92
10/15/2018 1 Nutrient Management Nathan Mueller & Laura Thompson, Nebraska Extension Educators Nutrient Management Philosophies Sufficiency Nutrient only applied if crop response expected Research based calibration – fertilizer amount for optimum yields at different soil test levels “Fertilizer the crop” Economical and environmentally sound Most profit from fertilizer input Build and Maintain Sets a soil test level goal Recommends fertilizer to build the soil test level at or above the point of economic maximum yield “Fertilizing the soil” Build rate applies more fertilizer than is needed for crop response and profit in a given year Maintenance rate equal removal rate of crop Source: Martha Mamo, UNL © 2018 University of Nebraska – Lincoln

NRCS Powerpoint Combined Managment and... · •Research at ENREC and Rogers Memorial Farm •“Result do not indicated any advantage of one‐time tillage of no‐till if runoff

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

10/15/2018

1

Nutrient ManagementNathan Mueller & Laura Thompson, Nebraska Extension Educators

Nutrient Management Philosophies

Sufficiency

• Nutrient only applied if cropresponse expected

• Research based calibration –fertilizer amount for optimumyields at different soil test levels

• “Fertilizer the crop”• Economical and environmentallysound

• Most profit from fertilizer input

Build and Maintain

• Sets a soil test level goal

• Recommends fertilizer to build thesoil test level at or above the pointof economic maximum yield

• “Fertilizing the soil”• Build rate applies more fertilizer thanis needed for crop response andprofit in a given year

• Maintenance rate equal removal rateof crop

Source: Martha Mamo, UNL

© 2018 University of Nebraska – Lincoln

10/15/2018

2

Nutrient Management Philosophies

Yield Goal = 220 bpa Build rate = 6 years

Nutrient Management Philosophies

© 2018 University of Nebraska – Lincoln

10/15/2018

3

Soil Sampling for Precision Ag

Nathan Mueller

How would you sample this 40 acre field?

A.

C.

B.

D.

© 2018 University of Nebraska – Lincoln

10/15/2018

4

How would you sample this 40 acre field?

Grid and Management Zone Sampling

Consider Grid Soil Sampling if

• Previous management hasaltered soil nutrient levels –manure, land leveling, etc.

• Small field with differentcropping histories have beenmerged into one

• An accurate base map of soilOM is desired

Consider Zone or Directed Sampling if

• Yield maps, imagery, soil EC map,etc. are available and showconsistency between layers

• Personal experience available tohelp delineate zones

• Limited or no history of manure

© 2018 University of Nebraska – Lincoln

10/15/2018

5

Grid Soil Sampling

Grid soil sampling schemes

a) 2.5 acre grids ‐ center b) 2.5 acre grids ‐ offset

© 2018 University of Nebraska – Lincoln

10/15/2018

6

Zone or Directed Sampling

• Options with Zones• Zone composite

• Lower cost

• Not georeferenced

• Assumes zone uniformity

• Zone point• More expensive

• More data

• Georeference by point

• Option for variable‐rate applicationwithin zone

Resources

• UNL Guidelines for Soil Sampling – G1740http://extensionpublications.unl.edu/assets/pdf/g1740.pdf

• UNL Soil Sampling for Precision Agriculturehttps://cropwatch.unl.edu/documents/Soil%20Sampling%20for%20Precision%20Agriculture%2C%20EC154.pdf

• On‐the‐go Vehicle‐Based Soil Sensorshttps://cropwatch.unl.edu/documents/On‐the‐Go%20Vehicle‐Based%20Soil%20Sensors%20‐%20EC178.pdf

© 2018 University of Nebraska – Lincoln

10/15/2018

7

Summary – Grid and Zone Sampling

• Oversampling would give us information to determine the best option

• Use guidelines to determine if grid or zone sampling is likely the bestoptio

• New technologies on the horizon

Nutrient StratificationNathan Mueller

© 2018 University of Nebraska – Lincoln

10/15/2018

8

Overview – Nutrient Stratification

• Non‐uniform nutrient distribution/concentration with soil depth

• Typically refers to higher nutrient concentration of less mobilenutrients, phosphorus and potassium, near the surface.

• Is there an agronomic concern?

• Could this be an environmental concern?

Phosphorus Stratification ‐ Agronomic

Phosphorus by depth from long‐term tillage study (1981) at Rogers Memorial Farm, NE fall 2004. 

Soil Depth

FallPlow+Disk+Di

skFall Chisel + 

DiskSpring Disk (twice)

Spring Disk (once) No‐till

Bray P‐1 (ppm)

0‐2” 25.5 46.2 62.6 64.9 75.9

2‐4” 26.2 36.6 45.3 29.1 43.3

4‐6” 21.8 13.3 11.6 11.8 11.7

6‐8” 17.9 8.3 7.7 8.3 10.0

Average 22.8 26.1 31.8 28.5 33.0

Yield (bu/ac)

2007 Corn 132 133 135 135 142

2007 Soybeans 48 52 52 50 54

Source: http://agronomypro.com/Nutrient‐Stratification‐No‐till‐Soils.pdfSource:  https://cropwatch.unl.edu/tillage/rmfyields

© 2018 University of Nebraska – Lincoln

10/15/2018

9

Phosphorus stratification ‐ Environmental

• No‐till phosphorus stratification – increased potential for dissolved reactive P runoff

• Runoff from no‐till soils can have dissolved organic and inorganic phosphorus that came from soil near the surface (0‐1”)

• One‐Time Tillage of No‐Till: Effects on Nutrients, Mycorrhizae, and Phosphorus Uptake (Garcia et al., 2007)

• Research at ENREC and Rogers Memorial Farm

• “Result do not indicated any advantage of one‐time tillage of no‐till if runoff P loss is not a concern”

Reducing P loss in runoff

Source: Ag Phosphorus Mngtand Water Quality Protection in the Midwest – RP187 (2013)

© 2018 University of Nebraska – Lincoln

10/15/2018

10

Soil pH Stratification ‐ Agronomic

Source: Dorivar Ruiz Diaz, Kansas State University https://webapp.agron.ksu.edu/agr_social/m_eu_article.throck?article_id=1828

Resources

• Nutrient Stratification in No‐till Soils ‐ http://agronomypro.com/Nutrient‐Stratification‐No‐till‐Soils.pdf

• Yields from Long‐term Tillage Comparison Study – Roger Memorial farm 10 miles east of Lincoln https://cropwatch.unl.edu/tillage/rmfyields

• One‐Time Tillage of No‐Till: Effects on Nutrients, Mycorrhizae, and Phosphorus Uptake (Garcia et al., 2007) http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1020&context=westcentresext

• Agricultural Phosphorus Management and Water Quality Protection in the Midwest http://extensionpublications.unl.edu/assets/pdf/rp187.pdf

© 2018 University of Nebraska – Lincoln

10/15/2018

11

Summary – Nutrient Stratification

• Usually not a agronomic issue

• Can be a environmental issue with phosphorus• Numerous ways to manage dissolved and total P

Subsoil SamplingNathan Mueller

© 2018 University of Nebraska – Lincoln

10/15/2018

12

Overview ‐ Subsoil Sampling

• Samplingprotocol

• Nitrate, sulfur,and chloride

Subsoil Sampling – protocol for Nitrate‐N

• Sampling depth for nitrate‐nitrogen• Continuous to 24”• Continuous to 36”• Split (need multiple buckets)

