34
Nucleosynthesis of heavy elements in supernovae and neutron-star mergers Almudena Arcones

Nucleosynthesis of heavy elements in supernovae and neutron-star … · 2016. 4. 4. · Neutron star mergers: robust r-process 1.2M 1.4M 1.4M 1.4M 2M 1.4M nucleosynthesis of dynamical

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Nucleosynthesis of heavy elements in supernovae and 


    neutron-star mergers

    Almudena Arcones

  • Sneden, Cowan, Gallino 2008

    GoldSilver Eu

    Oldest observed starsThe very metal-deficient star

    HE 0107-5240

    Elemental abundances in:

    - ultra metal-poor stars and

    - solar system

    ‣Robust r-process for 56

  • The r-process: what do we know?

    • Solar system: residual r-process
 r-process peaks and path → fast neutron capture

    • Astrophysical environment: explosive and high neutron density

    • UMP stars: robust process from 2nd to 3rd peak
 contribution from other process(es) below 2nd peak

    • Chemical evolution: r-process does not occur in every 
 core-collapse supernovae

  • The r-process: what do we know?

    • Solar system: residual r-process
 r-process peaks and path → fast neutron capture

    • Astrophysical environment: explosive and high neutron density

    • UMP stars: robust process from 2nd to 3rd peak
 contribution from other process(es) below 2nd peak

    • Chemical evolution: r-process does not occur in every 
 core-collapse supernovae

    What do we need to know better?• Astrophysical site(s)

    • Nuclear physics

  • Where does the r-process occur?Core-collapse supernovae Neutron star mergers

    Cas A (Chandra X-Ray observatory) Neutron-star merger simulation (S. Rosswog)

    Neutron stars

    •neutrino-driven winds (Woosley et al. 1994,…)

    •jets (Winteler et al. 2012)

    •shocked surface layers (Ning, Qian, Meyer 2007)

    •neutrino-induced in He shell 
(Banerjee, Haxton, Qian 2011)

    •dynamic ejecta

    •neutrino-driven winds

    •evaporation disk

    (Lattimer & Schramm 1974, 
Freiburghaus et al. 1999, ....)

  • Neutrino-driven winds

    neutrons and protons form α-particles 
α-particles recombine into seed nuclei

    NSE → charged particle reactions / α-process → r-process

    weak r-process

    νp-processT = 10 - 8 GK 8 - 2 GK

    T < 3 GKfor a review see Arcones & Thielemann (2013)

  • time [s]

    Radi

    us [c

    m]

    ShockReverse

    shock

    Neutron

    star

    Arcones et al 2007

    Which elements are produced in neutrino winds?

    ❒mass element

  • time [s]

    Radi

    us [c

    m]

    ShockReverse

    shock

    Neutron

    star

    Arcones et al 2007

    Which elements are produced in neutrino winds?

    ❒mass element

    no r-

    proc

    ess

    Silver

  • Lighter heavy elements in neutrino-driven winds

    neutron richproton rich

    Arcones & Montes (2011) 
C.J. Hansen, Montes, Arcones (2014)

    Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

    Observation pattern reproduced!

    Production of p-nuclei

    νp-process weak r-process

    observations
Honda et al. 2006

  • Lighter heavy elements in neutrino-driven winds

    neutron richproton rich

    observations

    (Arcones & Montes, 2011)

    Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

    Observation pattern reproduced!

    Production of p-nuclei

    νp-process weak r-process

    40 50 60 70 80 90 100 110Entropy [kB/nuc]

    0.40

    0.41

    0.42

    0.43

    0.44

    0.45

    0.46

    0.47

    0.48

    0.49

    Ye

    Sr

    −8

    −7

    −6

    −5

    −4

    −3

    −2

    −1

    40 50 60 70 80 90 100 110Entropy [kB/nuc]

    0.510.520.530.540.550.560.570.580.590.600.610.620.630.640.650.66

    Ye

    Sr

    −15−14−13−12−11−10−9−8−7−6−5

    Arcones & Bliss (2014)

  • Lighter heavy elements: Sr - AgUltra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):


    Travaglio et al. 2004: solar=r-process+s-process+LEPP

    Montes et al. 2007: solar LEPP ~ UMP LEPP → unique

    Are Honda-like stars the outcome of one nucleosynthesis event or the combination of several?

    log ε

    Z

    log ε

    Z

    or

  • Nucleosynthesis componentsAbundance of many UMP stars can be explained by two components:

    C.J. Hansen, Montes, Arcones (2014)

    Component abundance pattern: YH and YL

    Fit abundance as combination of components:

    Ycalc(Z) = (CHYH(Z) + CLYL(Z)) · 10[Fe/H]

    BS16089-013

    = 0.152χ

    -3

    -2

    -1

    0

    log

    ∈lo

    g∈

    -3

    -2

    -1

    0

    1

    LEPP

    r-process

    Fit

    2χ = 3.98

    35 7570656055504540

    Atomic number

    H-componentL-component

  • Sr/YSr/ZrSr/Ag

    L-component in neutrino-driven winds

    Observations point to
proton-rich conditions

    Nuclear physics uncertainties?

    observations

    observations

    observations

  • Key reactions: weak r-process

    (α,n)

    Bliss, Arcones, Montes, Pereira (in prep.)

