93
NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA [email protected] February 17, 2003

NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Embed Size (px)

Citation preview

Page 1: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

NSF-ITR: EIA-0086015:Structural DNA Nanotechnology

Nadrian C. Seeman, SubcontractorDepartment of Chemistry

New York UniversityNew York, NY 10003, USA

[email protected]

February 17, 2003

Page 2: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

DNA BASE PAIRS

C C

N

C

C

O

NH

O R

H

CH3

T

H

CC

NC

N C

N

N N

H

HC

H

R

A

O

C C

N

N

C

C

R

H

HN

H

H

CC

NC

C

N

N

C

OC

H

NR

H

N H

H

G

3.4 Å

~20 Å

10-10.5Pairs/Turn

Page 3: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

ReciprocalExchange

Resolve

Reciprocal Exchange:A Theoretical Tool To Generate

New DNA Motifs

Page 4: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

b

a

+Resolve

Reciprocal

Exchange

Resolve

Reciprocal

Exchange

+

Reciprocal Exchange in aDouble Helical Context

Page 5: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Biological Reciprocal Exchange:The Holliday Junction

1 4

2 3

1 4

2 3

1 24 3

1 4

2 3

I

I I

A•T

G•C

C•G

C•G

G•C

T•A

A•TT•AG•CT•AC•G

T•AA•TC•GA•TG•C

A•TT•AG•C

T•AA•TC•G

C•G

A•T

G•C

C•G

C•G

G•C

T•A

G•C

A•T

T•A

A•TT•AG•CT•AC•GA•TG•CC•G

T•AA•TC•GA•TG•CT•AC•GG•C

A•TT•AG•CT•A

T•AA•TC•GA•T

C•G

A•T

G•C

C•G

C•G

G•C

T•A

G•C

Page 6: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

Design of Immobile Branched Junctions:Minimize Sequence Symmetry

IIACTCGTGC

TGAGCACG••••••••

A

T

C

G A

T A

T A

T

C

G

C

G C

G• • • • • • • •

3322

11 44

C G

C G

CG

A T

A T

AT

CG

C G

IV

I

III

C GCG

C G

A T

A TAT

C G

••

••

C G•

Page 7: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

C•GG•CC•GTA•TA•AT•C•GC•GTA•C•GAT•TA•

G•CG•CA

T•

C•GTA•AT•G•C

GTGCC•GT

A•A

T•

C•GC•GG•CTA•AT• T

A•TA•C•GG•CAT•TA•C•GAT•TA•C•GG•CTA•CACG

LIGATION

+HYDROGEN BONDING

C•GT

A•A

T•

C•GC•GG•CTA•AT• T

A•TA•C•GG•CAT•TA•C•GAT•TA•C•GG•CTA•G•CAT•G•CC•GC•GG•CC•GTA•TA•AT•C•GC•GTA•C•GAT•TA•

G•CG•CA

T•

C•GTA•AT•G•C

••••C•GT

A•A

T•

C•GC•GG•CTA•AT• T

A•TA•C•GG•CAT•TA•C•GAT•TA•C•GG•CTA•GTGCC

•GG•CC•GTA•TA•AT•C•GC•GTA•C•GAT•TA•

G•CG•CA

T•

C•GTA•AT•G•CCACG

Sticky-Ended Cohesion: Affinity

Page 8: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Qiu, H., Dewan, J.C. & Seeman, N.C. (1997) J. Mol. Biol. 267, 881-898.

Sticky-Ended Cohesion: Structure

Page 9: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

The Central Concept:Combine Branched DNA with Sticky Ends to

Make Objects, Lattices and Devices

AB'

B

A'A

B' B'

B

A

A'

A'

B

Page 10: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

O B J E C T IV E S & A P P L IC A T IO N S

DESIGN MOLECULES TO ASSEMBLE INTO ORDERED ARRAYS.

[A] SCAFFOLD MACROMOLECULAR CRYSTALLIZATION (PERIODIC).

[C] GENERATE ALGORITHMIC PATTERNS (APERIODIC).[B] SCAFFOLD NANOELECTRONICS ASSEMBLY (PERIODIC).

Architectural Control[1]

[3] Self-Replicating Systems

[A] NANOROBOTICS.[B] NANOFABRICATION.[C] MOLECULAR PEGBOARDS.

[2] Nanomechanical Devices

Page 11: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Robinson, B.H. & Seeman, N.C. (1987), Protein Eng. 1, 295-300..