• 0‐8, 8‐24, 24‐36• 0‐8, 8‐36”

• Sampling area• 40 acres or less and by soil texture/series

• Number of cores• 6 to 8 cores, mix well, subsample in bag

• Sampling time• Fall – more loss potential• Spring – preferred

0‐8”

8‐24”

24‐36”

42” Dakota Probe from JMC & WD‐40

© 2018 University of Nebraska – Lincoln

10/15/2018

13

Subsoil Sampling – other nutrients

• Sulfate‐Sulfur• Where: Sandy soils• Crops: Corn, sorghum, alfalfa, wheat• Sample depth: 0‐24” sample • Recs: UNL and K‐State• Exceptions: Wheat in southeast/south central Nebraska

• Chloride• Sample depth: 0‐24”• Crop: Wheat only• Where: All soils in eastern Nebraska• Recs: K‐State and SDSU• Can be applied as topdress in March with potash

Kansas State University Recommendations for Chloride in Wheat, MF2570 publication

2018 sulfur deficiency in wheat. Photo by Dorivar Ruiz Diaz, K‐State Research and Extension

Resources

• UNL Guidelines for Soil Sampling – G1740 http://extensionpublications.unl.edu/assets/pdf/g1740.pdf

• Nutrient Management for Agronomics Crops in Nebraska http://extensionpublications.unl.edu/assets/pdf/ec155.pdf

• UNL Fertilizer Suggestions for Corn http://extensionpublications.unl.edu/assets/pdf/ec117.pdf

• Chloride in Kansas: Plant, Soil, and Fertilizer Recommendations https://www.bookstore.ksre.ksu.edu/pubs/MF2570.pdf

• South Dakota State University Fertilizer Recommendations Guide, Chloride on page 21 https://igrow.org/up/resources/EC750.pdf

• K‐State recommendations for topdressing wheat with sulfur https://webapp.agron.ksu.edu/agr_social/eu_article.throck?article_id=1732

© 2018 University of Nebraska – Lincoln

10/15/2018

14

Summary – Subsoil sampling

• Subsoil sampling for nitrate – 6 to 8 cores, from 40 acres or less and by soil texture, at 24” minimum depth

• Other nutrients to consider when analyzing when subsoil sampling• Sulfur – sandy soils for corn, sorghum, alfalfa, and wheat and for wheat in southeast and south central Nebraska

• Chloride – wheat in eastern Nebraska

Precision Ag Soil MappingNathan Mueller

© 2018 University of Nebraska – Lincoln

10/15/2018

15

Overview – Precision Ag Soil Mapping

• Soil mapping units and inclusions

• Soil EC for precision mapping

• Soil EC and yield relationship

• Using soil EC maps

Soil associations

© 2018 University of Nebraska – Lincoln

10/15/2018

16

Inclusions or minor components

Soil mapping units and yield map

© 2018 University of Nebraska – Lincoln

10/15/2018

17

Soil mapping units and yield map

Assessing past variability

2012 Corn Yield Map

Drought

2013 Soybean Aerial Imagery 

Flash Drought

© 2018 University of Nebraska – Lincoln

10/15/2018

18

Soil EC Mapping

• Electrical conductivity is the ability to transmit an electrical current (mS/m)

• Sand (low)• Silt• Clay• Saline soils (high)

• Methods for measuring• Veris platform using coulters (contact)• Electromagnetic sleds (non‐contact)

• Delineate ¼ acre inclusions vs. 2.5 – 4 acres inclusions

Comparing data layers

2012 Corn Yield Map Deep Soil EC Data Points

© 2018 University of Nebraska – Lincoln

10/15/2018

19

Comparing data layers

1979 Soil Map IDW Deep EC Map

Improving resolution of soil maps

• Helps guide soil sampling for variable‐rate lime and other fertilizerapplications

• Developing variable‐rate seeding prescriptions

• Multi‐hybrid planting prescriptions

• Multi‐seed treatment prescriptions

• Variable rate soil‐applied herbicide applications (in the future)

© 2018 University of Nebraska – Lincoln

10/15/2018

20

Resources

• On‐the‐go Vehicle‐Based Soil Sensors https://cropwatch.unl.edu/documents/On‐the‐Go%20Vehicle‐Based%20Soil%20Sensors%20‐%20EC178.pdf

• Veris technologies https://www.veristech.com/

Summary – Precision Ag Soil Mapping

• Soil mapping units and inclusions

• Soil EC for precision mapping

• Soil EC and yield relationship

• Using soil EC maps

© 2018 University of Nebraska – Lincoln

10/15/2018

21

Field Variability and Management

Harvest Stand Count

Foliar Nitrogen (%)

Moisture (%)

Yield (bu/ac)†

Marginal Net Return‡ ($/ac)

210 lb N/ac Preplant 32,250 A* 3.04 B 15.5 B 216 B 610.98 B70 lb N/ac Preplant + 110 lb N/ac Sidedress

32,833 A 3.27 AB 15.9 A 239 A 691.72 A

70 lb N/ac Preplant + 140 lb N/ac Sidedress

31,667 A 3.44 A 16.2 A 243 A 696.25 A

70 lb N/ac Preplant + 170 lb N/ac Sidedress

31,833 A 3.29 AB 16.2 A 251 A 710.89 A

P-Value 0.113 0.054 0.001 0.0007 0.0009

Results:*Values with the same letter are not significantly different at a 90% confidence level.†Bushels per acre corrected to 15.5% moisture.‡Marginal net return based on $3.15/bu corn and $0.33/lb N.

Field Variability and Management

True color (red-green-blue) imagery (left) and NDVI (right) from June 1, 2017.

© 2018 University of Nebraska – Lincoln

10/15/2018

22

Field Variability and Management

True color (red-green-blue) imagery (left) and NDVI (right) from August 31, 2017.

Field Variability and Management

NDVI 7/1/17 NDVI 8/31/17210 lb N/ac Preplant 0.891 A 0.899 B70 lb N/ac Preplant + 110 lbN/ac Sidedress

0.889 A 0.905 AB

70 lb N/ac Preplant + 140 lb N/ac Sidedress

0.889 A 0.906 A

70 lb N/ac Preplant + 170 lb N/ac Sidedress

0.889 A 0.907 A

P-Value 0.215 0.050

© 2018 University of Nebraska – Lincoln

10/15/2018

23

Field Variability and Management

Field Variability and Management

0

50

100

150

200

250

300

210 lb/ac Preplant 70 lb/ac Preplant + 110 lb/acSidedress

70 lb/ac Preplant + 140 lb/acSidedress

70 lb/ac Preplant + 170 lb/acSidedress

Yie

ld (

bu

/ac)

Moody

Fillmore

20 bu/ac difference

© 2018 University of Nebraska – Lincoln

10/15/2018

24

Field Variability and Management

• Companies are taking advantage of “data mining” techniques to offer advice to farmers

Nitrogen ManagementLaura Thompson

© 2018 University of Nebraska – Lincoln

10/15/2018

25

• Nitrogen is most limiting factor in cereal crop production• Nitrogen use efficiency (NUE) is estimated to be 33% for

cereal crop production

00.1‐1.81.8‐5.05.0‐9.09.0‐1818‐3636‐6767‐196196‐330

Lb/ac of N fertilizer applied

Corn Nitrogen Use

Corn Nitrogen Uptake

© 2018 University of Nebraska – Lincoln

10/15/2018

26

The Nitrogen Management Challenge

• Crop yield potential varies year to year (temporal variation)• Crop yield potential varies within a field (spatial variation)• N need varies both temporally and spatially as well• N gain mechanisms – mineralization from organic matter (spatial 

OM distribution within a field; temporal weather dependent variability)

• N loss mechanisms – leaching, volatilization, denitrification (rainfall – temporal, temperature ‐ temporal, soil texture ‐ spatial)

Spatial and Temporal Variability

The Nitrogen Management ChallengeSpatial and Temporal Variability

Predicting the optimum N rate in the fall or even spring before growing season starts is difficult!