    10−9

    10−8

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    abun

    danc

    e

    Ye = 0.45baselineλ(α,n) · 10 for Z = 10− 30λ(α,n) · 0.1 for Z = 10− 30

    10 15 20 25 30 35 40 45 50 55

    Z

    10−9

    10−8

    10−7

    10−6

    10−5

    10−4

    10−3

    abun

    danc

    e

    Ye = 0.45baselineλ(α,n) · 10 for Z = 30− 40λ(α,n) · 0.1 for Z = 30− 40

  • Astrophysical site 


    Origin of elements from Sr to Ag

    [Fe/H]

    [Sr/F

    e]

    Hansen et al. 2013Nucleosynthesis:
identify key reactions

    Observations

    Chemical 
evolution

    ν wind

  • Neutron star mergers

    Rosswog 2013

    disk evaporation

    Ejecta from three regions:

    • dynamical ejecta

    • neutrino-driven wind

    • disk evaporation


  • Neutron star mergers: robust r-process

    1.2M� � 1.4M� 1.4M� � 1.4M� 2M� � 1.4M�

    nucleosynthesis of dynamical ejecta 
robust r-process:

    - extreme neutron-rich conditions (Ye =0.04)

    - several fission cycles

    Korobkin, Rosswog, Arcones, Winteler (2012)

    see also Bauswein, Goriely, and Janka

    Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo

    Ramirez-Ruiz, Roberts, ...

    Right conditions for a successful r-process 
(Lattimer & Schramm 1974, Freiburghaus et al. 1999)

  • Neutron star mergers: robust r-process

    1.2M� � 1.4M� 1.4M� � 1.4M� 2M� � 1.4M�

    nucleosynthesis of dynamical ejecta 
robust r-process:

    - extreme neutron-rich conditions (Ye =0.04)

    - several fission cycles

    Korobkin, Rosswog, Arcones, Winteler (2012)

    see also Bauswein, Goriely, and Janka

    Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo

    Ramirez-Ruiz, Roberts, ...

    Right conditions for a successful r-process 
(Lattimer & Schramm 1974, Freiburghaus et al. 1999)

  • 4 3 2 1

    Neutron star mergers: neutrino-driven windPerego et al. (2014)3D simulations after merger

    disk and neutrino-wind evolution

    neutrino emission and absorption

    Nucleosynthesis: 17 000 tracers

    see also
Fernandez & Metzger 2013, Metzger & Fernandez 2014,
Just et al. 2014, Sekiguchi et al.

    Martin et al. (2015)

  • Neutron star mergers: neutrino-driven wind

    Martin et al. (2015)

  • Neutron star mergers: neutrino-driven wind

    Martin et al. (2015)

  • Time and angle dependencyBlack hole formation determines time for wind nucleosynthesis 
(Fernandez & Metzger 2013, Kasen et al. 2015)

    Early times: low Ye: heavy elements

    Late times: Ye ~0.35: lighter heavy elements

    angle dependency

    Martin et al. (2015)

  • Time and angle dependencyBlack hole formation determines time for wind nucleosynthesis 
(Fernandez & Metzger 2013, Kasen et al. 2015)

    Early times: low Ye: heavy elements

    Late times: Ye ~0.35: lighter heavy elements

    angle dependency

    Martin et al. (2015)

  • dynamical ejecta

    disk ejecta

    Wind and dynamic ejectaWind ejecta complement dynamic ejecta

    Complete mixing: solar system abundances and UMP stars

    Martin et al. (2015)

  • dynamical ejecta

    disk ejecta

    Wind and dynamic ejectaWind ejecta complement dynamic ejecta

    Complete mixing: solar system abundances and UMP stars

    Partial mixing: Honda-like star?

    Martin et al. (2015)

  • Nuclear physics input

    Erler et al. (2012)

    nuclear masses, beta decay, reaction rates (neutron capture), fission

  • Impact of nuclear masses

    • Different mass models

    Mendoza-Temis et al. 2015

    Meng-Ru Wu talk

    e.g.,

    Wanajo et al. 2004

    Farouqi et al. 2010,

    Arcones & Martinez-Pinedo 2011

    Goriely et al. 2013

    • Sensitivity studies
Monte Carlo: all masses ± 1MeV

Mumpower, Surman et al. 2015, 2016

  • Abundances based on density functional theory

    - six sets of different parametrisation (Erler et al. 2012)

    - two realistic astrophysical scenarios: jet-like sn and neutron star mergers

    First systematic uncertainty band 
for r-process abundances

    Uncertainty band depends on A, 
in contrast to homogeneous band for all A
e.g., Mumpower et al. 2015

    Can we link masses to r-process abundances?

    Nuclear masses: systematic uncertainty

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy

    Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium

    Neutron capture

    Beta decay

    S2n/2 = 1.5 MeV

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy

    Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium

    Neutron capture

    Beta decay

    S2n/2 = 1.5 MeV

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy: abundances

    freeze-out abundances before decay

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy: abundances

    freeze-out abundances before decay → final abundances

    neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011)

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • Two neutron separation energy: abundances

    freeze-out abundances before decay → final abundances

    neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011)

    Martin, Arcones, Nazarewicz, Olsen (2016)

  • ConclusionsHow many r-processes? How many astrophysical sites?lighter heavy elements (Sr-Y-Zr-...-Ag): neutrino-driven winds 


    heavy r-process: mergers: dynamical, wind, disk evaporation

    jet-like supernovae

    Improved supernova and merger simulations: EoS, neutrino rates

    Neutron-rich nuclei: experiments with radioactive beams, theory

    Observations: oldest stars, kilo/macronovae, 
 neutrinos, gravitational waves, ...

    Chemical evolution models

    Needs