A Method for Organizing Nano-Electronic Components

Page 12: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Robinson, B.H. & Seeman, N.C. (1987), Protein Eng. 1, 295-300.

A Suggestion for a Molecular Memory DeviceOrganized by DNA (Shown in Stereo)

Page 13: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

WHY DNA?

PREDICTABLE INTERMOLECULAR INTERACTIONS

CONVENIENT AUTOMATED CHEMISTRY

CONVENIENT MODIFYING ENZYMES

HIGH FUNCTIONAL GROUP DENSITY

EXTERNALLY READABLE CODE

LOCALLY STIFF POLYMER

PROTOTYPE FOR MANY DERIVATIVES

Page 14: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

DENATURING GELAUTORADIOGRAM

CYCLICMOLECULES

LINEARAND

CYCLICMOLECULES

APPLY DIRECTLY EXONUCLEASE FIRST

LIGATION

LIGATION

LIGATION

LIGATION

LIGATION

LIGATION

LIGATION

PP32 REPORTER STRANDS

LA RGER LINEA RS LA RGER CYCLICS

A Method to Establish DNA Motif Flexibility

Page 15: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Geometrical Constructions(Regular Graphs)

Cube: Junghuei Chen

Truncated Octahedron: Yuwen Zhang

Page 16: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Chen, J. & Seeman. N.C. (1991), Nature 350, 631-633..

Cube..

Page 17: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Zhang, Y. & Seeman, N.C. (1994), J. Am. Chem. Soc. 116, 1661-1669.

TruncatedOctahedron

Page 18: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Constructionof

CrystallineArrays

Page 19: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

REQUIREMENTS FOR LATTICEDESIGN COMPONENTS

PREDICTABLE INTERACTIONS

PREDICTABLE LOCAL PRODUCT STRUCTURES

STRUCTURAL INTEGRITY

Page 20: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Seeman, N.C. (2001) NanoLetters 1, 22-26.

+

b

Resolve

Twice

2 Reciprocal

Exchanges

a

+Resolve

Twice

2 Reciprocal

Exchanges

Resolve

Twice

2 Reciprocal

Exchanges

Resolve

Twice

2 Reciprocal

Exchanges

DS + DS DX TX

Derivation of DX and TX Molecules

Page 21: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Erik Winfree (Caltech)Furong Liu

Lisa Wenzler

2D DX Arrays

Page 22: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

D X + JD X

+

H P

Resolve

Reciprocal

Exchange

Seeman, N.C. (2001) NanoLetters 1, 22-26.

Derivation of DX+J Molecules

Page 23: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A B*

Schematic of a Lattice Containing1 DX Tile and 1 DX+J Tile

Page 24: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

AFM of a Lattice Containing1 DX Tile and 1 DX+J Tile

Page 25: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

D*D*A CB

Schematic of a Lattice Containing 3 DX Tiles and 1 DX+J Tile

Page 26: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

AFM of a Lattice Containing3 DX Tiles and 1 DX+J Tile

Page 27: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Chengde Mao

Holliday JunctionParallelogram Arrays

Page 28: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Holliday Junction Parallelogram Arrays

Mao, C., Sun, W & Seeman, N.C. (1999), J. Am. Chem. Soc. 121, 5437-5443.

II

IVIII

II

III

II IV4

32

1

I

III

II IV4

32

1

D

A'

C

B'

C'

A

D'

B

YX

Z

X

SELFASSEMBLY

Page 29: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Mao, C., Sun, W & Seeman, N.C. (1999), J. Am. Chem. Soc. 121, 5437-5443.

Holliday Junction Parallelogram Arrays

Page 30: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Triple Crossover Molecules

Furong Liu, Jens Kopatsch, Hao YanThom LaBean, John Reif

Page 31: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Triple Crossover Molecules

Page 32: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

B*A

TX+J Array

LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H.& Seeman, N.C (2000), J. Am. Chem. Soc. 122, 1848-1860.

Page 33: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

BA C C' D

AB Array

ABC'D Array

TX Array With Rotated Components

LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H.& Seeman, N.C (2000), J. Am. Chem. Soc. 122, 1848-1860.