© 2018 University of Nebraska – Lincoln

10/15/2018

27

Different ways to classify N methodsTiming of application

Pre‐plant In‐season

Rates

Flat rate Variable rate

Type of recommendation

Soil test based Model based Sensor basedEmperical based

Different N management programs

• Pre‐sidedress Nitrate Test• Maize‐N• Encirca• Climate (Nitrogen Advisor)• Crop Canopy Sensors• Imagery (drone/airplane/satellite)• Adapt‐N• UNL N Rec• Pre‐plant Nitrate Test• MRNT• Other university approaches

© 2018 University of Nebraska – Lincoln

10/15/2018

28

Different ways to classify N methods

Timing of application

Pre‐plant In‐season

Rates

Flat rate Variable rate

Type of recommendation

Soil test based Model based Sensor basedEmpirical based• Crop canopy sensors• Imagery 

(drone/airplane/satellite)

• UNL N Rec• Pre‐plant Nitrate Test• Pre‐sidedress Nitrate Test• Many university approaches

• Maize‐N• Encirca• Climate (Nitrogen Advisor)• Adapt‐N

• MRNT• Many university approaches

• UNL N Rec• Pre‐plant Nitrate Test• Pre‐sidedress Nitrate Test• Maize‐N• MRNT• Most university approaches• Climate (Nitrogen Advisor)• Adapt‐N

• Crop canopy sensors• Imagery 

(drone/airplane/satellite)• Encirca• Climate (Nitrogen Advisor)• Adapt‐N

• UNL N Rec• Pre‐plant Nitrate Test• MRNT• Most university approaches

• Pre‐sidedress Nitrate Test• Maize‐N• Encirca• Climate (Nitrogen Advisor)• Crop Canopy Sensors• Imagery 

(drone/airplane/satellite)• Adapt‐N

UNL Nitrogen Recommendation

UNL Calculator

Pre‐plant | Flat rate | Soil Test Based

• Based on data from 81 site‐years

© 2018 University of Nebraska – Lincoln

10/15/2018

29

UNL Nitrogen Recommendation

UNL Calculator

Pre‐plant | Flat rate | Soil Test Based

MRNT – Maximum Return to Nitrogen

MRNT – Maximum Return to Nitrogen

Pre‐plant | Flat rate | Empirical

• Commonly used and promoted in Iowa (also Purdue, Minnesota, Michigan, Ohio, Wisconsin, and Illinois)

© 2018 University of Nebraska – Lincoln

10/15/2018

30

MRNT – Maximum Return to Nitrogen

MRNT – Maximum Return to Nitrogen

Pre‐plant | Flat rate | Empirical

• Conducted numerous trials in each state looking at yield response to nitrogen. The data from these studies “powers” the tool.

• Recent research on a regional scale found no relationship between the MRNT and the economic optimum nitrogen rate as measured in the studies.

CEC x 10

Theory• “Take the CEC of your soil, multiply it by 10, that is the amount of N you can/should apply.”

• Popular idea. Simple to remember and implement and intuitive.• CEC represents negatively charged soil surface, because NH4 is +, this tells us how much it can hold.

• Really 2 aspects:1. Is CEC x 10 the max rate of anhydrous ammonia that a soil can hold at application?2. Is CEC x 10 the rate that should be applied?

© 2018 University of Nebraska – Lincoln

10/15/2018

31

CEC x 10

1. Is CEC x 10 the max rate of anhydrous ammonia that a soil can hold at application?

• Not necessarily.

• Many factors impact including temperature and pH.

• Some studies have shown good correlation between CEC and NH3 retained by soil.Others have shown poor correlation. 

• The application of NH3 results in an increase in the effective CEC of the soil at the site ofadsorption, caused by the increase in pH from the alkaline NH3, which results in an increase in adsorption capacity for the ammonium

• One study found on sandy soils, the amount of NH3 retained was CEC x 4.

• Effective CEC of a soil changes with its pH. Addition of NH3 raises soil pH and loss of NH3lowers it. Relationship between NH3, sorption and CEC is not quantitative.

CEC x 10

2. Is CEC x 10 the rate that should beapplied?

• Simply – No.

• Often soils with low CEC and coarsetexture (sandy) have higher N fertilizationrequirements and soils with high CEC(clay) have lower N fertilizationrequirements.

https://go.pioneer.com/ask‐andy‐6?elqTrackId=2da65d7ff0eb4b8fb5c76c79aa9f06d0&elq=00000000000000000000000000000000&elqaid=2178&elqat=1&elqCampaignId=1966

© 2018 University of Nebraska – Lincoln

10/15/2018

32

In‐Season Nitrogen Management

In‐Season Nitrogen Management

Laura ThompsonLaura Thompson

Corn Nitrogen Uptake

© 2018 University of Nebraska – Lincoln

10/15/2018

33

LSNT: Late‐spring Nitrate Test

• Iowa State Philosophy• Uses soil sampling when corn is 6‐12” tall.• Sample to a 1’ depth• Critical value is 20 to 25 ppm nitrate‐N (apply N if below).

• Determine N rate by: (25 ppm – your measured ppm) x 8

• Example: you measure 18 ppm. (25‐18)*8=56 lb N/ac to apply

• Limitations/Issues• Sampling later than 6‐12” tall time• What if band applied N?• What if manure applied N?

Proper testing

Optimal N Rate

Double Optimal N Rate

Critical Level

Critical Level

PSNT: Pre‐sidedress Nitrate Test

• Primarily Wisconsin methodology

• Not recommended on sandy soils

• Sample when plants are 6 to 12” tall

• Critical level is 21 ppm

• Incorporates yield potential• For high producing soils, (21‐your measured nitrate)*15

• For low producing soils (21‐your measured nitrate)*8

© 2018 University of Nebraska – Lincoln

10/15/2018

34

Model Based Approach

Commonly Available Models

• Climate Nitrogen Advisor

• Encirca

• Adapt‐N

• Maize‐N

Examples of Data Used in Models

• Soil type

• Yield potential

• Weather (and effect on N availability)

Climate FieldView™ Nitrogen AdvisorClimate Cooporation, acquired by Monsanto 2013; Monsanto acquired by Bayer 2018

© 2018 University of Nebraska – Lincoln

10/15/2018

35

Climate FieldView™ Nitrogen AdvisorClimate Cooporation, acquired by Monsanto 2013; Monsanto acquired by Bayer 2018

Encirca® Pioneer/Corteva (a division of DowDuPont)

© 2018 University of Nebraska – Lincoln

10/15/2018

36

Adapt‐NDeveloped by Cornell University, acquired by Yara for scaling

Maize‐NUNL

© 2018 University of Nebraska – Lincoln

10/15/2018

37

Maize‐NUNL

Benefits: More transparent about how model works, more economicalDownside: More manual work is needed to build and load weather files, not a site‐specific/variable rate tool

SPAD Chlorophyll Meter

• Take measurements non‐destructively and rapidly (as compared to tissue testing)

• Article outlining procedures written in 1993

• Technology has essentially been replaced

© 2018 University of Nebraska – Lincoln

10/15/2018

38

SPAD Chlorophyll Meter

• Readings depend on hybrid, other stresses, temperature  Calibration is needed.

