Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

  • Upload
    lazhor

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    1/36

    ISSN0

    249-6399

    appor t

    de r ec h er c he

    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

    Numerical Analysis of Different Vibrational

    Relaxation Models for Master Equations.

    F. Mallinger,

    N 3263

    Septembre 1997

    THEME 4

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    2/36

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    3/36

    N u m e r i c a l A n a l y s i s o f D i e r e n t V i b r a t i o n a l R e l a x a t i o n

    M o d e l s f o r M a s t e r E q u a t i o n s .

    F . M a l l i n g e r ,

    T h e m e 4 | S i m u l a t i o n e t o p t i m i s a t i o n

    d e s y s t e m e s c o m p l e x e s

    P r o j e t M 3 N

    R a p p o r t d e r e c h e r c h e n 3 2 6 3 | S e p t e m b r e 1 9 9 7 | 3 3 p a g e s

    A b s t r a c t : W e p r e s e n t i n t h i s r e p o r t t w o m o d e l i z a t i o n s o f v i b r a t i o n a l r e l a x a t i o n p r o c e s s e s i n

    a g a z : t h e L a n d a u - T e l l e r ( L T ) m o d e l a n d t h e m a s t e r e q u a t i o n s ( M E ) . W e g i v e d i e r e n t m o d e l s

    f o r V T a n d V V r a t e c o n s t a n t s . W e p r o p o s e a n a l g o r i t h m t o s o l v e t h e e q u a t i o n s o f v i b r a t i o n a l

    r e l a x a t i o n ( L T o r M E ) c o u p l e d w i t h c o n s e r v a t i o n e q u a t i o n s o f m o m e n t u m a n d t o t a l e n e r g y . B o t h

    m o d e l s a r e c o m p a r e d o n t h e c o m p u t a t i o n s o f t h e o w s a r o u n d a n i n n i t e c y l i n d e r , a t d i e r e n t

    M a c h n u m b e r s .

    K e y - w o r d s : M a s t e r e q u a t i o n s , L a n d a u - T e l l e r , v i b r a t i o n a l r a t e s c o e c i e n t s , n i t e v o l u m e s

    t e c h n i q u e s .

    ( R e s u m e : t s v p )

    Unite de recherche INRIA RocquencourtDomaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

    Telephone : (33 1) 39 63 55 11 Telecopie : (33 1) 39 63 53 30

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    4/36

    A n a l y s e n u m e r i q u e d e d i e r e n t s m o d e l e s d e r e l a x a t i o n

    v i b r a t i o n n e l l e p o u r l e s E q u a t i o n s m a s t e r .

    R e s u m e : N o u s p r e s e n t o n s d e u x m o d e l i s a t i o n s d e s p r o c e s s u s d e r e l a x a t i o n v i b r a t i o n n e l l e d a n s

    u n g a z : l e m o d e l e d e L a n d a u - T e l l e r ( L T ) e t l e s e q u a t i o n s m a s t e r ( M E ) . N o u s d o n n o n s d i e r e n t s

    m o d e l e s d e t a u x d e r e l a x a t i o n V T e t V V . N o u s p r o p o s o n s u n a l g o r i t h m e d e r e s o l u t i o n d e s e q u a t i o n s

    d e r e l a x a t i o n ( L T o u M E ) c o u p l e e s a u x e q u a t i o n s d e c o n s e r v a t i o n s d e l a q u a n t i t e d e m o u v e m e n t e t

    d e l ' e n e r g i e t o t a l e . L e s d e u x m o d e l e s d e r e l a x a t i o n s o n t c o m p a r e s p o u r l e c a l c u l d ' u n e c o u l e m e n t

    a u t o u r d ' u n c y l i n d r e i n n i , a d i e r e n t s n o m b r e s d e M a c h .

    M o t s - c l e : E q u a t i o n s m a s t e r , L a n d a u - T e l l e r , t a u x d e r e l a x a t i o n v i b r a t i o n n e l l e , m e t h o d e d e s

    v o l u m e s n i s .

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    5/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 3

    1 I n t r o d u c t i o n

    W h e n c o m p u t i n g s u p e r s o n i c o r h y p e r s o n i c o w s , v i b r a t i o n a l e n e r g y t r a n s f e r b e t w e e n d i a t o m i c

    m o l e c u l e s c a n p l a y a n i m p o r t a n t r o l e . T h e m o s t c l a s s i c a l m o d e l , t a k i n g i n t o a c c o u n t v i b r a t i o n a l

    p r o c e s s e s , i s t h e s o - c a l l e d L a n d a u - T e l l e r m o d e l . T h i s m o d e l s u p p o s e s t h e p o p u l a t i o n o f e a c h

    v i b r a t i o n a l l e v e l t o b e g i v e n b y t h e B o l t z m a n n e q u i l i b r i u m d i s t r i b u t i o n . U n f o r t u n a t e l y , i t i s n o t

    v a l i d f o r h i g h M a c h n u m b e r o w s b e c a u s e o f t h e p r e s e n c e t h e r e o f s t r o n g n o n e q u i l i b r i u m e e c t s .

    I t i s n e c e s s a r y t h e r e f o r e t o c o n s i d e r a m o r e a p p r o p r i a t e m o d e l t o c o m p u t e t h e p o p u l a t i o n c o r -

    r e s p o n d i n g t o e a c h v i b r a t i o n a l l e v e l . T h i s i s a c h i e v e d b y t h e m a s t e r e q u a t i o n s . T h e y g o v e r n t h e

    p a r t i c l e m o t i o n a m o n g d i e r e n t q u a n t u m s t a t e s . T h e s e e q u a t i o n s a r e c o u p l e d w i t h t h e c l a s s i c a l

    e q u a t i o n s ( E u l e r o r N a v i e r - S t o k e s ) o f g a s d y n a m i c s .

    I n t h e s e c o n d s e c t i o n w e r e c a l l t h e g o v e r n i n g e q u a t i o n s o f a o w : t h e E u l e r e q u a t i o n s , t h e

    L a n d a u - T e l l e r e q u a t i o n a n d t h e m a s t e r e q u a t i o n s . W e d e t a i l V T a n d V V p r o c e s s e s f o r m a s t e r

    e q u a t i o n s a n d w e d e s c r i b e d i e r e n t e x i s t i n g m o d e l s o f V T a n d V V r e l a x a t i o n r a t e s . T h e n e x t

    s e c t i o n i s d e v o t e d t o t h e n u m e r i c a l a p p r o x i m a t i o n o f t h e d i e r e n t e q u a t i o n s m e n t i o n e d a b o v e .

    F i n a l l y w e g i v e s o m e n u m e r i c a l r e s u l t s t o c o m p a r e s o l u t i o n s o b t a i n e d b y s o l v i n g e i t h e r L a n d a u -

    T e l l e r e q u a t i o n o r m a s t e r e q u a t i o n s .

    2 T h e g o v e r n i n g e q u a t i o n s

    2 . 1 T h e E u l e r e q u a t i o n s o f c o n s e r v a t i o n

    T h e E u l e r e q u a t i o n s d e s c r i b i n g t h e m a s s , m o m e n t u m a n d e n e r g y b a l a n c e w r i t t e n i n c o n s e r v a t i o n

    f o r m , a r e

    @

    @ t

    +

    @

    @ x

    ( u ) = 0( 1 )

    @ u

    @ t

    +

    @

    @ x

    ( u u + p I ) = 0( 2 )

    @ e

    @ t

    +

    @

    @ x

    ( ( e + p ) u ) = 0( 3 )

    w h e r e e i s t h e t o t a l s p e c i c e n e r g y . C o n s i d e r i n g a g a s o f o n e d i a t o m i c s p e c i e s , t h e t o t a l e n e r g y e

    c a n b e w r i t t e n

    e =

    u

    2

    2

    +

    5

    2

    R T + e

    v

    ( 4 )

    w h e r e e

    v

    i s t h e v i b r a t i o n a l s p e c i c e n e r g y , t h e s e c o n d t e r m o f ( 4 ) i s t h e c o n t r i b u t i o n o f t r a n s l a -

    t i o n a l a n d r o t a t i o n a l m o d e s t o t h e i n t e r n a l e n e r g y a n d t h e r s t t e r m i s t h e k i n e t i c e n e r g y . T h e

    t e m p e r a t u r e T i s t h e t r a n s l a t i o n a l - r o t a t i o n a l t e m p e r a t u r e . T h a t m e a n s t h a t t h e t r a n s l a t i o n a l a n d

    r o t a t i o n a l d e g r e e s o f f r e e d o m a r e i n t h e r m a l e q u i l i b r i u m . F i n a l l y , t h e t h e r m o d y n a m i c p r e s s u r e ,

    t h a t d o e s n o t d e p e n d o n i n t e r n a l d e g r e e s o f f r e e d o m , i s g i v e n b y t h e s t a n d a r d s t a t e e q u a t i o n

    p = R T :( 5 )

    2 . 2 L a n d a u - T e l l e r e q u a t i o n f o r v i b r a t i o n a l r e l a x a t i o n

    T h e L a n d a u - T e l l e r e q u a t i o n m o d e l s t h e t e m p o r a l r a t e o f c h a n g e o f v i b r a t i o n a l e n e r g y e

    v

    . T h e p r o -

    c e s s i s c a u s e d b y t h e m o l e c u l a r c o l l i s i o n s w h i c h l e a d t o t h e e n e r g y e x c h a n g e s b e t w e e n t r a n s l a t i o n a l -

    r o t a t i o n a l a n d v i b r a t i o n a l m o d e s . H e r e , t h e m o l e c u l e s a r e c o n s i d e r e d a s h a r m o n i c o s c i l l a t o r s a n d

    t h e t r a n s i t i o n s c a n o n l y o c c u r b e t w e e n t h e a d j a c e n t l e v e l s ; t h e y a r e m o n o q u a n t u m . F u r t h e r m o r e

    t h e p a r t i c l e d i s t r i b u t i o n i s s u p p o s e d t o b e t h e B o l t z m a n n e q u i l i b r i u m d i s t r i b u t i o n

    f

    i

    =

    i

    =

    e x p

    ?

    "

    i

    k T

    Q

    i = 1 2 ; : : : ;( 6 )

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    6/36

    4 F . M a l l i n g e r ,

    w h e r e "

    i

    = ( i ? 1 ) h !

    e

    , a r e t h e p e r m i s s i b l e e n e r g y s t a t e s f o r a h a r m o n i c o s c i l l a t o r , !

    e

    b e i n g t h e

    f r e q u e n c y o f t h e o s c i l l a t o r , h t h e P l a n k c o n s t a n t a n d Q i s t h e p a r t i t i o n f u n c t i o n w h i c h i s w r i t t e n

    a s

    Q =

    1

    X

    i = 1

    e x p

    ?

    ( i ? 1 ) h !

    e

    k T

    =

    1 ? e x p

    ?

    h !

    e

    k T

    1

    ( 7 )

    I n t r o d u c i n g t h e c h a r a c t e r i s t i c v i b r a t i o n a l t e m p e r a t u r e

    v

    =

    h !

    e

    k

    , e q u a t i o n ( 7 ) c a n b e w r i t t e n a s

    Q =

    1 ? e x p

    ?

    v

    T

    1

    ( 8 )

    F i n a l l y , t h e d i s t r i b u t i o n f

    i

    c a n b e w r i t t e n

    f

    i

    =

    e x p

    ? ( i ? 1 )

    v

    T

    1 ? e x p

    ?

    v

    T

    1

    i = 1 2 ; : : : :( 9 )

    c o r r e s p o n d i n g t o a v i b r a t i o n a l e n e r g y a t e q u i l i b r i u m g i v e n b y

    e

    v

    =

    1

    X

    i = 0

    f

    i

    "

    i

    =

    R

    v

    e x p

    v

    T

    ? 1

    ( 1 0 )

    H e r e T i s a l o c a l t e m p e r a t u r e .

