 93.2 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

450.0

211.4

450.0

211.4

407.1

209.4

7.2

21.2

13.8

8.1

Q = 7.0 Mvar

P = 80.0 MW

96.1

0.8 0.984

-24.0

2490SPD

6.4

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

119.5

45.0

117.7

50.0

119.5

45.0

117.7

50.06000

NOVA SCOTIA

Q = 172.3 Mvar

LABRADOR

- Generation: Maximum- Bipolar operation of Maritime HVDC

BC2 - WINTER PEAK 2017, 1552 MW, 814 MW IMPORT AND 239 MW EXPORT

407.1

209.4

1 0.0

246.6R

1

0.0

129.1

R

NP-NLH-108, Attachment 2 Page 145 of 169, NLH 2013 GRA

Page 197: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 A-3

SNC-Lavalin Inc.

Attachment A-2

BC7 – Spring / Fall Intermediate 2017

1100 MW, 814 Import and 500 Export

NP-NLH-108, Attachment 2 Page 146 of 169, NLH 2013 GRA

Page 198: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

191.6

34.9

162.8

91.5

166.2

82.2

105.4

30.7

168.7

32.0

20.8

MASSEY DRIVE

TL211

TL235

27.2

TL231

128.5

2.6

TL263

TL209

30.1

6.6

181.8 TL232

TL205

STONY BROOK

TL204

TL233

21.5

124.2

33.2

17.8 12.4

134.9

14.4

134.4

14.4

34.4

26.5

34.4

31.1

25.2

31.5

25.5

TL201E

21.4

6.7 24.8

21.6

123.8

34.0

SW

0.0

69.1

209.8

164.7

161.8

16.4

31.1

27.0

162.2

27.3

31.5TL242W

TL217E

TL218W

159.0

24.5

206SVL B1

236HWD B1B2

0.9940.9

OXEN POND

238OPD B1

17.1

129.8

17.3

129.4

TL218E

11.0

165.5

405USL L34

216STB B1B2

261ACG GFL

15.0 129.3

4.2

30.1

10.2

1.0000.0

484.4

249.2

R

5.2

27.0

STEPHENVILLE

1

208MDR B1B5

1.000-31.3

135DLK B3

69.2

32.3

107.3

75.5

7300CHF TS

1294.3

310.5

1294.3

310.5

1294.3

310.5

0.9875

188.8

20.2

0.9875

188.8

20.2

1.0548

431.1

83.8

2306CHF B23

1.05119.6

431.5

60.8

2330WABUSH TS

0.922-4.7

SW

514.1

1286.0

108.7

1.01911.0 1

286.0

108.7

1286.0

108.7 3420

CHF 315 188.6

27.6

3401MFA TS

185.5

46.6

27.6

185.5

46.6

188.6

27.6

188.6

27.6

3400MFA 315S

W

221.5

142.1

46.4

142.1

44.7

46.4

142.1

44.7

3.8

142.1

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

108.6

28.4

75.1

21.8

75.1

21.7

TL234

23.2

195.3

199.3

8.2

195.8

11.9

195.3

11.8

199.7

7.6199.2

7.6

184.5

21.1

173.1

9.1

30.1

10.2

1

55.7

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

14.6

2.0

2.0

14.6

2.0

10.5

10.5

221BDE TS

91.9

48.0

92.8

51.1

229WAV B1B3

SW

117.5

TL203

TL237

222SSD B1

SUNNYSIDE

42.6

49.8

35.7

24.5

145.8

15.7

TL207

CBC

227CBC B1B2

291GCL L63

222.2

15.1

DEER LAKE

215BUC B1

BUCHANS

0.988-17.2

0.988-17.2

1.005-6.2

NEWFOUNDLAND

1.007-6.3

0.994-3.8

0.985-4.5

1.000-9.6

0.991-17.8

1.007-40.3

1.00416.6

0.9924.3

0.9934.4

1.011-6.2

1.0021.8

205BBK B1

P = 4706.0 MW

Q = 430.4 MvarP = 618.0 MW

Q = 180.3 Mvar

188.61.021

14.47380MONTAGNAIS

HYDRO-QUEBEC

Q = 31.7 Mvar

15.3

69.9TL248

1.035-27.1

136CAT L47

CAT ARM

P = 70.0 MW

TL228 25.4

173.8

184.5

59.6 BOTTOM BROOK

106.1 75.1

21.7

P = 27.0 MW

Q = 10.8 Mvar

GRANITE CANAL

P = 71.0 MW

Q = 2.1 Mvar

UPPER SALMON

2.0

TL

20

6

TL

20

2

P = 528.5 MW

Q = 38.3 Mvar

BAY D ESPOIR

TL201W

TL217W

36.3

35.6 54.7

86.3

1.0002.0

43.3

98.2

98.3 42.7

TL236

TL242E

77.4

221.9 0.989

0.4

P = 0.0 MW

Q = 43.4 MvarHARDWOODS

13.3

96.9

234HRD TS

HOLYROOD

Q = 92.1 Mvar

P = 0.0 MW

- Base Case

450.0

212.5

450.0

212.5

406.2

210.3

6.3

16.1

5.1

36.8

Q = 1.0 Mvar

P = 80.0 MW

168.0

37.4

2490SPD

7.5

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

250.0

117.2

242.2

124.6

250.0

117.2

242.2

124.66000

NOVA SCOTIA

0.984-25.6

1.010-40.0

- Generation: Economic Dispatch

1

0.0

122.4

0.979-34.4

1

0.0

333.7

R

225.0

0.0

- Bipolar operation of Maritime HVDC

BC7 - SPRING/FALL INTERMEDIATE 2017, 1100 MW, 814 MW IMPORT AND 500 MW EXPORT

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEB1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

406.2

210.3

1

2

Q = 19.4 Mvar

0.0

150.9R

NP-NLH-108, Attachment 2 Page 147 of 169, NLH 2013 GRA

Page 199: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 A-4

SNC-Lavalin Inc.

Attachment A-3

BC10 – Summer Day Light 2017

700 MW, 814 MW Import and 500 MW Export

NP-NLH-108, Attachment 2 Page 148 of 169, NLH 2013 GRA

Page 200: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

187.9

30.8

146.2

68.9

148.7

64.0

55.4

47.7

170.2

33.4

22.1

MASSEY DRIVE

TL211

TL235

40.6

TL231

124.9

8.6

TL263

TL209

17.6

5.0

183.4 TL232

TL205

STONY BROOK

TL204

TL233

30.3

72.4

17.3

24.7 3.0

78.5

2.5

78.3

4.3

32.0

28.2

31.9

28.7

26.7

29.0

27.0

TL201E

97.4

13.6 27.0

100.1

72.2

20.8

SW

0.0

65.7

205.7

250.9

247.0

3.4

28.7

28.5

245.1

28.8

29.0TL242W

TL217E

TL218W

240.4

26.3

206SVL B1

236HWD B1B2

0.99812.6

OXEN POND

238OPD B1

4.2

75.6

6.1

75.5

TL218E

20.3

96.5

405USL L34

216STB B1B2

261ACG GFL

15.7 125.7

10.3

17.6

8.7

1.0000.0

484.4

249.2

R

9.6

15.3

STEPHENVILLE

1

208MDR B1B5

1.004-33.4

135DLK B3

35.7

35.9

81.6

66.6

7300CHF TS

786.6

354.5

786.6

354.5

786.6

354.5

1.0000

83.3

33.6

1.0000

83.3

33.6

1.0548

431.9

170.3

2306CHF B23

1.05912.7

432.3

145.5

2330WABUSH TS

0.924-11.1

SW

534.9

783.6

167.1

1.0396.5 7

83.6

167.1

783.6

167.1 3420

CHF 315 83.3

35.2

3401MFA TS

82.7

67.4

35.2 82.7

67.4

83.3

35.2

83.3

35.2

3400MFA 315S

W

226.7

39.3

67.6

39.3

65.6

67.6

39.3

65.6

3.6

39.3

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

59.7

26.3

44.6

26.5

44.6

26.4

TL234

23.4

190.8

194.8

9.1

188.2

15.7

187.7

15.6

191.9

1.7191.4

1.7

186.2

21.6

174.7

9.5

17.6

8.7

1 0.0

55.9

84.1

230LHR B1

83.9

56.9

WESTERN AVALON

TL208

VALE INCO

2.2

77.8

77.9

2.2

79.0

18.3

18.3

221BDE TS

161.1

64.0

163.7

58.5

229WAV B1B3

SW

114.8

TL203

TL237

222SSD B1

SUNNYSIDE

28.2

110.5

35.7

24.6

113.6

0.8

TL207

CBC

227CBC B1B2

291GCL L63

217.8

13.5

DEER LAKE

215BUC B1

BUCHANS

0.983-17.1

0.982-17.1

0.994-6.2

NEWFOUNDLAND

0.996-0.0

0.9844.3

0.9743.7

0.993-9.7

0.984-17.8

0.998-40.1

1.0229.8

1.0044.6

1.0054.6

0.9990.3

1.00213.1

205BBK B1

P = 2963.0 MW

Q = -122.4 MvarP = 824.0 MW

Q = 149.9 Mvar

83.31.029

8.97380MONTAGNAIS

HYDRO-QUEBEC

Q = 30.2 Mvar

14.9

35.9TL248

1.037-31.3

136CAT L47

CAT ARM

P = 36.0 MW

Q = 17.1 Mvar

TL228 30.3

181.3

181.0

54.3 BOTTOM BROOK

55.6 44.6

26.4

P = 27.0 MW

Q = 12.8 Mvar

GRANITE CANAL

P = 70.0 MW

Q = 7.0 Mvar

UPPER SALMON

79.1

TL

20

6

TL

20

2

P = 266.1 MW

Q = 45.2 Mvar

BAY D ESPOIR

TL201W

TL217W

10.8

33.5 58.9

148.3

1.00013.3

32.1

57.2

57.3 30.7

TL236

TL242E

52.9

129.4 0.994

12.3

P = 0.0 MW

Q = 43.1 MvarHARDWOODS

8.1

89.6

234HRD TS

HOLYROOD

Q = 91.6 Mvar

P = 0.0 MW

- Base Case

450.0

211.8

450.0

211.8

407.1

209.4

4.5

9.4

4.7

19.9

Q = 4.6 Mvar

P = 80.0 MW

174.9

45.1

2490SPD

5.6

P = 45.0 MW

- Bipolar operation of Island HVDC

86.7

250.0

117.2

242.2

124.6

250.0

117.2

242.2

124.66000

NOVA SCOTIA

0.980-25.6

1.000-39.9

1

0.0

120.0

0.978-34.9

- Generation: Economic Dispatch

1

298.7

R

0.0

225.0

- Bipolar operation of Maritime HVDC

BC10 - SUMMER DAY LIGHT 2017, 700 MW, 814 MW IMPORT AND 500 MW EXPORT

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEA1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000>230.000

407.1

209.4

1 0.0

131.9R

NP-NLH-108, Attachment 2 Page 149 of 169, NLH 2013 GRA

Page 201: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 A-5

SNC-Lavalin Inc.

Attachment A-4

BC 13 – Summer Night Extreme Light 2017

420 MW, 435 MW Import and 320 MW Export

NP-NLH-108, Attachment 2 Page 150 of 169, NLH 2013 GRA

Page 202: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

117.4

3.8

102.1

10.9

103.2

14.7

54.3

47.0

102.1

4.5

3.2

MASSEY DRIVE

TL211

TL235

39.2

TL231

96.9

6.3

TL263

TL209

8.8

0.2

109.1 TL232

TL205

STONY BROOK

TL204

TL233

16.1

36.8

6.5

13.0 12.4

38.5

22.7

38.4

20.3

17.4

31.9

17.4

14.7

29.3

14.9

29.7

TL201E

41.5

6.6 35.8

42.0

36.7

2.0

SW

15.4

6.1

119.3

138.6

136.2

15.7

14.7

31.2

136.9

31.5

14.9TL242W

TL217E

TL218W

134.2

29.9

206SVL B1

236HWD B1B2

1.0022.9

OXEN POND

238OPD B1

21.1

37.7

18.6

37.6

TL218E

55.6

46.9

405USL L34

216STB B1B2

261ACG GFL

16.2 97.3

11.9

8.8

3.9

1.0000.0

313.5

142.8

R

14.5

7.6

STEPHENVILLE

1

208MDR B1B5

1.027-19.7

135DLK B3

35.8

17.8

59.1

63.1

7300CHF TS

817.7

348.0

817.7

348.0

817.7

348.0

1.0000

34.7

48.2

1.0000

34.7

48.2

1.0548

430.8

172.4

2306CHF B23

1.05913.1

431.2

147.7

2330WABUSH TS

0.924-10.7

SW

534.8

814.4

170.3

1.0396.8 8

14.4

170.3

814.4

170.3 3420

CHF 315 34.7

48.9

3401MFA TS

34.6

61.5

48.9 34.6

61.5

34.7

48.9

34.7

48.9

3400MFA 315S

W

94.0

8.8

61.0

8.8

58.9

61.0

8.8

58.9

5.2

8.8

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

28.8

3.4

44.7

6.4

44.7

6.3

TL234

0.9

95.9

96.9

6.3

99.0

12.9

98.7

12.8

100.0

23.499.7

23.4

110.0

11.5

103.6

4.3

8.8

3.9

55.9

84.1

230LHR B1

83.9

56.9

WESTERN AVALON

TL208

VALE INCO

5.9

29.0

29.0

5.9

29.2

29.8

29.8

221BDE TS

77.9

34.0

78.5

38.6

SW 0.0

TL203

TL237

222SSD B1

SUNNYSIDE

48.0

37.2

35.7

24.6

56.6

22.5

TL207

CBC

227CBC B1B2

291GCL L63

122.9

13.0

DEER LAKE

215BUC B1

BUCHANS

1.030-11.5

1.030-11.5

1.022-6.2

NEWFOUNDLAND

1.004-3.8

0.995-1.7

0.986-2.4

1.022-8.7

1.014-12.5

0.999-24.5

1.02210.2

1.0228.1

1.0238.1

1.001-3.7

1.0033.1

205BBK B1

P = 2959.0 MW

Q = -132.2 MvarP = 476.0 MW

Q = -2.7 Mvar

34.71.032

9.87380MONTAGNAIS

HYDRO-QUEBEC

Q = 9.0 Mvar

4.4

35.9TL248

1.039-17.6

136CAT L47

CAT ARM

P = 36.0 MW

Q = -2.4 Mvar

TL228 4.0

110.1

114.9

4.1 BOTTOM BROOK

54.6 44.7

6.3

P = 27.0 MW

Q = 3.9 Mvar

GRANITE CANAL

P = 0.0 MW

Q = 0.0 Mvar

UPPER SALMON

29.3

TL

20

6

TL

20

2

P = 202.6 MW

Q = -16.9 Mvar

BAY D ESPOIR

TL201W

TL217W

7.1

19.1 29.5

73.4

1.0003.2

18.4

29.1

29.2 16.7

TL236

TL242E

16.4

65.9 1.000

2.7

P = 0.0 MW

Q = 45.9 MvarHARDWOODS

1.8

46.8

234HRD TS

HOLYROOD

Q = 90.4 Mvar

P = 0.0 MW

228.5

87.7

228.5

87.7

217.3

93.0

1.5

4.7

21.3

18.8

Q = 0.5 Mvar

P = 80.0 MW

107.9

1.4

2490SPD

6.4

P = 45.0 MW

86.7

160.0

65.2

156.8

71.4

160.0

65.2

156.8

71.46000

NOVA SCOTIA

1.022-16.1

1.000-24.4

1

0.0

70.0

1.003-21.2

1

0.0

59.0

R

- Bipolar operation of Maritime HVDC

BC13 - SUMMER NIGHT EXTREME LIGHT 2017, 420 MW, 435 MW IMPORT AND 320 MW EXPORT

- Bipolar operation of Island HVDC- Base Case

- Generation: Minimum

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEA

1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

217.3

93.0

1 0.0

13.0R

1

229WAV B1B3

NP-NLH-108, Attachment 2 Page 151 of 169, NLH 2013 GRA

Page 203: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B

SNC-Lavalin Inc.

APPENDIX B

SYSTEM MODELS

NP-NLH-108, Attachment 2 Page 152 of 169, NLH 2013 GRA

Page 204: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-1

SNC-Lavalin Inc.

Table B-1: Generator Dynamic Data

Unit-MVA Td0' Td0" Tq0' Tq0" H Xd Xq Xd' Xq' Xd" Xl S1.0 S1.2

(s) (s) (s) (s) (kW-s/kVA)

THERMAL UNITS

Soldiers Pond High Inertia Synchronous Condenser +300/-165 11 0.08 - 0.29 7.84 1.24 0.85 0.27 - 0.165 0.09 0.04 0.14

Stephenville GasTurbine #1/2 63.5 11 0.05 1.0 0.060 2.06 2.1446 1.9551 0.1706 1.2 0.1584 0.1407 0.117 0.306

Holyrood Unit #1/2 194.4 3.845 0.035 1.0 0.060 1.182 2.1142 2.045 0.2859 0.4787 0.1923 0.1607 0.1335 0.638

Holyrood Unit #3 177.2 6.8 0.06 1.0 0.060 1.29 2.15 1.94 0.26 0.55 0.22 0.1152 0.078 0.254

Hardwoods Gas Turbine #1/2 63.5 10.2 0.04 1.0 0.060 2.06 1.82 1.67 0.14 0.121 0.102 0.091 0.1581 0.3348

NLP Greenhill Gas Turbine 31.1 7.3 0.038 1.0 0.060 1.093 1.72 1.62 0.174 0.3475 0.139 0.11 0.285 0.7

CBP&P Primary Refiner 1P/3P/4P/5P/6P 10.2 1.001 0.05 1.0 0.050 1.256 1.46 1.4 0.3 0.36 0.2 0.07 0.1 0.5

CBP&P SecondaryRefiner 1S/2S/3S/4S/5S/6S 10.2 1.001 0.05 1.0 0.050 1.433 1.18 1.13 0.27 0.29 0.17 0.06 0.1 0.5

CBP&P Rejects Refiner R5/R6/R7 10.19 1.001 0.05 1.0 0.050 1.433 1.18 1.13 0.27 0.29 0.17 0.06 0.1 0.5

CBP&P Steam Unit-G2 21.8 5.246 0.033 0.2 0.314 1.1 2.4 2.17 0.26 2.17 0.188 0.119 0.135 0.584

Corner Brook Frequency Converter-60Hz 25 6 0.048 - 0.060 2.48 1.27 0.73 0.301 - 0.19 0.11 0.111 0.2862

Corner Brook Frequency Converter-50Hz 25 12.45 0.06 - 0.060 2.48 1.6 0.81 0.327 - 0.19 0.1045 0.1994 0.5814

Happy Valley GT- SynchronousCondenser Operation 26.57 10.7 0.05 3.2 0.050 1.7377 1.93 1.77 0.213 0.305 0.158 0.122 0.1843 0.6471

Unit-MVA Td0' Td0" Tq0" H Xd Xq Xd' Xd" Xl S1.0 S1.2

(s) (s) (s) (kW-s/kVA)

HYDRO UNITS

Churchill Falls Unit A1/3/5/7/9 500 9.23 0.07 0.107 3.881 0.98 0.65 0.29 0.22 0.14 0.191 0.464

Churchill Falls Unit A2/4/6/8/10/11 500 8.0 0.071 0.25 3.807 1.00 0.62 0.28 0.22 0.14 0.191 0.464

Muskrat Falls G1/4 228.9 7.41 0.07 0.07 4.1 1.027 0.559 0.34 0.254 0.15 0.086 0.293

Bay D'Espoir Unit #1 85 6.24 0.065 0.08 5.24 1.3396 0.7497 0.3001 0.1802 0.132 0.1702 0.5621

Bay D'Espoir Unit #2 85 6.24 0.065 0.08 4.868 1.3396 0.7497 0.3001 0.1802 0.132 0.1233 0.5158

Bay D'Espoir Unit #3-6 85 6.24 0.065 0.08 5.24 1.3396 0.7497 0.3001 0.1802 0.132 0.1339 0.5504

Bay D'Espoir Unit #7 172 7.2 0.07 0.08 3.883 0.945 0.357 0.229 0.142 0.12 0.1364 0.4151

Cat Arm Unit #1/2 75.5 7.3 0.083 0.06 4.02 0.912 0.4427 0.254 0.181 0.1708 0.122 0.391

Granite Canal 45 5.8 0.042 0.042 4.0 0.711 0.48 0.21 0.23 0.1569 0.1651 0.577

Hinds Lake 83 8.24 0.035 0.17 6.6 1.2871 0.75 0.225 0.196 0.1287 0.1012 0.3529

Upper Salmon 88.4 4.345 0.04 0.06 3.5 0.86 0.594 0.3 0.215 0.12 0.084 0.3889

Paradise River 8.9 0.65 0.05 0.06 3.5 1.30 0.84 0.36 0.275 0.1 0.1189 0.3788

Deer Lake PowerCompany 60 HzUnits G1-G7 13.3 5.0 0.05 0.06 4.32 1.32 0.83 0.35 0.27745 0.2 0.11 0.48

NLP Rattling Brook Hydro Plant 15 5.0 0.05 0.06 2.5 0.9 0.54 0.23 0.16 0.100 0.11 0.48

NLP Sandy BrookHydro Plant 7 5.0 0.05 0.06 3.0 1.07 0.643 0.314 0.28 0.100 0.11 0.48

Abitibi-Consolidated - GrandFalls G4 27.5 7.37 0.035 0.035 2.96 1.545 0.7451 0.359 0.3506 0.1753 0.1905 0.4741

Abitibi-Consolidated - GrandFalls G5-8 5 5.0 0.05 0.05 5.5 1.243 0.932 0.435 0.3108 0.124 0.1 0.25

ACI-CHI Star Lake Hydro Plant 20.44 3.79 0.05 0.05 6.25 1.212 1.04 0.329 0.264 0.1 0.1356 0.525

NLP Rose BlancheBrook HydroPlant 7.63 3.5 0.035 0.04 3.28 1.26 0.76 0.332 0.199 0.1 0.0545 0.2121

Deer Lake Power50 Hz G8-9 24 5.0 0.05 0.06 2.917 1.25 0.83 0.35 0.4008 0.11 0.11 0.48

Deer Lake Power50 Hz Watson's Brook Unit#1/2 5.1 5.0 0.05 0.06 6.792 1.28 0.83 0.23 0.1499 0.2 0.11 0.48

Abitibi-Consolidated - BeetonUnit G9 33.3 3.8 0.032 0.032 1.827 0.98 0.56 0.41 0.29 0.28 0.2 0.75

Abitibi-Consolidated - Bishop's Falls Plant typical data 20 5.0 0.05 0.06 2.0 1.5 1.2 0.4 0.2 0.12 0.03 0.25

Rattle Brook- G1 Algonquin Power 4.02 3.14 0.039 0.062 1.052 1.399 0.775 0.306 0.186 0.107 0.156 0.276

Montagnais HQ Equivalent 30,000 - - - 3.6 - - 0.22 - - - -

Nova Scotia Equivalent 2,000 - - - 3.6 - - 0.2 - - - -

(pu on Machine Rating)

(pu on Machine Rating)

NP-NLH-108, Attachment 2 Page 153 of 169, NLH 2013 GRA

Page 205: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-2

SNC-Lavalin Inc.

Table B-2: Generator Exciter Models

Model ID: EXST1

Parameter Churchill

Falls

Muskrat

Falls

HQ

Equivalent CB&P-G2

Grand Falls-

G4

Tr 0.02 0.02 0 0

VImax 0.0262 0.0471 13.3 0.87

VImin -0.027 -0.0476 -10.65 -0.87

Tc 0 0 1 0

Tb 0 0 1 0

Ka 400 400 200 90.676

Ta 0 0 0.001 0.02

Vrmax 7 12.3 13.3 7.5

Vrmin -7.2 -12.7 -10.65 -0.1864

Kc 0 0 0 0.2

Kf 0 0 0 0.1609

Tf 1 1 1 1

NP-NLH-108, Attachment 2 Page 154 of 169, NLH 2013 GRA

Page 206: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-3

SNC-Lavalin Inc.

Table B-3: Generator Exciter Models

Model ID: ESST1A

Parameter Bay d’Espoir Cat Arm Granite Canal

G1 G2 G3 G4 G5 G6 G1 G1

Tr 0.02 0.02 0.02 0.02 0.02 0.02 0.0 0.0 VImax 3.6 3.4 3.5 3.48 4.13 4.16 6 6 VImin -3.05 -2.88 -3 -2.95 -3.5 -3.52 -4.8 -4.8 Tc 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 Tb 0.003 0.003 0.003 0.003 0.003 0.003 0.02 0.02 Tc1 2.5 2.5 2.5 2.5 2.5 2.5 2.59 1 Tb1 22.22 22.22 22.22 22.22 22.22 22.22 8.094 3.125 Ka 400 400 400 400 400 400 250 250 Ta .003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Vamax 3.6 3.4 3.5 3.48 4.13 4.16 6 6 Vamin -3.05 -2.88 -3 -2.95 -3.5 -3.52 -4.8 -4.8 Vrmax 3.6 3.4 3.5 3.48 4.13 4.16 6 6 Vrmin -3.05 -2.88 -3 -2.95 -3.5 -3.52 -4.8 -4.8 Kc 0 0 0 0 0 0 0 0 Kf 0 0 0 0 0 0 0 0 Tf 1 1 1 1 1 1 1 1

KLR 0 0 0 0 0 0 0 0 ILR 0 0 0 0 0 0 0 0

NP-NLH-108, Attachment 2 Page 155 of 169, NLH 2013 GRA

Page 207: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-4

SNC-Lavalin Inc.

Table B-3: Generator Exciter Models

Model ID: SCRX

Parameter Bay

d’Espoir Holyrood

Hinds Lake

Upper Salmon

Grand Falls

CB&P Refiners

Bishops Falls

G7 G3 G1 G1 G5-8 - -

Ta/Tb 1 1 1 1 0.1 0.1 0.1

Tb 1 1 1 1 10 10 10

K 65 55 55 65 100 100 100

TE 0.035 0.035 0.035 0.035 0.05 0.05 0.05

Emin -5.3 -6.32 -10.2 -4.48 0 0 0

Emax 6.1 7.32 11.7 5.56 2.5 5 2.5

NP-NLH-108, Attachment 2 Page 156 of 169, NLH 2013 GRA

Page 208: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-5

SNC-Lavalin Inc.

Table B-3: Generator Exciter Models

Model ID: IEEET1

Parameter Deer Lake G1-7

Tr 0

Ka 200

Ta 0.2

Vrmax 0

Vrmin 0

KE 0

TE 1

Kf 0.07

Tf 1

E1 3

SE1 0.12

E2 4

SE2 0.47

NP-NLH-108, Attachment 2 Page 157 of 169, NLH 2013 GRA

Page 209: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-6

SNC-Lavalin Inc.

Table B-3: Generator Exciter Models

Model ID: IEEET2

Parameter Stephenville Hardwoods Paradise River

GT1-2 GT1-2 G1

Tr 0.035 0.035 0.015

Ka 700 700 400

Ta 0.22 0.22 5

Vrmax 12.5 2.573 7.5

Vrmin 0 0 0

KE 1 1 0.57

TE 1 1 0.5

Kf 0.04 0.04 0.09

Tf1 0.6 0.6 0.32

Tf2 1 1 0.07

E1 5.64 2.698 3.72

SE1 0.127 0.1781 0.0034

E2 6.767 3.9116 4.24

E2 0.448 0.3008 0.0126

NP-NLH-108, Attachment 2 Page 158 of 169, NLH 2013 GRA

Page 210: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-7

SNC-Lavalin Inc.

Table B-3: Generator Exciter Models

Model ID: BBSEX1

Parameter Cat Arm

G2

TF 0.035

T3 1.0

T4 3.91

T1 0.1

T2 0.035

K 70

Vrmax 8

Vrmin -8

Efdmax 8

Efdmin -6.4

NP-NLH-108, Attachment 2 Page 159 of 169, NLH 2013 GRA

Page 211: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-8

SNC-Lavalin Inc.

Table B-4: Supplementary Stabilizer Models

Model ID: IEEEST

Parameter Churchill Falls Muskrat Falls G1-11 G1-4

A1 0 0

A2 0 0

A3 0 0

A4 0 0

A5 0 0

A6 0 0

T1 0 0

T2 1 1

T3 0.1 0.1

T4 1 1

T5 1 1

T6 0.08 0.08

Ks 3.5 3.5

Lsmax 0.1 0.1

Lsmin -0.15 -0.15

Vcu 0 0

Vcl 0 0

NP-NLH-108, Attachment 2 Page 160 of 169, NLH 2013 GRA

Page 212: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-9

SNC-Lavalin Inc.

Table B-5: Speed Governor Models

Model ID: HYGOV

Parameter Muskrat

Falls Deer Lake

Bay d’Espoir

G1-4 G1-7 G1 G2 G3 G4 G5 G6 G7

R 0.05 0.06 0.02 0.01 0.02 0.02 0.01 0.02 0.01

r 0.44 0.5 0.44 0.35 0.26 0.41 0.34 0.34 0.4

Tr 4.88 6 14 8 12.5 14 12.5 8.25 17

Tf 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Tg 0.5 0.5 0.5 0.5 0.3 0.5 0.3 0.3 0.5

VELM 0.094 0.134 0.082 0.082 0.089 0.089 0.089 0.089 0.095

Gmax 0.945 0.79 0.835 0.835 0.892 0.892 0.892 0.892 0.947

Gmin 0 0.79 0 0 0 0 0 0 0

Tw 1.22 2 2.14 2.14 2.17 2.17 2.27 2.27 3.6

At 1.04 1.2 1.2 1.2 1.087 1.2 1.087 1.087 1.087

Dturb 0 0 0 0 0.75 0 3.5 1.25 1.15

Qnl 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.075

NP-NLH-108, Attachment 2 Page 161 of 169, NLH 2013 GRA

Page 213: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-10

SNC-Lavalin Inc.

Table B-5: Speed Governor Models

Model ID: IEEEG3

Parameter Churchill Falls

G1-11

Tg 0.3

Tp 0.04

Uo .01

Uc -0.1

Pmax 1

Pmin 0

σ 0.05

δ 0.293

Tr 5.5

Tw 1.1

a1 0.5

a2 1

a3 1.5

a4 1

NP-NLH-108, Attachment 2 Page 162 of 169, NLH 2013 GRA

Page 214: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-11

SNC-Lavalin Inc.

Table B-5: Speed Governor Models

Model ID: WPIDHY

Parameter Paradise River

G1

Treg 1.8 G0 0.15

REG 0.05 G1 0.5

Kp 1 P1 0.4118

Ki 1 G2 0.75

Kd 0 P2 0.7059

Ta 0.035 P3 1

Tb 0.035

VELmax 0.1303

VELmin -0.1215

GATmax 0.9647

GATmin 0

Tw 1.35

Pmax 1

Pmin 0

D 0

NP-NLH-108, Attachment 2 Page 163 of 169, NLH 2013 GRA

Page 215: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-12

SNC-Lavalin Inc.

Table B-5: HVdc Converter Model

Model ID: CDC4T

Parameter Units Island Link Maritime Link

ALFDY-Min. Alpha deg 5 5

GAMDY-Min. Gamma deg 18 18

TVDC-dc Voltage Transducer Time Constant s 0.01 0.01

TIDC-dc Current Transducer Time Constant s 0.01 0.01

VBLOCK-Rectifier ac Blocking Voltage pu 0.6 0.6

VUNBL Rectifier ac Unblocking Voltage pu 0.65 0.65

TBLOCK-Min. Blocking Time S 0.1 20

VBYPAS-Inverter dc Bypassing Voltage kV 235 0.6

VUNBY-Inverter ac Un-bypassing Voltage pu 0.95 0.65

TBPAS-Min. Bypassing Time s 0.1 0.1

RSVOLT-Min. dc Voltage following Block kV 10 10

RSCUR-Min. dc Current following Block A 10 10

VRAMP-Voltage Recovery Rate pu/s 10 10

CRAMP-Current Recovery Rate pu/s 10 10

C0-Min. Current Demand A 150 0

V1-VDCOL Set Point kV 100 60

C1-VDCOL Set Point A 386 375

V2-VDCOL Set Point kV 240 100

C2-VDCOL Set Point A 2,580 1,300

V3-VDCOL Set Point kV 320 200

C3-VDCOL Set Point A 2,580 1,300

TCMODE-Min Time in Switched Mode s 0.1 0.1

NP-NLH-108, Attachment 2 Page 164 of 169, NLH 2013 GRA

Page 216: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-13

SNC-Lavalin Inc.

NP-NLH-108, Attachment 2 Page 165 of 169, NLH 2013 GRA

Page 217: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 B-14

SNC-Lavalin Inc.

Table B-6: HVdc Frequency Control Model

Model ID: PAUX1

Parameter Units Soldiers Pond Bottom Brook

Tr s 0.05 0.05

TD s 0 0

Kc pu -55,000 75,000

MAX MW 10,000 0

MIN MW -1,050 -2,000

NP-NLH-108, Attachment 2 Page 166 of 169, NLH 2013 GRA

Page 218: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 C

SNC-Lavalin Inc.

APPENDIX C

PQ CURVES OF TYPICAL VSC

NP-NLH-108, Attachment 2 Page 167 of 169, NLH 2013 GRA

Page 219: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 C-1

SNC-Lavalin Inc.

PQ-Curve from ABB

NP-NLH-108, Attachment 2 Page 168 of 169, NLH 2013 GRA

Page 220: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

STABILITY STUDIES Revision

Nalcor Doc. No. ILK -SN-CD-8000-EL-RP-0001-01 B2 Date Page

SLI Doc. No. 505573-480A-47ER-0004 01 06-Mar-2012 C-2

SNC-Lavalin Inc.

PQ-Curve from Siemens

NP-NLH-108, Attachment 2 Page 169 of 169, NLH 2013 GRA

Page 221: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

+)) SNC•LAVALIN

a lear energy

Lower Churchill Project

HARMONIC IMPEDANCE STUDIES

SLI Document No.: 505573-480A-47ER-0007-00

Nalcor Reference No.: ILK-SN-CD-8000-EL-SY-0002-01-81

Date: 06-March 2012

Prepared by:

Verified by: Peter Anderson

Approved by: Satish Sud

SNC-Lavalin Inc.

NP-NLH-108, Attachment 3 Page 1 of 27, NLH 2013 GRA

Page 222: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 i

Revision

Remarks

No By Verif. Appr. Date

Issued for Acceptance

00 MEC PCA SS 06-Mar-2012

NP-NLH-108, Attachment 3 Page 2 of 27, NLH 2013 GRA

Page 223: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 ii

SNC-Lavalin Inc.

TABLE OF CONTENTS

Page No.

1 INTRODUCTION ................................................................................................................. 1

1.1 Overview of the System .................................................................................. 1 1.2 Objectives of the Studies ................................................................................ 4

2 STUDY BASIS ..................................................................................................................... 5

2.1 System Models ............................................................................................... 8 2.1.1 Generator Model ............................................................................................. 8 2.1.2 Load Model ..................................................................................................... 8 2.1.3 Line Model ...................................................................................................... 9 2.1.4 Shunt Capacitors and Reactors .....................................................................10 2.1.5 Two Winding Transformers ............................................................................10 2.1.6 Three Winding Transformers .........................................................................11

3 RESULTS OF THE STUDIES ............................................................................................ 12

3.1 Compilation of Results ...................................................................................12 3.2 Results ..........................................................................................................13

NP-NLH-108, Attachment 3 Page 3 of 27, NLH 2013 GRA

Page 224: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 iii

SNC-Lavalin Inc.

List of Figures Figure 1-1: Project Area Map .................................................................................................... 2

Figure 1-2: Provincial Transmission Grid ................................................................................... 3

Figure 2-1: Distributed Parameter PSAF-Harmo Line Model ...................................................... 9

Figure 2-2: Two Winding Transformer PSAF-Harmo Model ......................................................10

Figure 2-3: Equivalent Representation of 3-Winding Transformers ...........................................11

Figure 3-1: 11th/13th Harmonic Impedance Plot-Soldiers Pond 230 kV ......................................15

Figure 3-2: 11th/13th Harmonic Impedance Plot-Muskrat Falls 315 kV .......................................16

List of Tables Table 2-1: Base Case Scenarios ................................................................................................ 6

Table 2-2: Generation Dispatch Levels ...................................................................................... 7

Table 3-1: Max/Min AC System Impedances ............................................................................14

Appendices APPENDIX-A Base Case Load Flows APPENDIX-B Generator Data

NP-NLH-108, Attachment 3 Page 4 of 27, NLH 2013 GRA

Page 225: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 1

SNC-Lavalin Inc.

1 INTRODUCTION

1.1 Overview of the System

This Report presents the results of the harmonic impedance studies carried out to

determine the range of harmonic impedances presented by the ac systems at the

terminals of the HVdc interconnection between Muskrat Falls and Soldiers Pond

(Island Link). The converter station at Bottom Brook and the Nova Scotia power

system (Maritime Link) were not considered in this study.

Figure 1-1 provides an overview of the areas considered in these studies. The

connection to the Trans-Energie 735 kV system in Quebec was represented by a

simple equivalent at the Montagnais substation. The Emera system in Nova Scotia

was represented by a simple equivalent at the inverter station of the Maritime Link.