• Calibration is done through reference N strips that have adequate N.

SPAD Chlorophyll Meter

• Procedure• Sample at the 6th leaf stage at 3 locations. • At each location, take a reading of 30 plants from the reference area and 30 plants from the adjacent bulk field.

• Sufficiency Index = (Average Bulk Reading/AverageReference Strip Reading) x 100%

• If sufficiency index is less than 95%, should apply 20 to 40 lb N.

• Continue sampling until 20 days after silking.• Works best in a system where fertigation is possible.

© 2018 University of Nebraska – Lincoln

10/15/2018

39

Sensor Based

Sensor Based

• Light from sensor is modulated (pulsed); only light from system is detected by sensors.

• Light reflectance is measured in 2 or 3 wavebands, depending on sensor, in visible and near‐infrared spectra.

• Reflectance from multiple wavebands is combined in a formula, called a vegetation index, to relate to crop stress.

© 2018 University of Nebraska – Lincoln

10/15/2018

40

Sensor Based

Sensor Based

Sufficiency Index = 0.6/0.8 = 0.75Sufficiency Index = 0.6/0.8 = 0.75

Reference Vegetative Index = 0.8Reference Vegetative Index = 0.8

Target VI Index = 0.6Target VI Index = 0.6

Sufficiency Index = NDRE of strips to be applied to/ NDRE of reference block

© 2018 University of Nebraska – Lincoln

10/15/2018

41

Sensor Based

Unusually high levels of N mineralization from soil organic matter early in the growing season resulted in the need for very little fertilizer N to optimize yield.

Sensor Based

46 sites over 3 years

© 2018 University of Nebraska – Lincoln

10/15/2018

42

Watch it in action…

• https://www.youtube.com/watch?v=dcIPNEbYTIM

Sensor Based

3 year averageGrower N 

ManagementProject SENSE N Management

Difference

Total N Rate*(lb/ac)

189.8 161.1 Project SENSE saved 28.7 lb N/ac

Yield*(bu/ac)†

219.9 218.5 Project SENSE lost 1.4 bu/ac yield

Nitrogen Use Efficiency* (lb N/bu grain)

0.92 0.76Project SENSE increased nitrogen 

efficiency by 0.16 lb N/bu

Partial Profitability* ($/ac)[$3.05/bu and $0.41/lb N]

$679.59 $692.82Project SENSE increased profit by 

$13.23/ac

© 2018 University of Nebraska – Lincoln

10/15/2018

43

Various Sensor Brands

Handheld and triggered versus machine mounted

GreenSeeker®

Trimble Ag

http://www.trimble.com/~/media/Images/Agriculture/Products/Flow%20and%20Application%20Control/GreenSeeker%20crop%20sensing%20system/GreenSeeker_details.ashx

http://www.agleader.com/images/uploads/products/OptRx‐Hero.png

http://ag.topconpositioning.com/sites/default/files/news_imports/RTEmagicC_CropSpec_Topcon_72web.jpg.jpg

OptRx®

Ag Leader

Technology

CropSpec® Topcon Positioning 

Systems

Aerial Sensor Approaches

Passive sensors

• Rely on sunlight (don’t emit their own light)• Additional calibration is needed to account for daily light conditions

• More frequent monitoring than ground based systems

• Can choose to apply or not• More post‐processing is needed

© 2018 University of Nebraska – Lincoln

10/15/2018

44

Aerial Sensor Approaches

Passive sensors

Aerial Sensor Approaches

June 24Soil OMPrevious crop creditYield goalN previously applied (base rate)SI calculated from NDRE

© 2018 University of Nebraska – Lincoln

10/15/2018

45

Sensor Based Fertigation

Reactive Approach with Fixed Application Rate

• If sensors detect 95% or less sufficiency in N, then fertigate

• 30 lbs N/acre

• Wait two weeks and reassess

Sensor Based Fertigation: SCAL 2016 and 2017 Yield and N RateCredit: Brian Krienke

0

50

100

150

200

250

300

0.0

50.0

100.0

150.0

200.0

250.0

300.0

N Rate (lbs N/acre)

Grain Yield (bu/acre)

Yield

N Rate

B A A A A A A A

2016 SCAL

0

50

100

150

200

250

300

0.0

50.0

100.0

150.0

200.0

250.0

300.0N Rate (lbs N/acre)

Grain Yield (bu/acre)

Yield

N Rate

C A AB AB AB B AB B

2017 SCAL

Yield LSD: 18.5 bu/acreYield LSD: 37.8 bu/acre

© 2018 University of Nebraska – Lincoln

10/15/2018

46

Sensor Based Fertigation: SCAL 2016 and 2017 Profit and NUECredit: Brian Krienke

High N Reference

UNL

H‐S

Reactive‐Fixed‐Fertigation

Reactive‐Model‐Fertigation

Reactive‐Slow Release‐Fertigation

Model‐Fertigation

‐80

‐60

‐40

‐20

0

20

40

60

80

‐80 ‐60 ‐40 ‐20 0 20 40 60 80

Partial Profit ($/acre)  D

ifference (Treatm

ent ‐UNL)

Nitrogen Use Efficiency (lb grain/lb N) Difference (Treatment ‐ UNL)

SCAL 2016 through 2017 Average YearCorn Price ($/bu)

UAN Price

($/lb N)

ESN Price

($/lb N)

2016 3.50 0.44 0.59

2017 3.46 0.45 0.59

0

50

100

150

200

250

300

0

50

100

150

200

250

300

N Rate (lbs N/acre)

Grain Yield (bu/acre)

Yield

N Rate

B A AB A A A A AB

Yield LSD: 16.6 bu/acre 

Treatment

Yield compared to UNL 

(bu/acre)

N Rate compared to 

UNL (lbs N/acre)

Check ‐8.0 ‐107

High N Reference 14.3 168

UNL 0.0 0

H‐S 10.7 4

Reactive‐Fixed Fertigation

12.5 ‐37

Reactive‐Model Fertigation

13.1 4

Reactive Slow Release Fertigation

10.4 ‐21

Model Fertigation 5.4 1

Sensor Based Fertigation: WCREC 2017 Yield and N RateCredit: Brian Krienke

© 2018 University of Nebraska – Lincoln

10/15/2018

47

High N Reference

UNL H‐S

Reactive‐Fixed‐Fertigation

Reactive‐Model‐Fertigation

Reactive‐Slow Release‐Fertigation

Model‐Fertigation

‐80

‐60

‐40

‐20

0

20

40

60

80

‐80 ‐60 ‐40 ‐20 0 20 40 60 80

Partial Profit ($/acre)  D

ifference (Treatm

ent ‐UNL)

Nitrogen Use Efficiency (lb grain/lb N‐1) Difference (Treatment ‐ UNL)

WCREC 2017

YearCorn Price ($/bu)

UAN Price

($/lb N)

ESN Price

($/lb N)

2017 3.46 0.45 0.59

Partial Profit for Check: $20.59/acre

Sensor Based Fertigation: WCREC 2017 Profit and NUECredit: Brian Krienke

Comparison of Approaches Credit: Curtis Ransom

© 2018 University of Nebraska – Lincoln

10/15/2018

48

Comparison of Approaches Credit: Curtis Ransom

Numerous Tools Credit: Curtis Ransom

© 2018 University of Nebraska – Lincoln

10/15/2018

49

The Future: Tool Fusion?