Page 34: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

ProgressToward

Three-DimensionalArrays

Furong LiuJens BirktoftYariv PintoHao YanTong WangBob Sweet

Pam ConstantinouChengde MaoPhil LukemanJens Kopatsch

Bill ShermanMike Becker

Page 35: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A 3D TX Lattice

Furong LiuJens BirktoftYariv PintoHao YanBob Sweet

Pam ConstantinouPhil LukemanChengde MaoBill ShermanMike Becker

D D'BA C C'

AB Array

ABC'D' Array

QuickTime™ and aPhoto - JPEG decompressor

are needed to see this picture.

Page 36: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A 3D Trigonal DX Lattice

Chengde MaoJens BirktoftYariv PintoHao YanBob Sweet

Pam ConstantinouPhil Lukeman

Furong LiuBill ShermanMike Becker

Page 37: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Algorithmic Assembly

Chengde MaoThom LaBean

John Reif

Page 38: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A

BA XOR B

A B A XOR B

011

0101

0110

0

The XOR Operation

Page 39: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A

BA XOR B

C(A XOR B) XOR C

Cumulative XOR

Page 40: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A Cumulative XOR Calculation: Tiles

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

Page 41: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A Cumulative XOR Calculation: System

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

S0Pair to C1

C2

Pair to C2

yi = 0

C1

Sixi = 1

1

Si-1

xi = 1

Si-1

Sixi = 0

0

xi = 0

1

yi = 1

xi = 1yi-1 = 0xi = 0

1

yi-1 = 1

yi = 1yi = 0

xi = 1

0

yi-1 = 1

yi = 0

xi = 0

0

yi-1 = 0

yi = 0xi = 1

yi-1 = 1

yi = 1xi = 0

yi-1 = 1

yi = 0xi = 0

yi-1 = 0

yi = 1xi = 1

yi-1 = 0

Page 42: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

1

0

X3

X4

1

X1

X2

0

C2

C1

Y11

1

Y2

Y30

0

Y4

0

Y41

1

0

1

C1

C2

1

1

X41

X1

X2

X3

Y1

Y2

Y3

A Cumulative XOR Calculation: Assembly

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

Page 43: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

C 1 X 1

X 2

Y 1

C 2

Y 2

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

A Cumulative XOR Calculation:Extracting the Answer

Page 44: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A Cumulative XOR Calculation: Data

2,0001,500

800600500

400

300

200

100

X2 = 1

Y1 = 1

Y2 = 0

Y3 = 1

Y4 = 1

X3 = 1X4 = 0

X1 = 1C2

M 1 0

Calculation 1

/01

C2,0001,500800600500

400

300

200

100

X2 = 0

Y1 = 1

Y2 = 1

Y3 = 0

X3 = 1X4 = 0

X1 = 1 C2

MC 1 0

Calculation 2

/01

Y4 = 0

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), Nature 407, 493-496.

Page 45: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Natasha JonoskaPhiset Sa-Ardyen

N-Colorability of Graphs

Page 46: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A 3-Colorable Graph and its Prototype for Computation

• A graph is 3-colorable if it is possible to assign one color to each vertex such that no two adjacent vertices are colored with the same color. In this example, one 2-armed branched molecule, four 3-armed branched molecules and one 4-armed branched molecule are needed.

• (b) The same graph was chosen for the construction. Since the vertex V5 in (a) has degree 2, for the experiment a double helical DNA is used to represent the vertex V5 and the edges connecting V5 with V1 and V4. The target graph to be made consists of 5 vertices and 8 edges. (c) The target graph in DNA representation.

Page 47: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Results

• An irregular DNA graph whose edges correspond to DNA helix axes has been constructed and isolated based on its closed cyclic character.

• The molecule may contain multiple topoisomers, although this has no impact on the characterization of the product.

• The graph assembles with the correct edges between vertices, as demonstrated by restriction analysis

Page 48: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Fred MathieuChengde Mao

Six-Helix Bundle

Page 49: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

<----------------7.3 Microns---------------->

Six-Helix DNA Bundle

Fred MathieuShiping Liao

Chengde Mao

Page 50: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

DNANanomechanical

Devices

Page 51: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

B-Z Device

Chengde Mao

Page 52: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

[-] NODE

RIGHT-HANDEDB-DNA

[-] NODES

[+] NODE

LEFT-HANDEDZ-DNA

[+] NODES

Right-Handed and Left-Handed DNA

Page 53: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

B-ZZ-B

A Device Based on the B<-->Z Transition

Mao, C., Sun, W., Shen, Z. & Seeman,N.C. (1999), Nature 397, 144-146.

+ Co(NH 3)6+++- Co(NH 3)6

+++

Page 54: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

.