The ac system between Churchill Falls and Muskrat Falls and the on-island ac

system (shown in Figure 1-2) were modelled in detail. Since the objective of these

studies was to determine the harmonic impedances of the ac systems at each

converter station of the Island Link, the HVdc connections were not included in the

system model, along with any harmonic filters that may be connected as part of the

converter station design.

Starting from the base case scenarios provided by Nalcor, the present studies are

designed to determine the range of harmonic impedances that will occur under

different operating scenarios (ranging from peak load to extreme light load) for both

normal and outage conditions.

NP-NLH-108, Attachment 3 Page 5 of 27, NLH 2013 GRA

Page 226: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 2

SNC-Lavalin Inc.

Figure 1-1: Project Area Map

NP-NLH-108, Attachment 3 Page 6 of 27, NLH 2013 GRA

Page 227: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 3

SNC-Lavalin Inc.

Figure 1-2: Provincial Transmission Grid

NP-NLH-108, Attachment 3 Page 7 of 27, NLH 2013 GRA

Page 228: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 4

SNC-Lavalin Inc.

1.2 Objectives of the Studies

The harmonic impedance studies were designed to achieve the following objectives:

To develop a harmonic impedance model of the interconnected systems of

Newfoundland and Labrador with interconnections into Quebec and Nova

Scotia,

To analyze a wide range of operating scenarios for the initial year of

operation of the Island Link (2017-18) under both system normal and single

contingency outage conditions,

To formulate a range of impedances for the ac systems at Muskrat Falls and

Soldiers Pond converter stations at each harmonic frequency.

These harmonic impedance ranges will be suitable for potential suppliers to carry out

an initial design of the harmonic filtering equipment at each converter station for the

purpose of preparing a bid. Before the detailed design of these filters is undertaken,

the selected contractor should be required to repeat these studies using the latest

information from Nalcor concerning the ac system configuration and operating

scenarios.

NP-NLH-108, Attachment 3 Page 8 of 27, NLH 2013 GRA

Page 229: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 5

SNC-Lavalin Inc.

2 STUDY BASIS

NALCOR provided nineteen base case scenarios for examination. These scenarios

are presented in Table 2-1. These scenarios were reduced to eleven operating

scenarios by removing those scenarios that involved changes to only the HVdc

systems or changes to the ac system that will not affect the ac system impedance.

The eliminated scenarios were BC-14, BC-15, BC-16 and BC-17 which involved dc

outages; BC-4 which considered the 2041 peak load, but with the same ac system

and generation as in 2017 and since only the load has changed this will have little

effect on the harmonic impedances; and BC-1, BC-2 and BC-3 which are identical to

BC18, BC-19 except for the number of units connected at Muskrat Falls. These

differences were accounted for in the outage cases considered for BC-18 and BC-

19.

The major additions to the existing (2011) system planned by Nalcor consist of:

A new 230 kV line from Granite Canal to Bottom Brook to strengthen the

supply to Bottom Brook and the Western region,

A new 230 kV line from Bay d’Espoir to Western Avalon.

Following the conclusions derived from the Load Flow and Short-circuit Studies

(Nalcor MFA-SN-CD-3540-EL-SY-0001-01/ SLI 505573-480A-47ER-0003) and the

Stability Studies ((Nalcor LCP-SN-CD-8000-EL-RP-0001-01/ SLI 505573-480A-

47ER-0004), 2x150 MVAr high-inertia synchronous condensers were considered to

be connected at the Soldiers Pond 230 kV bus via suitable step-down transformers.

The above studies also showed a requirement for either a static var compensator

(SVC) at the Bottom Brook converter station or the use of VSC technology for the

converter itself. For the harmonic impedance studies, the SVC used in the load flow

and stability studies was represented as a fixed shunt element. Since the Bottom

Brook converter is electrically remote from the Soldiers Pond converter, the impact of

this will not be significant.

NP-NLH-108, Attachment 3 Page 9 of 27, NLH 2013 GRA

Page 230: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 6

SNC-Lavalin Inc.

Table 2-1: Base Case Scenarios

No. NLH System Load NS Export Bottom Brook

Island Import Muskrat Falls/Soldiers

Pond

Island Generation Comments

BC-1 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak 3-units @ Muskrat Falls

BC-2 Peak-2017(1552MW) 239MW 900/814MW Maximum Winter Peak 3-units @ Muskrat Falls

BC-3 Peak-2017(1552MW) 158MW 798/730MW Maximum Winter Peak BC-4 Peak-2041(1900MW) 0MW 900/814MW Maximum Winter Peak BC-5 Intermediate-2017(1100MW) 158MW 900/814MW Economic Dispatch Spring/Fall day BC-6 Intermediate-2017(1100MW) 158MW 276/268 Maximum Spring/Fall day BC-7 Intermediate-2017 (1100MW) 500MW 900/814MW Economic Dispatch Spring/Fall day BC-8 Light (700MW) 158MW 414/400MW Minimum Summer day BC-9 Light (700MW) 158MW 81/80MW Economic Dispatch Summer day BC-10 Light (700MW) 500MW 900/814MW Economic Dispatch Summer day BC-11 Extreme Light (420MW) 0MW 81/80MW Economic Dispatch Summer night BC-12 Extreme Light (420MW) 320MW 81/80MW Economic Dispatch Summer night BC-13 Extreme Light (420MW) 320MW 457/435MW Minimum Summer night BC-14 Peak-2017 (1552MW) -260MW 286/260MW-Monopole Maximum Winter Peak BC-15 Intermediate-2017(1100MW) 158MW 378/333MW-Monopole Economic Dispatch Spring/Fall day BC-16 Light (700MW) 500MW 638/518MW-Monopole Minimum Summer day BC-17 Extreme Light (420MW) 0MW 215/200MW-Monopole Minimum Summer night BC-18 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak

4-units @ Muskrat Falls BC-19 Intermediate-2017(1100MW) 500MW 900/814MW Economic Dispatch Winter Peak

4-units @ Muskrat Falls

NP-NLH-108, Attachment 3 Page 10 of 27, NLH 2013 GRA

Page 231: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 7

SNC-Lavalin Inc.

Table 2-2: Generation Dispatch Levels

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12 BC13 BC14 BC15 BC16 BC17 BC18 BC19MW MVA

NLH System Load (MW) 1552 1552 1552 1900 1100 1100 1100 700 700 700 420 420 420 1552 1100 700 420 1552 1100HVDC Export BBK (MW) 158 239 158 0 158 158 500 158 158 500 0 320 320 -260 158 500 0 158 500

Generation Dispatch6050 6722 4219 4229 4199 5031 5465 4357 4706 2707 2041 2963 2794 3330 2959 4205 4505 3330 2794 4219 4706824 916 602 613 618 618 757 618 618 735 824 824 378 415 476 574 618 415 378 824 824

HVDC at Soldiers Pond 815 815 730 815 815 268.5 815 400 80 815 80 80 435 260 333 518 200 815 815NLH - Hydro

Bay d'Espoir Unit 1 76.5 85 70 75 75 75 68 75 65 67 60.5 65.7 67 66 off 75 72 60 61 70 65Bay d'Espoir Unit 2 76.5 85 70 75 75 75 off 75 65 off 60.5 off off 66 66 75 72 off off 70 65Bay d'Espoir Unit 3 76.5 85 70 75 75 75 68 75 65 67 60.5 65.7 67 66 off 75 72 60 61 70 65Bay d'Espoir Unit 4 76.5 85 70 75 75 75 off 75 65 off 60.5 off off 66 off 75 72 60 off 70 65Bay d'Espoir Unit 5 76.5 85 70 75 75 75 68 75 65 off 60.5 65.7 off 66 off 75 72 60 off 70 65Bay d'Espoir Unit 6 76.5 85 70 75 75 75 off 75 65 off 60.5 65.7 off 66 off 75 72 60 off 70 65Bay d'Espoir Unit 7 155 172 145 154 154 154 off 154 135 135 135 off sc off 135 154 150 124 sc 145 135Cat Arm Unit 1 68 75.5 50 65 65 65 sc 65 35 36 36 36 46 39 36 63.5 54 36 36 50 35Cat Arm Unit 2 68 75.5 50 65 65 65 sc 65 35 sc 36 sc off off off 63.5 54 36 off 50 35Upper Salmon 84 88.4 78 84 84 84 75 84 71 75 70 70 75 75 off 84 75 70 off 78 71Hinds Lake 75 83 70 75 75 75 69 75 67 off 67 off off 69 off 75 69 67 off 70 67Granite Canal 40.5 45 32 40 40 40 28 40 27 27 27 27 27 30 27 32 28 27 off 32 27Paradise River 9 10 8 8 8 8 7 8 7 off 7 7 off 7 off 8 7 7 off 8 7

NLH - ThermalSoldiers Pond - 300 sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc scHardwoods GT1/2 57 63.5 sc sc sc 45 sc sc sc sc sc sc sc sc sc 50 sc sc sc sc scStephenville GT1 57 63.5 off off off 25 off off off off off off off off off off off off off off offHolyrood Unit 1 175 194.4 off off off off off off off off off off off off off off off off off off offHolyrood Unit 2 175 194.4 sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc scHolyrood Unit 3 159 177.2 sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc sc scHolyrood CT1 16 17.7 - - - - - - - - - - - - - - - - - - -Holyrood CT2 16 17.7 - - - - - - - - - - - - - - - - - - -

NUGSStar Lake 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4Rattle Brook 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6CBP&P 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18Exploits 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76

WindSt. Lawrence off off off off off off off off off off off off off off off off off off offFermeuse off off off off off off off off off off off off off off off off off off off

Total Generation 1783 1871 1786 1986 1313 1325 1697 922 936 1333 477 811 814 1405 1317 1300 473 1783 1697

Churchill Falls PlantMuskrat Falls Plant

Unit Size

NP-NLH-108, Attachment 3 Page 11 of 27, NLH 2013 GRA

Page 232: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 8

SNC-Lavalin Inc.

2.1 System Models

In terms of system modeling, the ac system was represented by conventional models

common to both steady-state and stability studies. This data was provided by Nalcor

in the form of PSS®E data files. This data was converted into the format required by

the PSAF-HARMO® software used for the harmonic impedance calculations. In

general, the harmonic models used in this software are based on the

recommendations of CIGRE, IEEE and IEC. A brief description of the models used

is given below.

At each frequency, specified by the user, the impedance of each element of the

system is calculated and then the Thevenin equivalent impedance is calculated at

the bus of interest. This is carried out for each base case and all the contingency

outage cases specified.

2.1.1 Generator Model

Generators were represented by their Xd” (sub-transient, d-axis reactance) values as

recommended by IEC Working Group CC02. For each harmonic, the fundamental

value is simply multiplied by the harmonic order. All generators were represented

with zero resistance.

The data for each generating unit is shown in Appendix B.

2.1.2 Load Model

The detailed CIGRE recommendations have been used for load models as shown in

the figure below.

NP-NLH-108, Attachment 3 Page 12 of 27, NLH 2013 GRA

Page 233: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 9

SNC-Lavalin Inc.

Where

CPQBRShXP

RShAXS

PVRS

/*/*

**

/2

P and Q are the fundamental real and reactive power of the load; h is the harmonic

order; and A, B and C are constants provided from the CIGRE standard database.

2.1.3 Line Model

A distributed model with skin effect was used for the line model as provided in the

PSAF-Harmo software. This model is represented by a series resistance and

inductance, a shunt capacitance, and the conductance of the line as shown in Figure

2-1 below.

Figure 2-1: Distributed Parameter PSAF-Harmo Line Model

To include skin effect, the resistance is set up to increase with frequency as follows:

R(h) = R x g(h)

Where g(h) is an approximate fit to a curve given by:

g(h) = 0.938 + 0.035 λ2 for λ < 2.4,

g(h) = 0.3 + 0.35 λ for λ ≥ 2.4,

Where λ = 0.3883 √[f0/60] √[h/R] and h=harmonic order.

This model is valid for harmonic orders of 5 and above.

NP-NLH-108, Attachment 3 Page 13 of 27, NLH 2013 GRA

Page 234: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 10

SNC-Lavalin Inc.

2.1.4 Shunt Capacitors and Reactors

The harmonic impedance of shunt capacitors was modeled directly according to

Z(f)=1/(jωC). The internal losses of the capacitor were not modeled in this analysis.

Shunt reactors were modeled directly as series R-L circuits.

2.1.5 Two Winding Transformers

The two winding transformers were represented by the model provided in the PSAF-

Harmo software: ideal transformers connected in series with a frequency dependent

resistance R and inductance L derived directly from the transformer parameters, as

shown in Figure 2-2 below.

Figure 2-2: Two Winding Transformer PSAF-Harmo Model

For three phase modelling, phase shifts of 00, +300 and -300 from primary to

secondary are supported, according to the winding connections and phase shifts

defined in the nameplate of each device.

NP-NLH-108, Attachment 3 Page 14 of 27, NLH 2013 GRA

Page 235: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 11

SNC-Lavalin Inc.

2.1.6 Three Winding Transformers

Three-winding transformers were represented as three equivalent two winding

transformers, as shown in Figure 2-3 below. Each two winding transformer was

represented by the model shown in Figure 2-1 above.

Figure 2-3: Equivalent Representation of 3-Winding Transformers

NP-NLH-108, Attachment 3 Page 15 of 27, NLH 2013 GRA

Page 236: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 12

SNC-Lavalin Inc.

3 RESULTS OF THE STUDIES

3.1 Compilation of Results

The scenarios were analyzed over the frequency range 60-3,000 Hz, i.e. up to the

50th harmonic, in steps of 1 Hz as normally required by converter manufacturers in

order to determine the appropriate filter configuration. At each frequency the ac

system impedance as seen at each converter bus was tabulated. This procedure

was carried out for all the base case scenarios and for a range of outages on each

base case. The outages considered the removal, in turn, of each element connected

to the converter bus and then the removal of each element connected one bus away

from the converter bus. In addition, outages of elements more remote from the

converter bus were examined, but the results are only included where these outages

had a measurable impact on the total impedance. For the Soldiers Pond converter,

the high-inertia synchronous condenser was represented as 2x150 MVA units and

the outage of one condenser was considered as one of the contingency cases. For

Muskrat Falls, the outages also looked at a variation in the number of generating

units connected at Muskrat Falls from four units down to zero units and in addition to

the single-contingency outage of one of the 315 kV lines to Churchill Falls, the

outage of both circuits to Churchill Falls was considered. The final selection of the

synchronous condensers (number of units and unit rating) will have a significant

impact on the harmonic impedance at Soldiers Pond as they are directly connected

to the Soldiers Pond 230 kV bus.

These results were then compiled into a series of tables for each harmonic

comprising the maximum and minimum system impedances from all the base cases

and contingency outage cases. The values considered also covered a frequency

variation of ±10% of each harmonic frequency. By considering the maximum

magnitude with the maximum phase angle, the minimum magnitude with the

minimum phase angle, the maximum magnitude with the minimum phase angle and

the minimum magnitude with the maximum phase angle, an area can be defined

within which all credible values of the system impedance will lie.

NP-NLH-108, Attachment 3 Page 16 of 27, NLH 2013 GRA

Page 237: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 13

SNC-Lavalin Inc.

3.2 Results

The resulting values from all scenarios are shown in Table 3-1 for Soldiers Pond and

Muskrat Falls. The results for each individual scenario are shown in Appendix A. It

should be noted that the max/min values of the impedance magnitude are extracted

independently of the max/min values of the impedance angle. This ensures that the

max/min values for R and X are correctly captured. For illustrative purposes only,

Figure 3-1 shows the resulting area bounded by the calculated impedance values on

an R-X plot for the 11th and 13th harmonic for Soldiers Pond 230 kV. Figure 3-2

shows the corresponding plot for Muskrat Falls 315 kV. These plots are constructed

using the following four segments for which the polar form of the impedances are

converted into rectangular form for the R-X plot:

Segment 1: Magnitude of Zmax kept constant, Phase angle varied between Θmax

and Θmin,

Segment 2: Magnitude of Zmin kept constant, Phase angle varied between Θmax

and Θmin,

Segment 3: Θmax kept constant, Magnitude varied between Zmax and Zmin,

Segment 4: Θmin kept constant, Magnitude varied between Zmax and Zmin.

This information is considered suitable for use by potential converter manufacturers

in the preliminary design of the harmonic filters.

NP-NLH-108, Attachment 3 Page 17 of 27, NLH 2013 GRA

Page 238: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 14

SNC-Lavalin Inc.

Table 3-1: Max/Min AC System Impedances

Note: Zmin/max in ohms, Θmin/max in degrees

TERMINAL →Harmonic Order ↓ Zmin θ min Zmax θ max Zmin θ min Zmax θ max

2 23.1 63.8 45.4 77.8 48.7 72 238 79.6

3 33.9 31 70.7 72.9 29.6 -66.5 905 78.9

4 33.7 22.2 119 71.5 27.8 -55.2 907 78.7

5 30.8 14.4 120 69.4 45.8 -72.5 918 74.6

6 37.8 1.6 172 69.8 45.6 -81.6 918 70.3

7 53.2 -41.7 177 69.2 3.2 -83.6 708 81.9

8 31.3 -45.7 177 68.5 3.2 -83.6 621 84.8

9 17.8 -45.7 188 65.2 3.7 -79.9 840 85.7

10 17.8 -45.3 188 61.3 18.7 66 1226 85.7

11 17.9 -45.3 181 76.3 94.3 -67.5 2443 85.6

12 22.2 -41.1 167 76.8 40.8 -78.8 3379 84.2

13 22.2 -25.9 149 77.5 28.6 -84.8 3402 81.1

14 29.9 -4.9 248 79.2 28.6 -85.5 3402 73.5

15 48.5 -4.9 564 79.7 3.4 -85.5 3287 81.8

16 61 -61.6 937 79.7 3.4 -85.5 2670 84.6

17 30 -74.1 1034 79.7 3.4 -85.5 1999 86.4

18 17.8 -76.2 1034 79.7 3.4 -83.1 971 86.4

19 15.1 -76.2 1034 75.5 6.5 -80.4 434 86.4

20 14.8 -76.2 1034 71.6 8.2 -67.3 3761 86.4

21 14.8 -76.2 872 71.6 60.7 -85 3761 86.4

22 14.8 -74.5 872 71.6 49.2 -85.7 4068 86.1

23 14.8 -74 1056 72.2 5.9 -85.7 4068 84

24 15.5 -80.7 1056 72.2 3.9 -85.7 4068 85.6

25 31.6 -81.4 1294 72.2 3.9 -85.7 8729 87.1

26 28.5 -81.4 1294 72.2 3.9 -85.7 11409 87.3

27 28.5 -81.4 1294 72.2 3.9 -85.1 11409 87.3

28 28.5 -83.2 1294 71.1 3.9 -85.1 11409 87.3

29 28.5 -84.3 1294 64.9 3.9 -85.4 11409 87.3

30 28.5 -86.3 1294 57.4 7.3 -86.9 11409 87.3

31 39.7 -86.5 982 57.4 35.5 -87 11409 87.3

32 41.2 -86.5 982 51.9 3.8 -87 8861 87.2

33 23.5 -86.5 982 51.9 3.8 -87 8845 86.2

34 23.5 -86.7 692 19.3 3.8 -87 7252 87.2

35 22.9 -87.4 294 27.4 3.8 -87 7160 87.2

36 22.9 -87.4 259 27.4 3.8 -87 5397 87.2

37 9.8 -87.4 309 57.9 3.8 -87 6587 87.2

38 9.8 -87.4 351 57.9 3.8 -87.3 6587 87.2

39 5.6 -87.4 373 57.9 3.8 -87.5 6587 87.2

40 5.1 -87.4 409 64.2 8.8 -87.6 6587 87.2

41 5.1 -87.4 461 76 3.7 -87.8 6587 87.2

42 5.1 -87.4 477 76 3.7 -87.9 6587 87.3

43 5.1 -87 564 76 3.7 -87.9 6587 87.4

44 5.1 -87.7 564 76 3.7 -87.9 6587 87.4

45 5.1 -88.4 564 76 3.7 -87.9 6587 87.4

46 5.1 -88.4 564 76 3.7 -87.9 4119 87.4

47 5.1 -88.4 564 76 3.7 -87.9 4119 87.4

48 5.1 -88.4 564 76 3.7 -87.9 4119 87.4

49 8.7 -88.4 564 76 3.7 -87.9 6184 87.4

50 4.8 -88.4 564 73.8 3.8 -87.9 6184 87.4

MUSKRAT FALLSSOLDIERS POND

NP-NLH-108, Attachment 3 Page 18 of 27, NLH 2013 GRA

Page 239: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 15

SNC-Lavalin Inc.

Figure 3-1: 11th/13th Harmonic Impedance Plot-Soldiers Pond 230 kV

NP-NLH-108, Attachment 3 Page 19 of 27, NLH 2013 GRA

Page 240: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 16

SNC-Lavalin Inc.

Figure 3-2: 11th/13th Harmonic Impedance Plot-Muskrat Falls 315 kV

NP-NLH-108, Attachment 3 Page 20 of 27, NLH 2013 GRA

Page 241: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 A

SNC-Lavalin Inc.

APPENDIX-A HARMONIC IMPEDANCE VALUES

Attachment A-1: Winter Peak and Spring/Fall Intermediate Scenarios Attachment A-2: Summer Day/Light and Night/Extreme Light Scenarios

NP-NLH-108, Attachment 3 Page 21 of 27, NLH 2013 GRA

Page 242: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 A-1

SNC-Lavalin Inc.

Attachment A-1: Scenarios

Scenario Load Island Link Maritime Link Island Dispatch

BC-18 Winter Peak 2017

1,552MW 814MW

158MW

Economic BC-19

Intermediate 2017

1,100MW

500MW

BC-5 158MW

BC-6 268MW Maximum

BC-7 814MW 500MW Economic

NP-NLH-108, Attachment 3 Page 22 of 27, NLH 2013 GRA

Page 243: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 A-2

SNC-Lavalin Inc.

Attachment A-1: Summary Results for Base Cases and Contingency Cases

Study Scenario →

2 23.1 63.8 33.1 70.2 24.1 67.5 36.3 73.5 24.7 64.7 37.7 72.6 23.9 67.6 36 73.4 24.1 67.5 36.3 73.5

3 33.9 45.3 46.1 66.2 37.3 39.8 53 68.7 35.9 36.8 48.8 66.1 36.9 40.8 52.5 68.9 37.3 39.9 53.1 68.7

4 38.1 36.1 52.3 60 38.5 30 61 59.9 36.3 33.3 59.3 61.2 38.9 30.6 60.2 59.9 38.6 30.1 60.9 59.8

5 31.3 35.5 65.4 66.5 31.5 30.4 72.2 67.3 32.6 33.8 67.7 67.9 31.6 30.8 71.9 67.3 31.6 30.4 72.3 67.3

6 37.8 39.5 75 69.4 41.9 34.2 89.4 68.8 43 36.7 88.5 69 41.5 34.7 88.2 68.9 41.9 34.3 89.3 68.8

7 53.2 37.8 97.2 69.2 59.2 30.8 112 67.8 59.7 34.3 111 67.6 58.7 32.1 111 68 59.2 30.8 112 67.9

8 64.5 28.8 114 68.5 60.8 7.4 121 65.7 68.2 8.7 120 65.8 61.7 9.2 119 66 60.8 7.5 121 65.8

9 65.2 10.5 137 65.2 59.7 -4 158 61.2 68.1 0.8 158 61.3 60.4 -3 157 61.5 59.7 -4 158 61.2

10 65.2 1.9 166 60.2 51.3 -4 163 52.4 50.3 -0.5 166 52.9 53 -3 163 53.3 51.4 -4 163 52.5

11 42.9 -3.5 167 49.9 35.1 -14 163 41.6 34.4 -14.5 166 41.1 35.4 -13.3 163 40.3 35.1 -14 163 41.5

12 42.8 -3.5 167 51.5 35.1 -14 156 61.3 34.4 -14.5 159 60.1 35.4 -13.3 158 60.9 35.1 -14 157 61.3

13 42.8 -3.5 149 56.8 35.1 -14 122 66.7 34.4 -14.5 114 67.8 35.4 -13.3 121 66.2 35.1 -14 122 66.7

14 55.1 8.6 214 66.5 47.1 9.1 227 73.6 46.6 8.8 228 73.3 47.2 9.4 225 73.2 47.2 9.1 226 73.5

15 69.5 8.6 403 69.2 61.9 6.9 446 75 61.3 7 441 74.8 63.1 7.1 439 74.7 61.9 6.9 446 75

16 73.6 -44.8 571 69.2 63.8 -53.2 693 75 66 -52.5 684 74.8 64.3 -52.5 685 74.7 63.8 -53.2 693 75

17 73.8 -67.5 606 69.2 74.7 -71.2 770 75 75.9 -71 765 74.8 76 -71 761 74.7 74.9 -71.2 769 75

18 19.9 -71 627 69.2 18.8 -73 770 74.9 19.2 -72.9 765 74.7 19 -72.9 761 74.6 18.8 -73 769 74.9

19 16.9 -71 627 70.8 16.2 -73 770 71.5 16.6 -72.9 765 70.9 16.3 -72.9 761 71.3 16.2 -73 769 71.4

20 16.4 -71 627 71.3 15.8 -73 770 71.6 16 -72.9 765 70.9 15.9 -72.9 761 71.5 15.8 -73 769 71.6

21 16.4 -71 697 71.3 15.8 -73 715 71.6 16 -72.9 693 70.9 15.9 -72.9 714 71.5 15.8 -73 716 71.6

22 16.4 -69.9 697 71.3 15.8 -70.7 715 71.6 16 -70.4 644 70.9 15.9 -70.7 714 71.5 15.8 -70.6 716 71.6

23 16.4 -67.1 790 72.2 15.8 -60.1 806 71.6 16 -61.4 839 70.9 15.9 -61 803 71.5 15.8 -60.2 806 71.6

24 16.4 -67.1 790 72.2 17.3 -67 806 69.7 17.2 -66.2 839 70 17.1 -65.9 803 69.8 17.3 -67 806 69.7

25 31.6 -67.1 1101 72.2 38.2 -69.4 1202 69.7 37.3 -68.3 1191 70 37.1 -68.3 1190 69.8 38.1 -69.4 1202 69.7

26 51.9 -67.1 1124 72.2 35.5 -69.4 1207 69.7 38.1 -68.3 1194 70 36.7 -68.3 1198 69.8 35.6 -69.4 1207 69.7

27 51.9 -79.4 1124 72.2 35.5 -79.8 1207 69.3 38.1 -80 1194 69.9 36.7 -79.7 1198 69.6 35.6 -79.8 1207 69.4

28 51.9 -83.1 1124 71.1 35.5 -83.2 1207 63.8 38.1 -83.2 1194 64.5 36.7 -83.2 1198 64.8 35.6 -83.2 1207 63.9

29 51.9 -84.3 1124 64.3 35.5 -83.6 1207 56.9 38.1 -83.7 1194 56.8 36.7 -83.7 1198 56.8 35.6 -83.6 1207 56.9

30 51.9 -84.5 1124 53.1 35.5 -85.5 1207 55.9 38.1 -85.4 1194 53.6 36.7 -85.4 1198 55.6 35.6 -85.4 1207 56.1

31 53 -85.7 879 53.1 39.8 -86.3 910 55.9 45 -86.2 916 53.6 40.4 -86.3 908 55.6 39.7 -86.3 908 56.1

32 54.8 -86.3 879 43.3 53.7 -86.3 910 44.8 50.5 -86.2 916 47.5 53.7 -86.3 908 45 53.7 -86.3 908 44.8

33 45 -86.3 879 43.3 31.7 -86.3 910 44.8 33.5 -86.2 916 47.3 32.1 -86.3 908 45 32.2 -86.3 908 44.8

34 43.5 -86.3 630 -25.1 31.6 -86.3 600 -10.2 33.5 -86.2 607 -13 31.9 -86.3 607 -11 32.1 -86.3 601 -11.1

35 24.3 -86.3 279 14.5 23.6 -87 269 16.3 24.8 -86.9 269 12.4 23.6 -86.9 270 16.3 23.6 -87 269 16.2

36 24.3 -86.3 185 14.5 23.6 -87 197 16.3 24.8 -86.9 196 12.4 23.6 -86.9 196 16.3 23.6 -87 196 16.2

37 16.6 -86.5 171 28.1 16.8 -87 177 35.6 16 -86.9 170 37 16.8 -86.9 177 35.4 16.8 -87 177 35

38 16.6 -86.5 206 28.1 16.6 -87 212 35.6 16 -86.9 218 37 16.7 -86.9 213 35.4 16.6 -87 211 35

39 7.4 -86.5 336 54.8 6.3 -87 359 56.4 6.5 -86.9 357 56.3 6.4 -86.9 355 56.3 6.4 -87 359 56.4

40 6.3 -86.5 385 54.8 5.8 -87 398 56.4 5.9 -86.9 396 60.2 5.9 -86.9 396 56.3 5.8 -87 398 56.4

41 6.3 -86.5 438 75.3 5.8 -87 436 75.5 5.9 -86.9 438 75.7 5.9 -86.9 435 75.5 5.8 -87 435 75.5

42 6.3 -86.5 477 75.3 5.8 -87 467 75.5 5.9 -86.9 470 75.7 5.9 -86.9 466 75.5 5.8 -87 467 75.5

43 6.3 -86.5 477 75.3 5.8 -86.7 467 75.5 5.9 -86.8 470 75.7 5.9 -86.7 466 75.5 5.8 -86.7 467 75.5

44 6.3 -86.7 477 75.3 5.8 -87.4 467 75.5 5.9 -87.3 470 75.7 5.9 -87.3 466 75.5 5.8 -87.4 467 75.5

45 6.3 -88.2 477 75.3 5.8 -88.3 467 75.5 5.9 -88.3 470 75.7 5.9 -88.3 466 75.5 5.8 -88.3 467 75.5

46 6.3 -88.3 477 75.3 5.8 -88.4 467 75.5 5.9 -88.4 470 75.7 5.9 -88.4 466 75.5 5.8 -88.4 467 75.5

47 6.3 -88.4 477 75.3 5.8 -88.4 467 75.5 5.9 -88.4 470 75.7 5.9 -88.4 466 75.5 5.8 -88.4 467 75.5

48 6.6 -88.4 477 75.3 6.7 -88.4 467 75.5 6.7 -88.4 470 75.7 6.7 -88.4 466 75.5 6.7 -88.4 467 75.5

49 9.2 -88.4 477 75.3 9.1 -88.4 467 75.5 8.9 -88.4 470 75.7 9.1 -88.4 466 75.5 9.1 -88.4 467 75.5

50 5.1 -88.4 477 71.9 5 -88.4 467 71.6 5 -88.4 470 71.5 5 -88.4 466 71.6 5 -88.4 467 71.6

θ minHarmonic Order ↓

BC 18 BC 19

Zmin θ min Zmax θ max Zmin θ min Zmax Zmax θ max Zmin θ min Zmax θ maxθ max

BC 5 BC 6 BC 7

Zmin θ min Zmax θ max Zmin

NP-NLH-108, Attachment 3 Page 23 of 27, NLH 2013 GRA

Page 244: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 A-3

SNC-Lavalin Inc.

Attachment A-2: Scenarios

Scenario Load Island Link Maritime Link Island Dispatch

BC-8 Light (Summer Day) 2017

700MW

400MW 158MW

Minimum

BC-9 80MW

Economic BC-10 814MW 500MW

BC-11 Extreme Light

(Summer Night) 2017

420MW

80MW 0MW

BC-12 320MW

BC-13 435MW Minimum

NP-NLH-108, Attachment 3 Page 24 of 27, NLH 2013 GRA

Page 245: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 A-4

SNC-Lavalin Inc.

