43
Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Embed Size (px)

Citation preview

Page 1: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Nuclear Energy:Problems or Solution

Helmut RauchAtominstitut, TU-Wien

Page 2: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Reactors worldwide

Nuclear power stations (NPP) 441 (35 construction)Research reactors 249 (in operation)Heating units 8Naval-Reactors (U-Boats, aircraft carrier, icebreaker) 220 Satellite reactors 26

TOTAL ~ 950

Quellen - http://www.iaea.org/DataCenter/statistics.html

- http://www.world-nuclear.org/info/info.htm

Page 3: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Electricity production

World Electricity Generation

Coal40%

Oil10%

Hydro19%

Nuclear16%

Gas15%

worldwide

Austria

EU

Page 4: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Nuclear fission

1 kg Natururan ≐ 12.600 l Erdöl≐ 18.900 kg Steinkohle

Page 5: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Reaktortypen - 1

Page 6: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Reaktortypen - 2

Page 7: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

g CO2-äquivalent/kWh

4 3,72 22

150

430

909985

1031

0

200

400

600

800

1000

1200

Wasserkraft Kernkraft Windkraft Photovoltaik Gas undDampf

Gasturbine Erdöl Kohle

Source: EDF Environmental Report

Specific CO2-Emissions

Page 8: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

General problems• prompt criticality (~ 0,6% in case of U-235)

• Decay heat ( ca. 20 MW after 1 St.)

• Waste (pro KKW:18 kg/a Np-237; 70 kg/a Am-243 )

• Terrorism

Chernobyl

Fukushima

Page 9: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

TEMPERATUR RÜCKWIRKUNG

Doppler-Effekt

dTdp

dTd

dTdk

Absorpion Entkommfaktor

p(300K) = 0,861

p(1000K)= 0,835

Dieser Faktor ist immer negativ !!!

Page 10: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Xenon – Poison

XeXeJdtdXe

XeaJt

Xe

Te135 J135

(Xe135)*

Xe135 Cs135 Ba135

30 sec. 70 %

30 %

9,2 h 2,6 x 108 a6,7 h

a = 3,4x106 bSpaltprodukte

Page 11: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Xenon – Poison

Xe-135 Gleichgewicht

P = 0

Core Core

Regelstäbe

Regelstäbe

Page 12: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

VOID - KOEFFIZIENTC

= - 0,035

U

= - 0,08

= + 0,0064

= - 0,17

U

H2O

H2O

a = 0,33b a = 0,0034b

Page 13: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Cutaway of the Nuclear Unit 1.  Core2.  Piping of water lines3.  Lower biological shielding 4.  Distribution headers5.  Side biological shielding 6.  Drum-separator7.  Piping of steam-water lines8.  Upper biological shielding9.  Refuelling machine10.  Demountable plating11.  Fuel channel ducts12.  Downcorners13.  Pressure header14.  Suction header15.  Main circulation pump

Page 14: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Power Diagram - Accident

Page 15: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Cs-137 Contamination in Vienna since 1956

Erich Tschirf et al.

Page 16: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Radiation Exposure of the Public

Occupational radiation exposure ≈ 0.05 mSv

Chernobyl accident, nuclear weapon tests

< 0.01 mSvIonizing radiation and

radionuclides in research, industry and household

< 0.02 mSvIonizing radiation and

radionuclides in medicine ≈ 1.3 mSv

Ingestion of natural radionuclides ≈ 0.3 mSv

External exposure from natural sources

≈ 1 mSv

Inhalation of radon and its progeny ≈ 1.6 mSv

≈ 4.3 mSv

Page 17: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Problems• prompte Kritikalität (~ 0,6% bei U-235)

• Decay heat ( ca. 20 MW nach 1 St.)

