12
Numerical Numerical thermofluid thermofluid modeling of high modeling of high - - power power high high - - pressure thermal plasma pressure thermal plasma using reaction kinetics using reaction kinetics Yasunori Tanaka Kanazawa University JAPAN [email protected] http://www.ee.t.kanazawa-u.ac.jp/staffs/tanaka/ 原子分子データ応用フォーラムセミナー@Toki,13 Dec 2011 Introduction Introduction - - 1 :Features of high 1 :Features of high - - pressure plasmas pressure plasmas High-pressure plasmas for materials processing -Te >> Th -Electron-molecule interactions are dominant to produce ions & radicals. -Gradients of gas density and gas temperature are low. 1. Thermally non-equilibrium plasmas (ex.Atmospheric-pressure glow discharges APGD, DBD) 2. High power-density plasmas (Thermal plasmas /Meso-plasmas) -Te ~ Th or Te > Th -Electron-molecule, electron-atom and heavy particle-heavy particle interactions are important to produce ions & radicals -High dissociation degree of gases and highly non-uniform gas composition can be seen. -Gas density has a wide range of the fourth order (ex. 0.0001 kg/m 3 to 1.0 kg/m 3 ) due to high gradient of gas temperature (300 K-10000 K). ~10 MW/m 3 APGD Modulation & Continuous feeding (80%SCL-PM / CWF) 0 1 2 3 4 Radial position [mm] 4 3 2 1 0 Axial position [mm] Application of thermal plasmas Application of thermal plasmas Nanopowder synthesis Plasma arc cutting Diamond film fabrication 0 5 40 50 60 70 80 90 100 110 10 5 0 Axial position [mm] Radial position [mm] 0 5 10 40 50 60 70 80 90 100 110 10 5 0 Axial position [mm] Radial position [mm] 0 5 10 40 50 60 70 80 90 100 110 10 5 0 Axial position [mm] Radial position [mm] 0 5 10 40 50 60 70 80 90 100 110 10 5 0 Axial position [mm] Radial position [mm] 0 5 10 40 50 60 70 80 90 100 110 10 5 0 Axial position [mm] Radial position [mm] Switching devices: HVCB, MCCB Surface modification TiO 2 Introduction-2 The conventional model for thermal plasmas assumes LTE (Local Thermodynamic Equilibrium) condition: A. Thermal equilibrium # All temperatures including Te, Th, Tex, Trot, Tvib, etc are assumed to be the same. B. Chemical equilibrium # Infinite reaction rates for all reactions Reaction field instantaneously reaches its equilibrium. Reaction field is determined only by T and P. Thermally & Chemically Non-Equilibrium Conditions Thermally & Thermally & Chemically Chemically Non Non - - Equilibrium Equilibrium Conditions Conditions -Very high gas flow velocity -Rapid change in state (Transient state) -Low temp. regionLow reaction rate -High electric field strength -High gradient of particle density Modeling of Thermal Plasmas Actual situations Actual situations

Numerical thermofluid modeling of high-power high-pressure ...dpc.nifs.ac.jp/amdsoc/h231213/O2-tanaka10.pdf3 Ex-1. Modelling of pulsed arc discharges in air Assumptions (1) Pressure

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Numerical Numerical thermofluidthermofluid modeling of highmodeling of high--powerpowerhighhigh--pressure thermal plasma pressure thermal plasma using reaction kineticsusing reaction kinetics

    Yasunori TanakaKanazawa University

    [email protected]

    http://www.ee.t.kanazawa-u.ac.jp/staffs/tanaka/

    原子分子データ応用フォーラムセミナー@Toki,13 Dec 2011 IntroductionIntroduction--1 :Features of high1 :Features of high--pressure plasmaspressure plasmasHigh-pressure plasmas for materials processing

    -Te >> Th-Electron-molecule interactions are dominant to produce ions & radicals.-Gradients of gas density and gas temperature are low.

    1. Thermally non-equilibrium plasmas(ex.Atmospheric-pressure glow discharges APGD, DBD)

    2. High power-density plasmas (Thermal plasmas /Meso-plasmas)-Te ~ Th or Te > Th-Electron-molecule, electron-atom and heavy particle-heavy particle interactions are important to produce ions & radicals

    -High dissociation degree of gases and highly non-uniform gas composition can be seen. -Gas density has a wide range of the fourth order(ex. 0.0001 kg/m3 to 1.0 kg/m3) due to high gradient of gas temperature (300 K-10000 K).