Curtis Ransom, et al.

Resources• UNL Fertilizer Suggestions for Corn: http://extensionpublications.unl.edu/assets/pdf/ec117.pdf

• UNL N Calculator: https://cropwatch.unl.edu/documents/unl_n_calculator_2008.xls

• MRNT Tool: http://cnrc.agron.iastate.edu/

• CEC x 10: https://books.google.com/books?id=an‐LKuRRmwoC&pg=PA106&lpg=PA106&dq=nitrogen+and+cec&source=bl&ots=oxM5_U1Mr5&sig=T8HW9Xp3d6WVsh_C5eO‐7Yq75vQ&hl=en&ei=SglMTfqMEcGAlAeQmOEU&sa=X&oi=book_result&ct=result#v=onepage&q=nitrogen%20and%20cec&f=false

https://crops.extension.iastate.edu/cropnews/2011/02/fact‐or‐fiction‐ammonia‐application‐should‐not‐exceed‐10‐lb‐n‐unit‐soil‐cec

• Iowa State LSNT: https://crops.extension.iastate.edu/cropnews/2016/06/late‐vegetative‐corn‐stage‐soil‐sampling‐nitrate‐n

• Wisconsin PSNT: http://corn.agronomy.wisc.edu/Management/pdfs/A3630.pdf

• SPAD Chlorophyll Meter: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=2349&context=extensionhist

• Project SENSE information: https://cropwatch.unl.edu/projectsense

© 2018 University of Nebraska – Lincoln

10/15/2018

50

Nitrogen Cycle

ESN®

(polymer‐coated urea)

Controlled ReleaseFormulation

CO(NH2)2 NH4+ NO3

pH > 7

NH3

AmmoniaVolatilization

N2ON2

UreaseH2O

NitrosomonasNitrobacter

hydrolysis nitrification

Denitrification

anaerobicconditions

Leaching

N‐Serve®

Instinct®

(nitrapyrin)

Guardian®

(DCD)

Nitrification Inhibitors

Agrotain®

(NBPT)

Limus®(NBPT+NPPT)

Urease Inhibitors

N‐Fusion®

CoRoN®

(methylene urea)

Slow ReleaseFormulation

CO(NH2)2 X‐(CH4) Xmicrobial

degradation

Plant Uptake

Sorption toExchange sites

Credit: Richard FergusonDisclaimer: Research funding provided by Dow, Koch, Agrium, BASF, among other sources. I serve on a Nitrogen Advisory Board for BASF

Mechanisms of Enhanced Nitrogen Efficiency

© 2018 University of Nebraska – Lincoln

10/15/2018

51

Nutrient Star

• http://nutrientstar.org/

Nutrient Diagnostics ‐Lab Analysis‐

Nathan Mueller

© 2018 University of Nebraska – Lincoln

10/15/2018

52

Overview

• Nutrient deficiencies in the region

• Plant tissue nutrient analysis• Corn• Soybean• Wheat

• End‐of‐season cornstalk nitrate test

• Iowa State University guidelines and resources

Nutrient Deficiencies in the Region

• Micronutrient Management in Nebraska G1830MR

• Corn – probability• High: N and P• Moderate: S and Zn• Low: K, Fe and Cl• Rare: Ni, Mo, Ca, Mg, B, Cu, and Mn

• Soybean – probability• Moderate: Fe and P• Low: K, N, S, and Zn• Rare: Ni, Mo, Ca, Mg, B, Cl, Cu, and Mn

• Wheat – probability• High: N and P• Moderate: S and Cl• Low: K, Zn and Fe• Rare: Ni, Mo, Ca, Mg, B, Cu, and Mn

© 2018 University of Nebraska – Lincoln

10/15/2018

53

Plant Tissue Nutrient Analysis

Monitoring

• “Annual health screening”

• Growth stage and plant part critical

• Represent soil sampling zones

• Compare results to sufficiency ranges

• Good weather and plant health

• Avoid contaminations

Diagnostic

• “Your sick, but with what?”

• Take samples in sick, slightly sick, and healthy areas

• Soil and plant samples

• Compare results between samples

• Biomass, concentration, and uptake issue

Monitoring: Growth stage & part by crop 

• Corn• Stage: R1 (silking/pollination)• Part: Ear leaf, 15 to 20 leaves

• Soybean• Stage: R1 (beginning bloom) to R2 (full bloom)• Part: Uppermost fully expanded trifoliolate w/o petiole, 30 to 50 leaves

• Wheat• Stage: Feekes 10 (flag leaf) to Feekes 10.5.1 (beginning of flowering)

• Part: Flag leaf, 50 leaves

© 2018 University of Nebraska – Lincoln

10/15/2018

54

Interpreting Results – Plant Part

Corn Stalk Nitrate Test – Iowa State University

• Factors that will distort results• Drought leads to higher concentrations

• Ear development issues

• Damage from insects/diseases/hail/etc.

• Not sampling areas differing in soil type and management history

• Sampling to late, should be 1 to 3 weeks after black layer

https://store.extension.iastate.edu/product/5089

© 2018 University of Nebraska – Lincoln

10/15/2018

55

Resources

• Micronutrient Management in Nebraska http://extensionpublications.unl.edu/assets/pdf/g1830.pdf

• Plant Nutrient Analysis: Do Your Soybeans have the Right Stuff? http://igrow.org/agronomy/profit‐tips/plant‐nutrient‐analysis‐do‐your‐soybeans‐have‐the‐right‐stuff/

• History of Plant Analysis: Soybean Nutrient Sufficiency Ranges http://ncera‐13.missouri.edu/presentations/mueller.pdf

• Crop Tech Cafe Agronomy Resources ‐ http://croptechcafe.org/agronomy‐resources/• Soybean and wheat plant tissue nutrient sufficiency ranges

• Using plant analysis as a nutrient management tool http://www.sunflower.k‐state.edu/agronomy/soil_fertility/tissue_sampling.html

• Ward Guide pages 131‐149 https://www.wardlab.com/download/WardGuide.pdf

• End‐of‐Season Corn Stalk Nitrate Test https://store.extension.iastate.edu/product/5089

Summary – Nutrient Diagnostics 

• Nutrient deficiencies in the region

• Plant tissue nutrient analysis –diagnostic vs. monitoring

• End‐of‐season cornstalk nitrate test

© 2018 University of Nebraska – Lincoln

10/15/2018

56

Cover Crops, Water and Nitrogen Management

Nathan Mueller

Overview – Cover Crops, Water, and N Mngt

• Summary of Nebraska cover crop surveys

• Summary of corn and soybean yields from cover crop research through the Nebraska On‐Farm Research Network

• Recent small‐plot cover crop research in Nebraska and Iowa related to water and nitrogen

• Group discussion of corn nitrogen management following cover crops

© 2018 University of Nebraska – Lincoln

10/15/2018

57

Cover Crops, Water, and Nitrogen Mngt

• Nitrate is the main source of pollution in shallow groundwater, influencing factors: 

• Volume of water moving through the soil profile• Nitrate concentration in soil water• Cropping system

• Cover crops can help• Reduce soil NO3‐N concentrations & utilize soil water • Reduce soil water evaporation during the growing season (no‐till, residue left on surface)

• Potential drawbacks• During drier than normal winters/spring, could utilize soil moisture for the cash crop

• High C:N ratio, decomposition, and mineralization synchronization with cash crop

• Added cost/time with using cover crops (seed, planting, chemical, etc.).