• Abfall (pro KKW:18 kg/a Np-237; 70 kg/a Am-243 )

• Terrorismus

Chernobyl

Fukushima

Page 18: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Decay heat

2,00

2,02

0

1022,6 tTtPP

Nachzerfallswärme der Spaltprodukte

Page 19: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Fukushima

Page 20: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

20

Fukochima Daiichi 1-6

Siedewasserreaktor

I-1: 440 MW

I-2: 760 MW

I-3: 760 MW

I-4: 760 MW

I-5: 760 MW

I-6: 1067 MW

Page 21: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Normal operation Emergency operation Core melting

Venting H2O and H2H2 explosion Spent fuel pool problem

Page 22: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Fukushima↔Chernobyl

Page 23: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

• Das Japan Desaster ist eine Folge des Erdbebens der Stärke 9.

• Der Zumani ist eine Folge davon.

• Die Probleme mit den Kernkraftwerken sind ebenfalls eine Folge davon.

Fakten

Page 24: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Press Articles „on Fukushima“: until 14.04.2011

Germany43.640 All other EU

member states 9.300

Source: Meltwater News

Page 25: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Consequences

Increasing safety

passive safety measures

Man independent safety features

Increasing time for passive safety handling

Construction accepting large accidents

Standardisation, Modul Structure

Improving economic factors

Page 26: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

European Pressured Water Reactor - EPR

melted core pot

Page 27: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Problemfelder• prompte Kritikalität (~ 0,6% bei U-235)

• Nachzerfallswärme ( ca. 20 MW nach 1 St.)

• Waste (pro KKW:18 kg/a Np-237; 70 kg/a Am-243 )

• Terrorismus

Chernobyl

Fukushima

Page 28: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Waste

Radiotoxizität ohne und mit Transmutation

Page 29: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Spallation Process

~ 1 GeV

Each heavy nucleus can be transfered to

a light and short living one

Page 30: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Accelerator Driven Nuclear Systems

• nuclear transmutation• nuclear energy• no transient behavior

• high current accelerator• high activity handling• window problems

Probleme:

Page 31: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Fusion

MeVnHeHH 588,1710

42

31

21

Probleme:

100 Mill. Grad

kg Mengen von Tritium

Magneteinschluss

Page 32: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

ITER-FEAT Design

International Thermonuclear Experimental Reactor-Fusion Energy Amplifier TOKAMAK Design

Divertor

Central Solenoid

Outer Intercoil Structure

Toroidal Field Coil

Poloidal Field Coil

Machine Gravity Supports

Blanket Module

Vacuum Vessel

Cryostat

Port Plug (EC Heating)

Torus Cryopump

Page 33: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien
Page 34: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

SUMMARY

More nuclear energy

More efficient and safer installationsNuclear Transmutation as an OptionFusion in 50 Years ?In Europe and oversea

Page 35: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien
Page 36: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Comparison of Electricity Generating Costs (Finland 2008)

Page 37: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien
Page 38: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Abfall

Radiotoxizität ohne und mit Transmutation

Page 39: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Deutschland

Österreich

Page 40: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

__________________________Fortschrittliche Reaktoren - EPR

___________________________Otmar Promper Atominstitut der Österreichischen Universitäten

ReaktorgebäudeReaktorgebäude

zylindrisch

doppelschalig

gegen Absturz eines schnellfliegenden Militärflugzeuges ausgelegt

Page 41: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

__________________________Fortschrittliche Reaktoren - EPR

Opfermaterial zur Temperaturabsenkung

Ausbreitungsfläche

passive Einrichtungen zur Kühlung

Beherrschung von KernschmelzunfällenBeherrschung von Kernschmelzunfällen

Page 42: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien

Electricity Production in Germany (2008 – 2010)

TWh

0

20

40

60

80

100

120

140

160

2008

2009

2010

24% 23%

19%

13%

1%

6%

3%5%

2%

4%

57% Fossil23% Nuclear16% Renewables

14 % 13% 18% 15% 3% 17% 11%Installed capacity

Page 43: Nuclear Energy: Problems or Solution Helmut Rauch Atominstitut, TU-Wien