    C o n s i d e r i n g t h e r a t e o f c h a n g e o f t h e p o p u l a t i o n o f e a c h q u a n t u m l e v e l i t i s e a s y t o d e r i v e t h e

    b a l a n c e e q u a t i o n f o r v i b r a t i o n a l e n e r g y 2 3 ] , 2 ] , w h i c h i s

    @ e

    v

    @ t

    +

    @

    @ x

    ( e

    v

    u ) = S

    v

    ( 1 1 )

    w h e r e e

    v

    i s t h e v i b r a t i o n a l e n e r g y . T h e s o u r c e t e r m o f e q u a t i o n ( 1 1 ) i s w r i t t e n a s f o l l o w s

    S

    v

    =

    e

    v

    ? e

    v

    ( 1 2 )

    w i t h a r e l a x a t i o n t i m e . T h a t m e a n s t h a t t h e v i b r a t i o n a l e n e r g y o f t h e o s c i l l a t o r s r e l a x t o w a r d s

    t h e e q u i l i b r i u m e

    v

    T h e r e l a x a t i o n t i m e i s w r i t t e n i n t h e g e n e r a l f o r m

    =

    A

    p

    e x p

    B

    T

    1 = 3

    + C

    ( 1 3 )

    w h e r e A B a n d C a r e s o m e c o n s t a n t s d e d u c e d f r o m e x p e r i m e n t s . I n c o m p u t a t i o n s w e w i l l c o n s i d e r

    t h e c o n s t a n t s p r o p o s e d b y B l a c k m a n 8 ]

    A = 7 1 2 1 0

    9

    B = 1 2 4 0 7 C = 0

    a s w e l l a s t h e c o n s t a n t s p r o p o s e d b y M i l l i k a n a n d W h i t e 1 8 ]

    A = 1 B = 2 2 1 3 5 C = ? 2 4 8 4

    T h e v i b r a t i o n a l t e m p e r a t u r e T

    v

    i s d e t e r m i n e d f r o m t h e e q u a t i o n ( 1 0 ) . R e p l a c i n g T b y T

    v

    , w e w r i t e

    T

    v

    =

    v

    1 + l o g

    R

    v

    e

    v

    1

    ( 1 4 )

    N o t e t h a t t h e c o n v e n t i o n o f z e r o e n e r g y f o r t h e g r o u n d s t a t e ( i e . t h e r s t q u a n t u m l e v e l ) h a s b e e n

    a p p l i e d .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    7/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 5

    2 . 3 T h e m a s t e r e q u a t i o n s f o r v i b r a t i o n a l r e l a x a t i o n

    A s w e h a v e s e e n i n t h e p r e v i o u s s e c t i o n , t h e L a n d a u - T e l l e r m o d e l a s s u m e s s o m e r e s t r i c t i v e h y p o t h e -

    s i s i m p o s e d o n t h e v i b r a t i o n a l p h e n o m e n a . A s t h e t e m p e r a t u r e i n c r e a s e s , s t r o n g n o n e q u i l i b r i u m

    e e c t s h a v e t o b e t a k e n i n t o a c c o u n t . I n p a r t i c u l a r t h e B o l t z m a n n d i s t r i b u t i o n i s n o l o n g e r a v a l i d

    d e s c r i p t i o n o f t h e p o p u l a t i o n o f e a c h q u a n t u m n u m b e r . F u r t h e r m o r e , i t i s n e c e s s a r y t o c o n s i d e r

    t h e m o l e c u l e s a s a n h a r n o n i c o s c i l l a t o r s . T o t h i s e n d , w e i n t r o d u c e t h e m a s t e r e q u a t i o n s ( M E ) .

    T h e y d e s c r i b e t h e i n d i v i d u a l e v o l u t i o n o f t h e p o p u l a t i o n o f e a c h v i b r a t i o n a l l e v e l . T h e y r e a d

    @

    i

    @ t

    +

    @

    i

    u

    @ x

    = ( S

    i

    v

    )

    V T

    + ( S

    i

    v

    )

    V V

    i = 1 2 ; : : : ; l

    m

    ( 1 5 )

    w h e r e

    i

    i s t h e d e n s i t y o f l e v e l i . T h e t e r m ( S

    i

    v

    )

    V T

    g i v e s t h e v a r i a t i o n o f t h e i t h l e v e l ' s p o p u l a -

    t i o n d u e t o t h e v i b r a t i o n a l - t r a n s l a t i o n a l e n e r g y e x c h a n g e s , a n d ( S

    i

    v

    )

    V V

    t h e v a r i a t i o n d u e t o t h e

    v i b r a t i o n a l - v i b r a t i o n a l e n e r g y e x c h a n g e s .

    T h e M E a r e c o u p l e d w i t h E u l e r e q u a t i o n s ( 1 ) - ( 2 ) - ( 3 ) . T o b e c o h e r e n t w i t h t h e E u l e r m o d e l

    w e h a v e t o n e g l e c t t h e d i u s i v e t e r m s i n t h e M E . T h e c o u p l i n g i s r e a l i z e d t h a n k s t o t h e e n e r g y

    e q u a t i o n ( 4 ) . T h e m e a n v i b r a t i o n a l e n e r g y , e

    v

    , i s o b t a i n e d b y s u m m i n g t h e a m o u n t o f e n e r g i e s o f

    a l l v i b r a t i o n a l l e v e l , a s s h o w n b y t h e f o l l o w i n g f o r m u l a

    e

    v

    =

    N

    m

    m

    X

    i = 1

    i

    "

    i

    ( 1 6 )

    w h e r e N i s t h e A v o g a d r o n u m b e r a n d m t h e m o l a r m a s s o f t h e m o l e c u l e .

    I n t h e c a s e o f a n h a r m o n i c o s c i l l a t o r , t h e l o c a l v i b r a t i o n a l e n e r g y "

    i

    i s g i v e n b y

    "

    i

    = k

    v

    i ?

    1

    2

    1 ?

    k

    v

    4 E

    d

    i ?

    1

    2

    1 = 1 2 ; : : : ;( 1 7 )

    w h e r e k i s t h e B o l t z m a n n c o n s t a n t , E

    d

    i s t h e d i s s o c i a t i o n e n e r g y a n d i s a p a r a m e t e r e q u a l t o 0 i n

    t h e c a s e o f h a r m o n i c o s c i l l a t o r a n d 1 i n t h e c a s e o f a n h a r m o n i c o s c i l l a t o r . A s t h e q u a n t u m n u m b e r

    i n c r e a s e s t h e e n e r g y j u m p b e t w e e n a d j a c e n t l e v e l s d e c r e a s e s . T h e m a x i m u m q u a n t u m l e v e l l

    m

    i s

    s u c h t h a t i t s v i b r a t i o n a l e n e r g y l e v e l i s l e s s t h a n t h e d i s s o c i a t i o n e n e r g y E

    d

    . F o r n i t r o g e n ( N

    2

    )

    m o l e c u l e s , l

    m

    i s e q u a l t o 4 6 . B u t i n p r a c t i c e , w e w i l l n o t c o n s i d e r a l l q u a n t u m l e v e l s b e c a u s e o f a n

    e v i d e n t p r o b l e m o f c o m p u t a t i o n a l t i m e .

    T h e v i b r a t i o n a l t e m p e r a t u r e T

    v

    i s n a l l y d e t e r m i n e d a c c o r d i n g t o t h e e x p r e s s i o n f o r v i b r a t i o n a l

    e n e r g y i n e q u i l i b r i u m

    e

    v

    =

    N

    m

    m

    X

    i = 1

    "

    i

    e x p

    ?

    "

    i

    k T

    v

    m

    X

    i = 1

    e x p

    ?

    "

    i

    k T

    v

    ( 1 8 )

    F r o m a p r a c t i c a l p o i n t o f v i e w , i t i s n e c e s s a r y t o u s e t h e N e w t o n p r o c e d u r e t o c o m p u t e t h e

    v i b r a t i o n a l t e m p e r a t u r e f r o m ( 1 8 ) .

    I n t h e f o l l o w i n g s e c t i o n w e d e t a i l t h e V T a n d V V p r o c e s s u s i n g t h e n o t a t i o n o f 1 8 ] .

    T h e V T t r a n s i t i o n s

    D u r i n g V T e n e r g y e x c h a n g e s , a m o l e c u l e g a i n s o r l o s e s o n e o r s e v e r a l q u a n t u m s t a t e s d u e t o a

    c o l l i s i o n . T h e c h a n g e o f v i b r a t i o n a l q u a n t u m l e v e l a e c t s o n l y o n e m o l e c u l e o f t h e c o l l i d i n g p a i r

    a n d c h a n g e s t h e r e l a t i v e k i n e t i c e n e r g y t o c o n s e r v e t h e t o t a l e n e r g y o f t h e c o l l i d i n g p a i r d u r i n g t h e

    c o l l i s i o n .

    C o n s i d e r i n g i t h l e v e l , t h e p o p u l a t i o n c h a n g e s a c c o r d i n g t o t h e f o l l o w i n g r e a c t i o n s

    N

    2

    ( i + j ) + N

    2

    *

    )

    N

    2

    ( i ) + N

    2

    ( 1 9 )

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    8/36

    6 F . M a l l i n g e r ,

    i = 1 2 ; : : : ; l

    m

    ? 1 j = 1 ; : : : ; l

    m

    ? i

    N

    2

    ( i ) + N

    2

    *

    )

    N

    2

    ( i ? j ) + N

    2

    ( 2 0 )

    i = 2 ; : : : ; l

    m

    j = 1 ; : : : ; i ? 1

    C o n s i d e r i n g r e a c t i o n ( 1 9 ) , t h e f o r w a r d r e a c t i o n l e a d s t o t h e g a i n o f m o l e c u l e s f o r l e v e l i w h i l e

    b a c k w a r d r e a c t i o n l e a d s t o t h e l o s s o f m o l e c u l e s f o r t h e s a m e l e v e l a n d i n v e r s e l y c o n s i d e r i n g r e a c t i o n

    ( 2 0 ) .

    T h e v a r i a t i o n o f i t h l e v e l p o p u l a t i o n ( S

    i

    v

    )

    V T

    , d u e t o V T p r o c e s s e s , i s t h e d i e r e n c e o f b a l a n c e

    i n r e a c t i o n s ( 1 9 ) a n d ( 2 0 ) . I t r e a d s

    ( S

    i

    v

    )

    V T

    = m

    m

    1

    X

    j = 1

    j

    i

    ? m

    i 1

    X

    j = 1

    !

    j

    i

    i = 2 ; : : : ; l

    m

    ? 1( 2 1 )

    F o r t h e g r o u n d s t a t e , i e t h e r s t l e v e l , o n l y r e a c t i o n ( 1 9 ) i s v a l i d , a n d t h e b a l a n c e i s g i v e n b y

    ( S

    1

    v

    )

    V T

    = m

    m

    1

    X

    j = 1

    j

    1

    ( 2 2 )

    w h i l e f o r t h e l a s t l e v e l , o n l y r e a c t i o n ( 2 0 ) i s v a l i d , l e a d i n g t o

    ( S

    m

    v

    )

    V T

    = ? m

    i 1

    X

    j = 1

    !

    j

    m

    ( 2 3 )

    T h e r e a c t i o n r a t e s a r e g i v e n i n t e r m s o f p a r t i a l d e n s i t i e s a c c o r d i n g t o t h e s t a n d a r d r a t e e x p r e s s i o n s

    j

    i

    = F

    i + j i

    i + j

    m

    m

    ? B

    i i + j

    i

    m

    m

    ( 2 4 )

    i = 1 ; : : : ; l

    m

    ? 1 j = 1 ; : : : ; l

    m

    ? i

    !

    j

    i

    = F

    i i j

    i

    m

    ? B

    i j i

    i j

    m

    ( 2 5 )

    i = 2 ; : : : ; l

    m

    j = 1 ; : : : ; i ? 1

    T h e b a c k w a r d c o e c i e n t B i s c a l c u l a t e d f r o m t h e f o r w a r d c o e c i e n t F i n o r d e r t o g u a r a n t e e a

    p e r f e c t b a l a n c e i n e a c h i n d i v i d u a l r e a c t i o n

    B

    i j i

    = F

    i i j

    e x p

    ?

    "

    i

    ? "

    i j

    k T

    ( 2 6 )

    i = 2 ; : : : ; l

    m

    j = 1 ; : : : ; i ? 1

    I n t h e n e x t s e c t i o n w e p r o p o s e t w o d i e r e n t m o d e l s f o r t h e f o r w a r d c o e c i e n t r a t e s

    T h e V V t r a n s i t i o n s

    I n t h i s c a s e , b o t h p a r t i c l e s c h a n g e t h e i r q u a n t u m l e v e l s u c h t h a t t h e e n e r g y l o s t b y o n e m o l e c u l e

    i s g a i n e d b y t h e o t h e r o n e .