2015 Cover Crop Survey of Nebraska Farmers

• Drewnoski et al. 2015, conducted survey at Private Pesticide Application Trainings statewide

• 34% reported using cover crops in 2014

• Operation size differed

• Very little difference in rain‐fed/irrigated acres or income sources on or off‐farm between cover crop users and non‐users

© 2018 University of Nebraska – Lincoln

10/15/2018

58

Barriers or Perceived Barriers w/Cover Crop Use

Cropping Systems and Crop Use

Cover crops in cropping systems

• 51% of all corn silage acres were planted to cover crops

• 32% of all seed corn acres planted to cover crops

• 4% of all soybeans planted to cover crops

• 3% of all corn (grain) acres planted to cover crops

Cropping systems with cover crops (% of all planted acres planted to cover crops)

© 2018 University of Nebraska – Lincoln

10/15/2018

59

Reason for Planting Cover Crops

Factors rated as a major reason for planting cover by farmer who planted cover crops in 2014

2017 Survey of Cover Crops

• 2017 Cover Conference at ENREC conducted by Liberty Butts and Rodrigo Werle, Nebraska Extension

• 82 growers and agronomist completed the survey

© 2018 University of Nebraska – Lincoln

10/15/2018

60

Nebraska On‐Farm Research: Soybean‐corn rotation w/small grain cc

Year County Irrigated Soybean Yield, No Cover Crop

SoybeanYield, w/Rye Cover Crop

Significance

2010 Saunders No 71 67 NS

2010 Saunders No 56B 59A 0.04

2010 Saunders No 68 68 NS

2011 Lancaster No 62 59 NS

2013 Lancaster No 56 54 NS

2014 Saunders Yes, 6” 64 64 NS

2016 Lancaster No 51 51 NS

2017 Saunders Yes, 0” 63 61 NS

2017 Kearney Yes, 7” 80 81 NS

Nebraska On‐Farm Research Network: http://resultsfinder.unl.edu/

Nebraska On‐Farm Research:Corn‐soybean rotation w/small grain cc

Year County IrrigatedTermination

Timing

Corn Yield,No Cover

Crop

Corn Yield, w/Rye Cover Crop Significance

2004 Dodge No NA 154A 147B 0.013

2008 Dodge No 2 wks 141A 128B 0.012

2010 Saunders No NA 207A 200B 0.0075

2010 Saunders No NA 197 195 NS

2012 Saunders Yes 6 wks 261 263 NS

2012 Saunders No 6 wks 108B 112A 0.0633

2014 Seward Yes 3 wks 248 247 NS

2015 Colfax Yes 3 wks 235 238 NS

2016 Saunders Yes 1.5 wks 229 229 NS

Nebraska On‐Farm Research Network: http://resultsfinder.unl.edu/

© 2018 University of Nebraska – Lincoln

10/15/2018

61

Cover Crops in Nebraska – Expectations and Realization

• October 2018 UNL Agronomy and Horticulture Seminar – Katja Koehler‐Cole https://agronomy.unl.edu/cover‐crops‐nebraska‐%E2%80%93‐expectations‐and‐realizations

• Locations• Clay Center, Mead, and Concord• Brule cover crops had frequent establishment problems and little biomass production• Fall 2014 – Fall 2018

• No‐till corn‐soybean rotation and continuous corn with cover crops – 4 continuous years• No change in main crop management

• Cover Crops• 6 treatments: Cereal rye, hairy vetch/winter pea, radish, rye+3 species, rye+6 species, no cover crop

• Late season (broadcast) and after harvest (drilled) timings• Terminated 2 weeks prior to planting

Cover Crops in Nebraska – Expectations and Realization

• Nitrogen retention• Significant reduction in soil nitrate‐nitrogen in the top 8 inches across cover crops treatments and crop rotation

• Nitrogen content and supply• Higher N uptake by cover crop following soybeans than after corn• 10‐15:1 C:N ratio across cover crop treatments

• Soil health benefits• Improved aggregate stability• Small but significant increase in organic matter• Higher saprophytic fungi• Higher AMF

• Soil Water – Published in Agronomy Journal 110:1718‐1730• Winter cover crops did not have a effect on soil water content that would impact corn and soybean production in south central and eastern Nebraska

© 2018 University of Nebraska – Lincoln

10/15/2018

62

Cover crops, soil texture, and precipitation

Moody silty clay loam 

– East Central, NE• Water holding capacity

• Soybeans: 1.9” per foot for top 4 ft = 6.9”

• Corn: 1.8” per foot for top 6 ft = 10.6”

• Average spring rainfall (Oct‐April)

• 12.5 inches

• Wheat/rye water use (prior to jointing)

• 3‐4 inches

• Water Balance

• Soybeans (+1.6”)

• Corn (‐2.1”)

Cass fine sandy loam 

– East Central, NE

• Water holding capacity

• Soybeans: 1.4” per foot for top 4 ft = 6.4”

• Corn: 1.4” per foot for top 6 ft = 8.2”

• Average spring rainfall (Oct‐April)

• 12.5 inches

• Wheat/rye water use (prior to jointing)

• 3‐4 inches

• Water Balance

• Soybeans (+2.1”)

• Corn (+0.3”)

Cover Crops in Nebraska – Expectations and Realization

• Continuous corn yields• 4 of 9 site‐years at least one of the cover crop treatments/timings was lower than the control (no cover crop)

• Lower corn yield with continuous vs. rotated

• Corn yields• 4 of 9 site‐years at least one of the cover crop treatments/timings was lower than the control (no cover crop)

• Soybean yields• 4 of 9 site‐years at least one of the cover crop treatments/timings was lower than the control (no cover crop)

• 1 site‐year was due to poor control of hairy vetch with herbicide

© 2018 University of Nebraska – Lincoln

10/15/2018

63

Cover Crops, Water, and Nitrogen Mngt

5‐year study in NW Iowa w/rye after corn & soybeans, N rate 125 lbs/ace (Qi, 2011)

• Concentration in soil profile nitrate‐nitrogen reduced  10 ppm with rye following corn

• No difference in corn or soybean yields due to cover crops

4‐year study in NC Iowa w/rye after corn and soybeans, N rate = 214 lbs/ac (Kasper, 2007)

• Nitrate‐nitrogen concentration in drained tile water was 59% less, no difference in volume

