51
Nuclear Astrophysics Stellar evolution, core-collapse supernova and explosive nucleosynthesis Karlheinz Langanke GSI & TU Darmstadt & FIAS Tokyo, December 2, 2009 Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 1 / 20

Nuclear Astrophysics - Stellar evolution, core-collapse ...be.nucl.ap.titech.ac.jp/~nakamura/Langanke.pdfConsequences stars slightly heavier than the Sun burn hydrogen via CNO cycle

  • Upload
    others

  • View
    4

  • Download
    1

Embed Size (px)

Citation preview

  • Nuclear AstrophysicsStellar evolution, core-collapse supernova and explosive

    nucleosynthesis

    Karlheinz Langanke

    GSI & TU Darmstadt & FIAS

    Tokyo, December 2, 2009Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 1 / 20

  • What is nuclear astrophysics?

    Nuclear astrophysics aims at understanding the nuclear processesthat take place in the universe. These nuclear processes generateenergy in stars and contribute to the nucleosynthesis of the elements.

    3. The solar abundance distribution

    + +

    Elemental(and isotopic)compositionof Galaxy at location of solarsystem at the timeof it’s formation

    solar abundances:

    Bulge

    Halo

    Disk

    Sun

    Hydrogen mass fraction X = 0.71

    Helium mass fraction Y = 0.28

    Metallicity (mass fraction of everything else) Z = 0.019

    Heavy Elements (beyond Nickel) mass fraction 4E-6

    0 50 100 150 200 250mass number

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    num

    be

    r fra

    ctio

    n

    D-nuclei12C,16O,20Ne,24Mg, …. 40Ca

    Fe peak(width !)

    s-process peaks (nucle ar shell closures)

    r-process peaks (nucle ar shell closures)

    AuFe Pb

    U,Th

    GapB,Be,Li

    general trend; less heavy elements

    N. Grevesse and A. J. Sauval, Space Science Reviews 85, 161

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 2 / 20

  • Stellar reaction rateConsider Na and Nb particles per cubic centimeter of particle types a and b.The rate of nuclear reactions is given by:

    r = NaNbσ(v)v

    In stellar environment the velocity (energy) of particles follows a thermaldistribution that depends on the type of particles.

    Nuclei (Maxwell-Boltzmann): φ(v) = N4πv2` m

    2πkT

    ´3/2 exp “−mv22kT ”The product σv has to be averaged over the velocity distribution φ(v)

    〈σv〉 =∫ ∞

    0

    ∫ ∞0

    φ(va)φ(vb)σ(v)vdvadvb

    Changing to center-of-mass coordinates, integrating over the cm-velocity andusing E = µv2/2

    〈σv〉 =(

    8πµ

    )1/2 1(kT )3/2

    ∫ ∞0

    σ(E)E exp(− E

    kT

    )dE

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 3 / 20

  • Charged-particle cross section

    Stars’ interior is a plasma made of charged particles (nuclei, electron).Nuclear reactions proceed by tunnel effect. For p + p reaction Coulombbarrier 550 keV, but the typical energy in the sun is only 1.35 keV.

    cross section: σ(E) = 1E S(E)e−2πη; η = Z1Z2e

    2

    ~

    õ

    2E =b

    E1/2

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 4 / 20

  • Astrophysical S factor

    S factor allows accurate extrapolations to low energy.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 5 / 20

  • Gamow window

    Using definition of S factor:

    〈σv〉 =(

    8πµ

    )1/2 1(kT )3/2

    ∫ ∞0

    S(E) exp[− E

    kT− b

    E1/2

    ]dE

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 6 / 20

  • Gamow windowAssuming that S factor is constant over the Gamow window andapproximating the integrand by a Gaussian one gets:

    〈σv〉 =(

    )1/2∆

    (kT )3/2S(E0) exp

    (−3E0

    kT

    )

    E0 = 1.22[keV](Z 21 Z22µT

    26 )

    1/3

    ∆ = 0.749[keV](Z 21 Z22µT

    56 )