    C o n s i d e r i n g i t h l e v e l , t h e p o p u l a t i o n c h a n g e s a c c o r d i n g t o t h e f o l l o w i n g r e a c t i o n s

    N

    2

    ( i + j ) + N

    2

    ( k ? j )

    *

    )

    N

    2

    ( i ) + N

    2

    ( k )( 2 7 )

    i = 1 ; : : : ; l

    m

    ? 1 j = 1 ; : : : ; l

    m

    ? i k = j + 1 ; : : : ; l

    m

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    9/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 7

    N

    2

    ( i ) + N

    2

    ( k ? j )

    *

    )

    N

    2

    ( i ? j ) + N

    2

    ( k )( 2 8 )

    i = 2 ; : : : ; l

    m

    j = 1 ; : : : ; i ? 1 k = j + 1 ; : : : ; l

    m

    T h e v a r i a t i o n o f i t h l e v e l ' s p o p u l a t i o n ( S

    i

    v

    )

    V V

    , d u e t o V V p r o c e s s e s i s t h e r e f o r e w r i t t e n a s

    ( S

    i

    v

    )

    V V

    = m

    m

    1

    X

    j = 1

    m

    X

    k = j + 1

    j

    i k

    ? m

    i 1

    X

    j = 1

    m

    X

    k = j + 1

    j

    i k

    ( 2 9 )

    i = 2 ; : : : ; l

    m

    ? 1

    F o r t h e r s t a n d t h e l a s t l e v e l s , i t c a n b e w r i t t e n a s

    ( S

    1

    v

    )

    V V

    = m

    m

    1

    X

    j = 1

    m

    X

    k = j + 1

    j

    1 k

    ( 3 0 )

    a n d

    ( S

    m

    v

    )

    V V

    = ? m

    i 1

    X

    j = 1

    m

    X

    k = j + 1

    j

    m

    k

    ( 3 1 )

    r e s p e c t i v e l y . T h e r a t e e x p r e s s i o n s f o r t h e r e a c t i o n r a t e s

    j

    i k

    j

    i k

    a r e

    j

    i k

    = F

    k j k

    i + j i

    i + j

    m

    k j

    m

    ? B

    k k j

    i i + j

    i

    m

    k

    m

    ( 3 2 )

    i = 1 ; : : : ; l

    m

    ? 1 j = 1 ; : : : ; l

    m

    ? i k = j + 1 ; : : : ; l

    m

    a n d

    j

    i k

    = F

    k j k

    i i j

    i

    m

    k j

    m

    ? B

    k k j

    i j i

    i j

    m

    k

    m

    ( 3 3 )

    i = 2 ; : : : ; l

    m

    j = 1 ; : : : ; i ? 1 k = j + 1 ; : : : ; l

    m

    T h e b a c k w a r d c o e c i e n t B i s c a l c u l a t e d f r o m t h e f o r w a r d c o e c i e n t F a c c o r d i n g t o t h e d e t a i l e d

    b a l a n c e o f e a c h r e a c t i o n a t e q u i l i b r i u m

    B

    k k j

    i j i

    = F

    k j k

    i i j

    e x p

    "

    i

    ? "

    i j

    + "

    k j

    ? "

    k

    k T

    ( 3 4 )

    i = 2 ; : : : ; l

    m

    j = 1 ; : : : ; i ? 1 k = j + 1 ; : : : ; l

    m

    T o c o m p l e t e t h e d e s c r i p t i o n o f M E w e h a v e t o d e n e t h e f o r w a r d V T a n d V V r a t e c o e c i e n t s .

    T h i s i s d o n e i n t h e n e x t s e c t i o n .

    2 . 4 T h e v i b r a t i o n a l r a t e c o e c i e n t s

    D i e r e n t t h e o r e t i c a l a p p r o a c h e s e x i s t f o r d e r i v i n g V T a n d V V r a t e c o e c i e n t s . T h e m a i n d i -

    c u l t y e n c o u n t e r e d w h e n d e r i v i n g s o m e f o r m u l a s i s t h e i r v a l i d a t i o n . U n f o r t u n a t e l y , t h e r e i s a l a c k

    o f e x p e r i m e n t a l d a t a r e l a t i v e t o N

    2

    . T h e e x p e r i m e n t a l d a t a s a v a i l a b l e i n t h e l i t e r a t u r e c o n c e r n

    o n l y a f e w s p e c i e s , s u c h a s C O N O o r O

    2

    , a n d o n l y a t l o w t e m p e r a t u r e s . T h u s , t h e v a l i d a t i o n i s i s

    c o n d u c t e d t h r o u g h t h e y c o m p a r i s o n o f d i e r e n t t h e o r e t i c a l m o d e l s . A m o n g t h e o r e t i c a l m e t h o d s ,

    w e m e n t i o n t h e s e m i c l a s s i c a l m e t h o d d e v e l o p e d b y B i l l i n g - F i s h e r , w h i c h i s c o n s i d e r e d n o w a s o n e

    o f t h e m o s t r e l i a b l e . T h e i r m e t h o d , d e s c r i b e d i n 5 ] , 6 ] , 7 ] , u s e s a s e m i c l a s s i c a l c o l l i s i o n m o d e l

    a n d a r e a l i s t i c m o l e c u l a r p o t e n t i a l . T h e c r o s s s e c t i o n s a r e o b t a i n e d b y r u n n i n g c l a s s i c a l t r a j e c -

    t o r i e s . T h e n t h e t i m e - d e p e n d e n t S c h r o d i n g e r e q u a t i o n i s s o l v e d , u s i n g a n o p e r a t o r a p p r o a c h f o r

    o b t a i n i n g e n e r g y - d e p e n d e n t t r a n s i t i o n a l p r o b a b i l i t i e s . F i n a l l y , t h e r a t e c o e c i e n t s a r e e x p r e s s e d

    a s f u n c t i o n s o f t e m p e r a t u r e b y a v e r a g i n g t h e t r a n s i t i o n a l p r o b a b i l i t i e s o v e r e q u i l i b r i u m d i s t r i b u -

    t i o n s f o r t r a n s l a t i o n a l a n d r o t a t i o n a l e n e r g i e s . B i l l i n g a n d F i s h e r p r o p o s e n u m e r i c a l v a l u e s f o r V T

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    10/36

    8 F . M a l l i n g e r ,

    r a t e c o e c i e n t s f o r N

    2

    i n t h e t e m p e r a t u r e r a n g e 2 0 0 - 8 0 0 0 K a n d f o r t h e q u a n t u m n u m b e r u p t o

    2 0 , i n c l u d i n g m o n o - a n d m u l t i - l e v e l j u m p s 4 ] . T h e y g i v e a l s o V V r a t e c o e c i e n t s i n t h e t e m p e r a -

    t u r e r a n g e 2 0 0 - 2 0 0 0 K . S o m e o t h e r s V T a n d V V r a t e c o e c i e n t s h a v e b e e n c o m p u t e d b y C a p i t e l l i

    e t a l . 9 ] i n t h e t e m p e r a t u r e r a n g e 2 0 0 - 6 0 0 0 K . U n f o r t u n a t e l y , B i l l i n g - F i s h e r m o d e l c a n n o t b e

    u s e d d i r e c t l y t o s o l v e M E d u e t o a c o n s i d e r a b l e t i m e w h i c h w o u l d b e r e q u i r e d . N e v e r t h e l e s s , t h e

    n u m e r i c a l v a l u e s r e s u l t i n g f r o m t h e i r m e t h o d a r e o f t e n u s e d t o v a l i d a t e o t h e r t h e o r e t i c a l m o d e l s .

    2 . 4 . 1 G i o r d a n o e t a l . ' s V T r a t e c o e c i e n t s

    T h e a n a l y t i c a l f o r m u l a p r o p o s e d b y G i o r d a n o e t a l . f o r V T r a t e c o e c i e n t s 4 ] , i s a p a r a m e t e r i z a -

    t i o n o f t h e n u m e r i c a l v a l u e s g i v e n b y B i l l i n g - F i s h e r . T h i s f o r m u l a i s w r i t t e n a s

    F

    i i 1

    = ( i ? 1 ) f ( T ) e x p ( ( i ? 2 ) ( T ) ) i = 2 ; : : : ; l

    m

    ( 3 5 )

    w h e r e

    f ( T ) = 1 0

    6

    N e x p

    ? 3 2 4 0 9 3 ?

    1 4 0 6 9 5 9 7

    T

    0 2

    ( 3 6 )

    ( T ) = 0 2 6 6 7 9 ? 6 9 9 2 3 7 1 0

    5

    T + 4 7 0 0 7 3 1 0

    9

    T

    2

    ( 3 7 )

    I n t h i s f o r m u l a t h e t r a n s i t i o n a r e m o n o - q u a n t u m . T h e u n i t o f t h e f o r w a r d r a t e c o e c i e n t i s

    m

    3

    = m o l : s

    2 . 4 . 2 D o r o s h e n k o e t a l . ' s V V r a t e c o e c i e n t s

    T h e f o r w a r d V V r a t e c o e c i e n t a r e c a l c u l a t e d a c c o r d i n g t o t h e f o r m u l a g i v e n b y D o r o s h e n k o e t

    a l . 1 2 ] . T h e r e s u l t i n g f o r m u l a i s

    F

    j j 1

    i i 1

    = 2 5 1 0

    2 0

    N ( i ? 1 ) ( j ? 1 )

    T

    3 0 0

    3 = 2

    ( 3 8 )

    e x p

    ?

    6 8

    p

    T

    i ? j

    1 5 ? 0 5 e x p

    ?

    6 8

    p

    T

    i ? j

    ( 8 i j = 2 ; : : : ; l

    m

    ) i = 2 ; : : : ; l

    m

    T h e u n i t o f t h e f o r w a r d r a t e c o e c i e n t i s m

    3

    = m o l : s . T h i s f o r m u l a w a s d e r i v e d w i t h a n a s s u m p t i o n

    o f a L a n d a u - T e l l e r m e c h a n i s m f o r r e l a x a t i o n i n t h e c o l l i s i o n s b e t w e e n N

    2

    m o l e c u l e s , a n d t h e c o e f -

    c i e n t s w e r e o b t a i n e d f r o m t h e e x p e r i m e n t a l d a t a f o r t h e q u a n t i t i e s F

    1 0

    0 1

    , 1 8 ] , 3 ] w h i l e t h e v a l u e s

    o f F

    j j 1

    i i 1

    a r e d e t e r m i n e d o n t h e b a s i s o f t h e o r e t i c a l r e l a t i o n s i n 1 4 ] , 1 6 ] , i n w h i c h a n h a r m o n i c i t y

    i s t a k e n i n t o a c c o u n t .

    2 . 4 . 3 A d a m o v i c h e t a l . ' s V T a n d V V r a t e c o e c i e n t s

    T h e f o l l o w i n g V T a n d V V r a t e c o e c i e n t s w e r e p r o p o s e d b y A d a m o v i c h e t a l . 1 ] . T h e y u s e d

    a s e m i c l a s s i c a l n o n - p e r t u r b a t i v e a n a l y t i c s o l u t i o n f o r V V a n d V V T t r a n s i t i o n p r o b a b i l i t i e s f o r

    t h e h a r m o n i c o s c i l l a t o r a c t e d u p o n b y a n e x t e r n a l e x p o n e n t i a l f o r c e 2 4 ] , 1 5 ] , 1 9 ] . T h i s s o l u t i o n

    i s c a l l e d t h e \ f o r c e d h a r m o n i c o s c i l l a t o r \ m o d e l ( F H O ) . S t a r t i n g f r o m t h e a n a l y t i c e x p r e s s i o n s

    f o r V T a n d V V T t r a n s i t i o n a l p r o b a b i l i t i e s d e r i v e d i n 2 4 ] , 1 5 ] , 1 9 ] , t h e r m a l l y a v e r a g e d F H O

    p r o b a b i l i t i e s a r e o b t a i n e d 1 7 ] . B y a v e r a g i n g t h e s e s i m p l i e d p r o b a b i l i t i e s o v e r t h e B o l t z m a n n

    d i s t r i b u t i o n , t h e r m a l l y a v e r a g e d V T a n d V V r a t e s c o e c i e n t s w e r e d e r i v e d . T h e r a t e c o e c i e n t

    f r o m t h e i n i t i a l l e v e l i t o t h e n a l l e v e l f i s

    F

    i f

    = Z e x p

    s

    2 T

    C

    V T

    S

    V T

    s

    T

    1 = 6

    n

    s

    2

    1 = 2

    s

    1 = 3

    ( s )

    2

    ( 3 9 )

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    11/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 9

    e x p

    "

    ? s

    2 = 3

    T

    1 = 3

    1 ?

    2

    a r c t a n ( )

    2

    C

    2

    V T

    2

    +

    1

    C

    V T

    ? s ( 1 ? C

    3

    V T

    )

    #

    w h e r e

    s = i ? f n

    s

    = m a x

    i

    f

    f

    i

    V

    m o

    =

    2 ! s k T

    1 = 3

    =

    4 !