• Nitrate loss (lbs N/ac) was 61% less

• No difference in soybean yield, yield loss in 1 of 2 years on corn (19 bu/ac)

Cover Crop Options and Mixes for Upper Midwest Corn‐Soybean Systems

• Applegate et al. 2017. Agronomy Journal 109:968‐984• 5 site‐years in Central and Western Iowa, 2013‐2015• Corn‐soybean rotations

• 16 cover crop treatments (single species and mixes)

• Measurements • Fall and spring cover crop aboveground biomass, C, and N accumulation• Spring soil temperature• Soil nutrients• Weed community and density• Corn plant population• Volumetric water content• SPAD corn leaf chlorophyll• Corn yield

© 2018 University of Nebraska – Lincoln

10/15/2018

64

Cover Crop Options and Mixes for Upper Midwest Corn‐Soybean Systems

All or mostly winterkilled

Cover Crop Options and Mixes for Upper Midwest Corn‐Soybean Systems

All or mostly winterkilled

© 2018 University of Nebraska – Lincoln

10/15/2018

65

Cover Crop Options and Mixes for Upper Midwest Corn‐Soybean Systems

• Conclusions• Cover crops influenced:

• Spring soil nitrate concentration• Corn chlorophyll meter reading at V6 and R1

• Cover crop did not influence:• Surface soil temperatures• Soil P and K concentration• Weed density and community• Corn yield• Limited influence on volumetric water content

• “Rye‐associated cover crop had the highest N accumulation and C/N ratios, leading to slower N release, and the lowest soil nitrate concentrations in soil.”

• Nitrogen likely retained in slowly decomposing rye residue on the soil surface.  • However, C:N ratio all less than 14:1

Group DiscussionCover crops, water, and nitrogen management

© 2018 University of Nebraska – Lincoln

10/15/2018

66

Resources

• University of Nebraska‐Lincoln CropWatch webpage on cover crops https://cropwatch.unl.edu/cover‐crops

• 2017 Survey of Cover Crop Production in Nebraska Soybeans, Field Corn, and Seed Corn https://cropwatch.unl.edu/2017‐CW‐News/2017‐images/Research/2017‐cover‐crop‐study‐report.pdf

• 2015 Cover Crop Survey of Nebraska Farmer https://cropwatch.unl.edu/report‐cover‐crop‐survey‐nebraska‐farmers

• 2018 Nebraska Cover Crop Conference Recordings https://mediahub.unl.edu/channels/21972

• Seminar: Cover Crops in Nebraska – Expectations and Realization https://agronomy.unl.edu/cover‐crops‐nebraska‐%E2%80%93‐expectations‐and‐realizations

Review – Cover Crops, Water, and N Mngt

• Summary of Nebraska cover crop surveys

• Summary of corn and soybean yields from cover crop research through the Nebraska On‐Farm Research Network

• Recent small‐plot cover crop research in Nebraska and Iowa related to water and nitrogen

• Group discussion of corn nitrogen management following cover crops

© 2018 University of Nebraska – Lincoln

10/15/2018

67

Precision AgricultureLaura Thompson & Nathan Mueller, Nebraska Extension Educators

Use of Site‐Specific Technologies over Time

Erickson & Widmar 2015, CropLife/Purdue Precision Ag Survey

© 2018 University of Nebraska – Lincoln

10/15/2018

68

Use of Site‐Specific Technologies over Time

41%

51%

14%16%

6%7%

0%

10%

20%

30%

40%

50%

60%

2004 2005 2006 2007 2008 2009 2011 2013 2015

% of respondents

Satellite/aerial imagery for internal use

Field mapping (GIS) for legal/billing/insurance

Soil ec mapping

Other vehicle‐mountedSoil sensors for mappingChlorophyll/greenness sensors

UAVs

Erickson & Widmar 2015, CropLife/Purdue Precision Ag Survey

2015 Base: 261

Estimated Market Area Using Precision Services

41%

54%

18%

28%

2%

16%

4% 10%4%

12%

67%71%

0%

10%

20%

30%

40%

50%

60%

70%

80%

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2011 2013 2015 2018

Average % of market area

2015 Base:  261

Custom Application (any type)

Grid or zone soil sampling

Satellite imagery

UAVsChlorophyll SensingSoil EC Mapping

Erickson & Widmar 2015, CropLife/Purdue Precision Ag Survey

© 2018 University of Nebraska – Lincoln

10/15/2018

69

GIS Platforms

AgLeader SMSMapShots AgStudioJohn Deere ApexFarmWorks

GIS Platforms

• Transferring directly from machine to iPad, and then cloud account 

• Keeping track of multiple vehicles in field at same time

• Share your data with trusted advisors• CanPlugs/Puck/Drive

© 2018 University of Nebraska – Lincoln

10/15/2018

70

Yield Map Calibration, Post Processing, and Practical Uses

Nathan Mueller

Overview

• Yield monitor calibration

• Cleaning raw yield data

• Utilizing good quality yield data

© 2018 University of Nebraska – Lincoln

10/15/2018

71

Yield Map Uses

• Yield data used to:• Develop fertilizer recommendations

• Develop management zones

• Assess hybrid/variety performance

• Evaluate producer performance

• Assess profitability

• Do we want to used uncleaned or raw yield data?

Impact of fertilizer recommendations

© 2018 University of Nebraska – Lincoln

10/15/2018

72

Yield Monitor System Calibration

EC2004 BMPs  for Collecting Accurate Yield Data

• Mass flow sensor calibration

• Moisture sensor operation

• Lag time settings

• Header position settings

• Velocity changes

• Header cut width settings

http://extensionpublications.unl.edu/assets/pdf/ec2004.pdf

Yield Monitor System Calibration

• Mass Flow Sensor Calibration• Two kinds in clean grain elevator

• Mass flow sensor or impact plate• Optical sensor

• Affected by• Crop type – separate calibration and stored in cab display• Moisture content• Test weight (critical for optical sensor)

• Steps• Use manufacturer specifications (newer systems reducing calibration loads)• Typically 2 to 6 small loads (3,000 to 5,000 lbs) and measure on scale weight• Methods – vary flow through clean grain elevator

• Constant speed and vary cut width

• Vary speed with constant cut width

© 2018 University of Nebraska – Lincoln

10/15/2018

73

Post‐Processing Yield Data

http://extensionpublications.unl.edu/assets/pdf/ec2005.pdf

Cleaning Yield Data: USDA Yield Editor

• Types of Errors• Header cut‐width/overlap

• Flow delay

• Drastic velocity changes

• Standard deviation filters

• Others• Moisture

© 2018 University of Nebraska – Lincoln

10/15/2018

74

Cleaning Yield Data: USDA Yield Editor

Cleaning Yield Data: USDA Yield Editor

© 2018 University of Nebraska – Lincoln

10/15/2018

75

Cleaning Yield Data: USDA Yield Editor

Cleaning Yield Data: USDA Yield Editor

Raw Data at 13% Cleaned Data at 13%

© 2018 University of Nebraska – Lincoln

10/15/2018

76

Profitability Mapping

• Accrual Crop Budgets• Producers need to create their own

• Examples from UNL https://cropwatch.unl.edu/budgets

Profitability Mapping

• Using SMS equations and running scenarios• If  (  [Yield (Dry)(bu/ac)]  >  0.00  )  Then