    1/6

    (Tx measures the temperature in 10x K.)Examples for solar conditions:

    reaction E0 [keV] ∆/2 [keV] Imax T dependence of 〈σv〉p+p 5.9 3.2 1.1× 10−6 T 3.9

    p+14N 26.5 6.8 1.8× 10−27 T 20α+12C 56.0 9.8 3.0× 10−57 T 42

    16O+16O 237.0 20.2 6.2× 10−239 T 182

    It depends very sensitively on temperature!Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 7 / 20

  • The solar pp chains

    11H +

    11H

    21H +

    11H

    32He +

    32He

    21H + e

    + + νe

    32He + γ

    42He + 2

    11H

    32He +

    42He

    74Be + γ

    85% 15%

    (PP I)

    74Be + e

    − 73Li + νe

    73Li +

    11H 2

    42He

    (PP II)

    74Be +

    11H

    85B + γ

    85B

    84Be + e

    + + νe

    84Be 2

    42He

    (PP III)

    15% 0.02%

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 8 / 20

  • The other hydrogen burning: CNO cycle

    requires presence of 12C as catalyst

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 9 / 20

  • Energy generation: CNO cycle vs pp-chains

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 10 / 20

  • Consequences

    stars slightly heavier than the Sun burn hydrogen via CNO cyclethis goes significantly faster; such stars have much shorterlifetimes

    mass [M�] timescale [y]0.4 2× 10110.8 1.4× 10101.0 1× 10101.1 9× 1091.7 2.7× 1093.0 2.2× 1085.0 6× 1079.0 2× 10716.0 1× 10725.0 7× 10640.0 1× 106

    hydrogen burning timescalesdepend strongly on mass. Starsslightly heavier than the Sun burnhydrogen by CNO cycle.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 11 / 20

  • Helium burning reactions

    Critical Reactions in HeCritical Reactions in He--burningburning

    Oxygen-16Energy source in stellar He burningEnergy release determined by associated reaction rates

    Products of helium burning are carbon and oxygen, the bricks of life!Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 12 / 20

  • Carbon Burning

    21

    Burning conditions:

    for stars > 8 Mo (solar masses) (ZAMS)

    T~ 600-700 Mio

    U ~ 105-106 g/cm3

    Major reaction sequences:

    dominates

    by far

    of course ps, ns, and as are recaptured 23Mg can b-decay into 23Na

    Composition at the end of burning:

    mainly 20Ne, 24Mg, with some 21,22Ne, 23Na, 24,25,26Mg, 26,27Al

    of course 16O is still present in quantities comparable with 20Ne (not burning yet)

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 13 / 20

  • Evolution of massive star

    Nuclear burning stages(e.g., 20 solar mass star)

    28Si�J�D)0.023.5Ti, V, Cr,

    Mn, Co, NiFeSi

    16O + 16O0.82.0Cl, Ar,

    K, CaSi, SO

    20Ne�J�D)16O 20Ne�D�J)24Mg31.5Al, PO, MgNe

    12C + 12C1030.8NaNe,

    MgC

    3 He4 Æ 12C12C�D�J)16O10

    60.218O, 22Nes-process

    O, CHe

    CNO

    4 H Æ 4He1070.0214NHeH

    Main

    Reaction

    Time

    (yr)

    T

    (109 K)Secondary

    Product

    Main

    ProductFuel

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 14 / 20

  • Presupernova star

    Star has an onion like structure.Iron is the final product of thedifferent burning processes.As the mass of the iron coregrows it becomes unstable andcollapses when it reaches around1.4 solar masses.

    0 50 100 150 200 250

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    Eb/A

    1H

    2H

    6Li

    4He

    12C

    16O

    24Mg40Ca

    56Fe 86Kr 107Ag 127I 174Yb 208Pb 238U

    3He

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 15 / 20

  • A few facts: SN1987A

    Type II supernova in LMC (∼ 55 kpc)

    Egrav ≈ 1053 ergErad ≈ 8× 1049 ergEkin ≈ 1051 erg = 1 foe

    neutrinos Eν ≈ 2.7× 1053 erg

    0.0 5.0 10.0 15.0Time (seconds)

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    Ene

    rgy

    (MeV

    )

    Kamiokande IIIMB

    light curve

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 16 / 20

  • Presupernova and collapse models

    Core-collapse supernova simulations are separated into:1 presupernova models:

    describes the stellar evolution through the various hydrostaticburning stages (H, He,...,Si) and follows the collapse of the centralcore until densities of order ρ9 = 10 are reachedlarge nuclear networks are used to include the nuclear energygeneration and the changes in compositionneutrinos, produced in weak-interaction reactions, can leave thestar unhindered and are treated as energy loss

