24
Nuclear Medicine François Bénard, MD, FRCPC BC Cancer Agency and University of Bri?sh Columbia

Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Nuclear  Medicine  

François  Bénard,  MD,  FRCPC  BC  Cancer  Agency  and    

University  of  Bri?sh  Columbia  

Page 2: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Nuclear  Medicine  101  

•  A  radioac?ve  atom  is  produced  in  a  nuclear  reactor  (fission,  neutron  enrichment)  or  cyclotron  (using  protons,  deuterons  or  alpha  par?cles)  

•  This  radioac?ve  atom  is  coupled  to  a  carrier  molecule  in  most  cases  

•  The  radioac?ve  compound  is  administered  to  pa?ents  (intravenous,  orally,  intradermal,  inhaled)  

Page 3: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

A  brief  history  of  Nuclear  Medicine  •  1930s:  Discovery  of  ar?ficial  isotopes,  notably  Iodine-­‐131  and  

Tc99m  •  First  treatment  in  1939  with  phosphorus-­‐32  •  First  treatment  with  iodine-­‐131  in  1946  •  Gamma  camera  (Anger)  and  Rec?linear  Scanner  (Cassen)  in  1950s  •  Thyroid  imaging  1950-­‐1960  •  Liver/spleen  scanning,  bone  imaging,  brain  tumour  localiza?on  

1960-­‐1970s  •  Positron  emission  tomography  in  1970s+  for  brain  imaging  •  Cardiac  imaging  1980s+  •  Cancer  imaging  in  the  1990s  and  beyond  

Page 4: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Some  defini?ons  

•  SPECT:  Single  photon  emission  computed  tomography  –  Three  dimensional  images  acquired  from  the  single  photon  emission  produced  by  gamma  emission  decay  

–  Typical  isotopes:  Tc-­‐99m,  In-­‐111,  Tl-­‐201,  I-­‐123,…  •  PET:  Positron  emission  tomography  –  Three  dimensional  images  acquired  from  the  dual  photon  emission  produced  by  the  annihila?on  of  a  positron  

–  Typical  isotopes:  C-­‐11,  F-­‐18,  Ga-­‐68,  O-­‐15,  Rb-­‐82,  …  

Page 5: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Techne?um-­‐99m,  the  medical  isotope  of  the  20th  century  

•  Element  43  discovered  by  Carlo  Perrier  and  Emilio  Segrè  in  1936    

•  Techne?um-­‐99  discovered  by  Seaborg  and  Segrè  at  the  Berkeley  Radia?on  Laboratory  

•  BNL,  1950s:  Tucker  and  Green  developed  the  first  99Mo/99mTc  generator  

•  BNL,  1960:  Powell  Richards,  presented  the  first  paper  on  the  generator.  

•  Richards  met  with  Paul  Harper  on  the  flight  to  Rome  and  spent  the  flight  “extolling  the  merits  of  99mTc”  

In  part  from  h,p://www.bnl.gov/bnlweb/history/Tc-­‐99m.asp  

Page 6: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Single  photon  emihers  in  Oncology  

99mTc  MDP  Bone  Scan  

99mTc  Sulfur  Colloid    Sen?nel  Node  Detec?on  

111In  Pentetreo?de  for  neuroendocrine  cancers  

99mTc  Sestamibi    Breast  Cancer  Detec?on  

Page 7: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

How  many  tests  are  done    in  Nuclear  Medicine?  

•  30,000  diagnos?c  tests  per  week  using  radiopharmaceu?cals  

•  30,000-­‐40,000  tests  per  day  in  USA  •  80-­‐90%  use  techne?um-­‐99m  

Page 8: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

PET  imaging  101  

Page 9: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Cancer  Imaging  Targets  BCCA/TRIUMF  

Page 10: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Molecular  imaging:    beyond  imaging  the  structure  

•  Tradi?onal  imaging  methods  use  differences  in  organ  morphology,  appearance  to  make  a  diagnosis  

•  Func?onal  imaging  methods  use  radioisotopes  and  contrast  agents  to  look  at  organ  func?on  

•  Molecular  imaging  methods  use  specific  probes  (usually  radioac?ve)  to  measure  biochemical  processes  and  proteins  

Page 11: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Example:  Glucose  metabolism  •  Many  oncogene  pathways  increase  glycolysis  by  cancer  cells  (par?cularly  PI3K/Akt  pathway)  

•  U?liza?on  of  glucose  increases  markedly  •  18F-­‐FDG  (Fluorodeoxyglucose)  is  a  glucose  analogue  that  is  trapped  in  cancer  cells  in  propor?on  to  glucose  u?liza?on  

•  Discovered  in  a  US  government  laboratory  •  Used  in  cancer  diagnosis  worldwide  

Page 12: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Staging  Cancer  with  PET/CT  

Page 13: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Response  to  experimental  drugs  

Baseline  

1  month  amer  onset  of  therapy  

Page 14: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Imaging  hormone  receptors  

•  “Receptors”  are  proteins  expressed  in  cells  to  which  a  hormone  or  drug  will  bind  

•  Estrogen  receptors  are  expressed  in  80%  of  breast  cancer  and  s?mulate  cancer  growth  

•  The  pathologist  will  look  for  these  receptors  when  examining  a  biopsy  

•  What  happens  when  the  cancer  spreads  elsewhere?  

