20
Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa specifica TV62 “Particelle e campi in fluidi complessi” Department of Physics, INFN University of Rome “Tor Vergata” In collaboration with Luca Biferale & Mauro Sbragaglia

Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Embed Size (px)

Citation preview

Page 1: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Numerical simulations of Rayleigh-Bénard systems with complex

boundary conditions

XXXIII Convegno di Fisica Teorica - Cortona

Patrizio RipesiIniziativa specifica TV62 “Particelle e campi in fluidi complessi”Department of Physics, INFN University of Rome “Tor Vergata”

In collaboration with Luca Biferale & Mauro Sbragaglia

Page 2: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Outline

• Complex Rayleigh-Bénard convection: why ?

• Transition to steady convection (theory and numerics)

• Kinetic theory and Lattice Boltzmann model (LBM)

• Turbulent regimes with mixed boundary conditions

• Conclusions and perspectives

19/04/23 2P. Ripesi - Cortona 2012

Page 3: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

“Classic” Rayleigh-Bénard systems

A Rayleigh-Bénard system is a layer of fluid subject to an external gravity field placed between two plates, heated from below and cooled from above. The dynamic behavior is determined by the geometry, the temperature difference and the physical properties of the fluid.

19/04/23 P. Ripesi - Cortona 2012 3

Bénard cells

[Chandrasekhar, 1961]

Tup

Tdown

gH

L

ΔT=Tdown-Tup , α=thermal expansion coefficient ν=viscosity, κ=thermal diffusivity

Page 4: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

“Classic” Rayleigh-Bénard systems

What is the dependence of Nu on Ra?

19/04/23 P. Ripesi - Cortona 2012 4

Conductive state

Convective state

Turbulent convection[Lathrop et al, 2000]

Rac

Page 5: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

“Classic” Rayleigh-Bénard systems

What is the dependence of Nu on Ra?

19/04/23 P. Ripesi - Cortona 2012 5

Turbulent convectionConvective plumes [Sugiyama et al.,2007]

[Lathrop et al, 2000]

Page 6: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

“Complex” Rayleigh-Bénard systems

Considering a Rayleigh-Bénard system with an insulating lid on the upper boundary. What happens into the bulk region?

19/04/23 P. Ripesi - Cortona 2012 6

Heat transfer mechanism from bottom to up?

Page 7: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

“Complex” Rayleigh-Bénard systems: why?

19/04/23 P. Ripesi - Cortona 2012 7

Ice-insulating effect on the Deep Water formation (part of the

thermohaline circulation)

Continental-insulating effect on the Earth Mantle Convection

Page 8: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

The equations for a slightly compressible flows ( ρ ≈ const ) are described by

Solving for the static case, we need to solve the problem

19/04/23 P. Ripesi - Cortona 2012 8

L

2L1

H z

x

ξ=2L1/L insulating fraction

The static solution: analytical approach

Page 9: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Looking for a solution of the form

where and is a periodic function along x, we have

where the aj are fixed by the boundary conditions

19/04/23 P. Ripesi - Cortona 2012 9[Sneddon, 1966]

Fourier series

Dual Series problem

The static solution: analytical approach

Page 10: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Why numerical simulations?

19/04/23 P. Ripesi - Cortona 2012 11

• All data are available for each time step• Fine resolution between motion scales

[Ahlers, 2008]

Page 11: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Numerics: a little bit of Kinetic theory…

The main feature of the Kinetic theory is the formulation of an equation (called the Boltzmann equation) which describe the evolution for the single particle distribution function (pdf) f(ξ,x,t)

The momenta (in velocity spaces) of the pdf give to the hydrodynamical fields:

19/04/23 P. Ripesi - Cortona 2012 12

Collision operator into the BGK approximation

Local equilibrium distribution

density

velocity

temperature

Page 12: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

The Lattice Boltzmann Model

Discretized BGK Boltzmann equation

From this equation, it can be shown that by using a Chapman-Enskog expansion of the distribution function (fl = fl

(0) + εfl (1)+ ε2fl

(2)+…) where ε<<1, we can recover the

thermo-hydrodynamical equations

19/04/23 P. Ripesi - Cortona 2012 13

perfect gas equation of state

Dramatic reduction of number of degrees of freedom

mean free path

hydro scale

Page 13: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Numeric (LBM) vs Theory for the static case

19/04/23 P. Ripesi - Cortona 2012 14

z/H=1.0

z/H=0.7

z/H=0.4

z/H=0.1

ξ = 0.4 ξ = 0.8

• Perfect agreement between static dual series solution and LBM

• Deeper penetration as ξ 1

ξ 1

Tup=0.5, Tdown=1.5

Page 14: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Transition to the convection in the limit L<<H

Limiting temperature profile for the case L<<H:

Linear stability analysis with a renormalized basic temperature profile provides a new estimate for the critical Rayleigh number:

19/04/23 P. Ripesi - Cortona 2012 16

Basic temperature profile renormalized by mixed

boundary conditions

ξ = insulating fraction

Page 15: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Turbulent regime

Numerical simulation (on massively parallel computers of CINECA&CASPUR) using LBM on a 2D domain (2080x1040) at Ra ≈ 5x108 for various λ at ξ=0.5.

19/04/23 P. Ripesi - Cortona 2012 17

λ = number of cells of length L

Nusselt number (Nu)must be a

constant in stationary system

Page 16: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Turbulent regime

Numerical simulation using LBM on a 2D domain (2080x1040) at Ra ≈ 5x108 for various λ at ξ=0.5.

19/04/23 P. Ripesi - Cortona 2012 18

Inhomogeneity on the upper boundary causes the average temperature of the

fluid to increase with time

λ = number of cells of length L

Page 17: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Turbulent regime

λ=1, 2080x140

19/04/23 P. Ripesi - Cortona 2012 19

Increasing of temperature localized in the central region

Page 18: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

Conclusions & Perspectives

• Insulating lid on cold boundary can alter the classic RB convection, leading to an increasing of the bulk temperature of the fluid depending on size (ξ) and wave-number (λ) of the lids

• How the global heat transfer (Nu) is affected by changing ξ and λ for different Ra ? Ongoing work

• 3D numerical simulations of a case of geophysical interest ( like ice and Deep-Water formation) Planned

19/04/23 P. Ripesi - Cortona 2012 20

Page 19: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

19/04/23 P. Ripesi - Cortona 2012 21

Thanks for your attention!!!!

Page 20: Numerical simulations of Rayleigh-Bénard systems with complex boundary conditions XXXIII Convegno di Fisica Teorica - Cortona Patrizio Ripesi Iniziativa

References

•Ahlers G., Grossmann S., Lohse D. “Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection”. Rev. Mod. Phys., 81, 503-537, (2008).

•Chandrasekhar S.“Hydrodynamic and Hydromagnetic Stability”. Dover Pub., (1961).

•Duffy DG. “Mixed Boundary value problems”. Chapman & Hall/CRC, (2008).

•Ripesi P., Biferale L., Sbragaglia M. “High resolution numerical study of turbulent Rayleigh-Bénard convection with non-homogeneous boundary conditions, using a Lattice Boltzmann Method”. in preparation.

•Sneddon I. “Mixed boundary value problems in potential theory”. North-Holland Pub. Co., (1966).

•Sugiyama K., Calzavarini E., Grossmann S., Lohse D. “Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol”. Europhys. Lett., 80,(2007).

19/04/23 P. Ripesi - Cortona 2012 22