    2 collapse modelsdescribes the final collapse and the explosion phasethe temperature during these phases is high enough that allreactions mediated by the strong and electromagnetic interactionare in equilibrium; thus the matter composition is given by NuclearStatistical Equilibrium (NSE)reactions mediated by the weak interaction are not in equilibriumneutrino interactions with matter have to be considered in details(Boltzmann transport)

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 17 / 20

  • Core-collapse supernova.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 18 / 20

  • Collapse phase

    Important processes:T > 1010 K, ρ > 1010 g/cm3

    Neutrino transport (Boltzmannequation):ν + A� ν + A (trapping)ν + e− � ν + e− (thermalization)

    cross sections ∼ E2νelectron capture on nuclei andprotons:e−+ (N,Z ) � (N + 1,Z − 1) + νee− + p � n + νecapture on nuclei dominates

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 19 / 20

  • Shell model and (d ,2He) GT strengths

    C. Bäumer et al. PRC 68, 031303 (2003)

    B(G

    T+)

    large shell modelcalculation

    0.2

    0.3

    0.4B(G

    T+ )

    0 1 2 3 4 5 6 7Ex [MeV]

    0.1

    0.1

    0.2

    0.3

    0.451V(d,2He)51Ti

    0 2 4 6 8 10T (109 K)

    10−8

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    λ (s

    −1 )

    LMP(d,2He)

    0 2 4 6 8 10

    0.6

    0.8

    1

    1.2

    1.4

    Old (n, p) data

    0 2 4 6 8 100

    0.1

    0.2

    0.3

    0.4

    0.5

    B(G

    T+

    )

    51V(n,p) Alford et al. (1993)

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 20 / 20

  • Pauli blocking of Gamow-Teller transition

    f7/2

    p1/2

    f5/2

    p3/2

    g9/2

    N=40Blocked

    � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

    � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �neutrons protons

    GT

    Core

    f7/2

    p1/2

    f5/2

    p3/2

    g9/2

    CorrelationsFinite T

    Unblocked

    � � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

    � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

    GT

    neutrons protons

    Core

    Unblocking mechanism: correlations and finite temperaturecalculation of rate in SMMC + RPA model

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 21 / 20

  • How do shell-model rates compare to previous rates?

    1 4 7 10

    T9

    10-4

    10-3

    10-2

    10-1

    10-4

    10-3

    10-2

    10-1

    100

    λ ec

    (s−1

    )

    10-15

    10-12

    10-9

    10-6

    10-3

    LMPFFN

    1 4 7 10

    T9

    10-6

    10-4

    10-2

    100

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    10-3

    10-2

    10-1

    100

    ρ7=10.7

    56Fe

    56Ni

    ρ7=4.32

    ρ7=4.32

    55Co

    59Co

    ρ7=33

    54Mn

    ρ7=10.7 ρ7=33

    60Co

    A < 65: SM rates smaller

    1010 1011 1012

    ρ (g cm−3)

    10−4

    10−3

    10−2

    10−1

    100

    101

    102

    103

    104

    Rec

    (s−

    1 )

    protonsnuclei

    A > 65: SM rates larger

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 22 / 20

  • Neutrino trapping

    ν + A � ν + A (trapping)elastic process, no energy, butmomentum transferν + e− � ν ′ + e− (thermalization)inelastic scattering, energy transferν + (Z ,A)→ ν ′ + (Z ,A)∗(thermalization)inelastic scattering, energy transfercross sections ∼ E2ν

    treatment by neutrino transport(Boltzmann equations) which consider allneutrino types and keep track of neutrinofluxes, energies at all space-time points

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 23 / 20

  • Effect on improved capture rates on collapse

    With Rampp & Janka (General Relativistic model)15 M� presupernova model from A. Heger & S. Woosley

    1010 1011 1012 1013 1014

    ρc (g cm−3)

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    Ye,

    c, Y

    lep,

    c

    BruennLMSH

    Ylep

    Ye

    1010 1011 1012 1013 1014

    ρc (g cm−3)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    s c (

    k B),

    Tc

    (MeV

    )