    2

    2

    k

    =

    E

    s k

    E = "

    i

    ? "

    f

    = 3 +

    1 ? C

    3

    V T

    C

    3

    V T

    2 !

    V

    m o

    C

    V T

    =

    s

    2 D k

    V

    2

    m o

    a n d

    C

    V T

    =

    "

    1 ?

    S

    V T

    s

    2 n

    1 = s

    s

    s + 1

    + 1

    !

    e x p

    ?

    2 !

    V

    m o

    C

    V T

    ?

    2

    s ( s + 2 )

    "

    n

    1 = s

    s

    s + 1

    S

    V T

    #

    2

    e x p

    ?

    4 !

    V

    m o

    C

    V T

    3

    5

    1 = 3

    ( 4 0 )

    I n t h i s f o r m u l a s , V

    m o

    i s t h e L a n d a u - T e l l e r m o s t e e c t i v e v e l o c i t y , S

    V T

    i s a c o n s t a n t , a n d D a r e

    t h e e x p o n e n t i a l r e p u l s i v e p a r a m e t e r a n d t h e w e l l d e p t h o f t h e M o r s e p o t e n t i a l r e s p e c t i v e l y , a n d

    = m

    N

    2

    = 2 i s t h e r e d u c e d m a s s o f c o l l i d i n g p a r t i c l e s . F i n a l l y Z i s t h e r a t i o o f a n e l a s t i c f r e q u e n c y

    a n d t h e n u m b e r d e n s i t y . T h e u n i t o f t h e f o r w a r d r a t e c o e c i e n t i s m

    3

    = s

    F o r t h e r e a c t i o n N

    2

    ( i 1 ) + N

    2

    ( i 2 ) ! N

    2

    ( f 1 ) + N

    2

    ( f 2 ) , t h e V V r a t e c o e c i e n t s i s g i v e n b y t h e

    f o l l o w i n g f o r m u l a

    F

    i

    2

    f

    2

    i

    1

    f

    1

    = Z

    n

    s 1

    n

    s 2

    s

    P

    0 ! 1

    1 ! 0

    s

    "

    1 + 2

    n

    1 = s

    s 1

    n

    1 = s

    s 2

    s + 1

    P

    0 ! 1

    1 ! 0

    #

    ( s + 1 )

    C ( 3 ? C )

    2

    ( 4 1 )

    w h e r e

    n

    s 1

    = m a x

    i

    1

    f

    1

    f

    1

    i

    1

    n

    s 2

    = m a x

    i

    2

    f

    2

    f

    2

    i

    2

    s = i

    1

    ? f

    1

    P

    0 ! 1

    1 ! 0

    =

    S

    V V

    2

    k T

    2 !

    2

    =

    4

    2

    !

    2

    2

    k

    C = e x p

    ?

    4

    9

    T

    4 E

    2

    p

    2 E

    m

    s

    4 E = "

    i 1

    + "

    i 2

    ? "

    f 1

    ? "

    f 2

    E

    m

    =

    1

    2 s

    ( "

    i 1

    ? "

    f 1

    + "

    i 2

    ? "

    f 2

    )

    T o t a k e a c c o u n t o f t h e a n h a r m o n i c i t y , t h e c l a s s i c a l f r e q u e n c y ! i s r e p l a c e d b y

    ! =

    !

    1

    + !

    2

    2

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    12/36

    1 0 F . M a l l i n g e r ,

    w i t h

    !

    1 2

    =

    8

    >

    >

    >

    >

    >

    :

    "

    i 1 2

    ? "

    f 1 2

    i ? f h

    i 6= f

    "

    i + 1 1 2

    ? "

    i 1 2

    h

    2 . 4 . 4 C o m p a r i s o n o f t h e r a t e c o e c i e n t s

    T h e f o r m u l a s ( 3 9 ) a n d ( 4 1 ) , p r o p o s e d b y A d a m o v i c h e t a l . , c o n t a i n t w o p a r a m e t e r s S

    V T

    a n d S

    V V

    I n t h e p r e s e n t c a s e , t h e y h a v e b e e n c h o s e n i n s u c h a w a y t h a t t h e F H O p r o b a b i l i t i e s P ( 1 0 ! 0 0 )

    a n d P ( 1 0 ! 0 1 ) m a t c h w i t h t h e r e s u l t s o f B i l l i n g - F i s h e r 4 ] . A d a m o v i c h e t a l . h a v e p o i n t e d

    o u t t h a t t h e v a l u e s S

    V T

    = 1 = 2 a n d S

    V V

    = 1 = 2 7 a r e t e m p e r a t u r e i n d e p e n d e n t . P r o b a b l y t h e y

    s h o u l d b e m o d i e d f o r h i g h e r t e m p e r a t u r e s . H o w e v e r , a s m e n t i o n e d b y A d a m o v i c h e t a l . , f o r

    h i g h e r t e m p e r a t u r e s t h e m a i n d i c u l t y i s n o t t h e c h o i c e o f p a r a m e t e r s S

    V T

    a n d S

    V V

    , b u t r a t h e r

    t h e i m p o r t a n c e o f V V T t r a n s i t i o n s . T h a t m e a n s t h a t V T a n d V V p r o c e s s e s a r e s t r o n g l y c o u p l e d

    a n d t h e V V r a t e c o e c i e n t ( 4 1 ) n o t v a l i d a n y m o r e . A d a m o v i c h h a s o b s e r v e d t h a t r e a c t i o n s s u c h

    a s N

    2

    ( 1 ) + N

    2

    ( 0 ) ! N

    2

    ( 0 ) + N

    2

    ( 3 ) b e c o m e i m p o r t a n t a s t h e t e m p e r a t u r e i n c r e a s e s . I t s e e m s t h a t

    a s a t i s f a c t o r y s o l u t i o n w o u l d b e t o f a c t o r i z e t h e p r o b a b i l i t y P ( i

    1

    i

    2

    ! f

    1

    f

    2

    ) a s

    P ( i

    1

    i

    2

    ! f

    1

    f

    2

    ) = P ( i

    1

    ! f

    1

    ) P ( i

    2

    ! f

    2

    )( 4 2 )

    T h e g u r e ( 1 - A ) s h o w s a v e r y g o o d a g r e e m e n t b e t w e e n A d a m o v i c h e t a l . ' s V T r a t e c o e c i e n t s

    a n d t h e v a l u e s g i v e n i n B i l l i n g - F i s h e r 4 ] , f o r t h e t e m p e r a t u r e r a n g e 2 0 0 - 8 0 0 0 K a n d f o r a l l q u a n t u m

    l e v e l s . O n t h e o t h e r h a n d , t h e G i o r d a n o e t a l . ' s f o r m u l a f o r V T r a t e c o e c i e n t s e e m s t o b e w o r s e f o r

    h i g h q u a n t u m n u m b e r s a n d h i g h t e m p e r a t u r e s . I n p a r t i c u l a r , f o r h i g h t e m p e r a t u r e s , t h i s f o r m u l a

    o v e r p r e d i c t s t h e V T p r o c e s s .

    C o n s i d e r i n g V V r a t e s , g u r e ( 1 - B ) s h o w s a g a i n t h a t A d a m o v i c h e t a l . ' s r a t e c o e c i e n t s a r e g o o d

    a s c o m p a r e d w i t h B i l l i n g - F i s h e r r a t e c o e c i e n t , f o r t h e r s t m o n o - q u a n t u m t r a n s i t i o n . B u t t h e

    d i e r e n c e i n c r e a s e s f o r d o u b l e - q u a n t u m t r a n s i t i o n , w i t h a n o v e r p r e d i c t i o n f o r A d a m o v i c h e t a l . ' s

    r a t e c o e c i e n t s , g u r e ( 1 - C - D ) .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    13/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 1 1

    0e+00 4e+02 8e+02 1e+03 2e+03 2e+03

    T (K)1e-16

    1e-15

    1e-14

    1e-13

    1e-12

    1e-11

    1e-10Kvv (cm3/s) N2(18,19)+N2(12,11)-->N2(20)+N2(10)

    0e+00 2e+03 5e+03 8e+03 1e+04 1e+04

    T (K) 1e-22

    1e-21

    1e-20

    1e-19

    1e-18

    1e-17

    1e-16

    1e-15

    1e-14

    1e-13

    1e-12

    1e-11

    1e-10

    1e-09

    1e-08

    1e-07Kvt (cm3/s) N2(i)+N2-->N2(i-1)+N2

    0e+00 1e+03 2e+03 3e+03 4e+03 5e+03 6e+03

    T (K)1e-13

    1e-12

    1e-11

    1e-10

    1e-09Kvv (cm3/s) N2(10)+N2(10)-->N2(9)+N2(11)

    0e+00 1e+03 2e+03 3e+03 4e+03 5e+03 6e+03

    T (K)1e-15

    1e-14

    1e-13

    1e-12

    1e-11Kvv (cm3/s) N2(1)+N2(0)-->N2(0)+N2(1)

    i=30

    i=9

    i=1

    BA

    C D

    F i g u r e 1 : C o m p a r i s o n o f V T a n d V V r a t e c o e c i e n t s b e t w e e n B i l l i n g - F i s h e r ( c i r c l e s ) , A d a m o v i c h

    e t a l . ( s o l i d l i n e ) a n d G i o r d a n o e t a l . ( d a s h e d l i n e ) .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    14/36

    1 2 F . M a l l i n g e r ,

    3 N u m e r i c a l a p p r o x i m a t i o n

    I n t h i s s e c t i o n , w e d e s c r i b e b r i e y o u r n u m e r i c a l a p p r o x i m a t i o n o f E u l e r a n d o f t h e m a s t e r e q u a -

    t i o n s . T h e n u m e r i c a l a p p r o x i m a t i o n o f L a n d a u T e l l e r e q u a t i o n f o l l o w s t h e s t e p s o f t h e m a s t e r

    e q u a t i o n s a p p r o x i m a t i o n . W e u s e a n e x p l i c i t t i m e d i s c r e t i z a t i o n .

    3 . 1 A p p r o x i m a t i o n o f E u l e r e q u a t i o n s

    T h e s p a t i a l a p p r o x i m a t i o n u s e s a n i t e v o l u m e f o r m u l a t i o n o n a n u n s t r u c t u r e d m e s h . W e c o n s t r u c t

    t h e c e l l C

    i

    a r o u n d n o d e i b y j o i n i n g t h e c e n t e r s o f g r a v i t y o f t h e t r i a n g l e s w h o s e i i s a n o d e . W e

    d e n o t e b y @ C

    i

    t h e b o u n d a r y o f c e l l C

    i

    , a n d b y

    i

    t h e o u t w a r d u n i t n o r m a l v e c t o r t o @ C

    i

    iC

    ij

    I

    F i g u r e 2 : I n t e g r a t i o n c e l l C

    i

    I n t r o d u c i n g t h e n o t a t i o n s W = ( ; u ; e ) f o r c o n s e r v a t i v e v a r i a b l e s a n d F ( W ) = ( F

    1

    ( W ) F

    2

    ( W ) )

    f o r t h e E u l e r u x e s , e q u a t i o n s ( 1 - 2 - 3 ) t a k e t h e a b s t r a c t f o r m

    @ W

    @ t

    + d i v F ( W ) = 0( 4 3 )

    T h e G r e e n ' s f o r m u l a a p p l i e d t o e q u a t i o n ( 4 3 ) g i v e s t h e f o l l o w i n g w e a k f o r m u l a t i o n

    Z

    C

    i

    W

    t

    +

    Z

    @ C

    i

    F ( W )

    i

    d = 0( 4 4 )

    U s i n g a r s t o r d e r a c c u r a t e n i t e v o l u m e m e t h o d a s s p a t i a l d i s c r e t i z a t i o n , w e c a n w r i t e t h i s a s

    C

    i

    W

    n + 1

    i

    ? W

    n

    i

    4 t

    +

    Z

    @ C

    i

    F ( W

    n

    )

    i

    d = 0( 4 5 )

    F o r m u l a ( 4 5 ) c a n a l s o b e w r i t t e n , s p l i t t i n g t h e i n t e g r a l o n t h e b o u n d a r y o f C

    i

    a s

    C

    i

    W

    n + 1

    i

    ? W

    n

    i

    4 t

    +

    X

    j s t @ C

    i

    \ @ C

    j

    6= ;

    Z

    @ C

    i

    \ @ C

    j

    F ( W

    n

    )

    i

    d ( 4 6 )

    +

    Z

    @ C

    i

    \ ?

    w

    F ( W

    n

    ) d +

    Z

    @ C

    i

    \ ?