0

5

10

15

20

25

B Z

Acceptor Energy Transfer

Solution Conditions

Percent Energy Transfer

Donor Energy Transfer

Solution Conditions

0

5

10

15

20

25

B Z B Z B Z

Percent Energy Transfer

ControlProto-Z

FRET Evidence for Motion Inducedby the B→ Z Transition

Mao, C., Sun, W., Shen, Z. & Seeman, N.C. (1999), Nature 397, 144-146.

Page 55: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Sequence-Dependent Device

Hao Yan

Page 56: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Derivation of PX DNA

Seeman, N.C. (2001) NanoLetters 1, 22-26.

+Resolve

Everywhere

Reciprocal

Exchange

Everywhere

Resolve

Everywhere

Reciprocal

Exchange

Everywhere

b

a

+

P X

Page 57: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

PX DNA

Seeman, N.C. (2001) NanoLetters 1, 22-26.

Page 58: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

C D

P X

A B

J X 2

A B

D C

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65..

Page 59: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Switchable Versions of PX and JX2

J X 2

A B

D C

A B

C D

P X

Page 60: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Machine Cycle of the PX-JX2 Device

A B

C D

A B

C D

A B

D C

JX2

A B

D C

PX

I II

IV III

Page 61: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

The PX-JX2 System is Robust

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65.

Page 62: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

System to Test the PX-JX2 Device

JX2

JX2

JX2

PXPXPX

Page 63: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

AFM Evidence for Operationof the PX-JX2 Device

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65.

Page 64: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

NewCohesive Motifs

Page 65: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Paranemic Cohesion

Xiaoping Zhang

Page 66: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Paranemic Cohesion with the PX Motif

Left: Ubiquitous Reciprocal Exchange Creates a PX Molecule.Center Right: The Strand Connectivity of a PX Molecule.Far Right: The Blue and Red Dumbbell Molecules are Paranemic.

Page 67: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

+PX Cohesion of DNA Triangles: Theory

Page 68: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

PX Cohesion of DNA Triangles: Experiment

Zhang, X. Yan, H.,Shen, Z. & Seeman, N.C. (2002) J Am. Chem. Soc.124, 12940-12941 (2002)

Page 69: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Edge-Sharing

Hao Yan

Page 70: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

AA'

~20 nm

One-Dimensional Arrays of Edge-Sharing Triangles(Short Direction)

Yan, H. & Seeman, N.C. (2002) J. Supramol. Chem.,in press.

Page 71: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

One-Dimensional Arrays of Edge-Sharing Triangles(Long Direction)

BB'

~30 nm

Yan, H. & Seeman, N.C. (2002) J. Supramol. Chem.,in press.

Page 72: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

One-Dimensional Arrays ofDouble Edge-Sharing Triangles

A

A'

~30 nm

~20 nm

Yan, H. & Seeman, N.C. (2002) J. Supramol. Chem.,in press.

Page 73: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

A Cassette for theInsertion of a PX-JX2 Device into a 2D TX

Array

Baoquan Ding

Page 74: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

BA C C' D

AB Array

ABC'D Array

TX Array With Rotated Components

LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H.& Seeman, N.C (2000), J. Am. Chem. Soc. 122, 1848-1860.

Page 75: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

1

2A

2B

3

4A

4B

5

P1

P2

J1

J2

4A

5 2A

4B

2B

1

3

Cassette to Insert the PX-JX2 Device~Perpendicularly Into a TX Lattice

PX Conformation

JX2 Conformation

Page 76: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Molecular Models of the 2 states of the Sequence-Driven DNA Devices

Page 77: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Application of the PX-JX2 Devicein a 1D Molecular Pegboard

MARKER ---> MARKEDPX + PX JX INERT

PX JX JX JX PX JX PX PX

+ --->

JXPX

PX JX JX JX PX JX PX PX

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Page 78: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Towards 2D Circuits

Alessandra Carbone (IHES)

Page 79: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Circuits and triangular patterns

Page 80: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

2 layers assembly

Page 81: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Tiles

inputs

outputs

operation

TX Molecule

Page 82: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Molecular Programming: programmed board

4 different states

Page 83: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

PXJXJXJXPX PX PX JX

JXJXPX PX

PXJXPX JX

Possible Components: Programmable Pawns

Possible Components: TX Middle Domains

Possible Arrangement

Page 84: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

(b)

(d)(c)

(a)

templatefirst layer

second layer

Page 85: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

PX Conformation

JX2 Conformation

Control Region & Sticky Ends on the Same Strand

Page 86: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

3' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 2

Combine Growing Strand Supports;Repeat Steps 2 and 3 until Boxes are filled.4.