    BruennLMSH

    T

    s

    1010 1011 1012 1013 1014

    ρc (g cm−3)

    10−1

    100

    101

    102

    103

    104

    105

    106

    Eν−

    emis

    sion

    (M

    eV s−

    1 )

    BruennLMSH

    1010 1012 1014ρc (g cm−3)

    0

    10

    20

    30

    40

    50

    〈Eν〉

    (M

    eV)

    For ρ > 1012 g/cm3 fermi sea of neutrinos forms as neutrinos gettrapped. Weak interaction is then basically in equilibrium!

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 24 / 20

  • Core bounceThe collapse continues until the centraldensity becomes substantially (by about afactor 2-4) larger than nuclear density(ρnm ≈ 2× 1014 g/cm3). Then nuclearpressure slows down the infall and finallystops it. When the inner core has reached itsmaximum density (maximum scrunch), itrebounds and a shock starts.

    A decisive quantity for this stage of thecollapse is the Equation of State. It isassumed that matter consists of nuclear andelectron components, while neutrinos havenegligible interactions, but are important forthe determination of quantities like Ye ortemperature.

    In the shock the temperature increases. Sothe passage of the shock dissociates thenuclei into free nucleons which costs theshock energy (about 8-9 MeV/nucleon). Theshock has not enough energy to traverse theiron core. It stalls. No prompt explosion.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 25 / 20

  • Shock revival

    The important reactions directlybehind the shock are:νe + n↔ p + e−; ν̄e + p ↔ n + e+

    Competition between emission(cooling) and absorption (heating) byneutrinos.Thus the material directly behind theshock gets heated.This increases the kinetic energy ofmatter and revives the shock (delayedsupernova mechanism).However, spherical simulations failand show no successful explosions.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 26 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Bounce and shock wave evolution

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 27 / 20

  • Convection

    There exist now two-dimensionalsimulations (with neutrino transportand modern microphysics) whichyield successful explosions.Convection brings neutrinos fromdeeper (hotter) layers to the shockand increase the effectiveness ofenergy transfer.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 28 / 20

  • Successful two-dimensional supernova

    Successful 2-dimensional explosion of 11M� star with ONeMg core(H.-Th. Janka)

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 29 / 20

  • Explosive nucleosynthesis in supernova

    ννν

    νν

    ννν

    νν

    νν

    νν

    νShock Region

    Explosive Nucleosynthesis

    o

    Consistent treatment of supernovadynamics coupled with a nuclearnetwork.Essential neutrino reactions in theshock heated region

    νe + n � p + e−

    ν̄e + p � n + e+

    early (∼ 1 s): matter protonrich→ νp-processlater: matter neutronrich→ r-process

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 30 / 20

  • The νp-process: basic idea

    Protonrich matter isejected under theinfluence of neutrinoreactionsNuclei form at distancewhere a substantialantineutrino flux ispresent 0 10 20 30 40 50 60 70 80 90 100Mass Number A

    10−310−210−1100101102103104105106107

    Yi/Y

    i,⊙

    With νWithout ν

    Antineutrinos help to bridge long waiting points via (n,p) reactions

    ν̄e + p → e+ + n; n + 64Ge→ 64Ga + p; 64Ga + p → 65Ge; . . .

    C. Fröhlich, G. Martinez-Pinedo, et al., PRL 96 (2006) 142502

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 31 / 20

  • r-process

    T ≈ 100 keV n & 1020 cm−3 implies τn � τβ(n, γ)� (γ, n) implies Sn ≈ 2 MeV

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 32 / 20

  • The r-process at magic neutron numbers

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 33 / 20

  • Why are there r-process peaks?Once the path reaches nuclei with magic neutron numbers (Z ,Nmag),the neutron separation energy for the nucleus (Z ,Nmag + 1) decreasesstrongly. Thus, (γ,n) hinders the process to continue and (Z ,Nmag)beta-decays to (Z + 1,Nmag − 1), which is followed immediately byn-capture to (Z + 1,Nmag). This sequence of alternative β-decays andn-captures repeat itself, until n-capture on a magic nucleus cancompete with destruction by (γ,n).Thus, the r-process flow halts at the magic neutron numbers. Due tothe extra binding energy of magic nuclei, the Qβ values of these nucleiare usually smaller than those for other r-process nuclei. This makesthe lifetimes of the magic nuclei longer than lifetimes of other r-processnuclei. Furthermore, the lifetimes of the magic nuclei increasesignificantly with decreasing neutron excess. For example, the halfliveof the r-process nucleus 130Cd has been measured as 195± 35 ms,while typical halflives along the r-process are about 10 ms.Thus, material is enhanced in nuclei with Nmag , which after freeze-out,results in the observed r-process abundance peaks.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 34 / 20