    1

    F ( W

    n

    ) d = 0

    F o r t h e i n t e r n a l n o d e i , t h e b o u n d a r y i n t e g r a l i s

    X

    j s t @ C

    i

    \ @ C

    j

    6= ;

    Z

    @ C

    i

    \ @ C

    j

    F ( W

    n

    )

    i

    d =

    X

    j s t @ C

    i

    \ @ C

    j

    6= ;

    ( W

    n

    i

    W

    n

    j

    i j

    )( 4 7 )

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    15/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 1 3

    w h e r e

    i j

    i s t h e t h e n o r m a l i n t e g r a t e d a l o n g @ C

    i

    \ @ C

    j

    i j

    =

    Z

    @ C

    i

    \ @ C

    j

    i

    d

    a n d ( W

    n

    i

    W

    n

    j

    i j

    ) d e n o t e s a n u m e r i c a l u x s p l i t t i n g a p p r o x i m a t i n g t h e u x o f W

    n

    a c r o s s t h e

    i n t e r f a c e . I n o u r c o d e , w e h a v e i m p l e m e n t e d R o e a n d V a n L e e r s c h e m e s .

    V a n L e e r s c h e m e

    T h e V a n L e e r 2 2 ] u x s p l i t t i n g , f o r t h e 2 - D c a s e , c a n b e w r i t t e n f o r a f a c e o r t h o g o n a l t o e

    x

    V L

    ( U V ) = F

    +

    V L

    ( U ) + F

    V L

    ( V )( 4 8 )

    w i t h

    F

    +

    V L

    ( U ) = F

    1

    ( U ) i f c u( 4 9 )

    F

    +

    V L

    ( U ) =

    0

    B

    B

    B

    B

    B

    B

    @

    f

    +

    1

    f

    +

    1

    ( ( ? 1 ) u + 2 c )

    f

    +

    1

    v

    f

    +

    1

    2

    ( ( ? 1 ) u + 2 c )

    2

    2

    ? 1

    + v

    2

    1

    C

    C

    C

    C

    C

    C

    A

    i f ? c < u < c ;( 5 0 )

    F

    +

    V L

    ( U ) = i f u ? c( 5 1 )

    w h e r e

    f

    +

    1

    =

    1

    4

    c

    u

    c

    + 1

    2

    ( 5 2 )

    M o r e o v e r , w e h a v e

    F

    V L

    = F

    1

    ? F

    +

    V L

    T h e s e f o r m u l a s a r e u s e d i n t h e f o l l o w i n g w a y . I n t r o d u c i n g t h e r o t a t i o n R

    ( g u r e ( 3 ) ) , t h e

    ji

    I

    F i g u r e 3 :

    n u m e r i c a l u x ( W

    n

    i

    W

    n

    j

    i j

    ) c a n b e w r i t t e n

    ( W

    n

    i

    W

    n

    j

    i j

    ) = k

    i j

    k R

    1

    V L

    ( R

    W

    i

    R

    W

    j

    )( 5 3 )

    R o e s c h e m e

    T h e R o e s c h e m e 2 0 ] c a n b e w r i t t e n a s f o l l o w s

    R O E

    ( W

    i

    W

    j

    i j

    ) =

    F

    i j

    ( W

    i

    ) + F

    i j

    ( W

    j

    )

    2

    +

    1

    2

    B ( W

    i

    ? W

    j

    )( 5 4 )

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    16/36

    1 4 F . M a l l i n g e r ,

    w h e r e F

    i j

    =

    i j

    1

    F

    1

    +

    i j

    2

    F

    2

    , a n d B i s t h e J a c o b i a n m a t r i x o f t h e u x F

    i j

    e v a l u a t e d a t t h e p o i n t

    ~

    W

    i j

    s u c h t h a t

    ~

    W

    i j

    =

    p

    i

    W

    i

    +

    p

    j

    W

    j

    p

    i

    +

    p

    j

    ( 5 5 )

    T o c o m p u t e t h e J a c o b i a n m a t r i x B , w e n e e d ~u ~v

    ~

    h h b e i n g t h e e n t h a l p y d e n e d b y

    h =

    p

    ( ? 1 )

    +

    1

    2

    ( u

    2

    + v

    2

    ) =

    c

    2

    ( ? 1 )

    +

    1

    2

    ( u

    2

    + v

    2

    )( 5 6 )

    w h e r e c = ( p = )

    1 = 2

    i s t h e s p e e d o f s o u n d .

    M o d i c a t i o n f o r t h e r e a l g a s

    T h e p r e c e d i n g f o r m u l a s , f o r V a n - L e e r a n d R o e s c h e m e s , a r e v a l i d f o r a p e r f e c t g a s . I n t h i s c a s e

    t h e s t a t e l a w m a y b e w r i t t e n

    p = ( ? 1 ) e( 5 7 )

    w h e r e e i s t h e i n t e r n a l e n e r g y . F u r t h e r m o r e , = C

    p

    = C

    v

    i s a c o n s t a n t a n d t h e s p e e d o f s o u n d , a s

    h a v e a l r e a d y b e e n m e n t i o n e d , i s g i v e n b y t h e s i m p l e f o r m u l a

    c

    2

    =

    p

    ( 5 8 )

    I n t h e g e n e r a l c a s e , t h e s t a t e e q u a t i o n h a s t h e g e n e r a l f o r m p = p ( e ) . N o w , i s n o l o n g e r

    c o n s t a n t , a n d t h e s p e e d o f s o u n d i s t h e n g i v e n b y c

    2

    = ( @ p = @ ) s . N e v e r t h e l e s s , s e v e r a l a u t h o r s

    d e n e a p s e u d o - , n o t e d s u c h t h a t

    p = ( ? 1 ) e( 5 9 )

    U s i n g t h i s n e w v a l u e o f , a p s e u d o - s p e e d o f s o u n d c a n d a p s e u d o - M a c h n u m b e r

    M a r e d e n e d

    b y

    c

    2

    =

    p

    M =

    u

    c

    ( 6 0 )

    I f w e u s e t h e V a n - L e e r a n d t h e R o e s c h e m e s f o r r e a l g a s , w e i n j e c t t h e s e v a r i a b l e s i n t h e u s u a l

    f o r m u l a s . F u r t h e r m o r e , w h e n e v a l u a t i n g t h e J a c o b i a n m a t r i x B , f o r R o e s c h e m e , w e c o m p u t e

    i j

    u s i n g t h e f o r m u l a ( 5 5 ) .

    3 . 2 D i s c r e t i z a t i o n o f t h e m a s t e r k i n e t i c e q u a t i o n s

    W e i n t r o d u c e t h e n o t a t i o n s = (

    i

    ) i = 1 ; : : : ; l

    m

    f o r u n k n o w n s i n t h e t h e m a s t e r e q u a t i o n s a n d

    = (

    i

    u ) i = 1 ; : : : ; l

    m

    f o r c o r r e s p o n d i n g u x e s . T h e n i t e v o l u m e d i s c r e t i z a t i o n r e a d s

    C

    i

    n + 1

    i

    ?

    n

    i

    4 t

    +

    X

    j s t @ C

    i

    \ @ C

    j

    6= ;

    Z

    @ C

    i

    \ @ C

    j

    (

    n

    )

    i

    d =

    Z

    C

    i

    S

    n

    d x d y ( 6 1 )

    N o t i n g t h e n u m e r i c a l u x f o r t h e m a s t e r k i n e t i c e q u a t i o n , w e w r i t e

    X

    j s t @ C

    i

    \ @ C

    j

    6= ;

    Z

    @ C

    i

    \ @ C

    j

    (

    n

    )

    i

    d =

    X

    j s t @ C

    i

    \ @ C

    j

    6= ;

    (

    n

    i

    n

    j

    i j

    )( 6 2 )

    I f t h e V a n L e e r s c h e m e i s a p p l i e d t o t h e E u l e r e q u a t i o n s , t h e u x i s g i v e n b y t h e f o l l o w i n g

    f o r m u l a

    (

    n

    i

    n

    j

    i j

    ) =

    n

    i

    F

    +

    V L 1

    (

    n

    i

    i j

    ) +

    n

    j

    F

    V L 1

    (

    n

    j

    i j

    )( 6 3 )

    w h e r e F

    +

    V L 1

    a n d F

    V L 1

    a r e t h e c o m p o n e n t s o f t h e V a n L e e r u x s p l i t t i n g f o r t h e m a s s c o n s e r v a t i o n

    e q u a t i o n .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    17/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 1 5

    I f t h e R o e s c h e m e i s a p p l i e d t o t h e E u l e r e q u a t i o n s , t h e u x i s g i v e n b y t h e f o l l o w i n g f o r m u l a

    (

    n

    i

    n

    j

    i j

    ) =

    8

    >

    >

    >

    >

    >

    :

    n

    i

    F

    R O E 1

    i f F

    R O E 1

    > 0

    n

    j

    F

    R O E 1

    i f F

    R O E 1

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    18/36

    1 6 F . M a l l i n g e r ,

    EVALUATION OF THE TEMPERATURE

    EVALUATION OF THE TEMPERATURE

    MASTER EQUATIONS STEP

    OR

    LANDAU TELLER STEP

    t=t

    +d

    t

    EULER STEP

    F i g u r e 4 : G l o b a l a l g o r i t h m .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    19/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 1 7

    w h e r e A

    +

    1

    a n d A

    1

    ( r e s p . A

    +

    2

    a n d A

    2

    ) a r e t h e p o s i t i v e a n d t h e n e g a t i v e c o n t r i b u t i o n o f t h e J a c o b i a n

    m a t r i x o f t h e E u l e r u x F

    1

    ( r e s p . F

    2

    )

    I n i t i a l c o n d i t i o n

    T h e E u l e r a l g o r i t h m i s i n i t i a l i z e d a t e a c h n o d e b y t h e m a c r o p a r a m e t e r s g i v e n a t f r e e s t r e a m .

    C o n s i d e r i n g t h e L a n d a u - T e l l e r m o d e l , t h e e n e r g y i s i n i t i a l i z e d a c c o r d i n g t o f o r m u l a ( 1 0 ) . F o r

    m a s t e r e q u a t i o n t h e i n i t i a l d e n s i t y p o p u l a t i o n f o r l e v e l i i s g i v e n b y

    i

    =

    e x p

    ?

    "

    i

    k T

    m

    X

    j = 1

    e x p

    ?

    "

    j

    k T

    ( 6 8 )

    3 . 5 S e c o n d o r d e r s c h e m e

    T h e s e c o n d o r d e r s c h e m e f o r s p a t i a l a p p r o x i m a t i o n i s c o n s t r u c t e d f o l l o w i n g t h e M U S C L m e t h o d .

    T h e n u m e r i c a l u x

    i j

    = ( W

    n

    i

    W

    n

    j

    i j

    ) i s c o m p u t e d , r e p l a c i n g t h e n o d a l v a l u e s b y s o m e i n -

    t e r p o l a t e d v a l u e s W

    i j

    a n d W

    j i

    a t t h e i n t e r f a c e o f t h e c e l l C

    i

    . T h e q u a n t i t i e s W

    i j

    a n d W

    j i

    a r e

    c o m p u t e d a v e r a g i n g a c e n t e r e d s c h e m e a n d a c o m p l e t e l y n o n c e n t e r e d s c h e m e . M o r e p r e c i s e l y ,

    W

    i j

    = W

    i

    + A v e

    1

    2

    ( 5 W )

    i

    ( X

    i

    ? X

    j

    )

    1

    2

    ( W

    i

    ? W

    j

    )

    W

    j i

    = W

    j

    ? A v e

    1

    2

    ( 5 W )

    j

    ( X

    j

    ? X

    i

    )

    1

    2

    ( W

    j

    ? W

    i

    )

    w h e r e ( 5 W )

    k

    i s a n a p p r o x i m a t i o n o f t h e g r a d i e n t o f W a t n o d e k , a n d A v e i s t h e V a n A l b a d a - V a n

    L e e r l i m i t o r

    A v e ( a b ) =

    ( a

    2

    + " ) b + ( b

    2

    + " ) a

    a

    2

    + b

    2

    + 2 "

    i f a b > 0

    = 0 i f n o t

    ( 6 9 )

    " b e i n g a x e d s m a l l n u m b e r .

    4 N u m e r i c a l r e s u l t s

    T h e r s t t e s t c a s e w e c o n s i d e r w a s p r o p o s e d b y G i o r d a n o e t a l . 1 3 ] . I t c o n c e r n s t h e o w a r o u n d

    a n i n n i t e c y l i n d e r , w i t h a f r e e s t r e a m t e m p e r a t u r e o f 3 0 0 K a n d a p r e s s u r e o f 5 0 P a . W i t h t h i s

    c h o i c e , t h e t r a n s l a t i o n a l t e m p e r a t u r e b e h i n d t h e s h o c k w a v e i s l e s s t h a n 3 0 0 0 K w h i c h e n s u r e s t h a t

    t h e g a s i s c h e m i c a l l y i n e r t .