Attachment A-2: Summary Results for Base Cases and Contingency Cases Study Scenario →

2 25.7 70 40.1 75.8 24.9 71.5 39.2 76.5 25.6 68.1 41.3 75.7 28.1 72.6 43.9 77.3 27.4 74.4 42.6 77.8 28.9 70.2 45.4 76.8

3 40.2 39.6 57.4 69 40.6 31 63.2 72.2 35.4 32 56.7 68.8 41.9 44 66.4 69.6 46.9 44.9 70.7 72.9 37.9 40.2 63.6 71.3

4 43.5 22.2 73.6 65.1 36.1 22.4 73.5 63.2 33.7 24.6 73.1 64.5 54 32.8 117 71 51.6 38.7 119 70.4 53.7 31.9 113 71.5

5 37 19.9 79.1 62.5 30.8 27.2 84.6 69.2 31.3 32.4 78.9 69.4 66.7 15.2 114 48.5 68.2 14.4 120 51.5 65.3 17.1 107 50.3

6 45.1 33.5 107 64.2 47.1 29.2 117 69.7 48.3 33.5 116 69.8 66.4 2.1 172 53.9 67.6 1.6 164 53.2 66.2 3.8 171 55.3

7 66.1 13.4 125 62.3 67.6 9.1 135 67.5 68.5 10.4 134 67.6 69.3 -41.5 172 53.3 69.8 -41.7 171 48.8 70.1 -41.6 177 54.9

8 58.2 -10.7 136 56.8 51 -19.8 158 62.8 59.2 -18.7 157 62.9 31.8 -45.4 171 34.4 31.3 -45.7 171 34.7 32.7 -44.5 177 34.1

9 45 -16.2 174 55.9 41.8 -22 188 58 44.9 -20.1 188 58.2 17.9 -45.4 170 50 17.8 -45.7 164 50.4 18.2 -44.5 175 48.5

10 32 -21.2 174 51 32.6 -24.4 188 49.4 32.1 -24.4 188 48.7 17.9 -45.3 170 60.9 17.8 -44.6 164 61.3 18.2 -45.1 175 60.5

11 30.9 -25 174 60.9 32.1 -26.9 179 60.2 30.8 -27.1 181 59.9 18 -45.3 111 76.2 17.9 -44.6 114 76.2 18.2 -45.1 106 76.3

12 30.9 -25 125 71.3 32.1 -26.9 119 71.5 30.8 -27.1 120 71.1 22.2 -41.1 102 76.7 22.3 -41.1 102 76.7 22.6 -39.4 103 76.8

13 32.4 -24.2 121 73.4 33.2 -25.5 125 73.1 32.2 -25.9 119 74.3 22.2 -6.1 139 77.4 22.3 -6.3 140 77.5 22.6 -6.2 138 77.2

14 38.9 8.8 229 79.2 39.3 9.7 247 78.9 39.3 8.8 248 78.8 29.9 -0.4 220 78 30 -4.9 230 78.1 29.9 1.2 212 77.8

15 48.7 24 487 79.7 49.2 14.5 564 79.3 48.5 14.8 559 79.3 55.2 -0.4 220 79.3 55.4 -4.9 230 78.9 55.2 1.2 212 79.7

16 61 -56.8 937 79.7 63.7 -61.6 842 79.3 64.8 -61.3 837 79.3 65.7 -13.6 423 79.3 66 -10.2 407 78.9 65.6 -20 435 79.7

17 66.1 -74.1 1034 79.7 65.2 -74 943 79.3 66.6 -73.9 942 79.3 31.4 -62.8 714 79.3 31.2 -62.5 708 78.9 30 -62.8 706 79.7

18 22.6 -76.2 1034 79.4 17.8 -74.8 943 78.9 18.7 -74.7 942 78.8 27.4 -62.8 714 79.3 26.6 -62.5 708 78.9 27.1 -62.8 706 79.7

19 15.1 -76.2 1034 74.9 15.3 -74.8 943 73.2 15.2 -74.7 942 73.1 27.4 -62.8 869 75.5 26.6 -62.5 716 74.7 27.1 -62.8 872 75.4

20 14.8 -76.2 1034 70.6 14.8 -74.8 943 71.2 15 -74.7 942 70.9 27.4 -62.8 869 61 26.6 -62.5 716 62.1 27.1 -62.8 872 60.8

21 14.8 -76.2 843 70.6 14.8 -74.8 789 71.2 15 -74.7 730 70.9 29.2 -50.1 869 66.9 28.3 -50.6 716 66.7 29.1 -49.9 872 66.7

22 14.8 -74.5 718 70.6 14.8 -71.1 789 71.2 15 -71.2 730 70.9 58.2 -50.1 869 66.9 62.2 -50.6 716 66.7 57.7 -49.9 872 66.7

23 14.8 -60.5 873 70.6 14.8 -60.2 852 71.2 15 -60.6 872 70.9 58.2 -73.9 1049 66.9 62.2 -73.7 1028 66.7 57.7 -74 1056 66.7

24 15.5 -74.9 873 70.6 19.5 -75.1 852 70.8 19.3 -74.8 872 70 76.7 -80.7 1049 66.9 76.1 -80.6 1028 66.7 76.2 -80.5 1056 66.7

25 36.4 -77.1 1182 70.5 35.3 -77.2 1294 70.8 36.4 -77 1274 70 32.7 -81.3 1049 61.4 32.3 -81.4 1028 62.1 32.8 -81.2 1056 60.8

26 30.1 -77.1 1271 68.2 28.5 -77.2 1294 69.9 30.1 -77 1274 69.5 32.7 -81.3 1049 51.7 32.3 -81.4 1028 57 32.8 -81.2 1056 59.3

27 30.1 -80.2 1271 65.4 28.5 -80 1294 64.3 30.1 -80.2 1274 65.3 32.7 -81.3 1049 51.7 32.3 -81.4 1028 57 32.8 -81.2 1056 59.3

28 30.1 -82.3 1271 64.9 28.5 -82.7 1294 64.3 30.1 -82.7 1274 64.1 32.7 -81.3 730 50.1 32.3 -81.4 959 50.1 32.8 -81.2 930 49.8

29 30.1 -83.4 1271 64.9 28.5 -83.3 1294 64.3 30.1 -83 1274 64.1 32.7 -81.3 591 50.1 32.3 -81.4 591 50.1 32.8 -81.2 590 49.8

30 30.1 -86.3 1271 57.1 28.5 -86.2 1294 57.4 30.1 -86.2 1274 54.8 32.7 -83.6 591 50.1 32.3 -83.8 591 50.1 32.8 -83.9 590 49.8

31 49.9 -86.5 982 54.1 43.5 -86.5 962 57.4 50.8 -86.5 969 54.8 42.4 -83.6 591 50.1 41.9 -83.8 591 50.1 41.2 -83.9 590 49.8

32 50.4 -86.5 982 51.9 52.1 -86.5 962 47 50.8 -86.5 969 49.2 42.4 -83.6 344 -4.4 41.9 -83.8 415 -5.7 41.2 -83.9 366 -3.4

33 27.5 -86.5 982 51.9 26.6 -86.5 962 46.8 27.7 -86.5 969 48.7 23.8 -83.6 182 -4.4 23.5 -83.8 185 -5.7 24 -83.9 181 -3.4

34 27.5 -86.7 692 0.7 26.6 -86.5 556 1.8 27.7 -86.5 560 0.5 23.8 -83.6 168 11.8 23.5 -83.8 178 18.5 24 -83.9 180 19.3

35 24 -87.4 294 11.8 22.9 -87.4 272 15.8 24.1 -87.3 270 12.3 23.8 -83.6 203 15.6 23.5 -83.8 259 27.4 24 -83.9 251 24.4

36 24 -87.4 207 11.8 22.9 -87.4 200 15.8 24.1 -87.3 200 12.3 23.8 -84.3 203 15.6 23.5 -84.2 259 27.4 24 -84.3 251 24.4

37 13.6 -87.4 178 44.1 14 -87.4 173 42.8 13.5 -87.3 173 44.3 9.8 -84.3 308 52.1 9.9 -84.2 305 57.7 9.8 -84.3 309 57.9

38 13.6 -87.4 218 44.1 14 -87.4 214 42.8 13.5 -87.3 222 44.3 9.8 -84.3 308 52.1 9.9 -84.2 335 57.7 9.8 -84.3 351 57.9

39 5.6 -87.4 303 57.5 5.8 -87.4 373 57.4 5.8 -87.3 373 57.4 9.8 -84.4 308 52.1 9.9 -84.2 335 57.7 9.8 -84.4 351 57.9

40 5.1 -87.4 409 64.2 5.2 -87.4 405 57.4 5.2 -87.3 404 62.7 9.8 -84.4 308 52.1 9.9 -84.2 335 57.7 9.8 -84.4 351 57.9

41 5.1 -87.4 461 76 5.2 -87.4 435 75.7 5.2 -87.3 455 75.5 9.8 -84.4 308 52.1 9.9 -84.2 335 57.7 9.8 -84.4 351 57.9

42 5.1 -87.4 475 76 5.2 -87.4 459 75.7 5.2 -87.3 472 75.5 9.8 -84.4 308 52.1 9.9 -84.2 335 58.6 9.8 -84.4 351 58.3

43 5.1 -87 564 76 5.2 -86.9 561 75.7 5.2 -86.9 552 75.5 9.8 -86.4 308 52.1 9.9 -86.4 492 58.6 9.8 -86.4 485 58.3

44 5.1 -87.7 564 76 5.2 -87.7 561 75.7 5.2 -87.7 552 75.5 9.8 -87.6 308 52.1 9.9 -87.6 492 58.6 9.8 -87.5 485 58.3

45 5.1 -88.4 564 76 5.2 -88.4 561 75.7 5.2 -88.4 552 75.5 10.8 -88.2 279 52.1 10.6 -88.2 492 58.6 10.9 -88.2 485 58.3

46 5.1 -88.4 564 76 5.2 -88.4 561 75.7 5.2 -88.4 552 75.5 10.8 -88.2 279 43.9 10.6 -88.2 492 58.6 10.9 -88.2 485 58.3

47 5.1 -88.4 564 76 5.2 -88.4 561 75.7 5.2 -88.4 552 75.5 10.8 -88.2 279 43.9 10.6 -88.2 492 58.6 10.9 -88.2 485 58.3

48 5.1 -88.4 564 76 6.3 -88.4 561 75.7 6.3 -88.4 552 75.5 10.8 -88.2 279 43.9 10.6 -88.2 492 58.6 10.9 -88.2 485 58.3

49 8.9 -88.4 564 76 8.9 -88.4 561 75.7 8.7 -88.4 552 75.5 13.1 -88.2 279 43.9 12.7 -88.2 492 58.6 13.1 -88.2 485 58.3

50 4.9 -88.4 564 73.8 4.9 -88.4 561 71.4 4.9 -88.4 552 72.1 4.8 -88.2 279 43.9 4.8 -88.2 492 58.6 4.8 -88.2 485 58.3

BC 13BC 8 BC 9 BC 10 BC 11 BC 12

Zmin θ min Zmax θ maxZmin θ min Zmax θ max Zmin θ minHarmonic Order ↓ Zmax θ max Zmin θ min Zmax θ maxZmin θ min Zmax θ max Zmin θ minZmax θ max

NP-NLH-108, Attachment 3 Page 25 of 27, NLH 2013 GRA

Page 246: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 B

SNC-Lavalin Inc.

APPENDIX-B GENERATOR DATA

NP-NLH-108, Attachment 3 Page 26 of 27, NLH 2013 GRA

Page 247: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HARMONIC IMPEDANCE STUDIES Revision Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0002-01 B1 Date Page

SLI Doc. No. 505573-480A-47ER-0007 00 06-Mar-2012 B-1

SNC-Lavalin Inc.

Table B-1: Generator Dynamic Data

Unit-MVA Td0' Td0" Tq0' Tq0" H Xd Xq Xd' Xq' Xd" Xl S1.0 S1.2(s) (s) (s) (s) (kW-s/kVA)

THERMAL UNITS

Soldiers Pond High Inertia Synchronous Condenser +300/-165 11 0.08 - 0.29 7.84 1.24 0.85 0.27 - 0.165 0.09 0.04 0.14Stephenville GasTurbine #1/2 63.5 11 0.05 1.0 0.060 2.06 2.1446 1.9551 0.1706 1.2 0.1584 0.1407 0.117 0.306Holyrood Unit #1/2 194.4 3.845 0.035 1.0 0.060 1.182 2.1142 2.045 0.2859 0.4787 0.1923 0.1607 0.1335 0.638Holyrood Unit #3 177.2 6.8 0.06 1.0 0.060 1.29 2.15 1.94 0.26 0.55 0.22 0.1152 0.078 0.254Hardwoods Gas Turbine #1/2 63.5 10.2 0.04 1.0 0.060 2.06 1.82 1.67 0.14 0.121 0.102 0.091 0.1581 0.3348NLP Greenhill Gas Turbine 31.1 7.3 0.038 1.0 0.060 1.093 1.72 1.62 0.174 0.3475 0.139 0.11 0.285 0.7CBP&P Primary Refiner 1P/3P/4P/5P/6P 10.2 1.001 0.05 1.0 0.050 1.256 1.46 1.4 0.3 0.36 0.2 0.07 0.1 0.5CBP&P SecondaryRefiner 1S/2S/3S/4S/5S/6S 10.2 1.001 0.05 1.0 0.050 1.433 1.18 1.13 0.27 0.29 0.17 0.06 0.1 0.5CBP&P Rejects Refiner R5/R6/R7 10.19 1.001 0.05 1.0 0.050 1.433 1.18 1.13 0.27 0.29 0.17 0.06 0.1 0.5CBP&P Steam Unit-G2 21.8 5.246 0.033 0.2 0.314 1.1 2.4 2.17 0.26 2.17 0.188 0.119 0.135 0.584Corner Brook Frequency Converter-60Hz 25 6 0.048 - 0.060 2.48 1.27 0.73 0.301 - 0.19 0.11 0.111 0.2862Corner Brook Frequency Converter-50Hz 25 12.45 0.06 - 0.060 2.48 1.6 0.81 0.327 - 0.19 0.1045 0.1994 0.5814Happy Valley GT- SynchronousCondenser Operation 26.57 10.7 0.05 3.2 0.050 1.7377 1.93 1.77 0.213 0.305 0.158 0.122 0.1843 0.6471

Unit-MVA Td0' Td0" Tq0" H Xd Xq Xd' Xd" Xl S1.0 S1.2(s) (s) (s) (kW-s/kVA)

HYDRO UNITS

Churchill Falls Unit A1/3/5/7/9 500 9.23 0.07 0.107 3.881 0.98 0.65 0.29 0.22 0.14 0.191 0.464Churchill Falls Unit A2/4/6/8/10/11 500 8.0 0.071 0.25 3.807 1.00 0.62 0.28 0.22 0.14 0.191 0.464 Muskrat Falls G1/4 228.9 7.41 0.07 0.07 4.1 1.027 0.559 0.34 0.254 0.15 0.086 0.293Bay D'Espoir Unit #1 85 6.24 0.065 0.08 5.24 1.3396 0.7497 0.3001 0.1802 0.132 0.1702 0.5621Bay D'Espoir Unit #2 85 6.24 0.065 0.08 4.868 1.3396 0.7497 0.3001 0.1802 0.132 0.1233 0.5158Bay D'Espoir Unit #3-6 85 6.24 0.065 0.08 5.24 1.3396 0.7497 0.3001 0.1802 0.132 0.1339 0.5504Bay D'Espoir Unit #7 172 7.2 0.07 0.08 3.883 0.945 0.357 0.229 0.142 0.12 0.1364 0.4151Cat Arm Unit #1/2 75.5 7.3 0.083 0.06 4.02 0.912 0.4427 0.254 0.181 0.1708 0.122 0.391Granite Canal 45 5.8 0.042 0.042 4.0 0.711 0.48 0.35 0.23 0.1569 0.1651 0.577Hinds Lake 83 8.24 0.035 0.17 6.6 1.2871 0.75 0.225 0.196 0.1287 0.1012 0.3529Upper Salmon 88.4 4.345 0.04 0.06 3.5 0.86 0.594 0.3 0.215 0.12 0.084 0.3889Paradise River 8.9 0.65 0.05 0.06 3.5 1.30 0.84 0.36 0.275 0.1 0.1189 0.3788Deer Lake PowerCompany 60 HzUnits G1-G7 13.3 5.0 0.05 0.06 4.32 1.32 0.83 0.35 0.27745 0.2 0.11 0.48NLP Rattling Brook Hydro Plant 15 5.0 0.05 0.06 2.5 0.9 0.54 0.23 0.16 0.100 0.11 0.48NLP Sandy BrookHydro Plant 7 5.0 0.05 0.06 3.0 1.07 0.643 0.314 0.28 0.100 0.11 0.48Abitibi-Consolidated - GrandFalls G4 27.5 7.37 0.035 0.035 2.96 1.545 0.7451 0.359 0.25 0.1753 0.1905 0.4741Abitibi-Consolidated - GrandFalls G5-8 5 5.0 0.05 0.05 5.5 1.243 0.932 0.435 0.3108 0.124 0.1 0.25ACI-CHI Star Lake Hydro Plant 20.44 3.79 0.05 0.05 6.25 1.212 1.04 0.329 0.264 0.1 0.1356 0.525NLP Rose BlancheBrook HydroPlant 7.63 3.5 0.035 0.04 3.28 1.26 0.76 0.332 0.199 0.1 0.0545 0.2121Deer Lake Power50 Hz G8-9 24 5.0 0.05 0.06 2.917 1.25 0.83 0.35 0.2 0.11 0.11 0.48Deer Lake Power50 Hz Watson's Brook Unit#1/2 5.1 5.0 0.05 0.06 6.792 1.28 0.83 0.23 0.1499 0.2 0.11 0.48Abitibi-Consolidated - BeetonUnit G9 33.3 3.8 0.032 0.032 1.827 0.98 0.56 0.41 0.29 0.28 0.2 0.75Abitibi-Consolidated - Bishop's Falls Plant typical data 20 5.0 0.05 0.06 2.0 1.5 1.2 0.4 0.2 0.12 0.03 0.25Rattle Brook- G1 Algonquin Power 4.02 3.14 0.039 0.062 1.052 1.399 0.775 0.306 0.186 0.107 0.156 0.276Montagnais HQ Equivalent 30,000 - - - 3.6 - - 0.22 - - - -Nova Scotia Equivalent 2,000 - - - 3.6 - - 0.2 - - - -

(pu on Machine Rating)

(pu on Machine Rating)

NP-NLH-108, Attachment 3 Page 27 of 27, NLH 2013 GRA

Page 248: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

+)) SNC • LA VALIN

Lower Churchill Project

LOAD FLOW AND SHORT CIRCUIT STUDIES

SLI Document No.: 505573-480A-47ER-0003-02

Nalcor Reference No. ILK-SN-CD-8000-EL-SY -0001-01-83

Date: 05-Apr-2012

Prepared by: Jl' MohamdEi Chehaly

Verified by: . o'jV ~- ~vc . ~erson

Approved by: Satish Sud

NP-NLH-108, Attachment 4 Page 1 of 89, NLH 2013 GRA

Page 249: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 i

Revision

Remarks

No By Verif. Appr. Date

Re-Issued for Use

Re-Issued for Use

Issued for Use

02 MEC PA SS 05-Apr-2012

01 MEC PA SS 6-Mar-2012

00 MEC PA SS 1-Nov-2011

NP-NLH-108, Attachment 4 Page 2 of 89, NLH 2013 GRA

Page 250: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 ii

TABLE OF CONTENTS

Page No.

1 INTRODUCTION ................................................................................................................ 1

2 STUDY BASIS .................................................................................................................... 5

3 RESULTS OF THE STUDIES ............................................................................................10 3.1 Base Case Scenarios: BC-1, BC-2 .........................................................................10 3.2 Base Case Scenario: BC-3 .....................................................................................12 3.3 Pole Outages ..........................................................................................................13 3.4 Base Case Scenario BC-4 ......................................................................................14 3.5 Base Case Scenario BC-5 ......................................................................................14 3.6 Base Case Scenario BC-6 ......................................................................................15 3.7 Base Case Scenario BC-7 ......................................................................................16 3.8 Base Case Scenario BC-8 ......................................................................................18 3.9 Base Case Scenario BC-9 ......................................................................................18 3.10 Base Case Scenario BC-10 ....................................................................................19 3.11 Base Case Scenario BC-11 ....................................................................................22 3.12 Base Case Scenario BC-12 ....................................................................................22 3.13 Base Case Scenario BC-13 ....................................................................................23 3.14 Base Case Scenario BC-14 ....................................................................................24 3.15 Base Case Scenario BC-15 ....................................................................................25 3.16 Base Case Scenario BC-16 ....................................................................................25 3.17 Base Case Scenario BC-17 ....................................................................................27 3.18 Base Case Scenario BC-18 ....................................................................................28 3.19 Base Case Scenario BC-19 ....................................................................................28

4 SHORT CIRCUIT LEVELS ................................................................................................30 4.1 Maximum Fault Levels ............................................................................................31 4.2 Minimum Fault Levels .............................................................................................32

5 CONCLUSIONS ................................................................................................................34 5.1 AC System Mitigating Measures .............................................................................34 5.2 Operating Modes ....................................................................................................35 5.3 Island Link Main Parameters ...................................................................................41 5.4 Maritime Link ..........................................................................................................41 5.5 Reactive Compensation Requirements ...................................................................42 5.6 Short-Circuit Levels.................................................................................................42

NP-NLH-108, Attachment 4 Page 3 of 89, NLH 2013 GRA

Page 251: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 iii

List of Figures

Figure 1-1: Project Area Map .................................................................................................... 3 Figure 1-2: Provincial Transmission Grid ................................................................................... 4 List of Tables

Table 2-1: Base Case Scenarios ................................................................................................ 8 Table 2-2: Generation Dispatch Levels ...................................................................................... 9 Table 3-1: Healthy Pole Loading Levels following a Pole Outage ..............................................13 Table 4-1: Maximum Fault Levels .............................................................................................31 Table 4-2: Maximum Fault Levels with SC at SPD ....................................................................31 Table 4-3: Muskrat Falls Converter Station ...............................................................................32 Table 4-4: Soldiers Pond Converter Station ..............................................................................32 Table 4-5: Bottom Brook Converter Station ...............................................................................32 Table 4-6: Minimum ESCR under Line Outage Conditions ........................................................33 Table 5-1: Summary of 230 kV Line Overloads .........................................................................40 Table 5-2: Island Link Major Parameters ...................................................................................41 Table 5-3: Maritime Link Major Parameters ...............................................................................41 Table 5-4: Maximum Fault Levels .............................................................................................42 Table 5-5: Maximum Fault Levels with SC at SPD ....................................................................43 Table 5-6: Minimum ESCR/Fault Levels-System Normal ..........................................................43 Table 5-7: Minimum ESCR/Fault Levels-Outage Conditions .....................................................43 Appendices APPENDIX-A Base Case Load Flow Plots

NP-NLH-108, Attachment 4 Page 4 of 89, NLH 2013 GRA

Page 252: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 iv

NLH Index of Substation Names

Location ID Location ID

Barachoix BCX Holyrood HRD Bay d’Espoir BDE Howley HLY Bay L’Argent BLA Indian River IRV Bear Cove BCV Jackson’s Arm JAM Berry Hill BHL Linton Lake LLK Bottom Brook BBK Long Harbour LHR Bottom Waters BWT Main Brook MBK Buchans BUC Massey Drive MDR Cat Arm CAT Monkstown MKS Churchill Falls CFA Muskrat Falls MFA Come-by-Chance CBC Oxen Pond OPD Coney Arm CAM Paradise River PRV Conne River CRV Parson’s Pond PPD Corner Brook Freq. Conv. CBF Peter’s Barren PBN Cow Head CHD Plum Point PPT Daniels Harbour DHR Rattle Brook RBK Deer Lake DLK Rocky Harbour RHR Doyles DLS Roddicton Woodchip RWC Duck Pond DPD Sally’s Cove SCV English Harbour West EHW Soldiers Pond SPD Farewell Head FHD South Brook SOK Glenburnie GLB Springdale SPL Glenwood GWD St.Anthony Airport STA Grand Bay GBY St.Anthony Diesel Plant SDP Grandy Brook GBK Star Lake SLK Grand Falls Freq. Conv. GFC Stephenville SVL Granite Canal GCL Stony Brook STB Hampden HDN Sunnyside SSD Happy Valley HVY Upper Salmon USL Hardwoods HWD Western Avalon WAV Hawkes Bay HBY Wiltondale WDL Hinds Lake HLK

NP-NLH-108, Attachment 4 Page 5 of 89, NLH 2013 GRA

Page 253: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 1

1 INTRODUCTION

This Report presents the results of the load flow studies carried out to examine the

steady-state performance of the Newfoundland and Labrador (NLH) power system

with the HVdc interconnections between Muskrat Falls and Soldiers Pond and

between Bottom Brook and the Nova Scotia (NS) power system. The present

Design Basis considers, for the Muskrat Falls-Soldiers Pond link (the “Island” link), a

dc voltage level of ±350 kV and a nominal bipole rating of 900 MW and, for the

Bottom Brook-Nova Scotia link (the “Maritime” link), a dc voltage level of ±200 kV

and a nominal bipole rating of 500 MW. This is interpreted to mean that these rated

power levels and rated voltages apply at the rectifier ends (Muskrat Falls and Bottom

Brook).

In addition to the nominal ratings above, the Design Basis calls for a 10-minute

overload capability of 200% and a continuous overload capability of 150%, both in

mono-polar mode on the Island link. This is to enable the island system to ride

through a permanent pole outage on the Island link without having to shed load. It

may be necessary, after such a permanent pole outage, to reduce the export to Nova

Scotia on the Maritime link. The Island link will be essentially unidirectional from

Labrador to Newfoundland, although there will be nothing in the design of the link to

prevent operation in the reverse direction. The Maritime link is required to have a

500 MW continuous capability in bipolar mode in both directions.

NP-NLH-108, Attachment 4 Page 6 of 89, NLH 2013 GRA

Page 254: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 2

Figure 1-1 provides an overview of the areas considered in these studies. The

connection to the Trans-Energie 735 kV system in Quebec was represented by a

simple equivalent at the Montagnais substation. The Emera system in Nova Scotia

was represented by a simple equivalent at the inverter station of the Maritime link.

The ac system between Churchill Falls and Muskrat Falls and the on-island ac

system (see Figure 1-2) were modelled in detail.

Starting from the base case scenarios provided by Nalcor, the present load flow

studies are designed to:

quantify the operating modes that will be possible, both in normal and outage

conditions

define the overload requirements for the Island link,

define the limits on the export levels on the Maritime link,

determine the reactive compensation requirements in the Island system

under a variety of operating modes,

determine the maximum and minimum short circuit levels (fault levels) that

will occur at the converter station ac busses at Muskrat Falls, Soldiers Pond

and Bottom Brook,

identify any system conditions that will result in overloads or under-voltages,

requiring mitigating measures on the ac systems in Labrador and on the

Island.

NP-NLH-108, Attachment 4 Page 7 of 89, NLH 2013 GRA

Page 255: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 3

Figure 1-1: Project Area Map

+)) SNC • LAVALIN

Montosns •

NEW BRUNSWICk

ft~Oil •

PRINCE ,£OWARD ISLAND

QUEBEC

Hydrc> J>ant Unl ts

6_ ......... s IMUIId t f. 4

H\ldc System

M .»l.1n f~k ~ So 151ft frilled

e.u . ...... .. u..,.,.

A!Januc Ocean

Unit lbtln~ Total R:atlns

450MW ll50t/IW

lOiMW &l4MW

,Sip ole R:atins 11ott3ce -- - !UM.\1 -- : l .e.M\1

ll&Uo D . ...... -18 CU-SI-

• lliL.a.i.ln

.,._.,. ~ .. c..

NP-NLH-108, Attachment 4 Page 8 of 89, NLH 2013 GRA

Page 256: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 4

Figure 1-2: Provincial Transmission Grid

+)) SNC • LAVALIN

LEGEND

73SkV ax!) 230 kV ®0 138 kV $ 691tV • LOW VOLTAGE

CUSlOMfl OWN EO • • HYDRO PlANT 1::..

• TH•IUAAI. PlANT 0

y • URMINAL SlATION

• DIESEl PlANT

II GAS TUUINE

Quebec

FRIO. CONVElTOit

AI Rill Nf. POWEI

COkNflt UOO« PULl AND PAPER.

AlGONQUIN POWEt

MUSHUAU 1 a NA110N

MARY'S HL HYDIO

Rr:ONltER POW£t SYSTEMS

Labrador

LCP Admin Rec. No. r-------1200-120145-0001 2

Quebec

\ MfNIHO::

NATUASHIStt /i

labrador

... Sl.llfNDANS ,.

Atlantic Ocean

. lii.PASUY

Provincial Generation and Transmission Grid UpctaNd Jun• 2006

NP-NLH-108, Attachment 4 Page 9 of 89, NLH 2013 GRA

Page 257: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 5

2 STUDY BASIS

NALCOR provided nineteen base case scenarios for examination. These scenarios

are presented in Table 2-1.

Load flow studies were carried out for each scenario, considering normal system

conditions (all equipment in service) and outage conditions. In addition to pole

outages on the two dc links, the automatic sequential contingency feature of PSS®E

was used to examine all single contingency outages on the ac systems.

The Nalcor base case study files modelled the dc converters as generators with

positive and negative real power outputs for the inverter and rectifier respectively.

These models also provided reactive power control to maintain the ac bus voltage at

a pre-set level. This type of model is representative of a voltage source converter

(VSC), which has a controllable reactive capability. In order to make the modelling

more generic and include the behaviour of a current source converter (more

commonly referred to as a line commutated converter or LCC), the dc links were

explicitly modelled in PSS®E as dc lines with LCC converters. Shunt capacitor

banks were connected at each ac terminal bus to represent the harmonic filters that

would be required with LCC converters.

NP-NLH-108, Attachment 4 Page 10 of 89, NLH 2013 GRA

Page 258: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 6

Four basic generation dispatch levels were considered for these studies:

Economic dispatch – hydro generation set to its most efficient level to

optimize the hydro usage,

Maximum Dispatch – all available generation set to its maximum output,

Minimum Dispatch 1 – dispatch matched to light load conditions.

Minimum Dispatch 2 – dispatch matched to extreme light load conditions.

These four dispatch levels are shown on a plant basis in Table 2-2.

The existing thermal units at Holyrood (2x194 MVA+1x177 MVA) will be converted to

operate as synchronous condensers by the year 2017.

Although the transmission, subtransmission and distribution systems were modeled,

only the 230 kV equipment were monitored. Any overloading on the 138 kV and the

69 kV systems are considered as local issues and therefore these are not included in

the scope of work of this study.

The load flow analysis will be performed under two possible situations, that is:

Normal operating conditions (N-0): the transmission system is entirely available

(no equipment has been forced out of service).

Contingency operating conditions (N-1): one component of the transmission

system (line or transformer) is out of service. Only outages of equipment at the bulk

transmission levels will be considered.

For each of these two operating conditions, the following criteria are applied to the

analyses.

NP-NLH-108, Attachment 4 Page 11 of 89, NLH 2013 GRA

Page 259: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 7

The acceptable voltage range for operating the system under normal and

contingency conditions are as follows:

Condition Acceptable Voltage Range

Normal Conditions (N-0) 95% - 105%

Contingency Conditions (N-1) 90% - 110%

The thermal loading of a transmission line or transformer should not exceed

100% of the following:

o Rate A – Summer season (30 degrees C ambient) – light load and extreme

light load

o Rate B – Spring/Fall season (15 degrees C ambient) – intermediate load

o Rate C – Winter season (0 degrees C ambient) – peak load

NP-NLH-108, Attachment 4 Page 12 of 89, NLH 2013 GRA

Page 260: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 8

Table 2-1: Base Case Scenarios

No. NLH System Load NS Export Bottom Brook

Island Import Muskrat Falls/Soldiers

Pond

Island Generation Comments

BC-1 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak 3-units @ Muskrat Falls

BC-2 Peak-2017(1552MW) 239MW 900/814MW Maximum Winter Peak 3-units @ Muskrat Falls

BC-3 Peak-2017(1552MW) 158MW 798/730MW Maximum Winter Peak BC-4 Peak-2041(1900MW) 0MW 900/814MW Maximum Winter Peak BC-5 Intermediate-2017(1100MW) 158MW 900/814MW Economic Dispatch Spring/Fall day BC-6 Intermediate-2017(1100MW) 158MW 276/268 Maximum Spring/Fall day BC-7 Intermediate-2017 (1100MW) 500MW 900/814MW Economic Dispatch Spring/Fall day BC-8 Light (700MW) 158MW 420/400MW Minimum Summer day BC-9 Light (700MW) 158MW 81/80MW Economic Dispatch Summer day

BC-10 Light (700MW) 500MW 900/814MW Economic Dispatch Summer day BC-11 Extreme Light (420MW) 0MW 81/80MW Economic Dispatch Summer night BC-12 Extreme Light (420MW) 320MW 81/80MW Economic Dispatch Summer night BC-13 Extreme Light (420MW) 320MW 457/435MW Minimum Summer night BC-14 Peak-2017 (1552MW) -260MW 286/260MW-Monopole Maximum Winter Peak BC-15 Intermediate-2017(1100MW) 158MW 378/333MW-Monopole Economic Dispatch Spring/Fall day BC-16 Light (700MW) 500MW 638/518MW-Monopole Minimum Summer day BC-17 Extreme Light (420MW) 0MW 215/200MW-Monopole Minimum Summer night BC-18 Peak-2017 (1552MW) 158MW 900/814MW Economic Dispatch Winter Peak

4-units @ Muskrat Falls BC-19 Intermediate-2017(1100MW) 500MW 900/814MW Economic Dispatch Winter Peak

4-units @ Muskrat Falls

NP-NLH-108, Attachment 4 Page 13 of 89, NLH 2013 GRA

Page 261: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 9

Table 2-2: Generation Dispatch Levels

Station Installed Capacity(MW)

Maximum Dispatch

Economic Dispatch

Minimum Dispatch

Extreme Minimum

Thermal Plants Holyrood 1 175 - - - - Holyrood 2 175 SC SC SC SC Holyrood 3 160 SC SC SC SC Hardwoods 1-2 100 SC SC SC SC Stephenville 50 - - - - Sub-total Thermal 660 - - - - Hydro Plants Labrador Churchill Falls 5428 4229 4219 2963 2959 CF Net Delivery to Muskrat Falls

- 282 298 76 -26

Muskrat Falls[1] 824 618 602 824 476 Sub-total Labrador 900 900 900 450 Newfoundland Bay d’Espoir 1-6[2] 450 450 420 263 66 Bay d’Espoir 7 154 154 145 - 135 Cat Arm 1-2 130 130 100 36 36 Upper Salmon 84 84 78 70 - Hinds Lake 75 75 70 - - Granite Canal 40 40 32 27 27 Paradise River 8 8 8 7 - Sub-total Newfoundland 941 853 403 264 NUGS CBP&P 18 18 18 18 Exploits 76 76 76 76 ACI-CHI Star Lake 17.4 17.4 17.4 17.4 Algonquin Power 3.6 3.6 3.6 3.6 Sub-total NUGS 115 115 115 115 Total Generation 1956 1868 1418 829 Export to Nova Scotia 239 158 500 320 NLH Load 1552 1552 700 420 Total Load 1791 1710 1200 740

Notes:

[1]-Output of Muskrat Falls adjusted for different export levels to the Island

[2]-Bay d’Espoir #2-6 used as swing bus (exact output determined from load flow)

NP-NLH-108, Attachment 4 Page 14 of 89, NLH 2013 GRA

Page 262: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 10

3 RESULTS OF THE STUDIES

Line overloads found under normal conditions and contingencies can be eliminated

using the following alternatives:

Running available combustion turbines (CTs) continuously,

Starting the CTs following an outage which can take several minutes,

Increasing the thermal rating of the overloaded circuits,

Adding new circuits close to the overloaded ones,

Adjusting the import/export levels on the HVdc interconnections,

Re-dispatching of the generation on the Island,

Re-locating the Bottom Brook converter station to Bay d’Espoir.

Following the Client’s recommendation, the import from Labrador and the export to

Nova Scotia has been adjusted to eliminate all overloads. The Client shall decide

which of the mentioned alternatives will be employed to operate under the capability

of the 230 kV equipment.

3.1 BASE CASE SCENARIOS: BC-1, BC-2

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-1 1552 158 900/814 Economic Winter Peak-2017 3-units @ Muskrat Falls

BC-2 1552 239 900/814 Maximum Winter Peak-2017 3-units @ Muskrat Falls

These scenarios consider the peak system load in the year 2017 (1,552 MW), with

the maximum import on the Island link (900 MW at Muskrat Falls) and an export on

the Maritime link of 158 MW at the economic on-Island dispatch level of 853 MW and

an export of 239 MW at the maximum on-Island dispatch level of 941 MW. Neither

of these dispatches included the gas turbines at Hardwoods (2x50 MW) and

Stephenville (1x50 MW). These units are normally operated as synchronous

NP-NLH-108, Attachment 4 Page 15 of 89, NLH 2013 GRA

Page 263: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 11

condensers for voltage support, but can be brought into service as generators within

10 minutes. In addition two of the three units at Holyrood were operated as

synchronous condensers.

The system performance for both cases is shown in Appendix A.

The overall comments on both cases are summarized below:

BC-1

Low voltage at Soldiers Pond 230 kV (< 95%) was corrected by adding a reactive

power source (shunt capacitor bank) at Soldiers Pond since the two synchronous

condensers at Holyrood were already operating at close to maximum output. A

reactive power source output of 240 MVAr achieves a bus voltage close to 100%.

Low voltage at Bottom Brook 230 kV was corrected by adding a reactive power

source (shunt capacitor bank) at Bottom Brook 230 kV. An output of 75 MVAr

achieves a bus voltage close to 100%. This will be an addition to the 25 MVAr

representing the filters of the HVdc.

Low voltage at Wabush 230 kV was not considered further in any of these studies as

reinforcement to this area is presently under review.

No overloads were observed in the base case.

Line outages:

Removing the 230 kV circuit, TL242E, between Soldiers Pond and Hardwoods

results in a 7% overload on the remaining circuit, TL201E. No mitigating measures

were considered for this small overload, but it will increase in subsequent years and

will need to be addressed in the future system planning.

Generator Outage:

Largest unit at Bay d’Espoir (Bay d’Espoir #7-154 MW)-The remaining generation

was re-dispatched to maximum levels and the export to NS was reduced to 96 MW.

NP-NLH-108, Attachment 4 Page 16 of 89, NLH 2013 GRA

Page 264: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 12

BC-2

With the reactive power source at Soldiers Pond 230 kV the voltage was satisfactory

with an output of 240 MVAr as in BC-1.

The output of the reactive power source at Bottom Brook 230 kV increased to

130 MVAr.

No overloads were observed in the base case.

Line outages:

Same as in BC-1 plus the outage of the 230 kV line between Granite Canal and

Bottom Brook (future line, not yet designated) required additional reactive support at

Bottom Brook to prevent under-voltages at nearby buses, the reactive production

increasing from 130 MVAr in the base case to 150 MVAr. This problem could also

be solved by reducing the export to NS from 239 MW to 229 MW.

Generator Outage:

Largest unit at Bay d’Espoir (Bay d’Espoir #7-154 MW)-No generation re-dispatch is

available as the units are already at maximum output. The export to NS was

reduced from 239 MW to 96 MW as in BC-1 and the reactive support at Bottom

Brook was disconnected to avoid over-voltages in that area.

3.2 BASE CASE SCENARIO: BC-3

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-3 1552 158 798/730 Maximum Winter Peak-2017

In this case, a reduced power export of 798 MW from Labrador over the Island link

was considered, the island generation was dispatched to its maximum and the export

to NS over the Maritime link was set at 158 MW. The system performance is shown

in Appendix A. The same general observations and comments apply to this case as

described for BC-1 and BC-2, however for the loss of the largest unit at Bay d’Espoir,

a limited number of options are available as the island generation is already at its

maximum:

NP-NLH-108, Attachment 4 Page 17 of 89, NLH 2013 GRA

Page 265: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 13

Increase the export from Labrador on the Island link from 798 MW to

900 MW. If this power increase cannot be supplied by Muskrat Falls, it will

have to come from Churchill Falls,

Reduce the export to NS to 10 MW,

A combination of the above; for example, increasing the export over the

Island link by 75 MW and reducing the export to NS by 75 MW.

3.3 POLE OUTAGES

Following on from the base cases presented above, the effect of a permanent pole

outage on the Island link was examined. It was assumed that following a pole

outage, the island generation would automatically be re-dispatched up to its

maximum under AGC and operator control. Thus, in terms of the island generation

dispatch, scenarios BC-1, BC-2 and BC-3 become identical. The following table

shows the required capacity on the remaining, healthy pole of the Island link,

considering different courses of action with respect to the Maritime link. The

percentage loadings for the Island link are based on a nominal capacity of 450 MW

per pole. The export on the Maritime link of 158 MW corresponds to the economic

dispatch of the island generation. The export level of 239 MW corresponds to

maximum island dispatch.

Monopole operation of the Island link is simulated by taking into consideration the

electrode lines. The resistance of these lines is added to the resistance of the

healthy pole which includes the overhead line resistance and the resistance of the

submarine cable.

Table 3-1: Healthy Pole Loading Levels following a Pole Outage

Maritime Link(MW) Island Link(MW)

Pre-fault Post-fault Pre-fault Post-fault 158 158 900 1010 224% 158 100 900 900 200% 158 0 900 730 162% 239 239 900 1200 267% 239 100 900 900 200% 239 0 900 730 162%

NP-NLH-108, Attachment 4 Page 18 of 89, NLH 2013 GRA

Page 266: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 14

The maximum loading (200%) is reached with an export to Nova Scotia reduced to

100 MW. The loadings shown above would apply for a 10-minute period, during

which time the 3x50 MW gas turbines at Hardwoods and Stephenville could be

brought into service. Following this action, the loadings above on the Island link

could be reduced by approximately 150 MW. The maximum loading of

900 MW/200 % would then be reduced to 650 MW/145%. These results confirm the

Design Basis requirement for a 10-minute overload rating of 200% of nominal rating

and a continuous overload rating of 150% of nominal rating, provided that in the

event of a pole outage the export on the Maritime link must be reduced to no more

than 100 MW and the Island generation must be run up to its maximum. If the Island

generation cannot be taken to its maximum, then the export on the Maritime link

would need to be reduced to zero.