Page 15: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Measuring  response  to  hormone  therapy  

Baseline  

Amer  2  months  (aromatase  inhibitor)  

Page 16: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Are  tumours  all  the  same  within  a  given  pa?ent?  

Proven  inguinal  breast  cancer  metastases,  some  with  increased  FDG  uptake  but  no  FES  uptake  (arrow).  18F-­‐FDG  PET  scan,  top  row;  18F-­‐FES  PET  scan,  bohom  row  

Page 17: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Canadian  Cyclotron  Infrastructure  •  18  Cyclotrons  in  Canada  in  11  facili?es  – 6  in  Vancouver  – 2  each  in  Hamilton,  Toronto,  Montreal  – 1  in  Edmonton,  Winnipeg,  London  (ON),  Ohawa,  Sherbrooke,  Halifax    

•  7  new  cyclotrons  planned  or  purchased  – Edmonton,  Saskatoon,  Toronto,  Thunder  Bay,  Montreal,  Sherbrooke,  St-­‐John  

Worldwide:  Over  350  cyclotrons  in  2006  

Page 18: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced
Page 19: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Can  Cyclotrons  help  prevent  isotope  shortages?  

•  Distribu?on  model  established  for  18F-­‐Fluorodeoxyglucose  (110  min  half-­‐life)  

•  Mixed  model  possible  for  18F  (1  h  irradia?on)  and  99mTc  produc?on  (3-­‐6  h  irradia?ons)  

•  Take  advantage  of  exis?ng  infrastructure  •  Proof  of  concept  established  in  1971  (Beaver  and  Hupf)  

Page 20: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Challenges  for  cyclotron  produc?on  of  Tc99m  

Target  Prepara*on  

Techne*um  extrac*on/isola*on  

100Mo  recycling  

Designing  new  targets  for  exis*ng  cyclotrons  

Calculate  theore*cal  yields  

Assess  impact  on  pa*ent  dosimetry   Assess  prac*cal  usable  yields  

Demonstrating Proof of Conceptg p

TargetTarget Manufacture

Target TransferTarget

Cyclotron Target StationCyclotron Target Station

Target Holder99mTc Purification

Theoretical dosimetry estimations for radioisotopes produced by proton-induced reactions 11

Figure 3. The per cent difference between the total effective doses following the injections of sestamibiTM labeledwith technetium produced in a cyclotron (mixture-Tc) and obtained from the reactor produced generator. Cyclotronproduction corresponded to 6 h irradiation of a thick target A (left) and target C (right) with proton beams. Dosesresulting from target thicknesses leading to beam energy degradation from 16-, 19-, 24–10 MeV and from 16-, 19-,24–6 MeV are compared for injection periods varying from 0 h–24 h after EOB. Dark color column bars representthe dose differences for beam energy decreasing to 6 MeV, while the light color bars are for the energy decreasing to10 MeV.

included in this table. The naturally thick Mo target was also not included since it is clear thatthe dosimetry from the use of natural Mo would be prohibitive. Figure 2 presents these datain the graphical form for sestamibiTM injections labeled with technetium produced using A-and C-enriched targets.

In order to investigate the effect of target thickness on absorbed doses, calculations wereperformed for technetium products obtained when irradiating target thicknesses that wouldresult in proton beam degradation from 16–10, 19–10, 24–10 MeV and from 16–6, 19–6 and24–6 MeV. An example of these data is presented in figure 3. The per cent difference betweeneffective doses after the injections of sestamibiTM labeled with technetium produced in acyclotron and in a reactor is analyzed. Cyclotron production corresponded to 6 h irradiationsof enriched targets A and C by 200 µA proton beam. Target thicknesses degrading beamenergy from 16, 19 and 24 MeV to 10 and 6 MeV, respectively, are compared for injectionperiods of 0, 2, 8, 12 and 24 h after EOB.

Additionally, radiation-absorbed doses to specific organs were calculated for 6 hirradiations by a 200 µA beam with energy 19–10 MeV of enriched targets A and C. Table 5shows the per cent dose difference between radiopharmaceuticals labeled with mixture-Tcproduced in a cyclotron when irradiating the enriched target A, and labeled with pure 99mTcobtained from a generator. Table 6 shows similar results for the enriched target C. Theratio of absorbed doses corresponding to injection periods varying between 0 and 24 h iscompared. Additionally, the same data are presented in figure 4, where the per cent differencesin radiation doses to organs with the most significant uptake after injection with technetiumlabeled sestamibiTM, phosphonates and pertechnetate at 0–24 h after EOB is shown. Thedashed lines in the figures represent the per cent dose differences using enriched targets A(97.39% enrichment), while the solid lines represent the per cent dose differences using target C(99.01% enrichment).