    F o r t h e p r e s e n t t e s t w e c o m p u t e o n l y t h e r s t t e n l e v e l s , f o r t h e M E , w h i c h i s r e a s o n a b l e f o r t h e

    r a n g e o f t e m p e r a t u r e w e d e a l w i t h . W e h a v e t o k e e p i n m i n d t h a t e a c h q u a n t u m l e v e l i s a s s o c i a t e d

    w i t h o n e e q u a t i o n . T h e r e f o r e , t h e t i m e o f c o m p u t a t i o n i n c r e a s e s v e r y s i g n i c a n t l y w h e n i n c r e a s i n g

    t h e n u m b e r o f l e v e l s . W e g i v e t h e n u m e r i c a l s o l u t i o n s c o m p u t e d u s i n g G i o r d a n o e t a l . ' s V T r a t e s

    a n d D o r o s h e n k o e t a l . ' s V V r a t e s w i t h a r s t o r d e r R o e s c h e m e .

    T h e m e s h w e u s e d i s s h o w n g u r e ( 5 - l e f t ) . I t i s a r e g u l a r m e s h o f t r i a n g l e s , w i t h 8 5 9 1 n o d e s .

    T h e r a d i u s o f t h e c y l i n d e r i s 1 . m .

    F i g u r e s ( 5 - r i g h t ) , ( 6 - l e f t ) , ( 6 - r i g h t ) , ( 7 - l e f t ) , ( 7 - r i g h t ) p r e s e n t t h e M a c h n u m b e r , d e n s i t y , p r e s -

    s u r e , t r a n s l a t i o n a l a n d v i b r a t i o n a l t e m p e r a t u r e i s o l i n e s , r e s p e c t i v e l y . .

    T h e r e l a x a t i o n i s c l e a r l y s e e n f r o m t h e t e m p e r a t u r e p r o l e s a l o n g t h e s t a g n a t i o n a n d b o d y

    l i n e s . O n t h e s t a g n a t i o n l i n e , b e h i n d t h e s h o c k , w e h a v e a s t r o n g c o m p r e s s i o n , a s s h o w n i n g u r e

    ( 1 0 - l e f t ) . T h e p r e s s u r e i n c r e a s e s u p t o t h e s t a g n a t i o n p o i n t w h i c h i s l o c a t e d o n t h e b o d y . O n

    t h e o t h e r h a n d , t h e b o d y l i n e , f r o m t h e s t a g n a t i o n p o i n t u p t o t h e t o p o f t h e c y l i n d e r , c o i n c i d e s

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    20/36

    1 8 F . M a l l i n g e r ,

    w i t h t h e e x p a n s i o n o w z o n e ; g u r e ( 1 0 - r i g h t ) . N o t e t h a t t h e p r e s s u r e i s c o r r e c t l y p r e d i c t e d b y t h e

    L a n d a u - T e l l e r m o d e l w i t h B l a c k m a n a n d M i l l i k a n - W h i t e r e l a x a t i o n . T h e d e n s i t y p r o l e s a l o n g t h e

    s t a g n a t i o n a n d b o d y l i n e s a r e g i v e n i n g u r e s ( 1 1 - l e f t a n d r i g h t ) . T h e d e n s i t y i s u n d e r p r e d i c t e d

    b y t h e M i l l i k a n - W h i t e r e l a x a t i o n .

    T h e o t h e r f o u r g u r e s p r e s e n t d i e r e n t p r o l e s o f t h e t r a n s l a t i o n a l a n d v i b r a t i o n a l t e m p e r a t u r e s .

    T h e c o m p a r i s o n b e t w e e n t h e s o l u t i o n c o m p u t e d b y G i o r d a n o e t a l . a n d o u r s o l u t i o n i s s h o w n i n

    g u r e ( 8 - l e f t ) . F i g u r e ( 9 - r i g h t ) g i v e s t h e c o m p a r i s o n b e t w e e n t h e s o l u t i o n s c o m p u t e d w i t h V T -

    V V t r a n s i t i o n s a n d V T t r a n s i t i o n s o n l y . T h e s o l u t i o n a r e q u a s i i d e n t i c a l . T h a t m e a n s t h a t

    t h e V V t r a n s i t i o n s h a v e o n l y a v e r y s m a l l i n u e n c e o n t h e r e l a x a t i o n p r o c e s s f o r t h e r a n g e o f

    t e m p e r a t u r e c o n s i d e r e d h e r e . T h e c o m p a r i s o n b e t w e e n t h e m a s t e r e q u a t i o n s a n d L a n d a u - T e l l e r

    e q u a t i o n s c a n b e o b s e r v e d i n g u r e s ( 9 - l e f t ) a n d ( 9 - r i g h t ) , w h i c h p r e s e n t t h e t e m p e r a t u r e i s o l i n e s

    a l o n g t h e s t a g n a t i o n a n d b o d y l i n e s . W e o b t a i n e d t h e s a m e r e s u l t s a s G i o r d a n o e t a l . . T h e s o l u t i o n

    c o m p u t e d w i t h B l a c k m a n r e l a x a t i o n i s v e r y g o o d a s c o m p a r e d w i t h t h e m a s t e r e q u a t i o n s s o l u t i o n .

    O n t h e o t h e r h a n d , t h e M i l l i k a n - W h i t e r e l a x a t i o n i s s l o w e r a n d u n d e r p r e d i c t s t h e v i b r a t i o n a l

    t e m p e r a t u r e . F u r t h e r m o r e , w e s e e i n g u r e ( 9 - r i g h t ) t h a t t h e t h e r m a l e q u i l i b r i u m p o i n t ( T = T

    v

    )

    h a s n o t t h e s a m e l o c a t i o n c o n s i d e r i n g m a s t e r e q u a t i o n s a n d M i l l i k a n - W h i t e s o l u t i o n s .

    T h e c o n c l u s i o n c o n c e r n i n g t h e t e m p e r a t u r e r e l a x a t i o n a r e c o n r m e d t h e b y p r o l e s o f r e l a t i v e

    d e n s i t y a l o n g t h e s t a g n a t i o n l i n e , f o r l e v e l s 1 u p t o 5 ( g u r e ( 1 2 ) ) .

    T h e n e x t g u r e s p r e s e n t t h e d i s t r i b u t i o n o f p o p u l a t i o n o v e r v i b r a t i o n a l q u a n t u m l e v e l s a t d i f -

    f e r e n t p o i n t s a l o n g t h e s t a g n a t i o n a n d b o d y l i n e s . T h e p o p u l a t i o n f o r e a c h q u a n t u m l e v e l i s c o m p u -

    t e d i n o u r c o d e f o r t h e m a s t e r e q u a t i o n s a n d c o m p u t e d a c c o r d i n g t o f o r m u l a ( 9 ) f o r L a n d a u - T e l l e r

    m o d e l . F i g u r e s ( 1 3 - E a n d F ) s h o w t h e d i s t r i b u t i o n s a c r o s s t h e s h o c k . T h e d i s t r i b u t i o n p r e d i c t e d

    b y t h e m a s t e r e q u a t i o n s s l i g h t l y d i e r s f r o m t h e B o l t z m a n n d i s t r i b u t i o n u p t o t h e t h i r d l e v e l . T h e

    p o p u l a t i o n f o r h i g h e r l e v e l s i s u n d e r p r e d i c t e d b y t h e B o l t z m a n n d i s t r i b u t i o n . F i g u r e s ( 1 3 - A - . . . - D )

    s h o w t h e d i s t r i b u t i o n s a l o n g t h e s t a g n a t i o n l i n e f r o m t h e s h o c k t o t h e b o d y . T h e d i s t r i b u t i o n o f

    p o p u l a t i o n f o r m a s t e r e q u a t i o n s p r o g r e s s i v e l y t e n d s t o t h e e q u i l i b r i u m o n e . T h e d i s t r i b u t i o n s o f

    p o p u l a t i o n a l o n g t h e b o d y l i n e , a t d i e r e n t l o c a t i o n s f r o m t h e s t a g n a t i o n p o i n t t o t h e t o p o f t h e

    c y l i n d e r , a r e g i v e n i n g u r e s ( 1 4 - A - . . . - F ) . I n a l l c a s e s t h e d i s t r i b u t i o n s o b t a i n e d f r o m t h e m a s -

    t e r e q u a t i o n s h a s B o l t z m a n n b e h a v i o r a n d c o i n c i d e v e r y w e l l w i t h t h e d i s t r i b u t i o n s p r e d i c t e d b y

    B l a c k m a n r e l a x a t i o n .

    T h e p r e s e n t t e s t c a s e s s h o w s t h a t t h e L a n d a u - T e l l e r e q u a t i o n s w i t h B l a c k m a n r e l a x a t i o n m o d e l s

    c o r r e c t l y t h e r e l a x a t i o n p r o c e s s .

    T h e n e x t t e s t c a s e i s t h e o w a r o u n d a c y l i n d e r , a t M a c h n u m b e r 1 0 , w i t h f r e e s t r e a m t e m p e r a -

    t u r e o f 2 5 0 K a n d t h e p r e s s u r e o f 4 . 1 6 P a . W e c o n s i d e r h e r e A d a m o v i c h e t a l . ' s V T r a t e c o e c i e n t s

    a n d u s e t h e r s t o r d e r R o e s c h e m e a s n u m e r i c a l a p p r o x i m a t i o n .

    T h e m e s h w e u s e d i s s h o w n g u r e ( 1 5 - l e f t ) . I t i s a r e g u l a r m e s h o f t r i a n g l e s , w i t h 8 5 9 1 n o d e s .

    T h e r a d i u s o f t h e c y l i n d e r i s 1 m .

    F i g u r e s ( 1 5 - r i g h t ) , ( 1 6 - l e f t ) , ( 1 6 - r i g h t ) , ( 1 7 - l e f t ) , ( 1 7 - r i g h t ) p r e s e n t t h e M a c h n u m b e r , d e n s i t y ,

    p r e s s u r e , t r a n s l a t i o n a l a n d v i b r a t i o n a l i s o l i n e s r e s p e c t i v e l y .

    T h e d i s t a n c e b e t w e e n t h e s h o c k a n d t h e b o d y i s t o o s h o r t f o r t h e o w t o r e a c h c o m p l e t e e q u i l i -

    b r i u m n e a r t h e b o d y . T h a t c a n b e s e e n i n g u r e s ( 1 8 - l e f t a n d r i g h t ) w h i c h p r e s e n t t h e t r a n s l a t i o n a l

    a n d v i b r a t i o n a l t e m p e r a t u r e s a l o n g t h e s t a g n a t i o n a n d b o d y l i n e s . F u r t h e r m o r e , n e i t h e r B l a c k m a n

    r e l a x a t i o n n o r M i l l i k a n - W h i t e r e l a x a t i o n p r e d i c t c o r r e c t l y t h e r e l a x a t i o n p r o c e s s ; b o t h r e l a x a t i o n s

    b e i n g t o o s l o w . N e v e r t h e l e s s , i t s e e m s t h a t M i l l i k a n r e l a x a t i o n i s s l i g h t l y b e t t e r .

    F i g u r e s ( 1 9 ) a n d ( 2 0 ) s h o w r e s p e c t i v e l y t h e d e n s i t y a n d p r e s s u r e p r o l e s a l o n g t h e s t a g n a t i o n

    a n d b o d y l i n e s . A s i n t h e p r e v i o u s t e s t c a s e , t h e p r e s s u r e i s c o r r e c t l y p r e d i c t e d b y t h e L a n d a u -

    T e l l e r e q u a t i o n i n d e p e n d e n t l y o f t h e r e l a x a t i o n m o d e l . T h e p r e v i o u s o b s e r v a t i o n s a r e c o n r m e d

    b y t h e r e l a t i v e d e n s i t y a l o n g t h e s t a g n a t i o n l i n e , f o r l e v e l 1 t o 5 ( g u r e ( 2 1 ) ) .

    F i g u r e s ( 2 2 - A - . . . - F ) s h o w t h e p o p u l a t i o n a t d i e r e n t l o c a t i o n s a l o n g t h e s t a g n a t i o n l i n e . I n

    g u r e ( 2 2 - A ) ( t h e p o i n t i s i n t h e s t r e a m o w ) , t h e d i s t r i b u t i o n o b t a i n e d w i t h B l a c k m a n a n d

    M i l l i k a n - W h i t e r e l a x a t i o n c o i n c i d e . T h e d i s t r i b u t i o n s a c r o s s t h e s h o c k a r e g i v e n i n g u r e ( 2 2 - B ) .