3.4 BASE CASE SCENARIO BC-4

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-4 1900 0 900/814 Maximum Winter Peak-2041

This scenario considers a long-term future year (2041) in which the Island link is

operating at 900 MW, the island generation is at its maximum level and the export to

NS over the Maritime link is set at 0 MW. In this condition, the system is operating

with no reserve and any generator outage or pole outage on the Island link will result

in load shedding. No further studies have been carried out on this scenario at this

time. The system performance is shown in Appendix A.

3.5 BASE CASE SCENARIO BC-5

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-5 1100 158 900/814 Economic Spring/Fall day-2017

This scenario considers the full export from Labrador and the nominal export to Nova

Scotia during the Spring/Fall seasons. In this scenario, lower ratings apply to the

transmission lines due to the higher ambient temperature.

The system performance is shown in Appendix A.

NP-NLH-108, Attachment 4 Page 19 of 89, NLH 2013 GRA

Page 267: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 15

Because of the reduced load levels, the reactive compensation required at Soldiers

Pond reduced from 240 MVAr to 140 MVAr and the reactive support at Bottom Brook

reduced from 75 MVAr to 45 MVAr.

Line Outages:

The outage of the Western Avalon-Soldiers Pond 230 kV line TL217W (load flow

circuit #1) results in a 16% overload on 230 kV line TL201W (load flow circuit #2)

because of the reduced line rating in the Spring/Fall seasons.

Generator Outage:

The outage of the largest generator (Upper Salmon-75MW) will require a reduction in

the export to Nova Scotia. The spinning reserve on the system for this scenario is

only 40 MW, spread over the Bay d’Espoir running units (21 MW), the unit at Granite

Canal (12 MW) and the Hinds Lake (6 MW) and Paradise River (1 MW) units. Thus

a reduction in the export to NS of 40 MW should be sufficient to correct this

imbalance or an additional unit at Bay d’Espoir could be connected to provide

sufficient spinning reserve.

3.6 BASE CASE SCENARIO BC-6

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-6 1100 158 276/268 Maximum Spring/Fall day-2017

This scenario considers a reduced export from Labrador and the nominal export to

Nova Scotia during the Spring/Fall seasons. In this scenario, as a result of the lower

import from Labrador, the island generation is set to its maximum. The system

performance is shown in Appendix A.

No under-voltage or overload was seen for any line outage.

Generator Outage:

The loss of the largest unit at Bay d’Espoir (Bay d’Espoir #7-154 MW) would require

the reduction of the export to NS to zero since the island generation is set at

maximum output. Alternatively, if the power is available, an increase in the import

NP-NLH-108, Attachment 4 Page 20 of 89, NLH 2013 GRA

Page 268: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 16

from Labrador would correct this imbalance or, as seen before, a combination of

these two measures could be used.

3.7 BASE CASE SCENARIO BC-7

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-7 1100 500 900/814 Economic Spring/Fall day-2017

This scenario is similar to BC-5 except that the export to Nova Scotia is increased up

to 500 MW by running three additional smaller units and the large unit at Bay

d’Espoir.

The system performance is shown in Appendix A.

The additional export to Nova Scotia requires a significant increase in the reactive

support at Bottom Brook with 320 MVAr being required to maintain a bus voltage of

100% in the base case.

Line Outages:

With an outage of the 230 kV line from Granite Canal to Bottom Brook (future line,

not yet designated), the reactive support required at Bottom Brook to support the

export of 500 MW to NS increases from 320 MVAr to 585 MVAr and by setting the

voltage at Bottom Brook to 101%. This outage would also create under-voltages at

Buchans, Stony Brook and Abitibi Consolidated Grand Falls. Alternatively, a

reduction in the export to NS from 500 MW to 400 MW would require 300 MVAr of

reactive support (close to the base case requirement).

A significant number of line overloads were observed under the following line outage conditions:

Outage: Bottom Brook-Massey Drive (TL211)

o Overload: Bottom Brook-Buchans (TL233)-115%

Outage: Bottom Brook- Buchans(TL233)

o Overload: Bottom Brook- Massey Drive (TL211)-134%

NP-NLH-108, Attachment 4 Page 21 of 89, NLH 2013 GRA

Page 269: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 17

o Overload: Massey Drive-Buchans (TL228)-146%

Outage: Granite Canal-Bottom Brook (future line, not yet designated)

o Overload: Bottom Brook-Massey Drive (TL211)-137%

o Overload: Bottom Brook-Buchans (TL233)-127%

o Overload: Massey Drive-Buchans (TL228)-151%

o Overload: Buchans-Stony Brook (TL205)-132%

o Overload: Stony Brook-Bay d’Espoir (TL204 and TL231)-101%

Outage: Massey Drive- Buchans (TL228)

o Overload: Bottom Brook-Buchans (TL233)-109%

Outage: Buchans-Stony Brook (TL232)

o Overload: Buchans-Stony Brook (TL205)-128%

Outage: Bay d’Espoir-Upper Salmon (TL234)

o Overload: Bottom Brook-Massey Drive (TL211)-102%

o Overload: Massey Drive-Buchans (TL228)-108%

Outage: Western Avalon-Soldiers Pond (TL217W)

o Overload: Western Avalon-Soldiers Pond (TL201W)-115%

Outage: Granite Canal-Upper Salmon (TL263)

o Overload: Bottom Brook-Massey Drive (TL211)-124%

o Overload: Bottom Brook-Buchans (TL233)-114%

o Overload: Massey Drive-Buchans (TL228)-134%

o Overload: Buchans-Stony Brook (TL205)-118%

NP-NLH-108, Attachment 4 Page 22 of 89, NLH 2013 GRA

Page 270: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 18

A reduction in the export to NS to 350 MW with an accompanying reduction in the

Island link to 750 MW would remove all of the above overloads. It should be noted

that other alternatives can be employed as mentioned earlier.

Generator Outage:

Largest unit at Bay d’Espoir (Bay d’Espoir #7-135 MW)-The remaining generation

was re-dispatched to maximum levels.

3.8 BASE CASE SCENARIO BC-8

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-8 700 158 420/400 Minimum Summer day-2017

This scenario considers light load conditions corresponding to a summer day with a

reduced import from Labrador and the nominal export of 158 MW to Nova Scotia.

Due to the higher ambient temperature, lower ratings apply to the transmission lines.

The system performance is shown in Appendix A.

No under-voltage or overload was seen for any line outage.

Generator Outage:

The loss of the largest generator (Bay d’Espoir #7-135 MW) would require either two

additional units at Bay d’Espoir to be running as spinning reserve or the export to NS

would have to be reduced from 158 MW to 90 MW.

3.9 BASE CASE SCENARIO BC-9

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-9 700 158 81/80 Economic Summer day-2017

This scenario is similar to BC-8 but with a reduced import from Labrador

compensated by increased generation on the Island.

The system performance is shown in Appendix A.

NP-NLH-108, Attachment 4 Page 23 of 89, NLH 2013 GRA

Page 271: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 19

Line Outages:

For the outage of one 230 kV circuit between Bay d’Espoir and Sunnyside (TL202 or

TL206) the loading on the remaining circuit reaches 104%. These overloads can be

alleviated by increasing the import from the LIL to 100 MW.

Generator Outage:

Largest unit at Bay d’Espoir (Bay d’Espoir #7-135 MW)-The remaining generation

was re-dispatched to maximum levels.

3.10 BASE CASE SCENARIO BC-10

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-10 700 500 900/814 Economic Summer day-2017

This scenario considers the full import from Labrador and an increased export of

500 MW to Nova Scotia under light load conditions in the summer season.

The system performance is shown in Appendix A.

Again, because of the high export level to NS, reactive support of 300 MVAr was

required at Bottom Brook.

Even in the base case, the following line overloads were noted:

Massey Drive-Buchans (TL228)-122%

Buchans-Stony Brook (TL205)-102%

Western Avalon-Soldiers Pond (TL201W)-141%

Line Outages:

Line outages between Bottom Brook and Granite Canal (future line, not yet

designated) and Granite Canal and Upper Salmon (TL263) lead to system non-

convergence. To counter this problem, the export to Nova Scotia is reduced to

400 MW (the import from Labrador is reduced to 800 MW on the rectifier side).

NP-NLH-108, Attachment 4 Page 24 of 89, NLH 2013 GRA

Page 272: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 20

A number of 230 kV line outages resulted in overloading of other 230 kV lines before

decreasing the export to Nova Scotia (from 500 MW to 400 MW). Lines that are

overloaded under N-0 are omitted from this part:

Outage: Deer Lake-Cat Arm (TL247)

o Overload: Bottom Brook-Buchans (TL233)-103%

o Overload: Granite Canal-Upper Salmon (TL263)-106%

Outage: Deer Lake-Massey Drive (TL248)

o Overload: Bottom Brook-Buchans (TL233)-103%

o Overload: Granite Canal-Upper Salmon (TL263)-103%

Outage: Bottom Brook-Massey Drive (TL211)

o Overload: Bottom Brook-Buchans (TL233)-162%

o Overload: Granite Canal-Upper Salmon (TL263)-123%

Outage: Bottom Brook-Buchans (TL233)

o Overload: Bottom Brook-Massey Drive (TL211)-185%

o Overload: Granite Canal-Upper Salmon (TL263)-131%

Outage: Massey Drive-Buchans (TL228)

o Overload: Bottom Brook- Buchans (TL233)-166%

o Overload: Granite Canal-Upper Salmon (TL263)-123%

Outage: Buchans-Stony Brook (TL205)

o Overload: Buchans-Stony Brook (TL232)-137%

o Overload: Granite Canal-Upper Salmon (TL263)-114%

Outage: Buchans-Stony Brook (TL232)

NP-NLH-108, Attachment 4 Page 25 of 89, NLH 2013 GRA

Page 273: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 21

o Overload: Granite Canal-Upper Salmon (TL263)-117%

Outage: Stony Brook-Bay d’Espoir (TL204)

o Overload: Stony Brook-Bay d’Espoir (TL231)-139%

o Overload: Granite Canal-Upper Salmon (TL263)-120%

Outage: Stony Brook-Bay d’Espoir (TL231)

o Overload: Stony Brook-Bay d’Espoir (TL204)-139%

o Overload: Granite Canal-Upper Salmon (TL263)-120%

Outage: Stony Brook-Abitibi Consolidated Grand Falls (TL235)

o Overload: Granite Canal-Upper Salmon (TL263)-103%

Outage: Bay d’Espoir-Upper Salmon (TL234)

o Overload: Bottom Brook-Massey Drive (TL211)-140%

o Overload: Bottom Brook-Buchans (TL233)-140%

o Overload: Buchans-Stony Brook (TL232)-110%

o Overload: Stony Brook-Bay d’Espoir (TL204 and TL231)-111%

Outage: Western Avalon-Come by Chance (TL237)

o Overload: Western Avalon-Sunnyside (TL203)-120%

Outage: Western Avalon-Soldiers Pond (TL217W)

o Overload: Granite Canal-Upper Salmon (TL263)-101%

Outage: Western Avalon-Soldiers Pond (TL201W)

o Overload: Western Avalon-Soldiers Pond (TL217W)-138%

o Overload: Granite Canal-Upper Salmon (TL263)-101%

NP-NLH-108, Attachment 4 Page 26 of 89, NLH 2013 GRA

Page 274: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 22

Reducing the export to NS from 500 MW to 100 MW removed all of the above

overloads including the ones found under N-0. It should be noted that other

alternatives can be employed as mentioned earlier.

Generator Outage:

Largest unit at Upper Salmon (75MW) -The remaining generation was re-dispatched

to maximum levels.

3.11 BASE CASE SCENARIO BC-11

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-11 420 0 81/80 Economic Summer night-2017

This scenario considers the system under extreme light load conditions,

corresponding to a summer night. With no export to Nova Scotia and an economic

generation dispatch, the import from Labrador is reduced to its minimum level (<10%

of the rated value). The system performance is shown in Appendix A.

No under-voltage or overload was seen for any line outage.

Generator Outage:

Outage of the largest generator (Upper Salmon-75 MW) would require either two

additional units at Bay d’Espoir as spinning reserve or an increase in the Island link

import from 81 MW to 108 MW.

3.12 BASE CASE SCENARIO BC-12

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-12 420 320 81/80 Economic Summer night-2017

This scenario is similar to BC-11 but with an export to Nova Scotia of 320 MW

provided by additional on-island generation.

The system performance is shown in Appendix A.

NP-NLH-108, Attachment 4 Page 27 of 89, NLH 2013 GRA

Page 275: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 23

Line Outages:

The following 230 kV line outages resulted in overloading of other 230 kV lines:

Outage: Bottom Brook-Buchans (TL233)

o Overload: Bottom Brook-Massey Drive (TL211)-114%

Outage: Bottom Brook-Granite Canal (future line, not yet designated)

o Overload: Bottom Brook-Massey Drive (TL211)-104%

A reduction in the export to NS with an accompanying reduction in the import over

the Island link would relieve these overloads. However, the Island link is already

operating at its minimum level (< 10% rated capacity). A reduction of 50 MW in the

export to NS would remove the above line overloads and either the Island link can be

switched off or the on-island generation can be reduced to compensate for this. It

should be noted that other alternatives can be employed as mentioned earlier.

Generator Outage:

Largest unit at Upper Salmon (75MW) -The remaining generation was re-dispatched

to maximum levels.

3.13 BASE CASE SCENARIO BC-13

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-13 420 320 457/435 Minimum Summer night-2017

This scenario is similar to BC-12 except that the export to Nova Scotia is provided by

the import from Labrador rather than on-island generation.

The system performance is shown in Appendix A.

Line Outages:

The following 230 kV line outages result in overloading of other 230 kV lines:

Outage: Bottom Brook-Buchans (TL233)

o Overload: Bottom Brook-Massey Drive (TL211)-110%

NP-NLH-108, Attachment 4 Page 28 of 89, NLH 2013 GRA

Page 276: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 24

o Overload: Massey Drive-Buchans (TL228)-124%

Outage: Bottom Brook-Granite Canal (future line, not yet designated)

o Overload: Massey Drive-Buchans (TL228)-106%

Outage: Buchans-Stony Brook (TL232)

o Overload: Buchans-Stony Brook (TL205)-106%

Outage: Western Avalon-Soldiers Pond (TL217W)

o Overload: Western Avalon-Soldiers Pond (TL201W)-140%

A reduction in the export to NS to 240 MW, with an accompanying reduction in the

Island link to 372 MW, removes these overloads. It should be noted that other

alternatives can be employed as mentioned earlier.

Generator Outage:

The outage of the largest generator (Bay d’Espoir #7-135 MW) would require the

addition of two units at Bay d’Espoir as spinning reserve or a reduction in the export

to NS to 240 MW.

3.14 BASE CASE SCENARIO BC-14

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-14 1552 -260 286/260Monopole Maximum Winter Peak-2017

This scenario considers a permanent pole outage on the Island link under peak load

conditions with the remaining pole operating at 62% of rated capacity and the

balance of load being supplied by an import of 260 MW from Nova Scotia.

The system performance is shown in Appendix A.

Line Outages:

Although any line or generator outage under these conditions could be considered

as a double contingency, these outages were nonetheless examined. The outage of

one 230 kV circuit between Bay d’Espoir and Sunnyside (TL202 or TL206), or Bay

d’Espoir and Western Avalon (future line, not yet designated) or Western Avalon and

NP-NLH-108, Attachment 4 Page 29 of 89, NLH 2013 GRA

Page 277: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 25

Soldiers Pond (TL217W or TL201W) required reactive support at Soldiers Pond.

The maximum support level was 204 MVAr for the outage of the Bay d’Espoir-

Western Avalon line (future line, not yet designated).

Generator Outage:

The outage of the largest generator (Bay d’Espoir #7-154MW) would require an

increase in the import from Labrador or Nova Scotia of 135 MW.

3.15 BASE CASE SCENARIO BC-15

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-15 1100 158 378/333Monopole Economic Spring/Fall day-2017

This scenario considers a permanent pole outage under intermediate load conditions

with the healthy pole operating at 80% of rated capacity and with Nova Scotia being

supplied a nominal export of 158 MW.

The system performance is shown in Appendix A.

Although any line or generator outage under these conditions could be considered

as a double contingency, these outages were nonetheless examined. No under-

voltage or overload was seen for any line outage. For the outage of the largest

generator (Bay d’Espoir #7-150 MW), the export to Nova Scotia would need to be

reduced from 158 MW to 76 MW or the import from Labrador is increased from

378 MW to 555 MW. It should be noted that other alternatives can be employed as

mentioned earlier.

3.16 BASE CASE SCENARIO BC-16

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-16 700 500 638/518Monopole Minimum Summer day-2017

This scenario considers a permanent pole outage under light load conditions with the

healthy pole operating at 132% of rated capacity and an increased export of 500 MW

to Nova Scotia, supplied from the Island link with minimum on-island generation.

NP-NLH-108, Attachment 4 Page 30 of 89, NLH 2013 GRA

Page 278: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 26

The system performance is shown in Appendix A.

Because of the high export to Nova Scotia, the reactive support required at Bottom

Brook is 240 MVAr. The 230 kV line between Massey Drive and Bottom Brook

(TL211) is overloaded at 110% of its summer rating.

Line Outages:

The following 230 kV line outages resulted in overloads in other 230 kV lines. Lines that are overloaded under N-0 are omitted from this part:

Outage: Deer Lake-Cat Arm (TL247)

o Overload: Massey Drive-Buchans (TL228)-115%

Outage: Deer Lake-Massey Drive (TL248)

o Overload: Massey Drive-Buchans (TL228)-117%

Outage: Bottom Brook-Massey Drive (TL211)

o Overload: Bottom Brook-Buchans (TL233)-164%

o Overload: Granite Canal-Upper Salmon (TL263)-113%

Outage: Bottom Brook-Buchans (TL233)

o Overload: Massey Drive-Buchans (TL228)-178%

o Overload: Granite Canal-Upper Salmon (TL263)-110%

Outage: Bottom Brook-Granite Canal (future line, not yet designated)

o Overload: Massey Drive-Buchans (TL228)-160%

o Overload: Buchans-Stony Brook (TL205)-146%

o Overload: Buchans-Stony Brook (TL232)-109%

o Overload: Stony Brook-Bay d’Espoir (TL204 and TL231)-109%

o Overload: Bottom Brook-Buchans (TL233)-148%

Outage: Massey Drive-Buchans (TL228)

o Overload: Bottom Brook-Buchans (TL233)-137%

Outage: Buchans-Stony Brook (TL205)

o Overload: Buchans-Stony Brook (TL232)-111%

NP-NLH-108, Attachment 4 Page 31 of 89, NLH 2013 GRA

Page 279: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 27

Outage: Buchans-Stony Brook (TL232)

o Overload: Buchans-Stony Brook (TL205)-156%

Outage: Stony Brook-Bay d’Espoir (TL204)

o Overload: Stony Brook-Bay d’Espoir (TL231)-110%

Outage: Stony Brook-Bay d’Espoir (TL231)

o Overload: Stony Brook-Bay d’Espoir (TL204)-110%

Outage: Bay d’Espoir-Upper Salmon (TL234)

o Overload: Bottom Brook-Buchans (TL233)-115%

o Overload: Massey Drive-Buchans (TL228)-122%

o Overload: Buchans-Stony Brook (TL205)-111%

Outage: Western Avalon-Soldiers Pond (TL217W)

o Overload: Western Avalon-Soldiers Pond (TL201W)-120%

Outage: Granite Canal-Upper Salmon (TL263)

o Overload: Bottom Brook-Buchans (TL233)-138%

o Overload: Massey Drive-Buchans (TL228)-148%

o Overload: Buchans-Stony Brook (TL205)-135%

All the above overloads could be removed by reducing the export to NS to 250 MW

with an accompanying reduction in the Island link import to 344 MW. It should be

noted that other alternatives can be employed as mentioned earlier.

Generator Outage:

Largest unit at Bay d’Espoir (Bay d’Espoir #7-124 MW)-The remaining generation was re-dispatched to maximum levels.

3.17 BASE CASE SCENARIO BC-17

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-17 420 0 215/200Monopole Minimum Summer night-2017

NP-NLH-108, Attachment 4 Page 32 of 89, NLH 2013 GRA

Page 280: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 28

This scenario considers a permanent pole outage under extreme light load

conditions with the healthy pole operating at 47% of rated capacity and no export to

Nova Scotia and minimum on-island generation. The balance of load is supplied

from the Island link.

The system performance is shown in Appendix A.

An over-voltage (> 105%) was observed at Bottom Brook with no export to Nova

Scotia. This was corrected with a 100 MVAr shunt reactor.

No under-voltage or overload was seen for any line outage.

Generator Outage:

For the outage of the largest generator (Bay d’Espoir #1-61 MW), an additional unit

at Bay d’Espoir would be required as spinning reserve or the import on the Island link

could be increased by 20 MW, with all connected generators increasing to maximum

dispatch.

3.18 BASE CASE SCENARIO BC-18

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-18 1552 158 900/814 Economic Winter Peak-2017 4-units @ Muskrat Falls

This scenario is the same as BC-1 except that all four units at Muskrat Falls were

considered to be operating.

The system performance is shown in Appendix A.

The performance of the system was identical to that seen in BC-1.

3.19 BASE CASE SCENARIO BC-19

No. NLH System Load(MW)

NS Export BBK(MW)

Island Import MFA/SPD(MW)

Island Generation

Comments

BC-19 1100 500 900/814 Economic Winter Peak-2017 4-units @ Muskrat Falls

NP-NLH-108, Attachment 4 Page 33 of 89, NLH 2013 GRA

Page 281: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 29

This scenario is the same as BC-7 except that all four units at Muskrat Falls were

considered to be operating.

The system performance is shown in Appendix A.

The performance was virtually identical to that seen in BC-7.

NP-NLH-108, Attachment 4 Page 34 of 89, NLH 2013 GRA

Page 282: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 30

4 SHORT CIRCUIT LEVELS

In terms of short-circuit levels, two major considerations are of interest:

Maximum fault levels in terms of the fault-interrupting capabilities of the

existing and future switchgear,

Minimum fault levels combined with maximum converter loadings to

determine the effective short-circuit ratio (ESCR) at the converter terminals.

This parameter provides a useful indication of satisfactory converter

operation and the risk of commutation failures.

Maximum short-circuit levels were determined using Scenario BC-4 (winter peak-

2041) since this scenario considers all available generation on the island to be

connected. The fault levels obtained were also checked using Scenario BC-2 (winter

peak-2017) with a maximum generation dispatch and the fourth unit at Muskrat Falls

connected.

For minimum fault levels combined with maximum converter loadings, the following scenarios were considered:

Muskrat Falls Converter

BC-1: 3 units at Muskrat Falls with a converter load of 900 MW,

BC-13: 2 units at Muskrat Falls with a converter load of 457 MW

Although BC-13 actually considers three units to be operating at Muskrat Falls, this

scenario was used with only two units at Muskrat Falls to examine the impact on the

fault level at the Muskrat Falls converter station.

Soldiers Pond Converter

BC-5: 814 MW converter load with an economic dispatch for an intermediate

load level of 1100 MW,

BC-13: 435 MW converter load with an extreme minimum load level of

400 MW.

Bottom Brook Converter

BC-10: 500 MW converter load with a light load level of 700 MW,

NP-NLH-108, Attachment 4 Page 35 of 89, NLH 2013 GRA

Page 283: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 31

BC-13: 320 MW converter load with an extreme minimum load of 420 MW.

4.1 MAXIMUM FAULT LEVELS

Under maximum generation conditions, the following table shows the maximum

short-circuit level at each converter bus and the highest value of fault level on the

island 230 kV and 138 kV system.

Table 4-1: Maximum Fault Levels

Station kV Three-phase Single-phase kA MVA kA MVA

Muskrat Falls 315 6.2 3,400 8.0 4,350 Soldiers Pond 230 6.1 2,425 7.5 3,000 Bottom Brook 230 3.8 1,525 3.9 1,550 Bay d’Espoir 230 9.6 3,850 11.5 4,600 Stony Brook 138 5.9 2,200 7.3 2,725

It can be seen that none of the above fault levels are excessive and are all well

within typical switchgear fault-interrupting capabilities.

The following table shows the same case with all machines at Holyrood connected

and with 2x150 MVA synchronous condensers at Soldiers Pond.

Table 4-2: Maximum Fault Levels with 2x 150 MVAr SC at SPD

Station kV Three-phase Single-phase kA MVA kA MVA

Muskrat Falls 315 6.2 3,400 8.0 4,350 Soldiers Pond 230 7.4 2,960 8.8 3,510 Bottom Brook 230 3.8 1,525 3.9 1,550 Bay d’Espoir 230 9.8 3,920 11.7 4,670 Stony Brook 138 5.9 1,410 7.3 1,740

The fault level will vary depending on the number and the size of synchronous

condensers at Soldiers Pond. The following table shows the fault level of different

configuration of synchronous condensers at Soldiers Pond.

NP-NLH-108, Attachment 4 Page 36 of 89, NLH 2013 GRA

Page 284: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 32

Table 4-3: Maximum Fault Levels with Different SCs at SPD

Station kV Three-phase Single-phase kA MVA kA MVA

No SC 230 6.1 2,425 7.5 3,000 2x150 MVAr 230 7.4 2,960 8.8 3,510 3x150 MVAr 230 8.1 3,228 10.8 4,275 2x300 MVAr 230 8.7 3,495 11.4 4,530

4.2 MINIMUM FAULT LEVELS

The following tables show the minimum 3-phase fault level and effective short-circuit

ratio (ESCR) for the specific scenarios considered under normal conditions with all

equipment in service. The ESCR was calculated using a typical ratio between the

shunt compensation obtained from filters and the dc power level of 25% (converter

reactive requirement is typically 50% of the dc power level and the filters typically

provide 50% of this reactive power requirement).

25.0P

MVAP

QMVAESCRdc

SC

dc

FSC

Table 4-4: Muskrat Falls Converter Station

Scenario Converter MW

Min.Fault Level MVA

ESCR

BC-1 900 3,390 3.52 BC-13 457 2,755 5.85

Table 4-5: Soldiers Pond Converter Station

Scenario Converter MW

Min.Fault Level MVA

ESCR

BC-5/10 814 2,310 2.52 BC-13 435 2,240 4.90

Table 4-6: Bottom Brook Converter Station

Scenario Converter MW

Min.Fault Level MVA

ESCR

BC-10 500 1,345 2.44 BC-13 320 1,250 3.66

NP-NLH-108, Attachment 4 Page 37 of 89, NLH 2013 GRA

Page 285: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 33

The minimum ESCR occurs for scenario BC-1 for Muskrat Falls, scenario BC-5 and

BC-10 for Soldiers Pond and scenario BC-10 for Bottom Brook. All the minimum

ESCRs occur at the rated power level for each converter station.

All the ESCRs are equal to or greater than the normally recommended minimum of

2.5 except for Bottom Brook where the value is less than 2.5. These values are for

normal system conditions and will be lower under line outage conditions.

The worst line outage was analyzed for each of the scenarios above that resulted in

minimum values of ESCR. The results are shown below.

Table 4-7: Minimum ESCR under Line Outage Conditions

Station Scenario Converter MW

Disconnected Line Min.Fault Level MVA

ESCR

Muskrat Falls BC-1 900 CHF-MFA 2,730 2.78 Soldiers Pond BC-5 814 SPD-WAV (TL217W) 2,190 2.38 Bottom Brook BC-10 500 BBK-MDR (TL211) 905 1.56

While the ESCR at Muskrat Falls remained above the minimum value of 2.5, the

value at Soldiers Pond was marginally below 2.5 and the value at Bottom Brook was

less than 2.0.

NP-NLH-108, Attachment 4 Page 38 of 89, NLH 2013 GRA

Page 286: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 34

5 CONCLUSIONS

5.1 AC SYSTEM MITIGATING MEASURES

Although reinforcements to the ac system within Newfoundland are not within the

scope of this present study, it is necessary to determine the impacts of outages so

that the alternative mitigating measures can be examined with respect to defining the

required operating modes of the two HVdc links.

Line outage, pole outage and generator outage cases were examined for the four

distinct load levels corresponding to Winter peak, Spring/Fall daytime, Summer

daytime and Summer night-time. Only the 230 kV was monitored and any violations

were reported. Throughout all the cases examined, in order to avoid line overloads,

load shedding within Newfoundland, or excessive levels of reactive support, a

common element appears to be that in the event of a line, pole or generator outage

the power transfer to Nova Scotia could be reduced to ensure satisfactory system

performance. Other alternatives were proposed as well to eliminate overloads such

as running CTs continuously or starting them following an outage, increasing the

thermal capability of the overloaded circuits, adding new circuits, re-dispatching the

Island generation and re-locating the converter of the ML Link.

In a number of cases, the reduction in the export to Nova Scotia would need to be

accompanied by a reduction in the power sent over the Island link. Such measures

are required to relieve overloads within the Soldiers Pond-Western Avalon-Bay

d’Espoir corridor. In other cases, a reduction in only the export to Nova Scotia is

necessary to relieve overloads within the Bay d’Espoir-Stony Brook-Buchans-

Massey Drive/Bottom Brook and Bay d’Espoir-Upper Salmon-Granite Canal-Bottom

Brook corridors.

The alternative to such mitigating measures would be to reinforce each of the above

corridors with an additional transmission circuit. The Granite Canal-Bottom Brook

transmission line is already a reinforcement of the existing system.

It was also found necessary to provide significant levels of reactive support at both

the Soldiers Pond converter station (240 MVAr) and the Bottom Brook converter

station (+320/-100 MVAr).

NP-NLH-108, Attachment 4 Page 39 of 89, NLH 2013 GRA

Page 287: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 35

The variations in the reactive support required at Bottom Brook, together with a need

to change the ordered dc power whenever there is an outage on the ac system

would suggest that the compensation should be provided in the form of a static var

compensators, synchronous condensers, or the converter may be of the VSC type

with an inherent reactive control capability and lower requirements in terms of short-

circuit ratio. The variations in reactive support are not as frequent at Soldiers Pond

as they are at Bottom Brook. The need for specialized reactive support equipment

(SVC or synchronous condenser) will be determined in the stability studies of the

interconnected network.

Given the above requirements for the Bottom Brook converter station, the prospect

must be raised as to the suitability of Bottom Brook as a location for the converter

station of the Maritime link. The short-circuit level is low (ESCR <2.5), significant

levels of reactive support are required and in the event of an outage on the Island

system, the export to Nova Scotia has to be reduced to avoid overloading the

transmission lines in the western part of the island. This would suggest that the Bay

d’Espoir generating station would prove to be a more suitable location for this

converter. The short-circuit level is higher, the lines in the western part of the system

do not need to carry the export power and there is a significant reactive capability at

the generating station. This would reduce the number of outage situations requiring

a reduction in the export to Nova Scotia. It would also avoid the need to build the

transmission link between Granite Canal and Bottom Brook but would, however,

require additional dc transmission from the submarine cable transition station in

Newfoundland to Bay d’Espoir.

5.2 OPERATING MODES

The steady-state operating modes of both the Island link and the Maritime link were

examined over the following dc power ranges:

Island link: 900 MW to 81 MW

Maritime link: 500 MW export to 260 MW import

NP-NLH-108, Attachment 4 Page 40 of 89, NLH 2013 GRA

Page 288: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 36

Pole outage cases confirmed the Design Basis requirements for a 200% overload

capability for 10 minutes and a continuous overload capability of 150% in mono-polar

mode.

In addition to operation over the ranges stated above, certain operating levels, as

defined in the base case scenarios, are not sustainable under certain line and/or

generator outage conditions and reductions in the power transfer levels will need to

be made in the event of line outages.

For the individual base case scenarios, the following adjustments to the power

transfer levels were identified:

BC-1/BC-2 (Winter Peak)

For the loss of the largest generator at Bay d’Espoir:

Reduce export on the Maritime link from 158 MW (BC-1) or 239 MW (BC-2)

to 96 MW

BC-3 (Winter Peak)

For the loss of the largest generator at Bay d’Espoir:

Reduce export on the Maritime link from 158 MW to 10 MW.

BC-5 (Spring/Fall Peak)

For the loss of circuit #1 between Soldiers Pond and Western Avalon (TL217W);

Reduce the export on the Maritime link from 158 MW to 98 MW.

Reduce the import from the Island link from 814 MW to 774 MW.

For the loss of the largest generator at Upper Salmon:

Reduce export on the Maritime link from 158 MW to 124 MW.

BC-6 (Spring/Fall Peak)

For the loss of the largest generator at Bay d’Espoir:

NP-NLH-108, Attachment 4 Page 41 of 89, NLH 2013 GRA

Page 289: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 37

Reduce export on the Maritime link from 158 MW to zero.

BC-7 (Spring/Fall Peak)

For the loss of almost any 230 kV line on the Soldiers Pond-Bottom Brook corridor:

Reduce export on the Maritime link from 500 MW to 350 MW,

Reduce import from the Island link from 814 MW to 664 MW.

BC-8 (Summer Light)

For the loss of the largest generator at Bay d’Espoir:

Reduce export on the Maritime link from 158 MW to 90 MW.

BC-9 (Summer Light)

No operating reductions required.

BC-10 (Summer Light)

For the loss of almost any 230 kV line on the Soldiers Pond-Bottom Brook corridor:

Reduce export on the Maritime link from 500 MW to 100 MW,

Reduce import from the Island link from 814 MW to 414 MW.

BC-11 (Summer Extreme Light)

For the loss of the largest generator at Upper Salmon:

Increase import on the Island link from 81 MW to 108 MW

.BC-12 (Summer Extreme Light)

For the loss of the 230 kV line from Bottom Brook and Buchans (TL233):

Reduce export on the Maritime link from 320 MW to 240 MW

BC-13 (Summer Extreme Light)

For the loss of almost any 230 kV line on the Soldiers Pond-Bottom Brook corridor:

NP-NLH-108, Attachment 4 Page 42 of 89, NLH 2013 GRA

Page 290: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 38

Reduce export on the Maritime link from 320 MW to 240 MW,

Reduce import on the Island link from 435 MW to 355 MW

For the loss of the largest generator at Bay d’Espoir

Reduce export on the Maritime link from 320 MW to 240 MW,

BC-14 (Winter Peak)

For the loss of the largest generator at Bay d’Espoir

Increase import on the Maritime or Island link by 135 MW,

BC-15 (Spring/Fall Peak)

For the loss of the largest generator at Bay d’Espoir

Reduce export on the Maritime link from 158 MW to 76 MW,

BC-16 (Summer Light)

For the loss of almost any 230 kV line on the Soldiers Pond-Bottom Brook corridor:

Reduce export on the Maritime link from 500 MW to 250 MW,

Reduce import on the Island link from 518 MW to 344 MW

BC-17 (Summer Extreme Light)

For the loss of the largest generator at Bay d’Espoir

Increase import on the Island link from 200 MW to 220 MW,

BC-18 (Winter Peak)

For the loss of the largest generator at Bay d’Espoir

Reduce export on the Maritime link from 158 MW to 96 MW,

BC-19 (Spring/Fall Peak)

For the loss of almost any 230 kV line on the Soldiers Pond-Bottom Brook corridor:

NP-NLH-108, Attachment 4 Page 43 of 89, NLH 2013 GRA

Page 291: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 39

Reduce export on the Maritime link from 500 MW to 350 MW,

Reduce import on the Island link from 814 MW to 664 MW

In summary, during most of the year, the loss of the largest generator on the system

(usually Bay d’Espoir #7) will require a reduction in the export on the Maritime link.

During the winter peak load period, line outages do not present a problem in terms of

overloads and no adjustment of dc power levels is required.

During the Spring/Fall and Summer periods, because of the reduced ratings of the

transmission lines, many transmission line overloads were observed under line

outage conditions. These overloads occurred on the Soldiers Pond-Bay d’Espoir

corridor and on the Bay d’Espoir-Bottom Brook corridors requiring a reduction in the

dc power levels on both links for Soldiers Pond-Bay d’Espoir overloads and on the

Maritime link only for Bay d’Espoir-Bottom Brook overloads.

A reduction in the dc power level of the Bottom Brook converter following a loss of

generation on the island is relatively straightforward and could be accomplished with

a frequency controller that would reduce the dc power level for a drop in frequency.

The required reductions following line outages are somewhat more difficult and may

need some form of voltage–based controller since many of the outages will be

remote from the converter station. The coordination of reductions in the Island link

dc power level that will accompany reductions in the Maritime link export for certain

line outages is also a difficult control problem for the same reasons. These and

other control and reactive power problems will be addressed during the stability

studies.

If no reductions are made in the export to Nova Scotia as outlined above, the line

overloads that will result on the 230 kV system are summarized in Table 5-1.

