12
1 Challenge the future Numerical geodesy experiments for a Phobos laser ranging mission concept D.Dirkx, L.L.A. Vermeersen, R. Noomen, P.N.A.M. Visser

Numerical geodesy experiments for a Phobos laser ranging ......• Performed in framework of Tudat software project • Modular C++ astrodynamics library • Development of orbit determination

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • 1Challenge the future

    Numerical geodesy experiments for a Phobos laser ranging mission concept

    D.Dirkx, L.L.A. Vermeersen, R. Noomen, P.N.A.M. Visser

  • 2Challenge the future

    Interplanetary Laser Ranging

    Birnbaum et al., 2010

  • 3Challenge the future

    Interplanetary Laser RangingProspects

    • Laser tracking can provide unprecedented range accuracy• Current radiometric range at ~1 m• Laser ranging at mm-cm

    • Possibility of combination with• Laser altimetry• Laser communications

    • Quality improvement in orbit & parameter estimation

  • 4Challenge the future

    • FP7 project for improvement of solar system ephemerides• Investigation of near-term potential of interplanetary laser

    tracking• No interplanetary laser tracking operational• Simulations required for performance evaluation

    • Performed in framework of Tudat software project• Modular C++ astrodynamics library• Development of orbit determination module

    Interplanetary Laser RangingESPaCE Project

  • 5Challenge the future

    Link simulations

    • Direct-to-Earth, two-way asynchronous laser ranging to Phobos

    • Estimation of geophysical parameters of Mars; Phobos, ex.:• Phobos libration amplitudes• Phobos gravity field• Mars Love numbers• Mars quality factors

    • Use of consider convariance analysis for influence of systematic errors

    Test case

    Turyshev et al., 2010

  • 6Challenge the future

    Link simulations

    • Six SLR stations• Daily 30 min pass• 1 mm normal point per 60 s

    • Observations constrained by• Sun avoidance angle (5o)• Elevation angles (10o)• Occultations

    Phobos laser ranging settings

  • 7Challenge the future

    Link simulationsMars Love number results

    Blue: 1-mm precision, red: with 5-mm systematic errors

    • Small influence of non-conservativeforces

    • Separate estimation ofdegree 2 Love numbers

    • Very weak decorrelation ofdegree 2 and 3 Love numbers

  • 8Challenge the future

    Link simulationsMars quality factors results

    Blue: 1-mm precision, red: with 5-mm systematic errors

    • Separate estimation ofSun- and Phobos-forced tide

    • Deimos-forced tide is unobservable

    • Constraint on frequency-dependence

  • 9Challenge the future

    Link simulationsPhobos moments of inertia results

    Blue: 1-mm precision, red: with 5-mm systematic errors

    • Libration amplitudes constrain relative moments of inertia

    • Precision of degree 2gravity field estimation precise enough for decoupling

  • 10Challenge the future

    • Proper decorrelation of Phobos orbit; libration signal requiresadditional observables.

    • Systematic errors more important than for radiometric tracking

    • Mars interior results limited by:• Lack of seismic; heat; magnetic data

    • Phobos interior results limited by:• Uncertainty in control point network (1%)

    Link simulations

    Willner, et al., 2010

    Discussion

  • 11Challenge the future

    • Orders of magnitude improvement inMars; Phobos geodetic observables

    • Science results limited by complementary observations

    • Strong influence of systematics• Future steps:• Quantify system requirements from

    science requirements• Compare to combination with radiometric

    methods

    Conclusions & Outlook

    Oberst et al., 2012

  • 12Challenge the future

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12