    T h e c o n s i d e r a b l e d i e r e n c e b e t w e e n t h e B o l t z m a n n d i s t r i b u t i o n a n d t h e d i s t r i b u t i o n p r e d i c t e d b y

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    21/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 1 9

    t h e m a s t e r e q u a t i o n s i s d u e t o a v e r y s t r o n g n o n e q u i l i b r i u m . A s s h o w n i n g u r e ( 2 2 - C - . . . - F ) , t h i s

    n o n e q u i l i b r i u m d e c r e a s e s t o w a r d s t h e b o d y , b u t t h e r e a l d i s t r i b u t i o n n e v e r h a s t h e B o l t z m a n n

    s h a p e . F r o m g u r e s ( 2 2 - A - . . . - F ) w e c a n c o n c l u d e t h a t w e d o n o t h a v e e q u i l i b r i u m a l o n g t h e b o d y

    l i n e .

    F o r t h i s t e s t c a s e , t h e m a c r o p a r a m e t e r s , e x c e p t t h e p r e s s u r e , a r e n o t c o r r e c t l y p r e d i c t e d b y t h e

    L a n d a u - T e l l e r m o d e l . T h e u s a g e o f m a s t e r e q u a t i o n s h e r e i s t h e r e f o r e j u s t i e d .

    5 C o n c l u s i o n

    I n t h i s p a p e r w e h a v e d e s c r i b e d t w o a p p r o a c h e s t o m o d e l v i b r a t i o n a l p r o c e s s e s i n a g a s o f N

    2

    m o l e c u l e s . F o r l o w M a c h n u m b e r s , t h e B o l t z m a n n b e h a v i o r o f t h e v i b r a t i o n a l p o p u l a t i o n e n a b l e s

    u s t o u s e t h e L a n d a u - T e l l e r m o d e l w i t h B l a c k m a n r e l a x a t i o n . O n t h e o t h e r h a n d , a s M a c h n u m b e r

    i n c r e a s e s , s t r o n g n o n e q u i l i b r i u m e e c t s m a k e o n e u s e t h e m a s t e r e q u a t i o n s t o p r e d i c t t h e c o r r e c t

    v i b r a t i o n a l d i s t r i b u t i o n p o p u l a t i o n . F u r t h e r m o r e , w e h a v e d e s c r i b e d A d a m o v i c h m o d e l f o r V T

    a n d V V r a t e s c o e c i e n t s . T h e s e c o e c i e n t s a r e i n v e r y g o o d a g r e e m e n t w i t h B i l l i n g - F i s h e r r a t e s .

    I n a f o r t h c o m i n g p a p e r , w e w i l l p r o p o s e s o m e o t h e r t e s t c a s e s f o r e x t e r n a l o w s a r o u n d d i e r e n t

    g e o m e t r i e s . F u r t h e r m o r e , w e w i l l t r y t o i n t r o d u c e d i u s i o n e e c t s i n t h e m a s t e r e q u a t i o n s t o b e

    a b l e t o c o m p u t e m o r e c o m p l i c a t e d o w s a n d d e t e r m i n e t h e i n u e n c e o f t h i s m o d e l i n g o n t h e w a l l

    c o e c i e n t s .

    A c k n o w l w d g e m e n t s

    T h e a u t h o r w a n t s t o e x p r e s s h i s g r a t i t u d e t o P r . G i o r d a n o f o r h i s h e l p f u l r e m a r k s a n d t o P r .

    A d a m o v i c h f o r h i s h e l p t o c o m p u t e h i s r a t e c o e c i e n t m o d e l . T h e w o r k w a s d o n e d u r i n g a

    p o s t d o c t o r a l s t a y o f t h e a u t h o r a t t h e I n s t i t u t e o f T h e o r e t i c a l a n d A p p l i e d M e c h a n i c s , R u s s i a n

    A c c a d e m y o f S c i e n c e s , N o v o s i b i r s k , a n d i s p a r t o f a j o i n e d R e s e a r c h P r o j e c t b e t w e e n I N R I A a n d

    I T A M s u p p o r t e d b y t h e L i a p u n o v I n s t i t u t e .

    R e f e r e n c e s

    1 ] I . V . A d a m o v i c h , S . O . M a c h e r e t , J . W . R i c h , C . E . T r e a n o r , \ N o n p e r t u r b a t i v e a n a l y t i c t h e o r y

    o f V T a n d V V r a t e s i n d i a t o m i c g a s e s , i n c l u d i n g m u l t i - q u a n t u m t r a n s i t i o n s .

    2 ] J . D . A n d e r s o n , \ H y p e r s o n i c a n d h i g h t e m p e r a t u r e g a s d y n a m i c s " , M c G r a w - H i l l S e r i e s i n

    a e r o n a u t i c a l a n d a e r o s p a c e g e n g i n e e r i n g , 1 9 8 9 .

    3 ] Y u . S . A k i s h e v . A . V . D e m ' y a n o v , I . V . K o c h e t o v , e t a l . , T e p l o z . V y s . T e m p . , 2 0 , N o . 5 ,

    1 9 8 2 .

    4 ] G . D . B i l l i n g , E . R . F i s h e r , \ V V a n d V T r a t e c o e c i e n t s i n d i a t o m i c n i t r o g e n b y a q u a n t u m

    c l a s s i c a l m o d e l " , C h e m . P h y s . , 4 3 , 3 9 5 , 1 9 7 9 .

    5 ] G . D . B i l l i n g , C h e m . P h y s . , 5 , 1 9 7 4 .

    6 ] G . D . B i l l i n g , E . R . F i s h e r , C h e m . P h y s . , 1 8 , 1 9 7 6 .

    7 ] G . D . B i l l i n g , C h e m . P h y s . , 2 0 , 1 9 7 7 .

    8 ] V . B l a c k m a n , \ V i b r a t i o n a l r e l a x a t i o n i n o x y g e n a n d n i t r o g e n " , J . F l u i d M e c h . , 1 , 6 1 , 1 9 5 6 .

    9 ] M . C a p i t e l l i , C . G o r s e , G . D . B i l l i n g , \ V - V p u m p i n g u p i n n o n e q u i l i b r i u m n i t r o g e n : e e c t s

    o n t h e d i s s o c i a t i o n r a t e " , C h e m . P h y s . , 5 2 , 2 9 9 , 1 9 8 0 .

    1 0 ] P . C o l l e l a , H . M . G l a z , J . C o m p u t . P h y s . , 5 9 , 1 9 8 5 .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    22/36

    2 0 F . M a l l i n g e r ,

    2.978e-015.905e-018.831e-011.176e+001.468e+001.761e+002.054e+002.346e+002.639e+002.932e+003.224e+003.517e+003.810e+004.102e+004.395e+004.687e+004.980e+005.273e+005.565e+005.858e+006.151e+006.443e+006.736e+007.029e+00

    MESH MACH NUMBER

    F i g u r e 5 : T h e m e s h u s e d f o r t h e o w a t m a c h n u m b e r 6 . 5 ( l e f t ) a n d t h e M a c h n u m b e r i s o l i n e s

    ( r i g h t ) .

    1.216e+001.435e+001.655e+001.875e+002.094e+002.314e+002.533e+002.753e+002.973e+003.192e+003.412e+003.632e+003.851e+004.071e+004.290e+004.510e+004.730e+004.949e+005.169e+005.388e+005.608e+005.828e+006.047e+006.267e+00

    5.281e-028.879e-021.248e-011.607e-011.967e-012.327e-012.686e-013.046e-01

    3.406e-013.766e-014.125e-014.485e-014.845e-015.204e-015.564e-015.924e-016.284e-016.643e-017.003e-017.363e-017.723e-018.082e-018.442e-018.802e-01

    DENSITY PRESSURE

    F i g u r e 6 : D e n s i t y ( l e f t ) a n d p r e s s u r e ( r i g h t ) i s o l i n e s .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    23/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 2 1

    3.954e+024.907e+025.861e+026.815e+027.769e+028.722e+029.676e+021.063e+031.158e+031.254e+031.349e+031.444e+03

    1.540e+031.635e+031.731e+031.826e+031.921e+032.017e+032.112e+032.207e+032.303e+032.398e+032.494e+032.589e+03

    3.826e+024.651e+025.477e+026.303e+027.129e+027.955e+028.781e+029.607e+021.043e+031.126e+031.208e+031.291e+031.374e+031.456e+031.539e+031.621e+031.704e+031.787e+031.869e+031.952e+032.034e+032.117e+032.199e+032.282e+03

    TRANSLATIONAL TEMPERATURE VIBRATIONAL TEMPERATURE

    F i g u r e 7 : T e m p e r a t u r e s i s o l i n e s .

    1 1 ] J . - A . D e s i d e r i , N . G l i n s k y , E . H e t t e n a , \ H y p e r s o n i c r e a c t i v e o w s c o m p u t a t i o n " , C o m p u t e r s

    a n d F l u i d s J o u r n a l , V o l . 1 8 , N o 2 , 1 9 9 0 .

    1 2 ] V . M . D o r o s h e n k o , N . N . K u d r y a t s e v , S . S . N o v i k o v , V . V . S m e t a n i n , \ E e c t o f t h e f o r m a t i o n

    o f v i b r a t i o n a l l y e x c i t e d n i t r o g e n m o l e c u l e s i n a a t o m i c r e c o m b i n a t i o n i n a b o u n d a r y l a y e r o n

    t h e h e a t t r a n s f e r " , H i g h T e m p . ( U S S R ) , 2 8 , 8 2 , 1 9 9 0 .

    1 3 ] D . G i o r d a n o , V . B e l l u c i , G . C o l o n n a , M . C a p i t e l l i , I . A r m e n i s e , C . B r u n o , \ V i b r a t i o n a l l y

    r e l a x i n g o w o f N

    2

    p a s t a n i n n i t e c y l i n d e r a c c o r d i n g t o s t a t e t o s t a t e v i b r a t i o n a l k i n e t i c s

    a n d t o h a r m o n i c o s c i l l a t o r m o d e l " , A I A A 9 5 - 2 0 7 2 , 1 9 9 5 .

    1 4 ] B . R . G o r d i e t s , A . I . O s i p o v , L . A . S h e l e p i n , \ K i n e t i c p r o c e s s e s i n g a s e s a n d m o l e c u l a r l a s e e r s " ,

    N a u k a , M o s c o w , 1 9 8 0 .

    1 5 ] E . H . K e r n e r , C a n . J . P h y s . , V o l . 3 6 , 3 7 1 , 1 9 5 8 .

    1 6 ] E . E . N i k i t i n , \ T h e o r y o f a t o m i c - m o l e c u l a r p r o c e s s e s i n g a s e s " , K h i m i y a , M o s c o w , 1 9 7 0 .

    1 7 ] E . E . N i k i t i n , A . I . O s i p o v , \ V i b r a t i o n a l r e l a x a t i o n i n g a s e s " , i n K i n e t i c s a n d C a t a l y s i s s e r i e s

    V o l . 4 , V I N I T I , M o s c o w , 1 9 7 7 .

    1 8 ] R . C . M i l l i k a n , D . R . W h i t e , \ S y s t e m a t i c s o f v i b r a t i o n a l r e l a x a t i o n " , J . C h e m . P h y s . , V o l . 3 9 ,

    3 2 0 9 , 1 9 6 3

    1 9 ] C . E . T r e a n o r , J . C h e m . P h y s . , V o l . 4 3 , 5 3 2 , 1 9 6 3 .

    2 0 ] P . L . R o e , \ A p p r o x i m a t i o n R i e m a n n s o l v e r s , p a r a m e t e r s v e c t o r s a n d d i e r e n c e s c h e m e s " ,

    J o u r n a l o f C o m p u t . P h y s i c s , V o l . 4 3 , 1 9 8 1 .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    24/36

    2 2 F . M a l l i n g e r ,

    -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

    L (m)0

    500

    1000

    1500

    2000

    2500

    3000Temperatures (K)

    ME (VT) Tt

    ME (VT) Tv

    ME (VT-VV) Tt

    ME (VT-VV) Tv

    -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)0

    500

    1000

    1500

    2000

    2500

    3000Temperatures (K)

    ME (Giord.) TME (Giord.) TvME (Our code) TME (Our code) Tv

    F i g u r e 8 : T r a n s l a t i o n a l a n d v i b r a t i o n a l t e m p e r a t u r e s a l o n g t h e s t a g n a t i o n l i n e .