NP-NLH-108, Attachment 4 Page 44 of 89, NLH 2013 GRA

Page 292: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 40

Table 5-1: Summary of 230 kV Line Overloads

Load Level

From To ID From To ID Loading

Winter Peak 158 Soldiers Pond Hardwoods TL242E Soldiers Pond Hardwoods TL201E 107%Spring/Fall Intermediate 158 Western Avalon Soldiers Pond TL217W Western Avalon Soldiers Pond TL201W 116%Spring/Fall Intermediate 500 Bottom Brook Massey Drive TL211 Bottom Brook Buchans TL233 115%

Bottom Brook Buchans TL233 Bottom Brook Massey Drive TL211 134%Massey Drive Buchans TL228 146%

Granite Canal Bottom Brook - Bottom Brook Massey Drive TL211 137%Bottom Brook Buchans TL233 127%Massey Drive Buchans TL228 151%Buchans Stony Brook TL205 132%Stony Brook Bay d'Espoir TL204 101%Stony Brook Bay d'Espoir TL231 101%

Massey Drive Buchans TL228 Bottom Brook Buchans TL233 109%Buchans Stony Brook TL232 Buchans Stony Brook TL205 128%Bay d'Espoir Upper Salmon TL234 Bottom Brook Massey Drive TL211 102%

Massey Drive Buchans TL228 108%Western Avalon Soldiers Pond TL217W Western Avalon Soldiers Pond TL201W 115%Granite Canal Upper Salmon TL263 Bottom Brook Massey Drive TL211 124%

Bottom Brook Buchans TL233 114%Massey Drive Buchans TL228 134%Buchans Stony Brook TL205 118%

Summer Day Light 500 Base Case - - Massey Drive Buchans TL228 122%Buchans Stony Brook TL205 102%Western Avalon Soldiers Pond TL201W 141%

Deer Lake Cat Arm TL247 Bottom Brook Buchans TL233 103%Granite Canal Upper Salmon TL263 106%

Deer Lake Massey Drive TL248 Bottom Brook Buchans TL233 103%Granite Canal Upper Salmon TL263 103%

Bottom Brook Massey Drive TL211 Bottom Brook Buchans TL233 162%Granite Canal Upper Salmon TL263 123%

Bottom Brook Buchans TL233 Bottom Brook Massey Drive TL211 185%Granite Canal Upper Salmon TL263 131%

Massey Drive Buchans TL228 Bottom Brook Buchans TL233 166%Granite Canal Upper Salmon TL263 123%

Buchans Stony Brook TL205 Buchans Stony Brook TL232 137%Granite Canal Upper Salmon TL263 114%

Buchans Stony Brook TL232 Granite Canal Upper Salmon TL263 117%Stony Brook Bay d'Espoir TL204 Stony Brook Bay d'Espoir TL231 139%

Granite Canal Upper Salmon TL263 120%Stony Brook Bay d'Espoir TL231 Stony Brook Bay d'Espoir TL231 139%

Granite Canal Upper Salmon TL263 120%Stony Brook Abitibi Consolidated TL235 Granite Canal Upper Salmon TL263 103%Bay d'Espoir Upper Salmon TL234 Bottom Brook Massey Drive TL211 140%

Bottom Brook Buchans TL233 140%Buchans Stony Brook TL232 110%Stony Brook Bay d'Espoir TL204 111%Stony Brook Bay d'Espoir TL231 111%

Western Avalon Come-by-Chance TL237 Western Avalon Sunnyside TL203 120%Western Avalon Soldiers Pond TL217W Granite Canal Upper Salmon TL263 101%Western Avalon Soldiers Pond TL201W Western Avalon Soldiers Pond TL217W 138%

Granite Canal Upper Salmon TL263 101%Summer Night-Extreme Light 320 Bottom Brook Buchans TL233 Bottom Brook Massey Drive TL211 114%

Massey Drive Buchans TL228 124%Bottom Brook Granite Canal - Bottom Brook Massey Drive TL211 104%

Massey Drive Buchans TL228 106%Buchans Stony Brook TL232 Buchans Stony Brook TL205 106%Western Avalon Soldiers Pond TL217W Western Avalon Soldiers Pond TL201W 140%

Line Outage Line OverloadExport to

NS

+)) SNC • LAVALIN

NP-NLH-108, Attachment 4 Page 45 of 89, NLH 2013 GRA

Page 293: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 41

5.3 ISLAND LINK MAIN PARAMETERS

The major parameters for the Island link are shown in the following table:

Table 5-2: Island Link Major Parameters

Parameter Muskrat Falls Soldiers Pond

Normal Overload Normal Overload

System AC Bus Voltage (kVrms) 315 315 230 230

DC Voltage(kV) ±350 ±350 ±317 ±269

DC Current (A) 1,286 1,929 1,286 1,929

DC Power (MW) 900 675 814 519

Firing/Margin Angle (degrees) 15 15 18 18

Converter Transformer Rating (MVA/pole) 523 785 481 613

Converter AC Bus Voltage (kV) 288 288 265 225

Note: Overload values assume mono-polar operation with ground return.

The above values are preliminary only and will be finalized during the design stage.

5.4 MARITIME LINK

The major parameters for the Maritime link are shown in the following table:

Table 5-3: Maritime Link Major Parameters

Parameter Bottom Brook

Nova Scotia

Normal Normal

System AC Bus Voltage (kVrms) 230 230

DC Voltage(kV) ±200 ±194

DC Current (A) 1,250 1,250

DC Power (MW) 500 484

Firing/Margin Angle (degrees) 15 18

Converter Transformer Rating (MVA/pole) 291 286

Converter AC Bus Voltage (kV) 164 162

Note: The above values are preliminary only and will be finalized during the design

stage.

NP-NLH-108, Attachment 4 Page 46 of 89, NLH 2013 GRA

Page 294: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 42

5.5 REACTIVE COMPENSATION REQUIREMENTS

The reactive support required at each converter station was examined for normal

and outage conditions for each scenario.

For the Muskrat Falls converter station, no additional reactive support was required

other than the 220 MVAr assumed for the harmonic filters associated with the

converter station.

For the Soldiers Pond converter station, up to 240 MVAr of reactive support was

required when importing the rated capacity of the Island link (900 MW at the rectifier,

814 MW at the inverter). This level of support was based on one of the three

synchronous condensers at Holyrood being out of service.

For the Bottom Brook converter, provided reductions in the export to Nova Scotia

can be made in the event of a line outage, reactive compensation over the range of

+320/-100 MVAr was required. The application of VSC technology may well be

appropriate at this location, given its inherent reactive control capability and the fact

that the major portion of the link is composed of submarine cable.

5.6 SHORT-CIRCUIT LEVELS

Under maximum generation conditions, the following table shows the maximum

short-circuit level at each converter bus and the highest value of fault level on the

island 230 kV and 138 kV system.

Table 5-4: Maximum Fault Levels

Station kV Three-phase Single-phase kA MVA kA MVA

Muskrat Falls 315 6.2 3,400 8.0 4,350 Soldiers Pond 230 6.1 2,425 7.5 3,000 Bottom Brook 230 3.8 1,525 3.9 1,550 Bay d’Espoir 230 9.6 3,850 11.5 4,600 Stony Brook 138 5.9 1,400 7.3 1,730

It can be seen that none of the above fault levels are excessive and are all well

within typical switchgear fault-interrupting capabilities. The higher single-phase fault

levels are due to the presence of a number of transformers (system and generator

transformers) at the locations considered.

NP-NLH-108, Attachment 4 Page 47 of 89, NLH 2013 GRA

Page 295: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 43

The following table shows the same case with all machines at Holyrood connected

and with 2x150 MVA synchronous condensers at Soldiers Pond.

Table 5-5: Maximum Fault Levels with SC at SPD

Station kV Three-phase Single-phase kA MVA kA MVA

Muskrat Falls 315 6.2 3,400 8.0 4,350 Soldiers Pond 230 7.4 2,960 8.8 3,510 Bottom Brook 230 3.8 1,525 3.9 1,550 Bay d’Espoir 230 9.8 3,920 11.7 4,670 Stony Brook 138 5.9 1,410 7.3 1,740

The inclusion of the disconnected machine at Holyrood and the addition of the two

synchronous condensers only affected the short-circuit level at Soldiers Pond. The

short-circuit current increased by approximately 1.3 kA.

The following table shows the minimum effective short-circuit ratio (ESCR) and the

corresponding converter MW and 3-phase fault level for the specific scenarios

considered under normal conditions with all equipment in service.

Table 5-6: Minimum ESCR/Fault Levels-System Normal

Station Converter MW

Min.Fault Level MVA

ESCR

Muskrat Falls 900 3,390 3.52 Soldiers Pond 814 2,310 2.52 Bottom Brook 500 1,345 2.44

Under line outage conditions on the ac system, the short circuit level is decreased

and the following fault level and short-circuit ratios will apply.

Table 5-7: Minimum ESCR/Fault Levels-Outage Conditions

Station Converter MW

Disconnected Line Min.Fault Level MVA

ESCR

Muskrat Falls 900 CHF-MFA 2,730 2.78 Soldiers Pond 814 SPD-WAV (TL217W) 2,190 2.38 Bottom Brook 500 BBK-MDR (TL211) 905 1.56

While the ESCR at Muskrat Falls remained above the normally accepted minimum

value of 2.5, the value at Soldiers Pond was marginally below 2.5 and the value at

Bottom Brook was less than 2.0. These values suggest that while the Muskrat Falls

NP-NLH-108, Attachment 4 Page 48 of 89, NLH 2013 GRA

Page 296: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 44

converter should experience no particular difficulties in recovering from ac system

disturbances, the Soldiers Pond converter may need some additional support in

terms of reactive power and/or inertia and the Bottom Brook converter will almost

certainly need special consideration in terms of location, additional support and/or

the application of VSC technology.

NP-NLH-108, Attachment 4 Page 49 of 89, NLH 2013 GRA

Page 297: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A

APPENDIX-A BASE CASE LOAD FLOW PLOTS

NP-NLH-108, Attachment 4 Page 50 of 89, NLH 2013 GRA

Page 298: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-1

LIST OF FIGURES

Attachment A- 1 BC-1 Peak 2017/Island Link 814MW/Maritime Link 158MW/Economic Dispatch ............................................................................................................................................... A-2 Attachment A- 2 BC-2 Peak 2017/Island Link 814MW/Maritime Link 239 MW/Maximum Dispatch .................................................................................................................................. A-3 Attachment A- 3 BC-3 Peak 2017/Island Link 730MW/Maritime Link 158MW/Maximum Dispatch ............................................................................................................................................... A-4 Attachment A- 4 BC-4 Peak 2041/Island Link 814MW/Maritime Link 0MW/Maximum Dispatch ............................................................................................................................................... A-5 Attachment A- 5 BC-5 Intermediate 2017/Island Link 814MW/Maritime Link 158MW/Economic Dispatch .................................................................................................................................. A-6 Attachment A- 6 BC-6 Intermediate 2017/Island Link 268MW/Maritime Link 158MW/Maximum Dispatch .................................................................................................................................. A-7 Attachment A- 7 BC-7 Intermediate 2017/Island Link 814MW/Maritime Link 500MW/Economic Dispatch .................................................................................................................................. A-8 Attachment A- 8 BC-8 Light 2017/Island Link 400MW/Maritime Link 158MW/Minimum Dispatch ............................................................................................................................................... A-9 Attachment A- 9 BC-9 Light 2017/Island Link 80MW/Maritime Link 158MW/Economic Dispatch ............................................................................................................................................. A-10 Attachment A- 10 BC-10 Light 2017/Island Link 814MW/Maritime Link 500MW/Economic Dispatch ................................................................................................................................ A-11 Attachment A- 11 BC-11 Extreme Light 2017/Island Link 80MW/Maritime Link 0MW/Economic Dispatch ................................................................................................................................ A-12 Attachment A- 12 BC-12 Extreme Light 2017/Island Link 80MW/Maritime Link 320MW/Economic Dispatch .................................................................................................. A-13 Attachment A- 13 BC-13 Extreme Light 2017/Island Link 435MW/Maritime Link 320MW/Minimum Dispatch ................................................................................................... A-14 Attachment A- 14 BC-14 Peak 2017/Island Link 260MW-Monopole/Maritime Link -260MW/ Maximum Dispatch ............................................................................................................... A-15 Attachment A- 15 BC-15 Intermediate 2017/Island Link 333MW-Monopole/Maritime Link 158MW/Economic Dispatch .................................................................................................. A-16 Attachment A- 16 BC-16 Light 2017/Island Link 518MW-Monopole/Maritime Link 500MW/ Minimum Dispatch ................................................................................................................ A-17 Attachment A- 17 BC-17 Extreme Light 2017/Island Link 200MW-Monopole/Maritime Link 0MW/ Minimum Dispatch ................................................................................................................ A-18 Attachment A- 18 BC-18 Peak 2017/Island Link 814MW/Maritime Link 158MW/Economic Dispatch (4 units @Muskrat Falls) ........................................................................................ A-19 Attachment A- 19 BC-19 Intermediate 2017/Island Link 814MW/Maritime Link 500MW/Economic Dispatch (4 units @Muskrat Falls) ........................................................... A-20

NP-NLH-108, Attachment 4 Page 51 of 89, NLH 2013 GRA

Page 299: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-2

Attachment A- 1

BC-1 Peak 2017/Island Link 814MW/Maritime Link 158MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 52 of 89, NLH 2013 GRA

Page 300: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

79.9

14.7

42.2

23.6

42.4

31.6

104.4

39.3

75.9

8.8

3.4

MASSEY DRIVE

TL211

TL235

35.7

TL231

17.8

2.9

TL263

TL209

44.7

8.4

81.6 TL232

TL205

STONY BROOK

TL204

TL233

3.3

184.7

54.9

4.8 3.9

201.4

34.2

200.4

30.7

37.9

24.3

37.9

34.5

23.3

34.9

23.6

TL201E

69.8

11.3 12.8

68.5

183.7

50.8

SW

15.21

0.5

122.7

63.7

62.7

5.5

34.6

25.1

63.3

25.4

35.0TL242W

TL217E

TL218W

62.3

22.4

206SVL B1

236HWD B1B2

0.987-12.9

OXEN POND

238OPD B1

37.8

193.6

34.6

192.7

TL218E

10.8

247.4

405USL L34

216STB B1B2

261ACG GFL

14.1 17.8

6.5

44.7

11.7

1.0000.0

156.5

61.5

R

4.0

40.9

STEPHENVILLE

1

208MDR B1B5

1.010-18.9

135DLK B3

98.6

20.8

152.1

74.9

24.8

0.0

7300CHF TS

1126.9

228.4

1126.9

228.4

1126.9

228.4

0.9875

197.1

23.3

0.9875

197.1

23.3

1.0548

2.1

44.5

2306CHF B23

1.0445.0

2.1

44.2

2330WABUSH TS

0.921-19.5

205.9

48.2

190.3

4.7

205.9

48.2

190.3

4.7

3361.5

122.1

R

SW

499.0

1120.5

207.0

1.0040.0

1

1120.5

207.0

1120.5

207.0 3420

CHF 315 196.9

31.5

3401MFA TS

193.5

38.3

31.5

193.5

38.3

196.9

31.5

196.9

31.5

3400MFA 315S

W

220.2

150.1

37.9

150.1

36.3

37.9

150.1

36.3

4.0

150.1

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

178.7

42.8

75.1

18.1

75.1

18.0

TL234

3.2

94.7

95.6

10.2

131.4

3.8

131.0

3.7

133.1

6.2132.7

6.3

82.1

18.5

76.7

13.7

44.7

11.7

1

223.7

0.0

55.8

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

13.5

95.6

95.7

13.5

93.9

0.4

0.4

221BDE TS

8.1

22.3

8.2

29.7

229WAV B1B3

SW

116.2

TL203

TL237

222SSD B1

SUNNYSIDE

61.4

23.8

35.7

24.6

172.2

38.3

TL207

CBC

227CBC B1B2

291GCL L63

126.6

15.0

DEER LAKE

0.996-23.3

1.002-17.4

215BUC B1

BUCHANS

1.002-13.8

1.002-13.8

1.010-6.6

NEWFOUNDLAND

1.001-13.9

0.991-13.5

0.981-14.2

1.010-7.1

1.005-10.9

0.993-23.8

0.9955.0

0.989-8.1

0.990-7.9

1.005-14.0

0.999-11.5

205BBK B1

P = 4219.0 MW

Q = 584.2 MvarP = 602.0 MW

Q = 195.6 Mvar

196.91.012

2.77380MONTAGNAIS

HYDRO-QUEBEC

Q = 27.6 Mvar

8.4

99.7TL248

1.038-12.8

136CAT L47

CAT ARM

P = 100.0 MW

Q = 16.4 Mvar

TL228 3.4

91.7

78.7

1.3 BOTTOM BROOK

105.1 75.1

18.0

P = 32.0 MW

Q = 6.8 Mvar

GRANITE CANAL

P = 78.0 MW

Q = -3.8 Mvar

UPPER SALMON

94.0

TL

20

6

TL

20

2

P = 567.6 MW

Q = 15.2 Mvar

BAY D ESPOIR

TL201W

TL217W

89.8

33.0 38.3

12.0

0.997-11.3

53.9

145.3

145.6

54.6

TL236

TL242E

104.7

329.0 0.980

-13.7

P = 0.0 MW

Q = 40.0 MvarHARDWOODS

26.3

107.3

234HRD TS

HOLYROOD

Q = 99.7 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

- Generation: Economic dispatch

450.0

212.2

450.0

212.2

406.8

209.7

7.2

21.2

15.0

6.5

Q = 7.0 Mvar

P = 80.0 MW

90.2

4.0 0.985

-21.8

2 0.0

238.6

2490SPD

2

0.0

74.4

6.0

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

27.1

78.2

30.7

78.2

30.76000

NOVA SCOTIA

- Bipolar operation of Maritime HVDC

406.8

209.7

79.0

79.0

27.1

BC1 - WINTER PEAK 2017, 1552 MW, 814 MW IMPORT AND 158 MW EXPORT

NP-NLH-108, Attachment 4 Page 53 of 89, NLH 2013 GRA

Page 301: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-3

Attachment A- 2

BC-2 Peak 2017/Island Link 814MW/Maritime Link 239 MW/Maximum Dispatch

NP-NLH-108, Attachment 4 Page 54 of 89, NLH 2013 GRA

Page 302: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

101.5

28.5

79.8

57.2

80.7

61.7

135.0

21.9

88.7

17.5

11.6

MASSEY DRIVE

TL211

TL235

21.3

TL231

27.8

5.9

TL263

TL209

44.7

8.1

95.9 TL232

TL205

STONY BROOK

TL204

TL233

2.5

184.7

55.1

4.1 4.7

201.4

34.4

200.4

30.9

37.9

23.3

37.9

34.5

22.4

34.9

22.7

TL201E

69.9

11.5 12.7

68.7

183.8

51.0

SW

0.0

24.6

144.8

63.9

62.8

6.3

34.6

24.2

63.5

24.5

35.0TL242W

TL217E

TL218W

62.4

21.4

206SVL B1

236HWD B1B2

0.989-13.3

OXEN POND

238OPD B1

38.0

193.6

34.8

192.7

TL218E

11.1

247.3

405USL L34

216STB B1B2

261ACG GFL

14.1 27.8

15.2

44.7

11.5

1.0000.0

235.4

100.0

R

1.1

40.4

STEPHENVILLE

1

208MDR B1B5

1.015-19.9

135DLK B3

127.7

10.0

149.7

82.5

41.7

0.0

7300CHF TS

1134.0

228.2

1134.0

228.2

1134.0

228.2

0.9875

191.5

24.4

0.9875

191.5

24.4

1.0548

3.2

44.5

2306CHF B23

1.0445.1

3.2

44.3

2330WABUSH TS

0.921-19.4

205.9

48.2

190.3

4.7

205.9

48.2

190.3

4.7

3382.5

118.7

R

SW

499.0

1127.5

205.9

1.0040.0

1

1127.5

205.9

1127.5

205.9 3420

CHF 315 191.3

32.1

3401MFA TS

188.0

39.8

32.1

188.0

39.8

191.3

32.1

191.3

32.1

3400MFA 315S

W

220.4

144.6

39.4

144.6

37.8

39.4

144.6

37.8

4.0

144.6

SOLDIERS POND

CHURCHILL FALLS

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

176.8

45.3

75.1

17.9

75.1

17.8

TL234

18.5

110.3

111.6

23.5

144.3

9.1

143.9

9.0

146.3

8.3145.9

8.3

96.6

25.5

89.9

20.1

44.7

11.5

1

224.3

0.0

55.8

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

14.0

96.0

96.1

13.9

94.2

0.8

0.9

221BDE TS

8.4

23.2

8.4

30.5

229WAV B1B3

SW

116.7

TL203

TL237

222SSD B1

SUNNYSIDE

61.2

23.6

35.7

24.6

173.4

36.3

TL207

CBC

227CBC B1B2

291GCL L63

150.2

20.3

DEER LAKE

1.021-26.5

1.011-19.2

215BUC B1

BUCHANS

1.007-14.9

1.006-14.9

1.012-7.0

NEWFOUNDLAND

1.003-14.3

0.993-14.0

0.983-14.6

1.016-7.8

1.019-12.2

1.018-27.0

0.9955.0

0.990-7.6

0.991-7.5

1.007-14.4

1.000-11.9

205BBK B1

P = 4229.0 MW

Q = 585.7 MvarP = 613.0 MW

191.31.013

2.87380MONTAGNAIS

HYDRO-QUEBEC

Q = 27.3 Mvar

4.5

129.6TL248

1.038-12.0

136CAT L47

CAT ARM

P = 130.0 MW

Q = 17.9 Mvar

TL228 8.1

97.2

99.6

16.7 BOTTOM BROOK

135.9 75.1

17.8

P = 40.0 MW

Q = 3.4 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -6.7 Mvar

UPPER SALMON

94.4

TL

20

6

TL

20

2

P = 605.3 MW

Q = 10.2 Mvar

BAY D ESPOIR

TL201W

TL217W

89.8

33.2 39.1

12.3

0.998-11.7

54.0

145.3

145.7

54.6

TL236

TL242E

104.9

329.1 0.981

-14.1

P = 0.0 MW

Q = 38.9 MvarHARDWOODS

26.1

107.2

234HRD TS

HOLYROOD

Q = 96.5 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

450.0

212.2

450.0

212.2

406.9

209.5

7.2

21.2

11.3

8.2

Q = 5.1 Mvar

P = 80.0 MW

95.5

1.0 0.997

-23.8

2 0.0

239.3

2490SPD

2

0.0

156.3

7.5

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

119.5

45.2

117.7

50.0

119.5

45.2

117.7

50.06000

NOVA SCOTIA

Q = 194.5 Mvar

LABRADOR

- Generation: Maximum- Bipolar operation of Maritime HVDC

BC2 - WINTER PEAK 2017, 1552 MW, 814 MW IMPORT AND 239 MW EXPORT

406.9

209.5

NP-NLH-108, Attachment 4 Page 55 of 89, NLH 2013 GRA

Page 303: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-4

Attachment A- 3

BC-3 Peak 2017/Island Link 730MW/Maritime Link 158MW/Maximum Dispatch

NP-NLH-108, Attachment 4 Page 56 of 89, NLH 2013 GRA

Page 304: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

73.2

16.2

53.0

31.1

53.3

38.4

130.5

27.9

64.3

7.1

2.4

MASSEY DRIVE

TL211

TL235

27.2

TL231

1.1

3.2

TL263

TL209

44.7

8.4

69.3 TL232

TL205

STONY BROOK

TL204

TL233

13.0

184.7

54.9

13.8 3.1

201.4

34.2

200.4

30.7

35.0

24.8

35.0

31.8

23.6

32.1

23.9

TL201E

96.4

10.3 6.1

94.1

183.7

50.8

SW

0.0

4.5

118.3

26.2

26.0

2.3

31.8

25.4

26.1

25.7

32.2TL242W

TL217E

TL218W

25.9

22.9

206SVL B1

236HWD B1B2

0.987-17.4

OXEN POND

238OPD B1

37.8

193.6

34.6

192.7

TL218E

10.7

247.4

405USL L34

216STB B1B2

261ACG GFL

14.1 1.1

12.8

44.7

11.7

1.0000.0

156.5

61.5

R

3.4

40.8

STEPHENVILLE

1

208MDR B1B5

1.008-16.4

135DLK B3

127.7

13.1

150.7

76.0

25.0

0.0

7300CHF TS

1160.9

222.1

1160.9

222.1

1160.9

222.1

0.9875

136.2

36.4

0.9875

136.2

36.4

1.0548

0.1

45.8

2306CHF B23

1.0445.1

0.1

45.5

2330WABUSH TS

0.921-19.3

205.9

48.3

190.3

4.5

205.9

48.3

190.3

4.5

3462.4

123.8

R

SW

499.0

1154.1

207.6

1.0040.0

1

1154.1

207.6

1154.1

207.6 3420

CHF 315 136.1

40.5

3401MFA TS

134.5

49.4

40.5

134.5

49.4

136.1

40.5

136.1

40.5

3400MFA 315S

W

179.0

91.1

48.9

91.1

47.0

48.9

91.1

47.0

4.9

91.1

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

180.7

45.0

75.1

18.0

75.1

18.0

TL234

11.0

82.0

82.7

19.7

120.2

2.8

119.9

2.7

121.7

8.1121.3

8.1

69.7

18.2

65.0

14.3

44.7

11.7

1

178.8

0.0

55.8

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

11.9

120.9

121.1

11.9

118.2

6.1

6.1

221BDE TS

22.0

15.6

21.9

22.9

229WAV B1B3

SW

115.7

TL203

TL237

222SSD B1

SUNNYSIDE

66.0

50.2

35.7

24.6

164.3

38.2

TL207

CBC

227CBC B1B2

291GCL L63

121.9

12.0

DEER LAKE

1.001-22.0

1.005-16.7

215BUC B1

BUCHANS

1.004-13.6

1.004-13.6

1.010-7.0

NEWFOUNDLAND

0.999-16.2

0.989-16.7

0.979-17.3

1.014-7.0

1.017-10.3

0.997-22.5

0.9965.1

0.997-3.8

0.998-3.7

1.003-16.4

0.999-16.0

205BBK B1

P = 4199.0 MW

Q = 570.3 MvarP = 618.0 MW

Q = 151.6 Mvar

136.11.015

3.57380MONTAGNAIS

HYDRO-QUEBEC

Q = 27.5 Mvar

8.1

129.6TL248

1.035-8.5

136CAT L47

CAT ARM

P = 130.0 MW

Q = 21.5 Mvar

TL228 0.2

74.5

72.2

1.3 BOTTOM BROOK

131.5 75.1

18.0

P = 40.0 MW

Q = 4.2 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -5.7 Mvar

UPPER SALMON 1

18.3

TL

20

6

TL

20

2

P = 603.6 MW

Q = 18.2 Mvar

BAY D ESPOIR

TL201W

TL217W

98.2

33.3 33.2

14.3

0.997-15.8

53.9

145.3

145.6

54.6

TL236

TL242E

104.6

329.0 0.979

-18.2

P = 0.0 MW

Q = 40.3 MvarHARDWOODS

25.7

98.8

234HRD TS

HOLYROOD

Q = 100.2 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

399.0

180.3

399.0

180.3

365.5

180.5

7.2

21.2

14.1

3.8

Q = 6.4 Mvar

P = 80.0 MW

73.5

9.7 0.987

-20.2

2 0.0

238.4

2490SPD

2

0.0

75.1

6.9

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

79.0

27.0

78.2

30.7

79.0

27.0

78.2

30.76000

NOVA SCOTIA

- Generation: Maximum

BC3 - WINTER PEAK 2017, 1552 MW, 730 MW IMPORT AND 158 MW EXPORT

- Bipolar operation of Maritime HVDC

365.5

180.5

NP-NLH-108, Attachment 4 Page 57 of 89, NLH 2013 GRA

Page 305: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-5

Attachment A- 4

BC-4 Peak 2041/Island Link 814MW/Maritime Link 0MW/Maximum Dispatch

NP-NLH-108, Attachment 4 Page 58 of 89, NLH 2013 GRA

Page 306: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

19.9

9.4

22.2

17.5

22.1

26.3

117.7

33.3

24.7

1.4

3.4

MASSEY DRIVE

TL211

TL235

31.3

TL231

42.1

9.3

TL263

TL209

31.4

4.9

26.6 TL232

TL205

STONY BROOK

TL204

TL233

25.1

211.2

63.0

26.0 15.3

222.2

32.1

220.9

27.5

41.9

29.5

41.9

38.0

28.5

38.4

28.9

TL201E

119.4

6.3 2.1

115.9

210.0

56.4

SW

0.0 2

0.0

79.8

23.9

24.0

14.3

38.0

30.3

23.8

30.6

38.5TL242W

TL217E

TL218W

23.9

27.6

206SVL B1

236HWD B1B2

0.995-19.8

OXEN POND

238OPD B1

36.3

213.6

32.0

212.6

TL218E

12.9

254.6

405USL L34

216STB B1B2

261ACG GFL

13.5 42.0

18.2

31.3

8.4

1.0000.00

.0

0.0

R

11.6

46.1

STEPHENVILLE

1

208MDR B1B5

1.001-12.2

135DLK B3

127.6

16.1

184.2

80.4

7300CHF TS

1401.6

238.3

1401.6

238.3

1401.6

238.3

0.9875

188.9

25.6

0.9875

188.9

25.6

1.0548

495.6

45.5

2306CHF B23

1.0459.7

496.0

15.4

2330WABUSH TS

0.921-14.7

205.9

48.6

190.2

4.1

205.9

48.6

190.2

4.1

4175.2

72.2

R

SW

499.0

1391.7

142.3

1.0040.0

1

1391.7

142.3

1391.7

142.3 3420

CHF 315 188.7

33.1

3401MFA TS

185.5

39.4

33.1

185.5

39.4

188.7

33.1

188.7

33.1

3400MFA 315S

W

220.2

142.1

39.1

142.2

37.4

39.1

142.2

37.4

4.0

142.1

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

228.8

73.5

75.1

21.1

75.1

21.1

TL234

4.2

41.5

41.7

16.8

102.7 14.2

102.4

14.3

103.7

5.2103.4

5.1

26.7

12.5

24.8

11.4

31.3

8.4

1

227.5

0.0

55.8

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

5.2

149.1

149.3

5.2

144.9

8.9

8.9

221BDE TS

27.5

9.3

27.5

16.6

229WAV B1B3

SW

154.8

TL203

TL237

222SSD B1

SUNNYSIDE

105.0

55.4

35.7

24.6

207.0

77.9

TL207

CBC

227CBC B1B2

291GCL L63

81.4

1.1

DEER LAKE

215BUC B1

BUCHANS

0.998-12.4

0.998-12.4

1.018-6.9

NEWFOUNDLAND

0.998-18.2

0.990-18.8

0.981-19.4

1.026-5.8

1.029-7.5

0.990-15.4

0.9946.2

0.989-6.3

0.990-6.1

1.004-18.4

1.008-18.3

205BBK B1

P = 5031.0 MW

Q = 750.5 MvarP = 618.0 MW

Q = 197.4 Mvar

188.71.011

4.07380MONTAGNAIS

HYDRO-QUEBEC

Q = 30.9 Mvar

11.5

129.6TL248

1.032-4.2

136CAT L47

CAT ARM

P = 130.0 MW

Q = 25.1 Mvar

TL228 8.5

44.8

19.9

14.0

BOTTOM BROOK

118.5 75.1

21.1

P = 40.0 MW

Q = 8.2 Mvar

GRANITE CANAL

P = 84.0 MW

Q = 2.7 Mvar

UPPER SALMON 1

45.1

TL

20

6

TL

20

2

P = 607.0 MW

Q = 56.3 Mvar

BAY D ESPOIR

TL201W

TL217W

126.4

46.7 32.7

19.5

1.005-18.0

70.6

178.3

178.9

72.5

TL236

TL242E

127.0

388.3 0.986

-20.8

P = 90.0 MW

Q = 54.3 MvarHARDWOODS

38.5

118.1

234HRD TS

HOLYROOD

Q = 130.2 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

450.0

212.6

450.0

212.6

406.7

209.8

7.7

22.0

15.3

9.1

Q = 8.4 Mvar

P = 80.0 MW

44.4

20.9

2 0.0

262.8

2490SPD

5.8

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

6000NOVA SCOTIA

- Generation: Maximum

0.978-15.6

0.999-13.6

0.992-15.1

- Bipolar operation of Maritime HVDC

BC4 - FUTURE PEAK 2041, 1900 MW, 814 MW IMPORT AND 0 MW EXPORT

406.7

209.8

NP-NLH-108, Attachment 4 Page 59 of 89, NLH 2013 GRA

Page 307: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-6

Attachment A- 5

BC-5 Intermediate 2017/Island Link 814MW/Maritime Link 158MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 60 of 89, NLH 2013 GRA

Page 308: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

80.8

10.8

22.1

13.9

22.1

23.0

31.7

52.0

83.3

6.5

0.4

MASSEY DRIVE

TL211

TL235

43.5

TL231

14.7

7.5

TL263

TL209

30.1

6.6

89.3 TL232

TL205

STONY BROOK

TL204

TL233

30.4

124.1

33.3

26.9 21.4

135.1

16.8

134.6

16.7

34.5

23.9

34.4

31.3

22.8

31.6

23.1

TL201E

26.2

2.7 29.0

26.4

123.6

34.2

SW

15.4

6.5

113.4

165.6

162.5

25.3

31.3

24.6

163.1

24.9

31.7TL242W

TL217E

TL218W

159.6

22.0

206SVL B1

236HWD B1B2

0.9985.0

OXEN POND

238OPD B1

19.4

129.9

19.6

129.6

TL218E

3.1

166.4

405USL L34

216STB B1B2

261ACG GFL

15.0 14.7

2.1

30.1

10.2

1.0000.0

156.5

61.5

R

4.8

27.0

STEPHENVILLE

1

208MDR B1B5

1.022-16.2

135DLK B3

0.0

31.6

114.2

77.9

7300CHF TS

1592.7

243.1

1592.7

243.1

1592.7

243.1

1.0000

117.4

49.7

1.0000

117.4

49.7

1.0548

577.3

53.2

2306CHF B23

1.04411.2

578.0

12.1

2330WABUSH TS

0.921-13.3

205.9

48.1

190.3

4.8

205.9

48.1

190.3

4.8

4739.8

222.5

R

SW

499.0

1579.9

92.1

1.0040.0

1

1579.9

92.1

1579.9

92.1 3420

CHF 315 117.3

53.1

3401MFA TS

116.0

39.6

53.1

116.0

39.6

117.3

53.1

117.3

53.1

3400MFA 315S

W

223.8

72.7

39.7

72.7

37.7

39.7

72.7

37.7

3.8

72.7

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

107.9

29.5

75.2

11.6

75.2

11.6

TL234

2.1

88.8

89.6

10.2

103.6

4.2

103.3

4.1

104.7

13.7104.4

13.7

89.9

15.8

84.3

10.4

30.1

10.2

1

226.5

0.0

55.7

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

11.4

4.7

4.7

11.4

4.7

14.3

14.3

221BDE TS

90.4

53.9

91.3

57.1

229WAV B1B3

SW

120.1

TL203

TL237

222SSD B1

SUNNYSIDE

39.8

48.7

35.7

24.5

129.7

14.5

TL207

CBC

227CBC B1B2

291GCL L63

116.7

15.9

DEER LAKE

215BUC B1

BUCHANS

1.018-8.1

1.018-8.1

1.020-2.5

NEWFOUNDLAND

1.019-2.2

1.0030.2

0.994-0.4

1.018-2.9

1.013-6.5

1.001-18.0

0.9927.1

0.997-0.8

0.998-0.7

1.022-2.0

1.0055.9

205BBK B1

P = 5465.0 MW

Q = 860.4 MvarP = 757.0 MW

Q = 195.6 Mvar

117.31.003

5.77380MONTAGNAIS

HYDRO-QUEBEC

Q = 20.7 Mvar

8.3

0.0TL248

1.044-16.3

136CAT L47

CAT ARM

P = 0.0 MW

Q = 8.4 Mvar

TL228 2.7

106.8

79.6

5.8 BOTTOM BROOK

31.8 75.2

11.6

P = 28.0 MW

Q = 4.2 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -9.0 Mvar

UPPER SALMON

4.7

TL

20

6

TL

20

2

P = 204.7 MW

Q = -34.9 Mvar

BAY D ESPOIR

TL201W

TL217W

35.7

33.5 60.3

85.2

1.0036.1

40.1

97.6

97.7 39.4

TL236

TL242E

74.3

221.2 0.992

4.5

P = 0.0 MW

Q = 38.4 MvarHARDWOODS

13.9

97.3

234HRD TS

HOLYROOD

Q = 84.7 Mvar

P = 0.0 MW

- Base Case

450.0

211.0

450.0

211.0

407.3

209.1

6.3

16.1

12.0

31.9

Q = 4.9 Mvar

P = 80.0 MW

104.7

2.9

2 0.0

141.0

2490SPD

6.6

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

79.0

27.0

78.2

30.7

79.0

27.0

78.2

30.76000

NOVA SCOTIA

0.996-16.9

1.015-12.0

1.004-17.7

- Generation: Economic Dispatch

1 2

0.0

25.2

0.0

45.3

- Bipolar operation of Maritime HVDC

BC5 - SPRING/FALL INTERMEDIATE 2017, 1100 MW, 814 MW IMPORT AND 158 MW EXPORT

100.0%RATEB1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000 >230.000

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

407.3

209.1

NP-NLH-108, Attachment 4 Page 61 of 89, NLH 2013 GRA

Page 309: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-7

Attachment A- 6

BC-6 Intermediate 2017/Island Link 268MW/Maritime Link 158MW/Maximum Dispatch

NP-NLH-108, Attachment 4 Page 62 of 89, NLH 2013 GRA

Page 310: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

57.7

10.9

70.0

25.9

70.6

32.4

140.1

26.1

40.4

0.3

2.9

MASSEY DRIVE

TL211

TL235

26.3

TL231

33.4

3.1

TL263

TL209

30.1

6.6

43.4 TL232

TL205

STONY BROOK

TL204

TL233

27.6

124.2

33.6

25.8 19.4

134.9

14.9

134.4

14.8

16.7

27.7

16.7

14.3

25.3

14.4

25.6

TL201E

150.2

5.0 11.5

144.5

123.7

34.3

SW

15.4 1

.3

88.0

84.1

82.2

21.1

14.3

27.1

84.9

27.4

14.4TL242W

TL217E

TL218W

83.0

25.7

206SVL B1

236HWD B1B2

0.988-26.4

OXEN POND

238OPD B1

17.5

129.8

17.6

129.4

TL218E

10.5

165.5

405USL L34

216STB B1B2

261ACG GFL

15.0 33.4

6.0

30.1

10.2

1.0000.0

156.5

61.5

R

4.9

27.0

STEPHENVILLE

1

208MDR B1B5

1.017-10.5

135DLK B3

127.7

8.8

110.3

78.7

7300CHF TS

1387.4

223.7

1387.4

223.7

1387.4

223.7

0.9875

125.1

39.5

0.9875

125.1

39.5

1.0548

17.4

44.6

2306CHF B23

1.0446.3

17.4

44.3

2330WABUSH TS

0.921-18.2

205.9

48.1

190.3

4.8

205.9

48.1

190.3

4.8

4133.0

16.4

R

SW

499.0

1377.7

160.9

1.0040.0

1

1377.7

160.9

1377.7

160.9 3420

CHF 315125.1

43.0

3401MFA TS

126.5

52.5

43.0

126.5

52.5

125.1

43.0

125.1

43.0

3400MFA 315S

W

57.6

170.0

51.0

169.9

49.3

51.0

169.9

49.3

6.3

170.0

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

130.8

31.4

75.2

13.6

75.2

13.5

TL234

1.6

50.1

50.3

13.4

70.0

3.8

69.8

3.8

70.5

18.570.3

18.5

43.5

13.8

40.6

11.6

30.1

10.2

1

54.3

0.0

55.9

84.1

230LHR B1

83.9

56.9

WESTERN AVALON

TL208

VALE INCO

10.3

164.6

164.8

10.3

159.5

20.7

20.8

221BDE TS

107.6

8.0

106.6

10.7

229WAV B1B3

SW

116.0

TL203

TL237

222SSD B1

SUNNYSIDE

70.7

125.0

35.7

24.6

86.5

21.2

TL207

CBC

227CBC B1B2

291GCL L63

90.0

17.3

DEER LAKE

215BUC B1

BUCHANS

1.016-10.8

1.016-10.8

1.012-7.0

NEWFOUNDLAND

1.001-19.6

0.988-22.2

0.978-22.8

1.014-6.1

1.014-8.2

1.003-17.1

0.9956.2

1.02314.4

1.02414.2

1.004-20.1

0.997-25.4

205BBK B1

P = 4357.0 MW

Q = 613.2 MvarP = 618.0 MW

Q = -1.2 Mvar

125.11.017

7.67380MONTAGNAIS

HYDRO-QUEBEC

Q = 22.8 Mvar

3.2

129.6TL248

1.039-2.7

136CAT L47

CAT ARM

P = 130.0 MW

Q = 16.5 Mvar

TL228 7.0

41.1

57.1

9.6 BOTTOM BROOK

141.2 75.2

13.5

P = 40.0 MW

Q = 4.9 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -5.6 Mvar

UPPER SALMON

159.7

TL

20

6

TL

20

2

P = 605.2 MW

Q = 11.8 Mvar

BAY D ESPOIR

TL201W

TL217W

87.6

21.5 24.8

88.5

0.994-25.3

43.5

98.2

98.3 42.9

TL236

TL242E

77.9

221.9 0.983

-27.0

P = 0.0 MW

Q = 43.4 MvarHARDWOODS

24.4

45.2

234HRD TS

HOLYROOD

Q = 105.4 Mvar

P = 0.0 MW

- Base Case

138.0

47.1

138.0

47.1

134.0

52.0

6.3

16.1

17.5

13.5

Q = 4.3 Mvar

P = 80.0 MW

40.8

20.2

2 0.0

74.1

2490SPD

6.6

P = 76.0 MW

- Bipolar operation of Island HVDC

86.8

79.0

27.1

78.2

30.7

27.1

78.2

30.76000

NOVA SCOTIA

0.997-14.5

1.016-12.7

1.006-16.8

- Generation: Maximum

1 2

0.0

25.3

0.0

45.5

BC6 - SPRING/FALL INTERMEDIATE 2017, 1100 MW, 268 MW IMPORT AND 158 MW EXPORT

- Bipolar operation of Maritime HVDC100.0%RATEB1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000 >230.000