  • Where does the r-process occur in nature?

    This has been named one of the 11 fundamental questions in science.Recent observational evidence in metal-poor (very old) stars point totwo distinct r-process sites. One site appears to produce the r-processnuclides above A ∼ 130; another one has to add to the abundance ofr-process nuclides below A = 130.The two favorite sites are:

    1 neutrino-driven wind above the proto-neutron star in acore-collapse supernova

    2 neutron star mergers

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 35 / 20

  • Which nuclear ingredients are needed?

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 36 / 20

  • Mass predictions

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 37 / 20

  • Half-lives for r-process nuclei

    40 42 44 46 48 50Charge Number Z

    10-3

    10-2

    10-1

    100

    T1/

    2 (s

    )

    ETFSIFRDMHFBSMExpt.

    N=82

    66 67 68 69 70 71 72 73Charge Number Z

    10-2

    10-1

    100

    101

    T1/

    2 (s

    )

    ETFSIFRDMHFBSM

    N=126

    40 42 44 46 48 50Charge Number Z

    0

    20

    40

    60

    80

    100

    Pβ,

    n (%

    )

    FRDMSM

    N=82

    65 66 67 68 69 70 71 72 73Charge Number Z

    0

    20

    40

    60

    80

    100

    Pβ,

    n (%

    )

    FRDMSM

    N=126

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 38 / 20

  • Supernova remnants

    The remnant left over in the explosion depends on the main-sequencemass Mms and on the maximum mass for neutron stars. The later isnot quite well known. Most neutron stars, whose masses are welldetermined (they are in binaries), have masses around 1.4 M�,however, recent observations might imply masses up to 2.1 M�.It is generally assumed that the collapse of stars withMms > 20− 25M� leads to a black hole in the center, while stars with8M� < Mms < 20− 25M� yield a supernova with a neutron starremnant.It is also possible that accretion during the explosion might put theremnant over the neutron star mass limit. It is speculated that thishappened in the case of the SN87A.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 39 / 20

  • Supernova remnants

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 40 / 20

  • Light curve

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 41 / 20

  • Energy from radioactive decays

    A core-collapse supernova produces about 0.15− 0.2 M� 56Ni. This ismade in the outer layers of the star (Ye = 0.5, mainly 16O) when theshock wave passes through and brings this matter into NSE by fastreactions. Supernova also produce other radioactive nuclides (forexample 57Ni and 44Ti). 44Ti is only barely made (about 10−4 M�), buthas a lifetime of about 60 years. It dominates the lightcurve of SN87Atoday.These radiactive nuclides decay, producing γ radiation in the MeVrange. By scattering with electrons, these photons are thermalized andthen radiated away as infrared, visible, and ultraviolet light.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 42 / 20

  • Radioactive decay

    Light curve follows the decay of Nickel.

    56Ni6 days−−−→ 56Co 77 days−−−−→ 56Fe

    Tiempo

    Núm

    ero

    de n

    úcle

    os

    T1/2

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 43 / 20

  • Supernova neutrino detection

    neutrino detection (SN1987A)

    0.0 5.0 10.0 15.0Time (seconds)

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    Ene

    rgy

    (MeV

    )

    Kamiokande IIIMB

    The Kamioka and IMB detectors are water Cerenkov detectors.Observed have been ν̄e neutrinos via there interaction on protons (inthe water molecule). The detection of the other neutrino types is themain goal for the next nearby supernova to test the predicted neutrinohierarchy.

    Karlheinz Langanke ( GSI & TU Darmstadt & FIAS) Nuclear Astrophysics Tokyo, December 2, 2009 44 / 20