• Begin

• RESULT=   (  [Yield (Dry)(bu/ac)]  *  [Corn Price]  )  ‐ [Production Cost]  

• End

© 2018 University of Nebraska – Lincoln

10/15/2018

77

Profitability Mapping

2010/2012/2014 $700 and $4.00

Profitability Mapping

• Corn and soybeans

• Run for specific yield scenarios (high, average, and low)

• Corn or soybean only

• Exclude extreme years

• Use multi‐year average

• Corn and soybeans

• Run for specific weather scenarios (wet, average, dry) 

• Corn or soybean only

• Include available years

• Use multi‐year average

© 2018 University of Nebraska – Lincoln

10/15/2018

78

Profitability Mapping

Decision and 2016 Imagery  Profitability Map

$180/ac

$220/ac

Resources

• Best Management Practices for Collecting Accurate Yield Data and Avoiding Errors During Harvest http://extensionpublications.unl.edu/assets/pdf/ec2004.pdf

• Improving Yield Map Quality By Reducing Errors Through Yield Data File Post‐Processinghttp://extensionpublications.unl.edu/assets/pdf/ec2005.pdf

© 2018 University of Nebraska – Lincoln

10/15/2018

79

Summary – Yield Maps and More

• Calibrate yield monitor systems and reduce collection errors

• Post‐process or clean raw yield data

• Many uses for good quality yield data including targeted conservation practices

Variable Rate Seeding

• Planter technology allows growers to change seeding rates within a field.

• Goal: Optimize yield/economics. Put more seeds where we can push to get a higher yield response, put less seeds where the soil/fertility cannot support it.

© 2018 University of Nebraska – Lincoln

10/15/2018

80

Variable Rate Seeding

What do we base the rate on?• Corn seeding rate optimization in Iowa, USA (Licht, Lenssen, Elmore, 2016)

• Evaluated:• Phosphorus• Potassium• pH• SOM• CEC• Texture• Topography

• Found no consistent descriptive variable interaction with seeding rate as a result of weather variability.

Variable Rate Seeding

• Companies offer ready to use seeding prescriptions

© 2018 University of Nebraska – Lincoln

10/15/2018

81

Variable Rate Seeding

• UNL Extension/On‐Farm Research Recommendation: TEST IT.

2. After variable rate seeding prescription has been developed, test it with strips of flat rate or check blocks.

1. Put blocks of different seeding rates in different areas of the field.

Variable Rate Seeding

• Easier Nebraska use scenario: dryland pivot corners

© 2018 University of Nebraska – Lincoln

10/15/2018

82

Multi‐Hybrid

• Goal: place hybrids that have some trait that will make them perform better in the area they will do best.

• Examples: • Place hybrids based on disease tolerance and disease prevalence in the field

• Place hybrids with greater drought tolerance where soils have lower water holding capacity

• Ability to place different hybrids in different portions of the field to best match genetics and environment

Multi‐Hybrid

• Research at UNL – Stevens, et al. 2018

• 9, full field scale corn research sites• Drought tolerant hybrid (defensive) and offensive hybrid

• Many sites showed that one hybrid was better for the entire field

• Where there were differences, the zone delineation was not stable from year to year

© 2018 University of Nebraska – Lincoln

10/15/2018

83

Multi‐Hybrid

• Research at UNL – Stevens, et al. 2018

• 4 soybean seed treatment sites

• Goal – place ILeVO seed treatment for sudden death syndrome in portions of the field where disease is generally more prevalent (generally soils that are more frequently ponded).

Multi‐Hybrid

Figure 1. Zone prescription for soybean treated with 

standard treatment (dark grey) and ILeVO (light grey).

© 2018 University of Nebraska – Lincoln

10/15/2018

84

Multi‐HybridTreatment  Standard Treatment + ILeVO® Standard Treatment  P‐Value

Yield (bu/ac) †

SDS Zone 67 A* 57 B 0.0003

Standard Zone 70 A 70 A 0.849

P‐Value 0.9631 0.9494

Marginal Net Return ($/ac)‡

SDS Zone 608.19 529.75

Standard Zone 637.60 651.57

• The drastic yield difference between the ILeVO and standard treatment in the SDS zone resulted in a $79 advantage for using the ILeVO treatment.  

• Considering the size of the SDS zone (around 50 acres), the additional return by using the ILeVO treatment would equal around $4,000 for the field. 

• If the additional cost of a multi‐hybrid planter is around $20,000, the technology could be paid off in around five soybean growing seasons in this field.

Variable Hybrid

In reality…

© 2018 University of Nebraska – Lincoln

10/15/2018

85

Resources

Corn seeding rate optimization in Iowa, USA (Licht, Lnssen, and Elmore, 2016): https://link.springer.com/article/10.1007/s11119‐016‐9464‐7

CropWatch Variable Rate Seeding Considerations: https://cropwatch.unl.edu/farmresearch/articlearchives/vr‐seed‐experiments

Remote Sensing PlatformsLaura Thompson

© 2018 University of Nebraska – Lincoln

10/15/2018

86

Proximal

Drone Based

• Uses – scouting, yield estimation, nutrient management

• Costs range from ~$1000 to $20,000.

https://www.heliguy.com/dji‐matrice‐600‐p3856

http://flight‐evolved.com/sensefly‐ebee‐drone/#

http://www.tested.com/tech/537193‐testing‐dji‐phantom‐3‐pro‐quadcopter/

http://www.unmannedsystemstechnology.com/tag/precision‐hawk/

http://www.drone‐world.com/dji‐mavic‐pro‐with‐remote‐portable‐4k‐foldable‐

drone

https://uavcoach.com/3dr‐solo‐smart‐drone‐ships‐june/

© 2018 University of Nebraska – Lincoln

10/15/2018

87

Drone Imagery Resolution

3.5 inch per pixel

Drone Imagery Platforms

© 2018 University of Nebraska – Lincoln

10/15/2018

88

Drone Imagery Platforms

Drone Based

© 2018 University of Nebraska – Lincoln

10/15/2018

89

Drone Based

Getting Started with Drones in Agriculture

http://go.unl.edu/drone

© 2018 University of Nebraska – Lincoln

10/15/2018

90

Airplane Based

• Some independent pilots

• TerrAvion

• Costs range from $3/ac to ~$10/ac

• Flight schedule is not controllable

Satellite Based

• Increasingly popular and combined with other services

• Planet Labs – daily imagery

• Cloud cover is limitation

• Usually about 10 meter per pixel resolution

© 2018 University of Nebraska – Lincoln

10/15/2018

91

Satellite Based

• Scouting• Checking plot/check strip differences• Yield estimation in various parts of field

Automation & Machine Communication

• Machine Sync: https://www.youtube.com/watch?v=9Kt6Pxd0N_8

• UK version: https://www.youtube.com/watch?v=c4In53vOg2o

© 2018 University of Nebraska – Lincoln

10/15/2018

92

Contact Info

Nathan Mueller Laura Thompson1206 W 23rd StFremont, NE 68025‐2504Phone: 402‐727‐2775Email: [email protected]:@croptechcafeBlog: http://croptechcafe.org/

1705 Stone StFalls City, NE 68355Phone: 402‐245‐2224Email: [email protected]:@agtechlauraTwitter:@onfarmresearch

© 2018 University of Nebraska – Lincoln