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

79.0

134.0

52.0

NP-NLH-108, Attachment 4 Page 63 of 89, NLH 2013 GRA

Page 311: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-8

Attachment A- 7

BC-7 Intermediate 2017/Island Link 814MW/Maritime Link 500MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 64 of 89, NLH 2013 GRA

Page 312: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

191.6

33.9

163.0

90.5

166.3

81.3

105.5

30.6

168.8

30.9

19.6

MASSEY DRIVE

TL211

TL235

27.1

TL231

128.2

0.8

TL263

TL209

30.1

6.6

181.8 TL232

TL205

STONY BROOK

TL204

TL233

16.6

124.2

34.9

12.8 7.9

134.8

16.6

134.4

16.7

34.1

16.9

34.1

31.4

16.0

31.7

16.2

TL201E

22.0

11.3 20.7

22.1

123.8

35.9

SW

0.0

68.0

209.5

165.7

163.0

12.0

31.4

17.9

163.2

18.1

31.7TL242W

TL217E

TL218W

160.1

14.8

206SVL B1

236HWD B1B2

1.0080.9

OXEN POND

238OPD B1

19.2

129.7

19.5

129.4

TL218E

7.2

165.0

405USL L34

216STB B1B2

261ACG GFL

14.9 128.9

2.5

30.1

10.2

1.0000.0

484.4

249.2

R

5.2

27.0

STEPHENVILLE

1

208MDR B1B5

1.000-31.1

135DLK B3

69.2

32.2

107.3

75.7

7300CHF TS

1294.2

227.5

1294.2

227.5

1294.2

227.5

0.9875

188.9

25.4

0.9875

188.9

25.4

1.0548

431.0

41.9

2306CHF B23

1.0468.8

431.4

19.1

2330WABUSH TS

0.921-15.6

205.8

48.9

190.2

3.6

205.8

48.9

190.2

3.6

3857.3

30.0

R

SW

499.0

1285.8

176.3

1.0040.0

1

1285.8

176.3

1285.8

176.3 3420

CHF 315 188.7

33.0

3401MFA TS

185.5

39.9

33.0

185.5

39.9

188.7

33.0

188.7

33.0

3400MFA 315S

W

220.6

142.1

39.6

142.1

37.9

39.6

142.1

37.9

4.0

142.1

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

108.0

27.5

75.1

21.6

75.1

21.6

TL234

22.2

195.0

199.0

7.5

195.5

11.2

195.0

11.1

199.4

7.9198.9

7.8

184.5

20.2

173.2

8.1

30.1

10.2

1

55.5

84.1

230LHR B1

83.9

56.7

WESTERN AVALON

TL208

VALE INCO

19.3

1.3

1.4

19.3

1.3

6.0

6.0

221BDE TS

93.0

43.9

93.9

47.4

229WAV B1B3

SW

119.6

TL203

TL237

222SSD B1

SUNNYSIDE

48.1

50.7

35.7

24.5

146.4

16.2

TL207

CBC

227CBC B1B2

291GCL L63

221.9

14.5

DEER LAKE

215BUC B1

BUCHANS

0.990-17.0

0.990-17.1

1.008-6.1

NEWFOUNDLAND

1.016-6.3

1.005-3.8

0.995-4.4

1.002-9.5

0.992-17.7

1.007-40.1

0.9955.7

0.990-6.7

0.991-6.6

1.020-6.1

1.0151.7

205BBK B1

P = 4706.0 MW

Q = 665.4 MvarP = 618.0 MW

Q = 192.0 Mvar

188.71.013

3.57380MONTAGNAIS

HYDRO-QUEBEC

Q = 31.5 Mvar

15.2

69.9TL248

1.035-26.9

136CAT L47

CAT ARM

P = 70.0 MW

Q = 19.3 Mvar

TL228 24.3

173.9

184.5

58.3 BOTTOM BROOK

106.2 75.1

21.6

P = 27.0 MW

Q = 10.4 Mvar

GRANITE CANAL

P = 71.0 MW

Q = 1.0 Mvar

UPPER SALMON

1.3

TL

20

6

TL

20

2

P = 525.5 MW

Q = 25.6 Mvar

BAY D ESPOIR

TL201W

TL217W

36.0

34.9 51.8

87.2

1.0141.9

44.2

98.5

98.7 43.5

TL236

TL242E

80.1

222.4 1.002

0.4

P = 0.0 MW

Q = 33.4 MvarHARDWOODS

13.9

97.1

234HRD TS

HOLYROOD

Q = 62.5 Mvar

P = 0.0 MW

- Base Case

450.0

210.8

450.0

210.8

407.3

209.1

6.3

16.1

5.1

36.9

Q = 0.9 Mvar

P = 80.0 MW

168.1

36.2

2490SPD

7.6

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

250.0

117.0

242.2

124.6

250.0

117.0

242.2

124.66000

NOVA SCOTIA

0.986-25.4

1.010-39.8

- Generation: Economic Dispatch

1

0.0

122.3

0.979-34.2

2

1

0.0

330.0

H 184.9

0.0

231.2

0.0

- Bipolar operation of Maritime HVDC

BC7 - SPRING/FALL INTERMEDIATE 2017, 1100 MW, 814 MW IMPORT AND 500 MW EXPORT

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEB1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

407.3

209.1

NP-NLH-108, Attachment 4 Page 65 of 89, NLH 2013 GRA

Page 313: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-9

Attachment A- 8

BC-8 Light 2017/Island Link 400MW/Maritime Link 158MW/Minimum Dispatch

NP-NLH-108, Attachment 4 Page 66 of 89, NLH 2013 GRA

Page 314: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

66.3

1.7

30.6

2.8

30.7

11.9

38.1

50.5

63.6

2.9

8.0

MASSEY DRIVE

TL211

TL235

42.0

TL231

4.3

10.0

TL263

TL209

17.6

5.0

67.7 TL232

TL205

STONY BROOK

TL204

TL233

14.8

72.3

18.8

13.5 22.6

78.4

4.4

78.2

6.3

18.0

19.7

18.0

16.0

17.7

16.1

18.0

TL201E

23.4

11.7 21.4

23.2

72.2

22.4

SW

0.0

9.6

94.8

63.1

61.7

23.9

16.0

19.7

62.7

19.9

16.2TL242W

TL217E

TL218W

61.2

17.7

206SVL B1

236HWD B1B2

1.008-6.6

OXEN POND

238OPD B1

6.1

75.5

8.1

75.4

TL218E

17.0

96.0

405USL L34

216STB B1B2

261ACG GFL

15.7 4.3

0.1

17.6

8.7

1.0000.0

156.5

61.5

R

9.8

15.3

STEPHENVILLE

1

208MDR B1B5

1.027-15.8

135DLK B3

35.8

24.9

86.9

77.8

7300CHF TS

831.3

188.3

831.3

188.3

831.3

188.3

1.0000

111.8

44.2

1.0000

111.8

44.2

1.0548

37.2

58.9

2306CHF B23

1.0463.9

37.2

58.3

2330WABUSH TS

0.921-20.5

205.8

48.8

190.2

3.8

205.8

48.8

190.2

3.8

2483.3

381.5

R

SW

499.0

827.8

293.5

1.0040.0

1

827.8

293.5

827.8

293.5 3420

CHF 315111.9

47.3

3401MFA TS

113.0

49.6

47.3

113.0

49.6

111.9

47.3

111.9

47.3

3400MFA 315S

W

93.2

156.4

48.6

156.4

46.9

48.6

156.4

46.9

5.3

156.4

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

76.4

14.8

44.7

4.9

44.7

4.8

TL234

4.7

70.1

70.5

15.3

82.0

2.2

81.8

2.2

82.6

16.182.4

16.1

68.0

9.3

64.1

5.0

17.6

8.7

1

92.0

0.0

55.6

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

17.3

37.0

37.1

17.3

36.8

7.3

7.3

221BDE TS

16.2

33.5

16.3

41.0

229WAV B1B3

SW

81.6

TL203

TL237

222SSD B1

SUNNYSIDE

22.3

16.4

35.7

24.4

73.4

3.4

TL207

CBC

227CBC B1B2

291GCL L63

97.0

7.6

DEER LAKE

215BUC B1

BUCHANS

1.032-10.3

1.032-10.4

1.031-6.0

NEWFOUNDLAND

1.030-8.8

1.016-8.2

1.007-8.8

1.029-5.9

1.029-8.7

1.001-17.9

0.9993.7

1.01811.1

1.01810.9

1.032-8.8

1.013-6.1

205BBK B1

P = 2707.0 MW

Q = 308.5 MvarP = 735.0 MW

Q = 35.3 Mvar

111.91.009

5.07380MONTAGNAIS

HYDRO-QUEBEC

Q = 7.5 Mvar

2.6

35.9TL248

1.047-13.7

136CAT L47

CAT ARM

P = 36.0 MW

Q = 4.7 Mvar

TL228 5.7

80.7

65.5

17.6

BOTTOM BROOK

38.3 44.7

4.8

P = 27.0 MW

Q = -0.6 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -16.3 Mvar

UPPER SALMON

36.8

TL

20

6

TL

20

2

P = 268.4 MW

Q = -44.2 Mvar

BAY D ESPOIR

TL201W

TL217W

27.4

22.0 43.5

19.5

1.011-6.0

32.8

57.5

57.5 31.3

TL236

TL242E

55.1

129.7 1.004

-6.9

P = 0.0 MW

Q = 35.2 MvarHARDWOODS

12.2

50.0

234HRD TS

HOLYROOD

Q = 67.4 Mvar

P = 0.0 MW

- Base Case

210.0

78.8

210.0

78.8

200.6

84.3

4.5

9.4

17.1

2.6

Q = 2.7 Mvar

P = 80.0 MW

79.5

15.4

2490SPD

6.9

P = 45.0 MW

- Bipolar operation of Island HVDC

86.7

79.0

27.2

78.2

30.7

79.0

27.2

78.2

30.76000

NOVA SCOTIA

1.025-13.2

1.003-17.7

1

0.0

25.2

1.002-16.8

- Generation: Minimum

BC8 - SUMMER DAY LIGHT 2017, 700 MW, 400 MW IMPORT AND 158 MW EXPORT

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEA1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000>230.000

200.6

84.3

NP-NLH-108, Attachment 4 Page 67 of 89, NLH 2013 GRA

Page 315: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-10

Attachment A- 9

BC-9 Light 2017/Island Link 80MW/Maritime Link 158MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 68 of 89, NLH 2013 GRA

Page 316: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

53.9

2.3

63.9

10.0

64.3

17.3

101.1

42.0

38.1

5.9

9.3

MASSEY DRIVE

TL211

TL235

37.6

TL231

21.6

4.2

TL263

TL209

17.6

5.0

40.5 TL232

TL205

STONY BROOK

TL204

TL233

14.0

72.3

18.8

12.0 4.6

78.3

4.4

78.1

6.3

7.5

17.9

7.5

6.2

15.4

6.2

15.6

TL201E

126.4

16.0 9.1

122.5

72.1

22.4

SW

0.0 1

5.1

73.6

83.6

82.0

6.5

6.2

17.3

84.3

17.5

6.3TL242W

TL217E

TL218W

82.8

15.8

206SVL B1

236HWD B1B2

1.008-21.5

OXEN POND

238OPD B1

6.1

75.4

8.1

75.3

TL218E

17.0

95.9

405USL L34

216STB B1B2

261ACG GFL

15.7 21.6

5.4

17.6

8.7

1.0000.0

156.5

61.5

R

9.8

15.3

STEPHENVILLE

1

208MDR B1B5

1.028-9.1

135DLK B3

71.3

18.9

76.8

83.5

7300CHF TS

681.6

208.0

681.6

208.0

681.6

208.0

0.9875

219.4

11.9

0.9875

219.4

11.9

1.0548

413.6

114.5

2306CHF B23

1.0380.1

413.2

92.3

2330WABUSH TS

0.919-24.7

206.0

46.1

190.3

7.6

206.0

46.1

190.3

7.6

2037.5

372.2

R

SW

499.0

679.2

290.4

1.0040.0

1

679.2

290.4

679.2

290.4 3420

CHF 315219.6

21.9

3401MFA TS

224.0

42.7

21.9

224.0

42.7

219.6

21.9

219.6

21.9

3400MFA 315S

W

15.7

267.5

40.7

267.3

39.8

40.7

267.3

39.8

5.9

267.5

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

76.0

16.8

44.7

7.4

44.7

7.3

TL234

5.4

48.0

48.2

17.7

55.1

2.3

55.0

2.2

55.4

19.355.3

19.3

40.6

8.1

38.3

5.7

17.6

8.7

1

15.3

0.0

55.6

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

25.2

135.6

135.8

25.2

132.2

22.8

22.9

221BDE TS

103.0

16.4

102.1

20.1

229WAV B1B3

SW

122.7

TL203

TL237

222SSD B1

SUNNYSIDE

69.5

120.8

35.7

24.4

40.7

7.4

TL207

CBC

227CBC B1B2

291GCL L63

74.9

8.2

DEER LAKE

215BUC B1

BUCHANS

1.029-8.5

1.028-8.5

1.024-5.6

NEWFOUNDLAND

1.030-15.6

1.014-17.9

1.004-18.5

1.025-5.0

1.028-6.9

1.002-14.1

0.9973.0

1.02517.5

1.02517.2

1.033-16.1

1.013-20.9

205BBK B1

P = 2041.0 MW

Q = 228.7 MvarP = 618.0 MW

Q = -9.6 Mvar

219.61.014

5.67380MONTAGNAIS

HYDRO-QUEBEC

Q = 10.0 Mvar

0.6

71.9TL248

1.047-4.9

136CAT L47

CAT ARM

P = 72.0 MW

Q = 4.6 Mvar

TL228 10.7

40.3

53.4

18.9

BOTTOM BROOK

101.7 44.7

7.3

P = 27.0 MW

Q = -0.4 Mvar

GRANITE CANAL

P = 70.0 MW

Q = -14.1 Mvar

UPPER SALMON

132.3

TL

20

6

TL

20

2

P = 497.6 MW

Q = -55.1 Mvar

BAY D ESPOIR

TL201W

TL217W

57.8

15.1 33.7

84.3

1.011-20.9

32.7

57.5

57.5 31.3

TL236

TL242E

55.1

129.6 1.004

-21.8

P = 0.0 MW

Q = 35.4 MvarHARDWOODS

19.4

19.9

234HRD TS

HOLYROOD

Q = 67.9 Mvar

P = 0.0 MW

- Base Case

40.5

11.7

40.5

11.7

40.2

13.8

4.5

9.4

18.7

30.4

Q = 1.0 Mvar

P = 80.0 MW

40.0

24.2

2490SPD

6.8

P = 45.0 MW

- Bipolar operation of Island HVDC

86.7

79.0

27.0

78.2

30.7

79.0

27.0

78.2

30.76000

NOVA SCOTIA

1.024-10.2

1.004-13.9

1

0.0

25.2

1.002-11.9

- Generation: Economic Dispatch

BC9 - SUMMER DAY LIGHT 2017, 700 MW, 80 MW IMPORT AND 158 MW EXPORT

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEA1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000>230.000

40.2

13.8

NP-NLH-108, Attachment 4 Page 69 of 89, NLH 2013 GRA

Page 317: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-11

Attachment A- 10

BC-10 Light 2017/Island Link 814MW/Maritime Link 500MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 70 of 89, NLH 2013 GRA

Page 318: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

187.9

30.4

146.3

68.5

148.8

63.6

55.4

47.7

170.2

32.9

21.6

MASSEY DRIVE

TL211

TL235

40.6

TL231

124.8

7.7

TL263

TL209

17.6

5.0

183.4 TL232

TL205

STONY BROOK

TL204

TL233

29.1

72.4

17.9

23.5 3.9

78.5

3.2

78.3

5.0

31.9

25.4

31.9

28.8

24.0

29.1

24.3

TL201E

97.6

12.3 25.9

100.3

72.2

21.4

SW

0.0

65.3

205.6

251.2

247.4

2.5

28.8

25.9

245.4

26.1

29.1TL242W

TL217E

TL218W

240.7

23.5

206SVL B1

236HWD B1B2

1.00112.6

OXEN POND

238OPD B1

4.9

75.6

6.8

75.5

TL218E

19.1

96.4

405USL L34

216STB B1B2

261ACG GFL

15.7 125.6

9.5

17.6

8.7

1.0000.0

484.4

249.2

R

9.6

15.3

STEPHENVILLE

1

208MDR B1B5

1.004-33.3

135DLK B3

35.7

35.8

81.6

66.7

7300CHF TS

786.4

182.1

786.4

182.1

786.4

182.1

1.0000

83.4

47.4

1.0000

83.4

47.4

1.0548

431.5

61.6

2306CHF B23

1.0486.5

431.9

38.8

2330WABUSH TS

0.922-17.9

205.8

49.6

190.2

2.7

205.8

49.6

190.2

2.7

2349.8

417.4

R

SW

499.0

783.3

305.5

1.0040.0

1

783.3

305.5

783.3

305.5 3420

CHF 315 83.3

49.3

3401MFA TS

82.7

50.8

49.3 82.7

50.8

83.3

49.3

83.3

49.3

3400MFA 315S

W

224.6

39.3

50.8

39.3

48.8

50.8

39.3

48.8

4.0

39.3

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

59.5

26.1

44.6

26.5

44.6

26.4

TL234

23.0

190.7

194.7

8.8

188.2

15.4

187.6

15.3

191.8

1.9191.3

1.8

186.2

21.2

174.7

9.1

17.6

8.7

1 0.0

55.9

84.1

230LHR B1

83.9

56.9

WESTERN AVALON

TL208

VALE INCO

0.9

78.0

78.1

0.9

79.2

17.1

17.1

221BDE TS

161.5

63.0

164.1

57.7

229WAV B1B3

SW

115.5

TL203

TL237

222SSD B1

SUNNYSIDE

29.7

110.8

35.7

24.6

113.7

0.9

TL207

CBC

227CBC B1B2

291GCL L63

217.7

13.2

DEER LAKE

215BUC B1

BUCHANS

0.984-17.0

0.983-17.0

0.996-6.2

NEWFOUNDLAND

0.999-0.0

0.9874.3

0.9773.7

0.994-9.7

0.985-17.7

0.998-40.0

0.9993.5

0.999-2.0

1.000-2.0

1.0020.4

1.00613.0

205BBK B1

P = 2963.0 MW

Q = 337.8 MvarP = 824.0 MW

Q = 186.2 Mvar

83.31.009

2.47380MONTAGNAIS

HYDRO-QUEBEC

Q = 30.2 Mvar

14.8

35.9TL248

1.037-31.2

136CAT L47

CAT ARM

P = 36.0 MW

Q = 17.0 Mvar

TL228 29.8

181.3

181.0

53.7 BOTTOM BROOK

55.7 44.6

26.4

P = 27.0 MW

Q = 12.6 Mvar

GRANITE CANAL

P = 70.0 MW

Q = 6.4 Mvar

UPPER SALMON

79.3

TL

20

6

TL

20

2

P = 265.2 MW

Q = 42.1 Mvar

BAY D ESPOIR

TL201W

TL217W

10.8

33.4 58.3

148.6

1.00413.2

32.3

57.3

57.4 30.9

TL236

TL242E

53.7

129.6 0.998

12.3

P = 0.0 MW

Q = 40.3 MvarHARDWOODS

8.2

89.6

234HRD TS

HOLYROOD

Q = 82.8 Mvar

P = 0.0 MW

- Base Case

450.0

211.4

450.0

211.4

407.4

209.0

4.5

9.4

4.8

20.0

Q = 4.5 Mvar

P = 80.0 MW

174.9

44.6

2490SPD

5.7

P = 45.0 MW

- Bipolar operation of Island HVDC

86.7

250.0

117.2

242.2

124.6

250.0

117.2

242.2

124.66000

NOVA SCOTIA

0.980-25.5

1.000-39.8

1

0.0

120.0

0.978-34.8

- Generation: Economic Dispatch

1

297.3

R

0.0

226.8

2 0.0

141.1

- Bipolar operation of Maritime HVDC

BC10 - SUMMER DAY LIGHT 2017, 700 MW, 814 MW IMPORT AND 500 MW EXPORT

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEA1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000>230.000

407.4

209.0

NP-NLH-108, Attachment 4 Page 71 of 89, NLH 2013 GRA

Page 319: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-12

Attachment A- 11

BC-11 Extreme Light 2017/Island Link 80MW/Maritime Link 0MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 72 of 89, NLH 2013 GRA

Page 320: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

1.9

6.5

7.4

10.5

7.4

0.6

46.5

43.9

1.9

15.4

16.2

MASSEY DRIVE

TL211

TL235

35.1

TL231

79.7

23.0

TL263

TL209

8.8

0.0

2.6 TL232

TL205

STONY BROOK

TL204

TL233

23.2

36.7

2.4

22.9 11.2

38.5

15.3

38.5

12.6

4.7

0.7

4.7

4.5

1.2

4.6

1.2

TL201E

67.5

19.5 7.9

66.4

36.6

2.5

SW

16.0 2

0.4

21.9

23.5

22.7

11.4

4.5

0.9

23.6

0.9

4.6TL242W

TL217E

TL218W

22.8

1.6

206SVL B1

236HWD B1B2

1.041-13.6

OXEN POND

238OPD B1

13.9

37.5

11.1

37.5

TL218E

39.3

46.5

405USL L34

216STB B1B2

261ACG GFL

16.2 79.4

15.8

8.8

3.8

1.0000.00

.0

0.0

R

15.4

7.6

STEPHENVILLE

1

208MDR B1B5

1.045-4.8

135DLK B3

45.7

10.4

63.6

76.1

7300CHF TS

854.4

185.6

854.4

185.6

854.4

185.6

1.0000

103.3

57.2

1.0000

103.3

57.2

1.0548

51.6

60.9

2306CHF B23

1.0464.1

51.6

60.1

2330WABUSH TS

0.921-20.3

205.8

48.8

190.2

3.8

205.8

48.8

190.2

3.8

2552.2

381.1

R

SW

499.0

850.7

293.3

1.0040.0

1

850.7

293.3

850.7

293.3 3420

CHF 315103.4

60.2

3401MFA TS

104.4

40.1

60.2

104.4

40.1

103.4

60.2

103.4

60.2

3400MFA 315S

W

15.9

147.8

38.2

147.8

36.4

38.2

147.8

36.4

7.4

147.8

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

43.9

12.1

44.7

9.6

44.7

9.7

TL234

8.4

4.9

4.9

5.6

2.7

1.8

2.7

1.8

2.6

22.4 2.6

22.3

2.6

0.4

1.9

0.7

8.8

3.8

1 0.0

55.2

84.1

230LHR B1

83.9

56.6

WESTERN AVALON

TL208

VALE INCO

18.5

72.6

72.7

18.4

71.7

1.6

1.6

221BDE TS

50.6

3.4

50.4

3.9

229WAV B1B3

SW 0.0

TL203

TL237

222SSD B1

SUNNYSIDE

18.6

74.9

35.7

24.4

18.0

12.0

TL207

CBC

227CBC B1B2

291GCL L63

22.0

11.9

DEER LAKE

215BUC B1

BUCHANS

1.050-5.9

1.050-5.9

1.039-6.0

NEWFOUNDLAND

1.036-11.2

1.032-12.4

1.023-13.0

1.034-4.0

1.033-3.8

1.020-5.8

0.9993.8

1.03110.5

1.03110.3

1.034-11.5

1.040-13.3

205BBK B1

P = 2794.0 MW

Q = 315.0 MvarP = 378.0 MW

Q = -32.6 Mvar

103.41.012

5.07380MONTAGNAIS

HYDRO-QUEBEC

Q = -7.1 Mvar

11.7

45.9TL248

1.049-2.1

136CAT L47

CAT ARM

P = 46.0 MW

Q = -8.2 Mvar

TL228 17.6

9.8

1.8

31.8

BOTTOM BROOK

46.7 44.7

9.7

P = 27.0 MW

Q = -2.0 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -19.4 Mvar

UPPER SALMON

71.8

TL

20

6

TL

20

2

P = 133.3 MW

Q = -67.6 Mvar

BAY D ESPOIR

TL201W

TL217W

25.4

5.4 2.9

39.0

1.040-13.3

17.4

29.4

29.5 15.5

TL236

TL242E

19.9

66.1 1.039

-13.7

P = 0.0 MW

Q = 20.4 MvarHARDWOODS

7.9

13.8

234HRD TS

HOLYROOD

Q = 3.9 Mvar

P = 0.0 MW

- Base Case

40.5

11.8

40.5

11.8

40.2

13.8

1.4

4.7

24.7

1.1

Q = -4.5 Mvar

P = 80.0 MW

9.6

32.7

2490SPD

7.4

P = 45.0 MW

- Bipolar operation of Island HVDC

86.8

6000NOVA SCOTIA

1.045-5.8

1.021-5.7

1

0.0

78.1

1.023-6.0

- Generation: Economic Dispatch

16.2

BC11 - SUMMER NIGHT EXTREME LIGHT 2017, 420 MW, 80 MW IMPORT AND 0 MW EXPORT

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEA1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

40.2

13.8

NP-NLH-108, Attachment 4 Page 73 of 89, NLH 2013 GRA

Page 321: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-13

Attachment A- 12

BC-12 Extreme Light 2017/Island Link 80MW/Maritime Link 320MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 74 of 89, NLH 2013 GRA

Page 322: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

105.1

0.8

118.9

9.6

120.2

11.6

90.3

40.6

82.3

2.5

9.1

MASSEY DRIVE

TL211

TL235

35.1

TL231

13.7

15.8

TL263

TL209

8.8

0.2

87.6 TL232

TL205

STONY BROOK

TL204

TL233

26.8

36.6

3.0

26.6 15.0

38.4

16.0

38.4

13.4

4.7

2.6

4.7

4.4

0.6

4.4

0.7

TL201E

68.9

21.9 4.5

67.7

36.6

1.9

SW

15.5

3.2

114.3

23.3

22.4

15.2

4.4

2.7

23.4

2.8

4.4TL242W

TL217E

TL218W

22.5

0.4

206SVL B1

236HWD B1B2

1.039-13.9

OXEN POND

238OPD B1

14.7

37.5

11.9

37.4

TL218E

40.6

46.5

405USL L34

216STB B1B2

261ACG GFL

16.2 13.7

6.1

8.8

3.9

1.0000.0

313.5

142.8

R

14.5

7.6

STEPHENVILLE

1

208MDR B1B5

1.029-15.0

135DLK B3

38.8

16.7

49.8

65.9

7300CHF TS

1044.8

188.2

1044.8

188.2

1044.8

188.2

1.0000

121.5

51.2

1.0000

121.5

51.2

1.0548

417.5

57.0

2306CHF B23

1.0487.5

417.8

35.6

2330WABUSH TS

0.922-16.8

205.8

49.5

190.2

2.8

205.8

49.5

190.2

2.8

3117.8

289.7

R

SW

499.0

1039.3

262.9

1.0040.0

1

1039.3

262.9

1039.3

262.9 3420

CHF 315121.6

54.9

3401MFA TS

122.9

41.2

54.9

122.9

41.2

121.6

54.9

121.6

54.9

3400MFA 315S

W

15.9

166.4

39.3

166.3

37.6

39.3

166.3

37.6

7.1

166.4

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

30.1

7.5

44.7

0.9

44.7

0.8

TL234

2.6

87.7

88.5

5.8

78.5

9.0

78.2

8.9

79.0

23.378.8

23.3

88.1

7.7

83.2

1.8

8.8

3.9

1 0.0

55.2

84.1

230LHR B1

83.9

56.6

WESTERN AVALON

TL208

VALE INCO

21.4

74.6

74.7

21.4

73.6

2.3

2.3

221BDE TS

49.9

4.7

49.7

2.5

229WAV B1B3

SW 0.0

TL203

TL237

222SSD B1

SUNNYSIDE

17.5

74.3

35.7

24.4

23.0

17.4

TL207

CBC

227CBC B1B2

291GCL L63

117.7

12.3

DEER LAKE

215BUC B1

BUCHANS

1.037-10.2

1.037-10.2

1.029-6.1

NEWFOUNDLAND

1.031-11.6

1.027-12.7

1.018-13.3

1.024-6.4

1.016-9.8

0.999-21.2

0.9984.6

1.02812.5

1.02812.4

1.029-11.8

1.038-13.6

205BBK B1

P = 3330.0 MW

Q = 395.2 MvarP = 415.0 MW

Q = -41.9 Mvar

121.61.010

6.07380MONTAGNAIS

HYDRO-QUEBEC

Q = 3.4 Mvar

5.4

38.9TL248

1.040-12.7

136CAT L47

CAT ARM

P = 39.0 MW

Q = -3.0 Mvar

TL228 3.8

80.9

103.1

12.1

BOTTOM BROOK

90.8 44.7

0.8

P = 30.0 MW

Q = 3.5 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -12.8 Mvar

UPPER SALMON

73.7

TL

20

6

TL

20

2

P = 395.6 MW

Q = -60.5 Mvar

BAY D ESPOIR

TL201W

TL217W

25.9

6.8 1.6

38.5

1.037-13.6

17.2

29.3

29.4 15.3

TL236

TL242E

19.1

65.9 1.037

-14.0

P = 0.0 MW

Q = 21.9 MvarHARDWOODS

7.6

13.5

234HRD TS

HOLYROOD

Q = 9.3 Mvar

P = 0.0 MW

- Base Case

40.5

11.7

40.5

11.7

40.2

13.8

1.5

4.7

18.4

52.1

Q = -0.1 Mvar

P = 80.0 MW

79.7

13.7

2490SPD

7.0

P = 45.0 MW

- Bipolar operation of Island HVDC

86.8

160.0

64.3

156.8

71.4

160.0

64.3

156.8

71.46000

NOVA SCOTIA

1.028-13.8

1.000-21.1

1

0.0

70.0

1.006-17.4

- Generation: Economic Dispatch

16.1

1

0.0

44.9

R

BC12 - SUMMER NIGHT EXTREME LIGHT 2017, 420 MW, 80 MW IMPORT AND 320 MW EXPORT

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEA

1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000 >230.000

40.2

13.8

NP-NLH-108, Attachment 4 Page 75 of 89, NLH 2013 GRA

Page 323: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-14

Attachment A- 13

BC-13 Extreme Light 2017/Island Link 435MW/Maritime Link 320MW/Minimum Dispatch

NP-NLH-108, Attachment 4 Page 76 of 89, NLH 2013 GRA

Page 324: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

117.3

1.5

102.3

9.0

103.3

12.9

54.4

47.0

102.2

2.1

5.8

MASSEY DRIVE

TL211

TL235

39.2

TL231

96.7

3.1

TL263

TL209

8.8

0.2

109.0 TL232

TL205

STONY BROOK

TL204

TL233

7.1

36.8

3.1

3.8 4.4

38.4

18.4

38.4

15.8

16.6

13.2

16.6

15.0

11.4

15.2

11.6

TL201E

41.5

1.4 29.3

42.0

36.8

1.7

SW

15.5

3.6

119.2

138.7

136.5

7.9

15.0

13.4

137.1

13.6

15.2TL242W

TL217E

TL218W

134.6

11.1

206SVL B1

236HWD B1B2

1.0272.5

OXEN POND

238OPD B1

16.9

37.5

14.2

37.5

TL218E

48.4

46.2

405USL L34

216STB B1B2

261ACG GFL

16.2 97.2

8.8

8.8

3.9

1.0000.0

313.5

142.8

R

14.5

7.6

STEPHENVILLE

1

208MDR B1B5

1.028-19.4

135DLK B3

35.8

17.5

59.1

63.8

7300CHF TS

817.5

176.3

817.5

176.3

817.5

176.3

1.0000

34.7

60.8

1.0000

34.7

60.8

1.0548

430.4

63.7

2306CHF B23

1.0496.6

430.7

40.9

2330WABUSH TS

0.922-17.7

205.8

49.6

190.2

2.6

205.8

49.6

190.2

2.6

2442.3

424.2

R

SW

499.0

814.1

307.7

1.0040.0

1

814.1

307.7

814.1

307.7 3420

CHF 315 34.7

61.9

3401MFA TS

34.6

45.7

61.9 34.6

45.7

34.7

61.9

34.7

61.9

3400MFA 315S

W

92.9

8.8

45.0

8.8

42.8

45.0

8.8

42.8

5.6

8.8

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

28.4

5.0

44.7

2.7

44.7

2.6

TL234

4.4

95.8

96.7

3.1

98.7

9.6

98.5

9.5

99.7

20.699.4

20.6

109.9

9.3

103.6

2.0

8.8

3.9

1 0.0

55.5

84.1

230LHR B1

83.9

56.7

WESTERN AVALON

TL208

VALE INCO

1.8

29.2

29.2

1.8

29.4

23.0

23.0

221BDE TS

78.4

26.4

79.0

31.6

229WAV B1B3

SW 0.0

TL203

TL237

222SSD B1

SUNNYSIDE

41.2

37.5

35.7

24.5

57.1

21.5

TL207

CBC

227CBC B1B2

291GCL L63

122.8

10.8

DEER LAKE

215BUC B1

BUCHANS

1.035-11.3

1.035-11.3

1.030-6.1

NEWFOUNDLAND

1.022-3.8

1.016-1.8

1.007-2.4

1.028-8.5

1.018-12.3

0.999-24.1

1.0003.6

1.0161.3

1.0171.3

1.019-3.7

1.0272.8

205BBK B1

P = 2959.0 MW

Q = 327.8 MvarP = 476.0 MW

Q = 30.9 Mvar

34.71.012

3.27380MONTAGNAIS

HYDRO-QUEBEC

Q = 5.2 Mvar

4.8

35.9TL248

1.040-17.3

136CAT L47

CAT ARM

P = 36.0 MW

Q = -2.7 Mvar

TL228 1.6

110.1

114.9

6.5 BOTTOM BROOK

54.7 44.7

2.6

P = 27.0 MW

Q = 2.7 Mvar

GRANITE CANAL

P = 0.0 MW

Q = 0.0 Mvar

UPPER SALMON

29.4

TL

20

6

TL

20

2

P = 201.5 MW

Q = -31.4 Mvar

BAY D ESPOIR

TL201W

TL217W

7.1

17.9 23.4

73.7

1.0262.9

20.2

29.7

29.7 18.4

TL236

TL242E

21.9

66.5 1.025

2.4

P = 0.0 MW

Q = 28.0 MvarHARDWOODS

0.5

46.9

234HRD TS

HOLYROOD

Q = 34.1 Mvar

P = 0.0 MW

228.5

87.9

228.5

87.9

217.4

92.8

1.5

4.7

21.7

18.9

Q = 0.1 Mvar

P = 80.0 MW

107.9

3.9

2490SPD

6.7

P = 45.0 MW

86.7

160.0

65.2

156.8

71.4

160.0

65.2

156.8

71.46000

NOVA SCOTIA

1.025-15.8

1.000-24.0

1

0.0

70.0

1.004-20.8

94.7

1

0.0

52.1

R

- Bipolar operation of Maritime HVDC

BC13 - SUMMER NIGHT EXTREME LIGHT 2017, 420 MW, 435 MW IMPORT AND 320 MW EXPORT

- Bipolar operation of Island HVDC- Base Case

- Generation: Minimum

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEA

1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000<=230.000 >230.000

217.4

92.8

NP-NLH-108, Attachment 4 Page 77 of 89, NLH 2013 GRA

Page 325: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-15

Attachment A- 14

BC-14 Peak 2017/Island Link 260MW-Monopole/Maritime Link -260MW/ Maximum Dispatch