3' 5'Box 1 Box 2

Levulinyl Protected Branch Point

3' 5'Box 1 Box 2

1. Perform Conventional 3'-->5' Synthesisfrom End of Box 1 to Start of Box 2.

Split Growing Strands into A, T, C, GCompartments; Add Base to Box 2.2.

3' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 23' 5'Box 1 Box 2

Add Same Base [or F(Base)] with LevulinylProtection and5' Phosphoramidite to Box 1.3.

3' 5'3' 5'3' 5'3' 5'

Complete Conventional Synthesis of theStrands5.

3' 5'3' 5'3' 5'3' 5'

Mix & Split Synthesis -- Central

Page 87: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Mix & Split Synthesis -- Ends

3' Box 1 Box 2 5'

2.

3'

Box 1 Box 2Box 1 Box 2Box 1 Box 2Box 1 Box 2

Combine Growing Strand Supports;Repeat Steps 3 and 4 until Boxes are filled.5.

Box 1Box 1Box 1Box 15'

5'5'5' Box 2

Box 2Box 2Box 2

Add Same Base [or F(Base)] with LevulinylProtection and5' Phosphoramidite to Box 1.4.

5'5'5'5'

5'5'5'5'

5'5'5'5'5'

5'5'5'

5'5'5'5'

5'Box 1 Box 2

Levulinyl Protected Branch Point

1. Perform Conventional 3'-->5' Synthesisfrom End of Box 1 to Start of Box 2.

Reverse Polarity of Strand Growingat Branch; Add Directionality Segment.

Box 1 Box 2 5'5'Split Growing Strands into A, T, C, GCompartments; Add Base to Box 2.3.

Page 88: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Triple Crossover Molecules

Page 89: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

An Algorithmic Arrangement Based on Mix & Split Synthesis

Page 90: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Summary of Results (1)

• Reciprocal exchange generates new DNA motifs, and sequence-symmetry minimization provides an effective way to generate sequences for them.

• Sticky ends, PX cohesion and edge-sharing are can hold DNA motifs together in a sequence-specific fashion.

Page 91: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Summary of Results (2)

• 2D lattices with tunable features have been built from DX, TX and DNA parallelogram motifs. Preliminary evidence for 3D assembly has been obtained.

• DNA nanomechanical devices have been produced using both the B-Z transition and PX-JX2 conversion through sequence control.

Page 92: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

Summary of Results (3)

• An algorithmic 4-bit cumulative XOR calculation has been performed.

• An irregular graph has been synthesized in solution, establishing the principle of using this type of assembly for calculations.

• New motifs include a 6-helix bundle and a cassette for inserting a PX-JX2 device into a TX array.

Page 93: NSF-ITR: EIA-0086015: Structural DNA Nanotechnology Nadrian C. Seeman, Subcontractor Department of Chemistry New York University New York, NY 10003, USA

CHALLENGES FOR STRUCTURALDNA NANOTECHNOLOGY

TO EXTEND 2-D RESULTS TO 3-D WITH HIGH ORDER --Crystallography.[1]

[2] TO INCORPORATE DNA DEVICES IN 2-D AND 3-D ARRAYS-- Nanorobotics.

[3] TO INCORPORATE HETEROLOGOUS GUESTS IN LATTICES-- Nanoelectronics; Crystallography.

[4] TO EXTEND ALGORITHMIC ASSEMBLY TO HIGHERDIMENSIONS -- Smart Materials; Computation.

[7] TO INTERFACE WITH TOP-DOWN METHODS AND THEMACROSCOPIC WORLD -- Nanoelectronic Reality.

[5] T O ACHI EVE ASSEMBLIES WI T H H IERARCHI CALCHARACTER -- Complex Materials.

[10] T O ADVANCE FROM BIOKLEPT I C SYST EMS T OBIOMIMETIC SYSTEMS -- Chemical Control.

[6] TO ACHIEVE FUNCTIONAL AS WELL AS STRUCTURALSYSTEMS -- Active Materials; Sensor Systems.

[8] TO INCORPORATE COMBINATORIAL APPROACHES IN TILEDESIGN -- Diversity; Programmability.

[9] TO PRODUCE SYSTEMS CAPABLE OF SELF-REPLICATION --Economy; Evolvability.