Page 21: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Impact  of  other  Tc  Radioisotopes  on  Pa?ent  Absorbed  Dose  

Theoretical dosimetry estimations for radioisotopes produced by proton-induced reactions 11

Figure 3. The per cent difference between the total effective doses following the injections of sestamibiTM labeledwith technetium produced in a cyclotron (mixture-Tc) and obtained from the reactor produced generator. Cyclotronproduction corresponded to 6 h irradiation of a thick target A (left) and target C (right) with proton beams. Dosesresulting from target thicknesses leading to beam energy degradation from 16-, 19-, 24–10 MeV and from 16-, 19-,24–6 MeV are compared for injection periods varying from 0 h–24 h after EOB. Dark color column bars representthe dose differences for beam energy decreasing to 6 MeV, while the light color bars are for the energy decreasing to10 MeV.

included in this table. The naturally thick Mo target was also not included since it is clear thatthe dosimetry from the use of natural Mo would be prohibitive. Figure 2 presents these datain the graphical form for sestamibiTM injections labeled with technetium produced using A-and C-enriched targets.

In order to investigate the effect of target thickness on absorbed doses, calculations wereperformed for technetium products obtained when irradiating target thicknesses that wouldresult in proton beam degradation from 16–10, 19–10, 24–10 MeV and from 16–6, 19–6 and24–6 MeV. An example of these data is presented in figure 3. The per cent difference betweeneffective doses after the injections of sestamibiTM labeled with technetium produced in acyclotron and in a reactor is analyzed. Cyclotron production corresponded to 6 h irradiationsof enriched targets A and C by 200 µA proton beam. Target thicknesses degrading beamenergy from 16, 19 and 24 MeV to 10 and 6 MeV, respectively, are compared for injectionperiods of 0, 2, 8, 12 and 24 h after EOB.

Additionally, radiation-absorbed doses to specific organs were calculated for 6 hirradiations by a 200 µA beam with energy 19–10 MeV of enriched targets A and C. Table 5shows the per cent dose difference between radiopharmaceuticals labeled with mixture-Tcproduced in a cyclotron when irradiating the enriched target A, and labeled with pure 99mTcobtained from a generator. Table 6 shows similar results for the enriched target C. Theratio of absorbed doses corresponding to injection periods varying between 0 and 24 h iscompared. Additionally, the same data are presented in figure 4, where the per cent differencesin radiation doses to organs with the most significant uptake after injection with technetiumlabeled sestamibiTM, phosphonates and pertechnetate at 0–24 h after EOB is shown. Thedashed lines in the figures represent the per cent dose differences using enriched targets A(97.39% enrichment), while the solid lines represent the per cent dose differences using target C(99.01% enrichment).

Hou  X,  Celler  A,  Grimes  J,  Benard  F,  Ruth  T.  Phys  Med  Biol  2012;  57:  1-­‐17.  

Page 22: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Other  Cyclotron  Isotopes  of  Interest  

•  89Zr  (t½  78.4  h),  to  label  proteins  and  an?bodies  •  68Ga  (t½  68.3  min)  and  44Sc  (t½  3.93  h),  the  techne?um  replacements  of  the  future?  

•  94mTc  (t½  53  min),  the  positron  emiung  techne?um  •  86Y  (t½  14.74  h),  a  diagnos?c  counterpart  to  90Y  used  in  therapy  

•  11C  (t½  20.4  min),  if  only  there  was  a  cyclotron  in  every  hospital!  

Can  all  be  produced  by  small  cyclotrons  <  10  MeV  

Page 23: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Conclusion  •  Cyclotrons  provide  us  with  medical  isotopes  that  play  a  cri?cal  role  in:  – Understanding  Cancer  Biology  – Diagnosis  and  Staging  of  Cancer  – Monitoring  response  and  Personalizing  the  treatment  approach  

•  A  large  number  of  exis?ng  cyclotrons  are  capable  of  securing  Tc99m  supply  

•  Many  other  useful  isotopes  can  be  produced  by  small  medical  cyclotrons  

Page 24: Nuclear(Medicine( - triumf.ca symposium... · Impactof(other( Tc(Radioisotopes(on(PaentAbsorbed(Dose(Theoretical dosimetry estimations for radioisotopes produced by proton-induced

Thank  You!  •  Ins?tu?ons:  TRIUMF,  BCCA,  UBC,  Lawson  Research  Ins?tute,  McMaster  University  

•  Collaborators:    – T.  Ruth,  P.  Schaffer,  K.  Lin,  A.  Celler,  S.  Zeisler,  E.  Asselin,  D.  Perrin,  S.  Aparicio,  S.  Dedhar,  D.  Yapp,  B.  Guérin.,  D.  Wilson  

•  Staff  and  Students:    – K.  Buckley,  J.  Klug,  V.  Haanemayer,  F.  Mesak,  M.  Vuckovic,  J.  Greene,  T.  Morley,  JP  Appiah,  X.  Hou,  M.  Pourghiasian,  G.  Dias,  J.  Lau,  J.  Pan,  P.  Tsao  

And  thanks  to  Jean-­‐Michel  for  suppor?ng  these  projects!