NP-NLH-108, Attachment 4 Page 78 of 89, NLH 2013 GRA

Page 326: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

65.4

2.1

89.4

8.3

88.6

13.5

108.1

35.4

57.7

11.6

8.0

MASSEY DRIVE

TL211

TL235

32.0

TL231

133.3

2.3

TL263

TL209

44.7

8.5

61.5 TL232

TL205

STONY BROOK

TL204

TL233

66.1

159.4

50.0

63.4 68.7

165.6

26.8

164.8

25.3

22.3

61.1

22.2

17.6

57.6

17.8

58.2

TL201E

222.5

19.4 37.2

209.6

158.6

48.0

SW

0.0 2

8.9

18.0

143.1

138.9

71.1

17.7

59.1

145.5

59.8

17.9TL242W

TL217E

TL218W

141.7

59.5

206SVL B1

236HWD B1B2

0.985-37.2

OXEN POND

238OPD B1

29.8

159.1

28.5

158.5

TL218E

4.7

185.1

405USL L34

216STB B1B2

261ACG GFL

14.1 132.4

0.9

44.7

11.8

1.0000.0

264.0

102.7

R

6.3

41.3

STEPHENVILLE

1

208MDR B1B5

1.0120.8

135DLK B3

124.8

12.1

156.7

77.6

60.5

0.0

7300CHF TS

1180.1

207.7

1180.1

207.7

1180.1

207.7

0.9875

98.7

49.7

0.9875

98.7

49.7

1.0548

6.6

50.0

2306CHF B23

1.0455.3

6.6

49.7

2330WABUSH TS

0.921-19.2

205.9

48.5

190.2

4.2

205.9

48.5

190.2

4.2

3519.1

158.6

R

SW

499.0

1173.0

219.2

1.0040.0

1

1173.0

219.2

1173.0

219.2 3420

CHF 31598.8

52.2

3401MFA TS

99.7

50.0

52.2 99.7

50.0

98.8

52.2

98.8

52.2

3400MFA 315S

W

116.7

143.1

48.9

143.0

47.1

48.9

143.0

47.1

5.9

143.1

SOLDIERS POND

CHURCHILL FALLS

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

203.8

60.4

75.1

18.4

75.1

18.4

TL234

1.0

49.8

49.5

12.9

5.1

18.7

5.1

18.7

5.1

0.25.1

0.2

61.2

0.0

57.3

4.5

44.7

11.8

1

182.5

0.0

56.1

84.1

230LHR B1

83.9

56.9

WESTERN AVALON

TL208

VALE INCO

17.1

241.0

241.3

17.2

229.7

36.6

36.7

221BDE TS

163.1

11.8

160.7

16.5

229WAV B1B3

SW

146.9

TL203

TL237

222SSD B1

SUNNYSIDE

112.7

174.3

35.7

24.7

122.3

51.2

TL207

CBC

227CBC B1B2

291GCL L63

17.8

2.5

DEER LAKE

1.0040.4

1.001-4.4

215BUC B1

BUCHANS

0.997-7.1

0.997-7.2

1.007-6.9

NEWFOUNDLAND

0.973-25.8

0.965-30.1

0.955-30.7

1.012-3.4

1.022-1.5

1.000-0.1

0.9975.2

1.03011.6

1.03111.5

0.979-26.6

0.999-35.9

205BBK B1

P = 3784.5 MW

Q = 487.6 MvarP = 574.0 MW

98.81.020

6.47380MONTAGNAIS

HYDRO-QUEBEC

Q = 28.0 Mvar

6.0

126.6TL248

1.0378.5

136CAT L47

CAT ARM

P = 127.0 MW

Q = 18.8 Mvar

TL228 16.0

39.7

66.2

16.6

BOTTOM BROOK

108.8 75.1

18.4

P = 32.0 MW

Q = 1.8 Mvar

GRANITE CANAL

P = 84.0 MW

Q = -4.4 Mvar

UPPER SALMON

229.9

TL

20

6

TL

20

2

P = 605.8 MW

Q = 136.5 Mvar

BAY D ESPOIR

TL201W

TL217W

135.6

26.3 6.5

136.6

0.993-35.8

58.0

138.0

138.3

58.5

TL236

TL242E

106.0

296.6 0.977

-37.9

P = 100.0 MW

Q = 48.2 MvarHARDWOODS

37.5

57.2

234HRD TS

HOLYROOD

Q = 232.9 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

286.0

114.4

260.0

116.0

7.3

21.2

19.9

16.0

Q = 6.2 Mvar

P = 80.0 MW

40.1

28.7 0.989

-2.3

2490SPD

2

0.0

30.2

5.8

P = 76.0 MW

86.7

6000NOVA SCOTIA

Q = -44.6 Mvar

LABRADOR

- Generation: Maximum

- Monopolar operation of Island HVDC

BC14 - WINTER PEAK 2017, 1552 MW, 260 MW IMPORT (LAB) AND 260 MW IMPORT (NS)

- Bipolar operation of Maritime HVDC

132.0

51.4

129.8

56.5

132.0

51.4

129.8

56.5

NP-NLH-108, Attachment 4 Page 79 of 89, NLH 2013 GRA

Page 327: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-16

Attachment A- 15

BC-15 Intermediate 2017/Island Link 333MW-Monopole/Maritime Link 158MW/Economic Dispatch

NP-NLH-108, Attachment 4 Page 80 of 89, NLH 2013 GRA

Page 328: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

63.6

11.5

62.3

24.3

62.7

31.5

120.0

32.2

49.9

2.0

1.8

MASSEY DRIVE

TL211

TL235

29.7

TL231

10.4

3.1

TL263

TL209

30.1

6.6

53.6 TL232

TL205

STONY BROOK

TL204

TL233

16.0

124.0

32.4

14.8 5.4

135.0

15.6

134.5

15.5

18.9

26.7

18.9

16.5

24.4

16.7

24.7

TL201E

128.0

9.5 4.7

123.9

123.5

33.2

SW

15.5 0

.4

89.9

54.4

53.2

6.6

16.5

26.3

54.7

26.6

16.7TL242W

TL217E

TL218W

53.5

24.7

206SVL B1

236HWD B1B2

0.990-22.6

OXEN POND

238OPD B1

18.2

129.9

18.4

129.5

TL218E

5.2

166.5

405USL L34

216STB B1B2

261ACG GFL

15.0 10.4

6.6

30.1

10.2

1.0000.0

156.4

61.5

R

5.1

27.0

STEPHENVILLE

1

208MDR B1B5

1.021-12.4

135DLK B3

106.4

13.4

111.6

80.3

7300CHF TS

1403.6

204.5

1403.6

204.5

1403.6

204.5

1.0000

75.0

61.1

1.0000

75.0

61.1

1.0548

391.1

43.6

2306CHF B23

1.0478.9

391.4

24.8

2330WABUSH TS

0.922-15.4

205.8

49.3

190.2

3.1

205.8

49.3

190.2

3.1

4181.2

34.2

R

SW

499.0

1393.7

177.7

1.0040.0

1

1393.7

177.7

1393.7

177.7 3420

CHF 31575.1

63.1

3401MFA TS

75.6

41.2

63.1 75.6

41.2

75.1

63.1

75.1

63.1

3400MFA 315S

W

168.7

119.0

40.6

118.9

38.6

40.6

118.9

38.6

5.2

119.0

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

129.3

29.8

75.2

11.6

75.2

11.5

TL234

3.1

64.0

64.4

13.8

79.3

4.5

79.1

4.4

79.9

18.079.7

18.0

53.9

15.0

50.3

12.1

30.1

10.2

1

158.8

0.0

55.8

84.1

230LHR B1

83.9

56.9

WESTERN AVALON

TL208

VALE INCO

15.3

143.5

143.7

15.3

139.6

16.7

16.8

221BDE TS

82.8

14.7

82.2

19.5

229WAV B1B3

SW

117.9

TL203

TL237

222SSD B1

SUNNYSIDE

67.2

103.2

35.7

24.5

93.4

19.0

TL207

CBC

227CBC B1B2

291GCL L63

91.9

17.8

DEER LAKE

215BUC B1

BUCHANS

1.019-11.0

1.018-11.0

1.015-6.7

NEWFOUNDLAND

1.009-17.6

0.995-19.5

0.985-20.1

1.017-6.4

1.016-9.0

1.006-18.1

0.9966.2

1.02711.1

1.02711.0

1.012-18.0

0.999-21.6

205BBK B1

P = 4505.0 MW

Q = 595.5 MvarP = 618.0 MW

Q = -23.2 Mvar

75.11.010

7.17380MONTAGNAIS

HYDRO-QUEBEC

Q = 20.7 Mvar

2.1

107.7TL248

1.042-5.9

136CAT L47

CAT ARM

P = 108.0 MW

Q = 11.3 Mvar

TL228 4.3

54.9

62.9

8.3 BOTTOM BROOK

120.8 75.2

11.5

P = 28.0 MW

Q = 3.3 Mvar

GRANITE CANAL

P = 75.0 MW

Q = -8.2 Mvar

UPPER SALMON 1

39.8

TL

20

6

TL

20

2

P = 582.4 MW

Q = -7.7 Mvar

BAY D ESPOIR

TL201W

TL217W

80.8

21.9 32.0

67.0

0.996-21.5

39.7

97.3

97.5 39.1

TL236

TL242E

72.9

220.9 0.985

-23.1

P = 0.0 MW

Q = 43.7 MvarHARDWOODS

22.6

51.9

234HRD TS

HOLYROOD

Q = 100.6 Mvar

P = 0.0 MW

- Base Case

378.0

162.5

333.4

160.0

6.3

16.1

16.3

14.4

Q = 3.7 Mvar

P = 80.0 MW

54.4

16.7

2490SPD

6.9

P = 76.0 MW

86.7

79.0

27.0

78.2

30.7

79.0

27.2

78.2

30.86000

NOVA SCOTIA

0.999-15.7

1.018-13.3

1.008-17.8

1 2

0.0

25.4

0.0

45.7

- Generation: Economic Dispatch

- Monopolar operation of Island HVDC

BC15 - SPRING/FALL INTERMEDIATE 2017, 1100 MW, 333 MW IMPORT AND 158 MW EXPORT

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEB1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000 >230.000

NP-NLH-108, Attachment 4 Page 81 of 89, NLH 2013 GRA

Page 329: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-17

Attachment A- 16

BC-16 Light 2017/Island Link 518MW-Monopole/Maritime Link 500MW/ Minimum Dispatch

NP-NLH-108, Attachment 4 Page 82 of 89, NLH 2013 GRA

Page 330: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

174.9

15.8

180.6

60.6

184.1

50.3

118.1

36.9

144.9

15.6

5.3

MASSEY DRIVE

TL211

TL235

34.8

TL231

98.1

7.1

TL263

TL209

17.6

5.0

155.3 TL232

TL205

STONY BROOK

TL204

TL233

23.7

72.4

20.2

21.2 24.9

78.4

6.3

78.2

8.2

21.4

13.5

21.4

19.5

11.9

19.8

12.1

TL201E

11.8

17.3 16.5

11.8

72.2

23.9

SW

0.0

39.9

183.0

116.7

114.4

27.5

19.6

13.9

115.5

14.1

19.8TL242W

TL217E

TL218W

113.0

11.3

206SVL B1

236HWD B1B2

1.018-2.8

OXEN POND

238OPD B1

7.8

75.5

9.9

75.3

TL218E

13.8

95.8

405USL L34

216STB B1B2

261ACG GFL

15.7 98.6

1.8

17.6

8.7

1.0000.0

484.4

249.2

R

9.6

15.3

STEPHENVILLE

1

208MDR B1B5

1.012-26.1

135DLK B3

71.3

26.2

71.5

73.6

7300CHF TS

858.5

188.4

858.5

188.4

858.5

188.4

1.0000

157.9

52.1

1.0000

157.9

52.1

1.0548

417.5

57.5

2306CHF B23

1.0486.7

417.8

36.1

2330WABUSH TS

0.922-17.6

205.8

49.5

190.2

2.7

205.8

49.5

190.2

2.7

2564.3

370.6

R

SW

499.0

854.8

289.9

1.0040.0

1

854.8

289.9

854.8

289.9 3420

CHF 315 157.7

57.9

3401MFA TS

155.5

26.7

57.9

155.5

26.7

157.7

57.9

157.7

57.9

3400MFA 315S

W

229.1

112.1

26.7

112.2

24.7

26.7

112.2

24.7

3.8

112.1

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

53.8

17.6

44.7

19.7

44.7

19.6

TL234

13.4

165.1

167.9

7.5

157.4

8.8

156.9

8.7

159.8

4.8159.3

4.8

157.2

13.0

148.0

2.5

17.6

8.7

1 0.0

55.4

84.1

230LHR B1

83.9

56.7

WESTERN AVALON

TL208

VALE INCO

28.1

3.8

3.8

28.1

3.7

2.1

2.1

221BDE TS

58.4

46.5

58.9

52.4

229WAV B1B3

SW

125.3

TL203

TL237

222SSD B1

SUNNYSIDE

50.0

20.6

35.7

24.4

86.6

0.7

TL207

CBC

227CBC B1B2

291GCL L63

192.1

9.2

DEER LAKE

215BUC B1

BUCHANS

1.012-15.8

1.012-15.9

1.021-7.3

NEWFOUNDLAND

1.040-7.8

1.025-6.2

1.015-6.8

1.014-9.9

1.005-16.6

0.998-35.6

0.9993.8

1.009-6.7

1.010-6.5

1.043-7.7

1.022-2.3

205BBK B1

P = 3330.0 MW

Q = 392.9 MvarP = 415.0 MW

Q = 68.3 Mvar

157.71.009

1.97380MONTAGNAIS

HYDRO-QUEBEC

Q = 22.8 Mvar

8.7

71.9TL248

1.040-21.8

136CAT L47

CAT ARM

P = 72.0 MW

Q = 12.8 Mvar

TL228 11.7

141.1

169.2

30.2 BOTTOM BROOK

119.0 44.7

19.6

P = 27.0 MW

Q = 6.7 Mvar

GRANITE CANAL

P = 70.0 MW

Q = -7.1 Mvar

UPPER SALMON

3.8

TL

20

6

TL

20

2

P = 424.1 MW

Q = -27.5 Mvar

BAY D ESPOIR

TL201W

TL217W

16.9

26.5 57.9

56.8

1.021-2.2

33.4

57.7

57.8 31.9

TL236

TL242E

57.3

130.0 1.014

-3.1

P = 0.0 MW

Q = 28.0 MvarHARDWOODS

8.8

60.7

234HRD TS

HOLYROOD

Q = 45.0 Mvar

P = 0.0 MW

- Base Case

638.0

321.1

518.1

294.2

4.4

9.4

8.6

47.7

Q = 1.7 Mvar

P = 80.0 MW

137.4

13.7

2490SPD

6.6

P = 45.0 MW

86.7

250.0

117.2

242.2

124.6

250.0

117.2

242.2

124.66000

NOVA SCOTIA

1.003-22.6

1.000-35.4

1

0.0

120.0

0.988-29.5

1

240.5

R

0.0

234.7

- Monopolar operation of Island HVDC

- Generation: Minimum

BC16 - SUMMER DAY LIGHT 2017, 700 MW, 518 MW IMPORT AND 500 MW EXPORT

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEA1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000>230.000

NP-NLH-108, Attachment 4 Page 83 of 89, NLH 2013 GRA

Page 331: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-18

Attachment A- 17

BC-17 Extreme Light 2017/Island Link 200MW-Monopole/Maritime Link 0MW/ Minimum Dispatch

NP-NLH-108, Attachment 4 Page 84 of 89, NLH 2013 GRA

Page 332: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

11.1

11.7

2.9

19.1

2.9

9.4

39.7

47.8

8.1

17.8

19.6

MASSEY DRIVE

TL211

TL235

39.0

TL231

8.4

1.3

TL263

TL209

8.8

0.1

7.8 TL232

TL205

STONY BROOK

TL204

TL233

9.2

36.7

2.3

10.0 1.7

38.5

15.2

38.5

12.5

8.6

1.3

8.6

8.2

0.4

8.3

0.4

TL201E

28.4

16.6 17.2

28.2

36.6

2.6

SW

16.2 3

1.7

8.3

31.4

31.0

2.5

8.2

1.7

31.3

1.7

8.3TL242W

TL217E

TL218W

30.9

0.9

206SVL B1

236HWD B1B2

1.041-7.4

OXEN POND

238OPD B1

13.9

37.5

11.1

37.5

TL218E

39.2

46.5

405USL L34

216STB B1B2

261ACG GFL

16.2 8.4

8.9

8.8

3.9

1.0000.00

.0

0.0

R

14.9

7.6

STEPHENVILLE

1

208MDR B1B5

1.040-5.7

135DLK B3

35.8

13.6

63.4

71.7

7300CHF TS

810.6

176.2

810.6

176.2

810.6

176.2

1.0000

37.2

70.6

1.0000

37.2

70.6

1.0548

14.6

58.2

2306CHF B23

1.0473.5

14.5

57.8

2330WABUSH TS

0.921-20.9

205.8

49.1

190.2

3.3

205.8

49.1

190.2

3.3

2421.6

427.0

R

SW

499.0

807.2

308.7

1.0040.0

1

807.2

308.7

807.2

308.7 3420

CHF 31537.2

72.0

3401MFA TS

37.4

37.4

72.0 37.4

37.4

37.2

72.0

37.2

72.0

3400MFA 315S

W

90.9

80.8

36.3

80.8

34.2

36.3

80.8

34.2

6.4

80.8

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

37.8

10.2

44.7

9.4

44.7

9.5

TL234

15.5

8.4

8.4

1.3

4.5

2.1

4.5

2.1

4.5

18.64.5

18.6

7.8

2.2

8.1

2.8

8.8

3.9

1 0.0

55.2

84.1

230LHR B1

83.9

56.6

WESTERN AVALON

TL208

VALE INCO

15.9

35.5

35.5

15.9

35.2

9.5

9.4

221BDE TS

6.9

7.4

6.8

15.7

229WAV B1B3

SW 0.0

TL203

TL237

222SSD B1

SUNNYSIDE

26.8

36.7

35.7

24.4

26.9

15.3

TL207

CBC

227CBC B1B2

291GCL L63

8.4

0.7

DEER LAKE

215BUC B1

BUCHANS

1.050-5.8

1.050-5.8

1.043-5.5

NEWFOUNDLAND

1.040-8.0

1.035-8.1

1.026-8.7

1.044-5.7

1.038-6.0

1.009-6.6

1.0003.6

1.0345.9

1.0355.8

1.038-8.1

1.040-7.2

205BBK B1

P = 2794.0 MW

Q = 302.0 MvarP = 378.0 MW

Q = -46.9 Mvar

37.21.015

4.07380MONTAGNAIS

HYDRO-QUEBEC

Q = -6.9 Mvar

9.2

35.9TL248

1.047-3.6

136CAT L47

CAT ARM

P = 36.0 MW

Q = -7.0 Mvar

TL228 18.7

21.0

10.9

36.2

BOTTOM BROOK

39.8 44.7

9.5

P = 0.0 MW

Q = 0.0 Mvar

GRANITE CANAL

P = 0.0 MW

Q = 0.0 Mvar

UPPER SALMON

35.3

TL

20

6

TL

20

2

P = 121.8 MW

Q = -78.4 Mvar

BAY D ESPOIR

TL201W

TL217W

14.2

8.8 12.0

1.0

1.040-7.1

17.4

29.5

29.5 15.6

TL236

TL242E

20.0

66.1 1.039

-7.6

P = 0.0 MW

Q = 20.2 MvarHARDWOODS

4.5

25.0

234HRD TS

HOLYROOD

Q = 2.8 Mvar

P = 0.0 MW

- Base Case

215.0

80.2

200.1

83.7

1.4

4.7

25.4

4.1

Q = -3.4 Mvar

P = 80.0 MW

20.8

33.3

2490SPD

7.0

P = 45.0 MW

86.8

6000NOVA SCOTIA

1.041-6.0

1.009-6.5

1

0.0

101.8

1.016-6.7

43.3

BC17 - SUMMER NIGHT EXTREME LIGHT 2017, 420 MW, 200 MW IMPORT AND 0 MW EXPORT

- Generation: Minimum

- Monopolar operation of Island HVDC

- Bipolar operation of Maritime HVDC

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEA

1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000 >230.000

NP-NLH-108, Attachment 4 Page 85 of 89, NLH 2013 GRA

Page 333: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-19

Attachment A- 18

BC-18 Peak 2017/Island Link 814MW/Maritime Link 158MW/Economic Dispatch (4 units @Muskrat Falls)

NP-NLH-108, Attachment 4 Page 86 of 89, NLH 2013 GRA

Page 334: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

79.9

14.7

42.2

23.6

42.4

31.6

104.4

39.3

75.9

8.8

3.4

MASSEY DRIVE

TL211

TL235

35.7

TL231

17.8

2.9

TL263

TL209

44.7

8.4

81.6 TL232

TL205

STONY BROOK

TL204

TL233

3.3

184.7

54.9

4.8 3.9

201.4

34.2

200.4

30.7

37.9

24.3

37.9

34.5

23.3

34.9

23.6

TL201E

69.8

11.3 12.8

68.5

183.7

50.8

SW

15.21

0.5

122.7

63.7

62.7

5.5

34.6

25.1

63.3

25.4

35.0TL242W

TL217E

TL218W

62.3

22.4

206SVL B1

236HWD B1B2

0.987-12.9

OXEN POND

238OPD B1

37.8

193.6

34.6

192.7

TL218E

10.8

247.4

405USL L34

216STB B1B2

261ACG GFL

14.1 17.8

6.5

44.7

11.7

1.0000.0

156.5

61.5

R

4.0

40.9

STEPHENVILLE

1

208MDR B1B5

1.010-18.9

135DLK B3

98.6

20.8

152.1

74.9

24.8

0.0

7300CHF TS

1202.8

220.2

1202.8

220.2

1202.8

220.2

0.9875

83.3

41.9

0.9875

83.3

41.9

1.0548

2.1

46.2

2306CHF B23

1.0445.4

2.1

45.9

2330WABUSH TS

0.921-19.1

205.9

48.3

190.3

4.5

205.9

48.3

190.3

4.5

3586.5

106.8

R

SW

499.0

1195.5

201.9

1.0040.0

1

1195.5

201.9

1195.5

201.9 3420

CHF 315 83.3

43.7

3401MFA TS

82.7

57.5

43.7 82.7

57.5

83.3

43.7

83.3

43.7

3400MFA 315S

W

225.4

39.3

57.3

39.3

55.3

57.3

39.3

55.3

4.4

39.3

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

178.7

42.8

75.1

18.1

75.1

18.0

TL234

3.2

94.7

95.6

10.2

131.4

3.8

131.0

3.7

133.1

6.2132.7

6.3

82.1

18.5

76.7

13.7

44.7

11.7

1

223.7

0.0

55.8

84.1

230LHR B1

83.9

56.8

WESTERN AVALON

TL208

VALE INCO

13.5

95.6

95.7

13.5

93.9

0.4

0.4

221BDE TS

8.1

22.3

8.2

29.7

229WAV B1B3

SW

116.2

TL203

TL237

222SSD B1

SUNNYSIDE

61.4

23.8

35.7

24.6

172.2

38.3

TL207

CBC

227CBC B1B2

291GCL L63

126.6

15.0

DEER LAKE

0.996-23.3

1.002-17.4

215BUC B1

BUCHANS

1.002-13.8

1.002-13.8

1.010-6.6

NEWFOUNDLAND

1.001-13.9

0.991-13.5

0.981-14.2

1.010-7.1

1.005-10.9

0.993-23.8

0.9965.3

1.001-0.1

1.002-0.0

1.005-14.0

0.999-11.5

205BBK B1

P = 4219.0 MW

Q = 571.8 MvarP = 824.0 MW

Q = 172.4 Mvar

83.31.017

4.37380MONTAGNAIS

HYDRO-QUEBEC

Q = 27.6 Mvar

8.4

99.7TL248

1.038-12.8

136CAT L47

CAT ARM

P = 100.0 MW

Q = 16.4 Mvar

TL228 3.4

91.7

78.7

1.3 BOTTOM BROOK

105.1 75.1

18.0

P = 32.0 MW

Q = 6.8 Mvar

GRANITE CANAL

P = 78.0 MW

Q = -3.8 Mvar

UPPER SALMON

94.0

TL

20

6

TL

20

2

P = 567.6 MW

Q = 15.2 Mvar

BAY D ESPOIR

TL201W

TL217W

89.8

33.0 38.3

12.0

0.997-11.3

53.9

145.3

145.6

54.6

TL236

TL242E

104.7

329.0 0.980

-13.7

P = 0.0 MW

Q = 40.0 MvarHARDWOODS

26.3

107.3

234HRD TS

HOLYROOD

Q = 99.7 Mvar

P = 0.0 MW

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar100.0%RATEC1.050OV 0.950UV

kV: <=6.900 <=16.000 <=25.000<=46.000 <=69.000 <=138.000<=230.000 >230.000

- Base Case

450.0

211.7

450.0

211.7

406.8

209.7

7.2

21.2

15.0

6.5

Q = 7.0 Mvar

P = 80.0 MW

90.2

4.0 0.985

-21.8

2 0.0

238.6

2490SPD

2

0.0

74.4

6.0

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

79.0

27.1

78.2

30.7

79.0

27.1

78.2

30.76000

NOVA SCOTIA

- Bipolar operation of Maritime HVDC

- Generation: Economic dispatch

- Muskrat Falls Generation: Maximum

BC18 - WINTER PEAK 2017, 1552 MW, 814 MW IMPORT AND 158 MW EXPORT

406.8

209.7

NP-NLH-108, Attachment 4 Page 87 of 89, NLH 2013 GRA

Page 335: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

LOAD FLOW AND SHORT-CIRCUIT STUDIES Revision

Nalcor Doc. No. ILK-SN-CD-8000-EL-SY-0001-01 B3 Date Page

SLI Doc. No. 505573-480A-47ER-0003 02 05-Apr-2012 A-20

Attachment A- 19

BC-19 Intermediate 2017/Island Link 814MW/Maritime Link 500MW/Economic Dispatch (4 units @Muskrat Falls)

NP-NLH-108, Attachment 4 Page 88 of 89, NLH 2013 GRA

Page 336: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

191.8

38.0

162.6

98.5

165.9

89.1

105.5

27.5

168.6

33.1

21.9

MASSEY DRIVE

TL211

TL235

23.7

TL231

128.3

2.4

TL263

TL209

30.1

6.5

181.7 TL232

TL205

STONY BROOK

TL204

TL233

17.1

124.2

35.0

13.4 8.5

134.8

16.8

134.4

16.9

34.1

16.3

34.1

31.4

15.5

31.7

15.7

TL201E

22.1

11.2 20.9

22.2

123.8

36.0

SW

0.0

71.0

209.8

165.8

163.0

12.6

31.4

17.4

163.3

17.5

31.7TL242W

TL217E

TL218W

160.2

14.3

206SVL B1

236HWD B1B2

1.0090.9

OXEN POND

238OPD B1

19.4

129.7

19.7

129.3

TL218E

7.0

165.0

405USL L34

216STB B1B2

261ACG GFL

14.9 129.1

4.2

30.1

10.2

1.0000.0

484.4

249.2

R

5.8

26.9

STEPHENVILLE

1

208MDR B1B5

1.004-30.9

135DLK B3

69.3

30.2

107.4

79.9

7300CHF TS

1364.5

219.8

1364.5

219.8

1364.5

219.8

0.9875

83.3

42.3

0.9875

83.3

42.3

1.0548

431.0

43.7

2306CHF B23

1.0469.1

431.4

20.9

2330WABUSH TS

0.921-15.3

205.8

49.0

190.2

3.5

205.8

49.0

190.2

3.5

4065.5

10.7

R

SW

499.0

1355.2

169.9

1.0040.0

1

1355.2

169.9

1355.2

169.9 3420

CHF 315 83.3

44.1

3401MFA TS

82.7

57.0

44.1 82.7

57.0

83.3

44.1

83.3

44.1

3400MFA 315S

W

225.5

39.3

56.9

39.3

54.8

56.9

39.3

54.8

4.4

39.3

SOLDIERS POND

CHURCHILL FALLS

LABRADOR

NOVA SCOTIA

MUSKRAT FALLS

HAPPY VALLEY

107.9

28.3

75.1

21.4

75.1

21.4

TL234

25.1

195.1

199.1

10.5

195.4

13.3

194.8

13.2

199.2

5.4198.7

5.4

184.5

22.6

173.0

10.8

30.1

10.2

1

55.5

84.1

230LHR B1

83.9

56.7

WESTERN AVALON

TL208

VALE INCO

19.3

1.2

1.2

19.3

1.2

6.1

6.1

221BDE TS

93.0

44.4

93.9

47.9

229WAV B1B3

SW

119.9

TL203

TL237

222SSD B1

SUNNYSIDE

47.9

50.7

35.7

24.5

146.3

15.6

TL207

CBC

227CBC B1B2

291GCL L63

222.0

18.6

DEER LAKE

215BUC B1

BUCHANS

0.994-17.0

0.993-17.0

1.009-6.1

NEWFOUNDLAND

1.018-6.2

1.006-3.8

0.997-4.4

1.004-9.5

0.997-17.6

1.018-39.8

0.9956.1

1.0010.7

1.0020.7

1.021-6.1

1.0161.8

205BBK B1

P = 4706.0 MW

Q = 654.9 MvarP = 824.0 MW

Q = 171.5 Mvar

83.31.016

5.17380MONTAGNAIS

HYDRO-QUEBEC

Q = 31.3 Mvar

12.9

69.9TL248

1.037-26.7

136CAT L47

CAT ARM

P = 70.0 MW

Q = 16.9 Mvar

TL228 25.2

173.5

184.7

61.9 BOTTOM BROOK

106.2 75.1

21.4

P = 27.0 MW

Q = 9.1 Mvar

GRANITE CANAL

P = 71.0 MW

Q = -0.5 Mvar

UPPER SALMON

1.2

TL

20

6

TL

20

2

P = 525.0 MW

Q = 18.9 Mvar

BAY D ESPOIR

TL201W

TL217W

36.0

35.0 52.3

87.2

1.0142.0

44.2

98.6

98.7 43.5

TL236

TL242E

80.2

222.4 1.003

0.4

P = 0.0 MW

Q = 32.8 MvarHARDWOODS

13.8

97.1

234HRD TS

HOLYROOD

Q = 60.7 Mvar

P = 0.0 MW

- Base Case

450.0

210.8

450.0

210.8

407.4

209.0

6.3

16.1

6.5

36.9

Q = -0.1 Mvar

P = 80.0 MW

167.8

36.6

2490SPD

8.2

P = 76.0 MW

- Bipolar operation of Island HVDC

86.7

250.0

117.2

242.2

124.6

250.0

117.2

242.2

124.66000

NOVA SCOTIA

0.991-25.3

1.020-39.4

1

0.0

124.8

0.985-33.9

2

1

0.0

341.7

R 185.2

0.0

231.5

0.0

- Generation: Economic Dispatch

- Muskrat Falls Generation: Maximum - Bipolar operation of Maritime HVDC

BC19 - SPRING/FALL INTERMEDIATE 2017, 1100 MW, 814 MW IMPORT AND 500 MW EXPORT

Bus - VOLTAGE (PU)/ANGLEBranch - MW/MvarEquipment - MW/Mvar

100.0%RATEB1.050OV 0.950UVkV: <=6.900 <=16.000 <=25.000 <=46.000 <=69.000 <=138.000 <=230.000 >230.000

407.4

209.0

NP-NLH-108, Attachment 4 Page 89 of 89, NLH 2013 GRA

Page 337: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

+)) SNC • LAVALIN

Lower Churchill Project

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

SLI Document No.: 505573-480A-47ER-0005-01

Nalcor Reference No.: ILK-SN-CD-8000-EL-SY-0003-01-82

Date: 17-Apr-2012

Prepared by:

Verified by: /

Approved by: Satish Sud

NP-NLH-108, Attachment 5 Page 1 of 31, NLH 2013 GRA

Page 338: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 ii

Revision

Remarks

No By Verif. Appr. Date

Re-issued for use

Issued for use

01 RA PA SS 17-Apr-2012

00 RA PA SS 16-Mar-2012

NP-NLH-108, Attachment 5 Page 2 of 31, NLH 2013 GRA

Page 339: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 iii

SNC-Lavalin Inc.

TABLE OF CONTENTS

PAGE

1 INTRODUCTION ................................................................................................................ 1

2 CONFIGURATIONS ........................................................................................................... 2

3 CONTROL LOCATIONS .................................................................................................... 4 3.1 Muskrat Falls Converter Station Control Room .......................................................... 4 3.2 Soldiers Pond Converter Station Control Room ......................................................... 4 3.3 Nalcor Energy Control Centre .................................................................................... 5 3.4 Nalcor Backup Energy Control Centre ....................................................................... 5 3.5 Muskrat Falls Generating station................................................................................ 5 3.6 Soldiers Pond Synchronous Condensers ................................................................... 5

4 CONTROL HIERARCHY .................................................................................................... 6 4.1 Master / Slave Selection ............................................................................................ 6 4.2 Control Hierarchy ....................................................................................................... 6

4.2.1 Converter Firing Control ................................................................................. 8 4.2.2 Pole Control ................................................................................................... 8 4.2.3 Bipole Power Control ...................................................................................... 8 4.2.4 Station Controller............................................................................................ 9

5 MODES OF OPERATION ..................................................................................................10 5.1 Bipolar Mode.............................................................................................................10 5.2 Monopolar Mode .......................................................................................................10

5.2.1 Monopolar Ground Return Mode ...................................................................10 5.2.2 Monopolar Metallic Return Mode ...................................................................11

5.3 Reduced Pole Voltage Operation Mode ....................................................................11 5.4 Reverse Power Operation Mode ...............................................................................13 5.5 Open Line Test Mode ...............................................................................................13 5.6 Loop Power Flow Mode ............................................................................................15

6 OPERATING STRATEGIES ..............................................................................................16 6.1 Bipole Power Control Mode ......................................................................................16 6.2 Pole Individual Power Control ...................................................................................20 6.3 Current Control with Telecom ...................................................................................20 6.4 Current Control without Telecom...............................................................................21

7 CONTROL STRATEGIES ..................................................................................................22 7.1 Control Strategies Required Following ac System Faults ..........................................22 7.2 Control Strategies Following a Pole Fault .................................................................24 7.3 Control Strategies Following a Converter Block ........................................................24 7.4 Islanded Operation ...................................................................................................25

8 REFERENCES ..................................................................................................................27

NP-NLH-108, Attachment 5 Page 3 of 31, NLH 2013 GRA

Page 340: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 iv

SNC-Lavalin Inc.