    0 20 40 60 80 1

    Angle1250

    1500

    1750

    2000

    2250

    2500

    2750Temp. (K)

    ME (VV-VT) T

    ME (VV-VT) Tv

    LT (B) T

    LT (B) Tv

    LT (MW) T

    LT (MW) Tv

    -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)0

    500

    1000

    1500

    2000

    2500

    3000Tempereture (K)

    LT (MW) TLT (MW) TvLT (B) TtLT (B) TvME (VT-VV) TtME (VT-VV) Tv

    F i g u r e 9 : T r a n s l a t i o n a l a n d v i b r a t i o n a l t e m p e r a t u r e s a l o n g t h e s t a g n a t i o n l i n e ( l e f t ) a n d a l o n g t h e

    b o d y l i n e ( r i g h t ) .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    25/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 2 3

    -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9

    L (m)0.0

    0.2

    0.4

    0.6

    0.8

    1.0Pressure

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 20 40 60 80 100

    Angle0.00

    0.15

    0.30

    0.45

    0.60

    0.75

    0.90

    1.05Pressure

    ME (VT-VV)

    LT (B)

    LT (MW)

    F i g u r e 1 0 : P r e s s u r e a l o n g t h e s t a g n a t i o n l i n e ( l e f t ) a n d a l o n g t h e b o d y l i n e ( r i g h t ) .

    -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9

    L (m)1

    2

    3

    4

    5

    6

    7Density

    ME (VT-VV)LT(B)

    LT (MW)

    0 20 40 60 80

    Angle1

    2

    3

    4

    5

    6

    7Density

    ME (VT-VV)LT (B)

    LT (MW)

    F i g u r e 1 1 : D e n s i t y a l o n g t h e s t a g n a t i o n l i n e ( l e f t ) a n d a l o n g t h e b b o d y l i n e ( r i g h t ) .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    26/36

    2 4 F . M a l l i n g e r ,

    ME (VT-VV) LT (B) LT (MW)

    -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    )Log( i/

    12

    3

    4

    5

    F i g u r e 1 2 : R e l a t i v e d e n s i t y a l o n g t h e s t a g n a t i o n l i n e .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    27/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 2 5

    0 2 4 6 8 10

    Quantum level-7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(ri/r)

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 2 4 6 8 10

    Quantum level-12.5

    -10.0

    -7.5

    -5.0

    -2.5

    0.0Log10(ri/r)

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 2 4 6 8 10

    Quantum level-15.00

    -12.50

    -10.00

    -7.50

    -5.00

    -2.50

    0.00Log10(ri/r)

    MK (VT-VV)

    LT (B)

    LT (MW)

    0 2 4 6 8 10

    Quantum number-20.0

    -16.0

    -12.0

    -8.0

    -4.0

    0.0Log10(ri/r)

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 2 4 6 8 10

    Quantum number-24.0

    -20.0

    -16.0

    -12.0

    -8.0

    -4.0

    0.0Log10(ri/r)

    ME (Vt-VV)

    LT (B)

    LT (MW)

    0 2 4 6 8 10

    Quantum level-40.0

    -32.0

    -24.0

    -16.0

    -8.0

    0.0Log10(ri/r)

    ME (VT-VV)

    LT (B)

    LT (MW)

    A B

    C

    E

    D

    F

    X=-1.01 X=-1.23

    X=-1.29 X=-1.4

    X=-1.41 X=-1.42

    F i g u r e 1 3 : P o p u l a t i o n d i s t r i b u t i o n s a t d i e r e n t l o c a t i o n s a l o n g t h e s t a g n a t i o n l i n e .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    28/36

    2 6 F . M a l l i n g e r ,

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT-VV)

    LT (B)LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT-VV)

    LT (B)LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-9.0

    -7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT-VV)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-9.0

    -7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT-VV)

    LT (B)

    LT (MW)

    A A=85. B A=64.5

    C

    E A=15.

    D A=25.5

    F A=4.5

    A

    A=34.5

    F i g u r e 1 4 : P o p u l a t i o n d i s t r i b u t i o n s a t d i e r e n t l o c a t i o n s a l o n g t h e b o d y l i n e .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    29/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 2 7

    4.166e-018.167e-011.217e+001.617e+002.017e+002.417e+002.817e+003.217e+003.617e+00

    4.017e+004.417e+004.817e+005.217e+005.617e+006.017e+006.417e+006.817e+007.217e+007.617e+008.017e+008.417e+008.817e+009.217e+009.617e+00

    MESH MACH NUMBER

    F i g u r e 1 5 : M e s h u s e d f o r t h e o w a t m a c h n u m b e r 1 0 ( l e f t ) a n d M a c h n u m b e r i s o l i n e s ( r i g h t ) .

    1.246e+001.495e+001.745e+001.994e+002.243e+002.492e+002.741e+002.991e+003.240e+003.489e+003.738e+003.987e+00

    4.236e+004.486e+004.735e+004.984e+005.233e+005.482e+005.732e+005.981e+006.230e+006.479e+006.728e+006.977e+00

    4.468e-028.224e-021.198e-011.574e-011.949e-012.325e-012.700e-013.076e-013.452e-013.827e-014.203e-01

    4.578e-014.954e-015.329e-015.705e-016.081e-016.456e-016.832e-017.207e-017.583e-017.959e-018.334e-018.710e-019.085e-01

    DENSITY PRESSURE

    F i g u r e 1 6 : D e n s i t y ( l e f t ) a n d p r e s s u r e ( r i g h t ) i s o l i n e s .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    30/36

    2 8 F . M a l l i n g e r ,

    4.427e+026.355e+028.282e+021.021e+031.214e+031.406e+031.599e+03

    1.792e+031.985e+032.177e+032.370e+032.563e+032.756e+032.948e+033.141e+033.334e+033.527e+033.719e+033.912e+034.105e+034.298e+034.490e+034.683e+034.876e+03

    4.219e+025.909e+027.599e+029.289e+021.098e+031.267e+03

    1.436e+031.605e+031.774e+031.943e+032.112e+032.281e+032.450e+032.619e+032.788e+032.957e+033.126e+033.295e+033.464e+033.633e+033.802e+033.971e+034.140e+034.309e+03

    TRANSLATION TEMPERATURE VIBRATIONAL TEMPERATURE

    F i g u r e 1 7 : T r a n s l a t i o n a l ( l e f t ) a n d v i b r a t i o n a l ( r i g h t ) t e m p e r a t u r e s .

    -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)0

    1000

    2000

    3000

    4000

    5000

    6000Temperature

    T-ME (VT)Tv-ME (VT)T-LT (B)Tv-LT (B)T-LT (MW)Tv-LT (MW)

    0 20 40 60 80

    Angle2000

    2500

    3000

    3500

    4000

    4500

    5000Temperatures (K)

    T-ME (VT)

    Tv-ME (VT)

    T-LT (B)

    Tv-LT (B)

    T-LT (MW)

    Tv-LT (MW)

    (K)

    F i g u r e 1 8 : T r a n s l a t i o n a l a n d v i b r a t i o n a l t e m p e r a t u r e s a l o n g t h e s t a g n a t i o n l i n e ( l e f t ) a n d a l o n g

    t h e b o d y ( r i g h t ) .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    31/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 2 9

    0 20 40 60 80 10

    Angle1

    2

    3

    4

    5

    6

    7

    8Density

    ME (VT)

    LT (B)

    LT (MW)

    -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)1

    2

    3

    4

    5

    6

    7

    8Density

    ME (VT)

    LT (B)

    LT (MW)

    F i g u r e 1 9 : D e n s i t y a l o n g t h e s t a g n a t i o n l i n e ( l e f t ) a n d a l o n g t h e b o d y ( r i g h t ) .

    0 20 40 60 80 10

    Angle0.0

    0.2

    0.3

    0.5

    0.6

    0.8

    0.9

    1.1Pressure

    ME (VT)

    LT (B)

    LT (MW)

    -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)0.0

    0.2

    0.4

    0.6

    0.8

    1.0Pressure

    Line 1

    LT (B)

    LT (MW)

    F i g u r e 2 0 : C r o s s s e c t i o n s o f t h e p r e s s u r e a l o n g t h e s t a g n a t i o n l i n e ( l e f t ) a n d a l o n g t h e b o d y ( r i g h t )

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    32/36

    3 0 F . M a l l i n g e r ,

    -1.5 -1.4 -1.3 -1.2 -1.1 -1.0

    L (m)

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00log10(roi/ro)

    ME LT (B) LT (MW)

    Level 1

    Level 2

    Level 3

    Level 4

    Level 5

    F i g u r e 2 1 : R e l a t i v e d e n s i t y a l o n g t h e s t a g n a t i o n l i n e .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    33/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 3 1

    1 2 3 4 5 6 7 8 9 10

    Quantum level-4

    -4

    -3

    -2

    -2

    -1

    -1

    0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    1 2 3 4 5 6 7 8 9 10

    Quantum level-5

    -4

    -3

    -2

    -1

    0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    1 2 3 4 5 6 7 8 9 10

    Quantum level-7

    -6

    -5

    -4

    -3

    -2

    -1

    0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    1 2 3 4 5 6 7 8 9 10

    Quantum level-9.0

    -7.5

    -6.0

    -4.5

    -3.0

    -1.5

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-48

    -40

    -32

    -24

    -16

    -8

    0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    1 2 3 4 5 6 7 8 9 10

    Quantum level-15

    -12

    -9

    -6

    -3

    0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    A X=-1.426 B X=-1.367

    C X=-1.25 D X=-1.161

    E X=-1.073 F X=-1.

    F i g u r e 2 2 : P o p u l a t i o n d i s t r i b u t i o n s a t d i e r e n t l o c a t i o n s a l o n g t h e s t a g n a t i o n l i n e . ) .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    34/36

    3 2 F . M a l l i n g e r ,

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level

    -4.8

    -4.0

    -3.2

    -2.4

    -1.6

    -0.8

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level

    -4.8

    -4.0

    -3.2

    -2.4

    -1.6

    -0.8

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-4.0

    -3.2

    -2.4

    -1.6

    -0.8

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-4.0

    -3.2

    -2.4

    -1.6

    -0.8

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-4.0

    -3.2

    -2.4

    -1.6

    -0.8

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    0 1 2 3 4 5 6 7 8 9 10

    Quantum level-4.2

    -3.6

    -3.0

    -2.4

    -1.8

    -1.2

    -0.6

    0.0Log10(roi/ro)

    ME (VT)

    LT (B)

    LT (MW)

    A B A=15

    C D A=35

    A=5

    A=25

    E A=65 F A=85

    A

    F i g u r e 2 3 : P o p u l a t i o n d i s t r i b u t i o n s a t d i e r e n t l o c a t i o n s a l o n g t h e b o d y l i n e .

    I N R I A

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    35/36

    V i b r a t i o n a l r e l a x a t i o n m o d e l s . 3 3

    2 1 ] J . L . S t e g e r , R . F . W a r m i n g , \ F l u x s p l i t t i n g o f t h e i n v i s c i d g a s d y n a m i c e q u a t i o n s w i t h

    a p p l i c a t i o n t o n i t e - d i e r e n c e m e t h o d s " , J o u r n a l o f C o m p u t . P h y s i c s , V o l . 4 0 , 1 9 8 1 .

    2 2 ] V a n L e e r B . , \ T o w a r d s t h e u l t i m a t e c o n s e r v a t i v e d i e r e n c e s c h e m e I I I " , J o u r n a l o f C o m p u t .

    P h y s i c s , V o l . 2 3 , 1 9 7 7 .

    2 3 ] V i c e n t i , K r u g e r , " I n t r o d u c t i o n t o P h y s i c a l G a s D y n a m i c s " , K r i e g e r , 1 9 8 6 .

    2 4 ] A . Z e l e c h o w , D . R a p p , T . E . S h a r p J . C h e m . P h y s . , V o l . 4 9 , 1 9 6 8 .

    R R n 3 2 6 3

  • 7/24/2019 Numerical Analysis of Different Vibrational Relaxation Models for Master Equations

    36/36

    Unite de recherche INRIA Lorraine, Technopole de Nancy-Brabois, Campusscientifique,

    615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY

    Unite de recherche INRIA Rennes,Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex

    Unite de rechercheINRIA Rhone-Alpes,655, avenuede lEurope, 38330 MONTBONNOT ST MARTIN

    Unite de recherche INRIA Rocquencourt,Domaine de Voluceau,Rocquencourt,BP 105, 78153 LE CHESNAY Cedex

    Unite de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

    Editeur

    INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

    ISSN 0249-6399