List of Tables Table 7-1: Summary of Mitigating Measures .............................................................................26

List of Figures Figure 2-1: Operational Modes ................................................................................................... 3 Figure 4-1: Control System Hierarchy ........................................................................................ 7

NP-NLH-108, Attachment 5 Page 4 of 31, NLH 2013 GRA

Page 341: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 1

SNC-Lavalin Inc.

1 INTRODUCTION

As part of the Lower Churchill Project, Nalcor is planning to build a bipolar HVdc

transmission system to transfer power from Muskrat Falls to Soldiers Pond (Island

Link). The scheme would comprise about 388km of overhead line in Labrador,

688km overhead line in Newfoundland and about 30km of undersea/land cable at

the Strait of Belle Isle. The scheme is being planned as a bipolar configuration rated

at 900 MW, ±350 kV as measured at the Muskrat Falls ac commutating bus [1, 2].

However, the scheme shall be designed for bipolar and monopolar operation.

This report presents a description of HVdc configurations, HVdc control hierarchy,

control locations, modes of operation, and operating and control strategies of the

scheme, as applicable to the Island Link. This report presents the basic philosophy

of these aspects and the final implementation requirements to be developed and

presented as part of the Technical Specifications.

NP-NLH-108, Attachment 5 Page 5 of 31, NLH 2013 GRA

Page 342: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 2

SNC-Lavalin Inc.

2 CONFIGURATIONS

Figure 2.1 shows the different states that an HVdc transmission scheme could

operate depending on the design and requirements. This is a general diagramatic

representation of available options of an HVdc point-to-point transmission scheme,

and depending on the design features and requirements some of the options shown

in Figure 2.1 (which will be identified in the following sections), may not be applicable

to the Island Link.

A detailed description of each of these states is given in Section 5 and a brief

description is presented below.

The Island Link is being designed as a bipolar configuration with ability to operate as

a monopolar during outage of a pole. In bipolar configuration it will operate with

ground return only. However, in monopolar configuration it can operate either in

ground return or metallic return mode.

In addition to its rated voltage and rated power transmission configuration, from

Muskrat Falls to Soldiers Pond, the scheme shall also be designed to operate at

reduced voltage, reverse power flow, open line test and loop power flow conditions,

which are designated as Operational Modes.

For the purpose of clarity the different levels of operation are defined below:

1) Configuration Modes:

a) Bipolar Modes (ground return)

b) Monopolar Modes (ground return or metallic return)

2) Operational Modes:

a) Reduced Voltage Mode

b) Reverse Power Mode

c) Open Loop Test Mode

NP-NLH-108, Attachment 5 Page 6 of 31, NLH 2013 GRA

Page 343: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 3

SNC-Lavalin Inc.

d) Loop Power Mode

Figure 2-1 also shows the applicable operational modes for each of the configuration

modes. For example, loop power flow is not possible in monopolar mode while the

rest of the three operational modes are possible in both the configuration modes.

Figure 2-1: Operational Modes

Configuration

Bipolar

Monopolar

Ground Return

Ground Return

Metallic Return

Reduced Voltage

Reverse Power

Loop Power

Open Line Test

Reduced Voltage

Reverse Power

Reduced Voltage

Reverse Power

Full Voltage mode and Forward Power mode are the regular modes. Reduced Voltage and Reverse Power are special cases of the regular modes. Any pole can be operated in power control or current control. These are set points issued by the operator.

NP-NLH-108, Attachment 5 Page 7 of 31, NLH 2013 GRA

Page 344: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 4

SNC-Lavalin Inc.

3 CONTROL LOCATIONS

The HVdc system shall be designed to operate from any of the four locations:

Muskrat Falls Converter Station Control Room, Soldiers Pond Converter Station

Control Room, Nalcor Energy Control Centre and Nalcor Energy Backup Control

Centre.

In addition to the switching and control of the HVdc system, the switching and control

of generators at the Muskrat Falls and synchronous condensers at the Soldiers Pond

also shall be coordinated with the HVdc transmission.

The control functions shall be active from only one of the above three locations at

any one time. Transfer of control from one location to the other shall be performed

locally from the site that has control at the time. The controlling site can request a

transfer to one of the other sites or one of the other sites can request a transfer from

the controlling site. This will be carried out via telephone and once the arrangements

have been agreed upon, the controlling site will hand over control to the new site.

The detailed transfer methodology will be developed as part of the specifications.

The required control functions at each location are presented below:

3.1 Muskrat Falls Converter Station Control Room

Full control and monitoring of the HVdc transmission system as well as ac side

reactive power/ac voltage, HVdc switchyard and associated 315 kV ac switchyard at

Muskrat Falls is required.

3.2 Soldiers Pond Converter Station Control Room

Full control and monitoring of the HVdc transmission system as well as ac side

reactive power/ac voltage, HVdc switchyard and associated 230 kV ac switchyard at

Soldiers Pond is required.

NP-NLH-108, Attachment 5 Page 8 of 31, NLH 2013 GRA

Page 345: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 5

SNC-Lavalin Inc.

3.3 Nalcor Energy Control Centre

Full control and monitoring (except open-line testing) of the HVdc transmission

system and ac side reactive power/ac voltage (Muskrat Falls and Soldiers Pond),

associated 315 kV ac switchyard at Muskrat Falls, associated 230 kV ac switchyard

at Soldiers Pond and HVdc switchyard is required.

3.4 Nalcor Backup Energy Control Centre

This acts as a backup to the Main ECC and shall have the same features as the

Main ECC.

3.5 Muskrat Falls Generating station

The starting, synchronization, dispatching and stopping of the Muskrat Falls

generators shall be performed remotely from ECC/BCC and locally from the Muskrat

Falls generating station control room, or at the unit control board.

3.6 Soldiers Pond Synchronous Condensers

The starting, synchronization and stopping of the synchronous condensers at the

Soldiers Pond shall be performed remotely from the ECC/BCC. However, starting

and stopping the condensers shall be possible from the local controls in the

Synchronous Condenser Control room, or at the unit control board.

Close and open operations of the dc switchyard grounding switches shall be

performed by local controls in the corresponding switchyard only.

NP-NLH-108, Attachment 5 Page 9 of 31, NLH 2013 GRA

Page 346: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 6

SNC-Lavalin Inc.

4 CONTROL HIERARCHY

4.1 Master / Slave Selection

This is a bipole hierarchical level controller that permits the operator to select which

of the two converter stations will be the master station for the purpose of operational

control of the HVdc system. Operator commands such as dc power/current orders,

ramp rate settings, starting and stopping of poles, and dc voltage reduction will be

allowed to be performed from the master station only.

4.2 Control Hierarchy

Each converter station will be provided with the following four major controllers in the

following hierarchical order:

a) Converter firing control

b) Pole current control

c) Bipole power control

d) Station control

ac/dc System Level control will be carried out exclusively at the Energy Control

Centre.

This hierarchy is illustrated in Figure 4-1.

NP-NLH-108, Attachment 5 Page 10 of 31, NLH 2013 GRA

Page 347: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 7

SNC-Lavalin Inc.

Figure 4-1: Control System Hierarchy

Thyristor Valves Thyristor Valves

Pole Level

Converter Level

CONTROL SYSTEM HIERARCHY

Bipole Level

Station Level

ac/dc System

Level

Dispatch Centre/System Control

Station ControlBipole Power OrderFrequency LimitingFrequency ControlAC Voltage Control

Reactive Power Control

Bipole ControlPole Power Orders

Power LimitsPole Current Balancing

Pole 1 ControlPole Power Control

Alpha/GammaPhase Limits

Static Characteristics

Tapchanger ControlSub-synchronous Damping

Power Swing Damping

Pole Protection

Pole 2 ControlPole Power Control

Alpha/GammaPhase Limits

Static Characteristics

Tapchanger ControlSub-synchronous Damping

Power Swing Damping

Pole Protection

Valve Based ElectronicsThyristor Firing Control

Thyristor Status ReportingThyristor Protection

Valve Based ElectronicsThyristor Firing Control

Thyristor Status ReportingThyristor Protection

NP-NLH-108, Attachment 5 Page 11 of 31, NLH 2013 GRA

Page 348: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 8

SNC-Lavalin Inc.

4.2.1 Converter Firing Control

This is the innermost controller among the converter controls, and essentially an

open loop control that synchronizes the firing to the commutating ac bus voltages,

translates the firing angle (alpha) order into firing pulses and distributes them to the

individual valves.

4.2.2 Pole Control

This is a closed loop control system that includes the basic control functions that are

required for a stable HVdc system. These basic control functions include the current

control, voltage control, extinction angle control, power control and tap changer

control. The controller tries to maintain the control variable at the reference value by

comparing and adjusting the actual value with the reference value.

Each converter station pole is provided with an independent pole controller that

maintain the dc voltage and current within that pole at desired values.

For the operator defined voltage and power order, the pole control calculates the

corresponding current order Iord. The closed loop current control system tries to

maintain the Iord at the desired value in each pole. The measured pole current is

compared with the current order and the amplified output of the error is fed to the

converter firing controller to achieve the desired current. The same current controller

is applied at both the rectifier and inverter with current margin subtracted from the Iord

at the inverter to provide control coordination between the two converters.

4.2.3 Bipole Power Control

The bipole power controller is used for scheduled power orders and calculation of

current order for each pole. The set power order is divided by the bipole voltage to

get the Iord that is fed to the current controller. The same bipole power controller is

implemented at both the converter stations. This can act either to transmit the

ordered power or stabilize the system frequency, in either the rectifier or inverter ac

systems, within a certain range.

NP-NLH-108, Attachment 5 Page 12 of 31, NLH 2013 GRA

Page 349: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 9

SNC-Lavalin Inc.

At the loss of one pole this controller increases the power order to the healthy pole

within its prescribed limits.

Supplemental signals such as power oscillation damping (modulation signals) and

frequency signals are fed into this controller.

4.2.4 Station Controller

This controller is provided at each station to manage shunt bank switching, reactive

power exchange, bus voltage, power reduction under low ac voltage, tie line flow

control, frequency controller, etc. This is a high level controller.

NP-NLH-108, Attachment 5 Page 13 of 31, NLH 2013 GRA

Page 350: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 10

SNC-Lavalin Inc.

5 MODES OF OPERATION

5.1 Bipolar Mode

This is the normal mode of operation with current flow in each pole. This could be a

balanced or unbalanced operation resulting in equal or unequal currents in each

pole. In this mode of operation the total power is limited to 900 MW at the rectifier

under maximum ambient temperature.

5.2 Monopolar Mode

The bipolar HVdc system goes to monopolar operation when one of the pole

conductors (overhead line or cable), or one of the converters becomes out of service.

There are two monopolar operating modes, i.e. monopolar ground return mode and

monopolar metallic return mode as described below.

The OLTC tap changers shall be provided with sufficient range to operate in these

monopolar operating modes, and at all the short-term, long-term overload and

continuous ratings including Reduced Voltage Operation.

There shall be sufficient reactive power available to operate at the short-term

overload rating.

5.2.1 Monopolar Ground Return Mode

If one pole of a bipolar system has to be blocked either due to faults or otherwise, the

second pole shall be able to operate in monopolar mode automatically without power

interruption. The healthy converter pole will be connected to its own overhead line

and submarine/underground cable system while the return current will be through the

ground path consisting of the electrode lines and the shoreline ponds.

NP-NLH-108, Attachment 5 Page 14 of 31, NLH 2013 GRA

Page 351: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 11

SNC-Lavalin Inc.

5.2.2 Monopolar Metallic Return Mode

In case of any limitations from the use of ground currents and/or the shoreline pond

electrodes, an alternate path through the pole conductors of the blocked pole,

termed as “Metallic Return Mode”, is used.

In this mode the pole current flows through the healthy pole and returns through the

conductor of the other pole which is out of service. This mode is for emergency or

maintenance conditions only, wherein a converter pole or electrode is out of service.

Under these conditions there will be higher losses and consequently reduced power

transfer.

5.3 Reduced Pole Voltage Operation Mode

A reduced pole dc voltage operation mode shall be provided on each pole of the dc

transmission system to allow operation under conditions where the dc line insulators

are contaminated and cannot withstand full voltage. This mode can also be invoked

as the final re-start attempt following a dc overhead line fault.

The pole dc voltage reference shall be adjustable between 80% and 100% of rated

dc voltage. Operation in reduced voltage mode imposes additional duty on the

OLTC tap range, reactive power, harmonic filtering, thyristor snubber circuitry, etc.

Due to these reasons the amount of current transfer during this mode needs to be

evaluated carefully.

This mode invariably results in reduced power transfer if no additional equipment is

provided. If power reduction is not allowed it has to be clearly stated in the

specifications.

If both poles operate in reduced voltage mode, current could be balanced similar to

the full voltage operation. Otherwise, either unbalanced current has to be allowed or

current balancing has to be specified.

NP-NLH-108, Attachment 5 Page 15 of 31, NLH 2013 GRA

Page 352: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 12

SNC-Lavalin Inc.

When reduced voltage operation is initiated or reset by the operator when in

operation, the dc voltage shall ramp smoothly to the new dc voltage reference over a

suitable time interval determined by the Contractor. It shall be possible to stop the

voltage decrease or voltage increase ramp at any time. In such cases, the voltage

reference shall be the voltage at which the ramp was stopped.

The tap-changer control shall adjust the converter transformer tap so as to result in

the optimum firing angle consistent with the reduced voltage operation.

The pole power capability calculation shall recognize this operating mode and shall

make the necessary adjustments to ensure proper operation in this mode, including

all current limits.

All modulation signals shall remain active in this mode.

The HVdc controls shall be designed so that the performance requirements stated

herein are met.

It shall be possible to order reduced dc pole voltage operation as follows:

Manually with the pole de-energized

Manually with the pole energized. A function shall be provided to allow a

smooth transition from full voltage to reduced voltage with minimal

disturbance to the transmitted dc power by simultaneously adjusting the dc

voltage and current to maintain a constant dc power during the transition.

Manually with the pole energized at dc voltage control terminal when there is

no telecommunications available.

An automatic switchover to reduced voltage mode shall also be initiated by

the dc line protection

It shall be possible to order a restoration to full dc voltage as follows:

Manually when the pole is de-energized

NP-NLH-108, Attachment 5 Page 16 of 31, NLH 2013 GRA

Page 353: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 13

SNC-Lavalin Inc.

Manually when the pole is energized. A function shall be provided to allow a

smooth transition from reduced dc voltage to rated dc voltage with minimal

disturbance to the transmitted dc power by simultaneously adjusting the dc

voltage and current to maintain a constant dc power during the transition.

Manually with the pole energized at the dc voltage controlling terminal when

there is no telecommunications available.

5.4 Reverse Power Operation Mode

The dc system control and protection shall be designed to accommodate dc power

transfer from Muskrat Falls Converter Station to Soldiers Pond Converter Station

normally. It shall also be possible to transfer power from Soldiers Pond to Muskrat

Falls. If full power transfer is required it has to be stated in the specifications. With

remote chances of reverse power transfer for the Island Link the reverse power

feature will be specified but without adding any extra equipment.

Operator controls shall be provided for selection of pole power transfer direction at

the operator locations specified herein.

The Contractor shall provide features to change automatically, upon selection of the

power transfer direction, any control parameters that require different adjustment in

order to achieve the specified performance.

Switching of power transfer direction shall not result in an abrupt voltage reversal on

the dc pole. The voltage shall be smoothly brought to zero and then smoothly

ramped to the opposite polarity. This should be coordinated with the cable charging

properties.

5.5 Open Line Test Mode

This mode of operation is available only at either converter station (local control) and

not from the Energy Control Centre. The control system shall be designed to test the

voltage withstand capability of the line pole, including adjustable dc voltage

NP-NLH-108, Attachment 5 Page 17 of 31, NLH 2013 GRA

Page 354: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 14

SNC-Lavalin Inc.

application, after maintenance work is completed and prior to restarting dc power

transfer over that line pole. It shall be possible for the operator to safely deblock a

converter pole into an open circuit with local dc line pole switches closed and remote

cable terminal station or converter station dc line pole switches open and adjust the

line voltage to any value between zero and 1.05 p.u. to test the local converter

station equipment and the line pole connected to it. Open line test mode shall be

provided only as a local control function. In this test mode, deblocking of the remote

converter station pole shall be inhibited and any open-line type of protections and

protections which detect low dc voltage on the converter pole shall be blocked. All

necessary protections shall be provided to protect safety of the equipment in the

converter stations and cable terminal stations in the test mode. It shall be possible to

perform the open line test using the converters of one pole while the other pole is in

operation.

This mode of operation is available only at either converter staion (local control) and

not from the Energy Control Centre, however, this should be stated in the

specifications.

The open line test mode shall have two operating mode options:

a) Manual Mode

In this mode the operator manually starts the pole, adjusts the firing angle in order to

control the dc voltage to the desired level then manually reduces the voltage before

stopping. The allowable ramp rate shall be adjustable between 1.0 p.u. per minute

and 10 p.u. per minute. The control mode shall also limit the maximum time at which

the voltage stays at the set voltage adjustable from infinite down to 50 ms.

b) Automatic Mode

In this mode the operator will start the open line test sequence which will

automatically deblock the converter pole, ramp the voltage up to a predetermined

NP-NLH-108, Attachment 5 Page 18 of 31, NLH 2013 GRA

Page 355: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 15

SNC-Lavalin Inc.

level (up to 1.05 p.u.) then hold for a pre-set time prior to ramping the voltage down

and blocking the converter pole.

During the ramping process the operator shall be able to stop the process. In this

case the voltage will remain at the value at which the hold occurred. It shall then be

possible to restart the ramp to increase or decrease to voltage as desired. It shall

also be possible to block the pole at any time without first ramping to zero.

5.6 Loop Power Flow Mode

The transmission line in certain geographic areas is prone to rime icing and glazed

ice conditions, causing heavy ice loading. It is expected that if the dc is lightly loaded

the chances of ice accretion are high.

Under light HVdc transmission conditions, close to the rated power shall be

circulated in each pole but in opposite directions, thus minimizing the chances of ice

accretion on pole conductors. The net power delivered through the dc system would

be the dc line losses in addition to the light load power requirements.

The amount of power transferred on each pole shall be adjusted to minimize the

ground current.

The control system shall be designed to permit operation of each pole in pole-mode

rather than in bipole mode. As an operational mode, this feature shall be configured

automatically, without manual intervention, once a command is given to operate in

this mode.

In the event of a pole block in this operating mode, the resulting overvoltage will be

controlled by the synchronous condensers and, if necessary, switching off of the

shunt filter banks.

NP-NLH-108, Attachment 5 Page 19 of 31, NLH 2013 GRA

Page 356: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 16

SNC-Lavalin Inc.

6 OPERATING STRATEGIES

The Muskrat Falls to Soldiers Pond HVdc project shall be designed to have the

following basic operating strategies in both directions of power transfer:

a) Bipole Power Control Mode

b) Pole Individual Power Control

c) Current Control with Telecom

d) Current Control without Telecom

A brief description of each of these control modes is given below:

6.1 Bipole Power Control Mode

This will be the primary control mode for the dc system. In this control mode, the

closed-loop control system shall control the dc power referenced at the rectifier

station to the scheduled power order provided by the operator at the active operator

control location. This control mode shall be available in each of the operating modes

given above in Section 5, except in open line test mode and loop power mode.

If both poles are selected to bipole power control, then the bipole power allocator

function shall assign equal current orders to each pole so as to minimise the ground

current in the electrode. If both poles are operating at the same voltage then the

power transfer in each pole will be equal. However, if one pole is operating at

reduced voltage while the other is at full voltage then the power transferred in each

pole will be in the ratio of the pole voltages.

If one of the poles is selected to one of the individual control modes (pole individual

power control or current control with telecom) or if one pole is in current control

without telecom, then the power in that pole may be fixed at a desired level and the

net bipole power transfer shall be maintained at the ordered level by the pole which

is in bipole power control. In this case the ground currents will in general not be

NP-NLH-108, Attachment 5 Page 20 of 31, NLH 2013 GRA

Page 357: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 17

SNC-Lavalin Inc.

balanced and the power order of the pole in bipole power control will be the

difference between the bipole power order and the actual power transfer of the pole

which is in the individual control mode.

The bipole power control mode shall have two options for operational control:

a) Manual Control

The desired bipole power order and power ramp rate will be entered from the

selected operator control location (local or remote) of the converter station selected

to be the master station for operator control.

On activation of the execute power order the dc power transfer level on the bipole

shall be linearly changed at a rate adjustable to values between 10 MW per minute

and 100 MW per minute to the desired bipole power order. A display shall be

provided which shall show that a ramp is in progress and the ramp rate. A bipole

ramp stop function shall also be provided which when activated shall cause the ramp

to end and the power order to remain at the value reached when the ramp stop

function was executed. If the ramp is re-started it should be able to be re-started at a

different ramp rate from the intial selection.

b) Automatic Control

In this option the bipole power order shall be controlled automatically in response to

either automatic control or a pre-programmed power transfer curve which will define

the power transfer over the daily, weekly or monthly load cycle.

The operator shall be able to switch freely from manual to any of the automatic

control options above and vice-versa. When switching between manual and any of

the automatic control options above there shall be no disturbance to the transmitted

power. The power shall ramp smoothly between the actual power at the time of

switchover and the power order of the mode being enabled at the power ramp rate

defined in the manual control option.

NP-NLH-108, Attachment 5 Page 21 of 31, NLH 2013 GRA

Page 358: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 18

SNC-Lavalin Inc.

When both poles are in bipole power control, the power controls shall ensure that

equal currents will normally flow in each dc line pole conductor and that ground

current is minimized. High ground currents would be tolerated only in the case of

monopolar ground return operation and when, due to equipment limitations or other

reasons, it is not possible to achieve balanced line pole currents. Equal pole current

shall be maintained to the extent possible even when one converter pole is operating

at reduced voltage.

If the power order to either pole exceeds the continuous capability of the equipment

in that pole because of outages of equipment in that pole or other reason such as

reduced voltage operation, then the excess portion of the power order shall be

allocated to the other pole up to the continuous capability of the pole including

overloads and vice-versa.

If there is a reduction in the capability of one pole of the dc system which would

result in a decrease in the actual dc power transfer, the power controls shall quickly

and automatically restore the power transfer to a level as near as possible to ordered

level by increasing the current in the other pole up to the inherent capability and

short time overload rating of the equipment.

The power controls shall generate an alarm to the system operator when the current

or power flow in the pole is beyond the continuous capability of the equipment and

shall automatically reduce the power to a safe level after the specified inherent and

short time overload has been utilized.

Redistribution of power orders between poles due to loss of capability is only

required on the pole which is in bipole power control. If one pole is in individual

control and the other pole is in bipole power control the pole which is in bipole power

control is required to compensate for loss of capability in the pole which is in

individual control. The pole, which is in individual control, is not required to

compensate for loss of capability in the pole which is in bipole power control.

NP-NLH-108, Attachment 5 Page 22 of 31, NLH 2013 GRA

Page 359: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 19

SNC-Lavalin Inc.

If the scheduled bipole power order is altered by signals required for overall system

performance enhancement, the control system shall control the dc bipole power to

the net resulting power order.

All signals which modulate the power order and therefore contribute to the effective

power order shall be individually monitored, along with the effective bipole power

order, on the station transient fault recorder, or equivalent device. The Contractor

shall provide output signals suitably buffered for this purpose for all such signals

originating in equipment in his supply.

Should the Contractor's design include functions which automatically switch from

constant power control mode to another mode such as constant current control

during transients, or for cases when a power controller failure is detected, the dc

current shall remain within ± 1% of the values prior to mode switching to current

control. Reverting to power control could be initiated manually or automatically

according to a pre-selection command from the operator. Reverting to power control

shall be smooth, with the same limits applicable. An alarm shall be produced when

the constant power control mode is automatically switched to another mode.

During conditions such as transients when the current control with telecom mode is

in effect, modulation signals shall not be disabled.

The design of the bipole dc power control and pole individual power control shall be

such that the calculated pole current order will not be affected by the instantaneous

change of dc voltage which will occur during transients.

It shall be possible to select one or both of the poles to operate in an individual

mode. It shall be possible to start/stop or to set the pole power/current reference of

poles which are in individual control independently.

When one of the poles is in current control with telecom mode or current control

without telecom mode or pole individual power control mode, the power controls shall

ensure that the ordered bipole power given from the operator controls is still

NP-NLH-108, Attachment 5 Page 23 of 31, NLH 2013 GRA

Page 360: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 20

SNC-Lavalin Inc.

transmitted up to the capability of the remaining pole which is operating in bipole

power control.

6.2 Pole Individual Power Control

This control mode shall be provided separately for each pole.

In this control mode the power transfer of the pole is maintained at the pole power

order set-point. In this mode the pole power transfer is not influenced by the bipole

power order.

The pole individual power control shall have the following features:

It shall be possible to increase or decrease the pole power transfer by

specifying a new pole power order and pole power ramp rate then activating

the execute power order. The power shall then ramp smoothly to the new

pole power order at the pole power ramp rate.

Only manual control of the power order is required. It is not required to

provide an automatic function as for the bipole power control.

All modulation controls and limiters shall remain active in this control mode.

6.3 Current Control with Telecom

This mode shall be provided for each pole.

In this control mode the dc controls maintain the pole dc current order at the set point

value. Coordination of the current orders between the terminals is maintained

automatically through the normal current order coordination functions, via the HVdc

telecontrol system.

This control mode shall have the following features:

It shall be possible to change the current order by specifying a new order

then initiating a ramp similar to the power control or alternatively to increment

NP-NLH-108, Attachment 5 Page 24 of 31, NLH 2013 GRA

Page 361: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 21

SNC-Lavalin Inc.

or decrement the current order in adjustable steps. The step size adjustment

and step increment/decrement shall be operator selected from a control point

on the SCADA.

All modulation controls and limiters shall remain active when operating in this

mode.

6.4 Current Control without Telecom

An emergency pole current control mode of operation shall be provided on each pole

to permit operation of that pole when HVdc telecontrol equipment or the

communication channels required for coordination of current orders are not available.

This mode of operation shall be initiated automatically on loss of

telecommunications. If both poles are in bipole power control mode then current

mode without telecom shall not be automatically initiated unless there is a loss of

communications to both poles.

An alarm signal shall be issued if there is a switchover to current control without

telecom mode. During the telecommunications outage the pole power orders shall

track the dc actual power transmitted. The control system shall automatically

resume bipole power control when the telecommunications are restored. During

switchover to current control without telecom and back to pole individual power

control, there shall be no change in measured dc power and dc current.

When one pole is in current control without telecom it shall be designed to not

degrade the performance of the other pole.

NP-NLH-108, Attachment 5 Page 25 of 31, NLH 2013 GRA

Page 362: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 22

SNC-Lavalin Inc.

7 CONTROL STRATEGIES

The converter controls will normally maintain the power flow over the bipole at the

value ordered by the operator. The rectifier controls will normally control the

transmitted pole current and the inverter controls will regulate pole voltage to

maintain sending end voltage. Under disturbed conditions, additional fast-acting

control systems will be required to ensure stable post-disturbance recovery of the

Island and Labrador ac systems. In the stability studies carried out as part of this

project, the application of fast-acting, frequency controllers were considered for the

Island Link at Soldiers Pond (inverter) and for the Maritime Link at Bottom Brook

(rectifier) [3].

7.1 Control Strategies Required Following ac System Faults

The stability studies demonstrated that, in order to avoid load shedding on the island

following a major disturbance, it will be necessary to implement the following control

strategy:

In the event of a rapid reduction in the Island frequency the dc power level on

the Island Link should be increased, and

The dc power level on the Maritime Link should be reduced.

The studies also demonstrated the following specific requirements:

In the event of a permanent 3-phase fault at Muskrat Falls on one of the lines

to Churchill Falls, when three or fewer units are operating at Muskrat Falls, at

peak load and with full import from Labrador, the dc power order on the

Island Link must be reduced prior to the re-start of the dc link. The pre-fault

power order must be reduced by an amount equivalent to the export being

delivered to Nova Scotia over the Maritime Link.

NP-NLH-108, Attachment 5 Page 26 of 31, NLH 2013 GRA

Page 363: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 23

SNC-Lavalin Inc.

In the event of a 3-phase fault at Bay d’Espoir 230 kV or any other 230 kV

bus to the west of Bay d’Espoir, or in the event of a temporary bipole fault on

the Island Link, or in the event of a 3-phase fault at Muskrat Falls on one of

the 315 kV lines to Churchill Falls, the power being exported on the Maritime

Link must be reduced to zero. This will automatically occur for the faults at

Bay d’Espoir and to the west as the voltage at Bottom Brook will fall to a level

where the Maritime link will block. For other faults, the reduction can be

effected by means of a frequency controller at the Bottom Brook converter.

The requirement to reduce the export over the Maritime Link for a fault at

Muskrat Falls only applies for peak load conditions when three or fewer units

are operating at Muskrat Falls.

The controls should automatically adjust the ordered power flow, so that if a power

reduction occurs in either pole below the ordered value due to the sudden loss of

pole capability, then the power level in the healthy pole will be adjusted by increasing

power, within the capability of the converter, as determined in the Basis of Design as

follows:

200% capability for 10 minutes

150% capability continuously

This should take place even when one of the poles is manually blocked when the

system is in bipolar mode of operation. Conversely when the second pole is brought

in manually into bipolar mode, the controls should automatically ramp up the power

in the incoming pole while ramping down the power on the other pole until balanced

bipolar mode of operation is achieved. The ability to change the power order should

also be reflected in the current order controls so that during and following a fault, the

HVdc link can be switched from power order control to current control.

NP-NLH-108, Attachment 5 Page 27 of 31, NLH 2013 GRA

Page 364: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 24

SNC-Lavalin Inc.

7.2 Control Strategies Following a Pole Fault

For a fault occurring on one pole of the Island link, the control strategy to be followed

will depend upon the location of the fault. In all cases, the converters will be

adjusted to reduce the dc current in the faulted pole to zero in the conventional way.

Since the majority of overhead line faults are transient in nature, it is normal practice

to re-start the converters on the faulted pole after allowing a suitable de-ionization

time for the transient fault to extinguish completely. Since the Island Link will include

a submarine cable section across the Straits of Belle Isle, it will be necessary to

discriminate between overhead line faults and submarine cable faults. In the case of

a fault on one submarine cable, the conventional re-start of the converters following

the reduction of the pole current to zero should be inhibited since almost all cable

faults are permanent faults and re-energization is not recommended. In the case of

an overhead line fault, a maximum of four re-starts should be permitted before

shutting the pole down permanently until the fault can be located and repaired.

7.3 Control Strategies Following a Converter Block

For a temporary bipole fault on the Island link, a reduction in the dc power order on

the Island link, following fault clearance, would allow for a longer de-ionization period

to be considered for the fault. Without any reduction in power order, the maximum

time permitted until re-start after a bipole fault is 12-cycles/200 ms and the frequency

controller must be disabled for a period of 500 ms following the fault. With a power

order reduction, the restart time can be extended to 300-340 ms. A reduction in

power order will also be required for a 6-cycle/3-phase fault at Muskrat Falls 315 kV

that results in the outage of one of the 315 kV lines to Churchill Falls, when only

three or fewer units are operating at Muskrat Falls. This reduction in power order is

not required when all four units are operating at Muskrat Falls and only applies

during the peak load period. The reduction required in the power order is equivalent

to the export that was provided over the Maritime Link prior to the fault.

NP-NLH-108, Attachment 5 Page 28 of 31, NLH 2013 GRA

Page 365: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 25

SNC-Lavalin Inc.

The controls should ensure that, upon an HVdc telecontrol or telecommunications

system(s) failure causing loss of further HVdc telecontrol signal updating, the power

transmission is maintained at the last ordered value prior to failure.

Even during a telecommunications failure, it should be possible to change power

both in response to manual power order changes and to power modulation signals

without any risk for loss of current margin.

Throughout the year and at all load levels, certain outages on the Island network

(230 kV line outages and generator outages) will result in steady-state line overloads

following the fault. In order to avoid these overloads, a reduction is required in the

export over the Maritime Link and, in some cases, a reduction of the import over the

Island Link. A summary of the reductions in steady-state power that must be

implemented to avoid overloading of the existing and planned 230 kV lines on the

Island is shown in Table 7-1.

7.4 Islanded Operation

The HVdc scheme could result in an islanded mode of operation at the rectifier for

the loss of both 315 kV lines connected to the Churchill Falls system. In such a

case, the HVdc system shall be able to operate under frequency droop

characteristics, and also damp out low frequency system oscillations due to governor

interaction.

NP-NLH-108, Attachment 5 Page 29 of 31, NLH 2013 GRA

Page 366: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 26

SNC-Lavalin Inc.

Table 7-1: Summary of Mitigating Measures

Scenario Load Level Outage Mitigating Measure

BC-1 Winter Peak Largest Generator at Bay d'Espoir Maritime Link reduction-From 158MW to 96MWBC-2 Winter Peak Largest Generator at Bay d'Espoir Maritime Link reduction-From 239MW to 96MWBC-3 Winter Peak Largest Generator at Bay d'Espoir Maritime Link reduction-From 158MW to 10MW

Maritime Link reduction-From 158MW to 98MWIsland Link reduction-From 814MW to 774MW

Largest Generator at Upper Salmon Maritime Link reduction-From 158MW to 124MWBC-6 Spring/Fall Peak Largest Generator at Bay d'Espoir Maritime Link reduction-From 158MW to Zero

Maritime Link reduction-From 500MW to 350MWIsland Link reduction-From 814MW to 664MW

BC-8 Summer Day Largest Generator at Bay d'Espoir Maritime Link reduction-From 158MW to 90MWBC-9 Summer Day All outages No reductions required

Maritime Link reduction-From 500MW to 100MWIsland Link reduction-From 814MW to 414MW

BC-11 Summer Night Largest Generator at Upper Salmon Island Link increase-From 81MW to 108MWBC-12 Summer Night 230kV Bottom Brook and Buchans (TL233) Maritime Link reduction-From 320MW to 240MW

Maritime Link reduction-From 320MW to 240MWIsland Link reduction-From 435MW to 355MW

Largest Generator at Bay d'Espoir Maritime Link reduction-From 320MW to 240MWBC-14 Winter Peak Largest Generator at Bay d'Espoir Maritime Link or Island Link import-Increase by 135MWBC-15 Spring/Fall Peak Largest Generator at Bay d'Espoir Maritime Link reduction-From 158MW to 76MW

Maritime Link reduction-From 500MW to 250MWIsland Link reduction-From 594MW to 344MW

BC-17 Summer Night Largest Generator at Bay d'Espoir Island Link increase-From 200MW to 220MWBC-18 Winter Peak Largest Generator at Bay d'Espoir Maritime Link reduction-From 158MW to 96MW

Maritime Link reduction-From 500MW to 350MWIsland Link reduction-From 814MW to 664MW

230kV Soldiers Pond and Western Avalon#1 (TL217W)

Any 230kV line between Soldiers Pond and Bottom Brook

Any 230kV line between Soldiers Pond and Bottom Brook

Any 230kV line between Soldiers Pond and Bottom Brook

Any 230kV line between Soldiers Pond and Bottom Brook

Any 230kV line between Soldiers Pond and Bottom Brook

Spring/Fall Peak

Spring/Fall Peak

Summer Day

Summer Night

Summer Day

Spring/Fall Peak

BC-5

BC-7

BC-10

BC-13

BC-16

BC-19

NP-NLH-108, Attachment 5 Page 30 of 31, NLH 2013 GRA

Page 367: NP NLH 108 2013 NLH 1 of 1 and · 2014. 5. 22. · NP‐NLH‐108 2013 NLH General Rate Application Page 1 of 1 1 Q. Reference: Rates and Regulation Evidence 2 Please provide copies

HVdc SYSTEM MODES OF OPERATION AND CONTROL STRATEGIES STUDY

Revision

Nalcor Doc. No.: ILK-SN-CD-8000-EL-SY-0003-01 B2 Date Page

SLI Doc. No.: 505573-480A-47ER-0005 01 17-Apr-2012 27

SNC-Lavalin Inc.

8 REFERENCES

[1] Nalcor, “Lower Churchill Project – Basis of Design”, LCP-PT-ED-0000-EN-RP-0001-01

[2] Nalcor, “Design Philosophy for LCP Converters”, LCP-PT-ED-0000-EN-PH-0019-01

[3] SLI Report, “Lower Churchill Project-Stability Studies“, SLI Report No. 505573-480A-47ER-004,

Nalcor Report No.ILK-SN-CD-8000-EL-RP-0001-01

.

NP-NLH-108, Attachment 5 Page 31 of 31, NLH 2013 GRA