    ~10 MW/m3

    APGD

    Modulation & Continuous feeding(80%SCL-PM / CWF)

    0

    1

    2

    3

    4

    Rad

    ial p

    ositi

    on [m

    m]

    0 2 4 6 84

    3

    2

    1

    0

    Axial position [mm]

    Application of thermal plasmasApplication of thermal plasmas

    Nanopowder synthesis

    Plasma arc cutting

    Diamond film fabrication

    0

    5

    10

    40 50 60 70 80 90 100 11010

    5

    0

    Axial position [mm]

    Rad

    ial p

    ositi

    on [m

    m]

    0

    5

    10

    40 50 60 70 80 90 100 11010

    5

    0

    Axial position [mm]

    Rad

    ial p

    ositi

    on [m

    m]

    0

    5

    10

    40 50 60 70 80 90 100 11010

    5

    0

    Axial position [mm]

    Rad

    ial p

    ositi

    on [m

    m]

    0

    5

    10

    40 50 60 70 80 90 100 11010

    5

    0

    Axial position [mm]

    Rad

    ial p

    ositi

    on [m

    m]

    0

    5

    10

    40 50 60 70 80 90 100 11010

    5

    0

    Axial position [mm]

    Radi

    al p

    ositi

    on [m

    m]

    Switching devices: HVCB, MCCB

    Surface modification

    TiO2

    Introduction-2

    The conventional model for thermal plasmasassumes LTE (Local Thermodynamic Equilibrium) condition:A. Thermal equilibrium# All temperatures including Te, Th, Tex, Trot, Tvib, etcare assumed to be the same.

    B. Chemical equilibrium# Infinite reaction rates for all reactions

    Reaction field instantaneously reaches its equilibrium. Reaction field is determined only by T and P.

    The conventional model for thermal plasmasassumes LTE (Local Thermodynamic Equilibrium) condition:A. Thermal equilibrium# All temperatures including Te, Th, Tex, Trot, Tvib, etcare assumed to be the same.

    B. Chemical equilibrium# Infinite reaction rates for all reactions

    Reaction field instantaneously reaches its equilibrium. Reaction field is determined only by T and P.

    Thermally & Chemically Non-EquilibriumConditions

    Thermally & Thermally & Chemically Chemically NonNon--EquilibriumEquilibriumConditionsConditions

    -Very high gas flow velocity-Rapid change in state (Transient state)-Low temp. region⇒Low reaction rate-High electric field strength-High gradient of particle density

    Modeling of Thermal PlasmasModeling of Thermal Plasmas

    Actual situationsActual situations

  • 2

    Our work that has been done

    #1. A chemically non-equilibrium model#2. A two-temperature chemically non-equilibrium modelfor thermal plasmas was developed using reaction kinetics. -Consideration of reaction rates for hundreds of reactions -Thermodynamic and transport properties were self-consistently calculated using non-CE density and Tat each position at each calculation step.

    #1. A chemically non-equilibrium model#2. A two-temperature chemically non-equilibrium modelfor thermal plasmas was developed using reaction kinetics. -Consideration of reaction rates for hundreds of reactions -Thermodynamic and transport properties were self-consistently calculated using non-CE density and Tat each position at each calculation step.

    -Results of temperature fields, particle composition -Comparison with LTE calculation results-Results of temperature fields, particle composition -Comparison with LTE calculation results

    Results of thermal plasmas with O2 gas# Pulsed arc discharge in dry air, # Pulsed arc discharge in dry air, # Ar+N# Ar+N22+O+O22 ICPsICPs, # Dielectric strength of hot air# Dielectric strength of hot air(Ar+N2, Ar+N2+H2, Ar+CO2+H2, Ar+CH4+O2, SF6 plasmas have been also developed )

    -Nanopowder synthesis-Surface modification-Syngas production

    Today’s presentation

    Keywords:-Chemically non-equilibrium -Reaction rates-Convection and diffusion

    NonNon--equilibrium modeling of arcs/thermal plasmasequilibrium modeling of arcs/thermal plasmas1.1. Chemically nonChemically non--equilibrium effectsequilibrium effects2.2. Thermally nonThermally non--equilibrium effectsequilibrium effects3.3. NonNon--MaxwellianMaxwellian EEDFEEDF

    Assumption of local thermodynamic equilibrium (LTE) conditionParticle composition can be determined only by local temperature and pressure through the mass action law.-Solving Saha equations & Guldberg-Waage equations-Minimization of Gibb’s free energy of a system

    How to consider chemically nonHow to consider chemically non--equilibriumequilibrium

    A conventional model for thermal plasmas

    ∏−∏−=+⋅∇+

    = ==

    L N

    ii

    rN

    ii

    ffj

    rjjjj

    j rif

    i nnmYtY

    1 11)()(

    )(

    lllll

    ll ββ ααββρρ

    Ju

    -Reaction rates are finite Time scale of a system~Reaction time-Convection and diffusion effects are not negligible for particle composition determination

    Convection Diffusion Production by reactions

    Mass conservation of each of species j:

    Actual situations

    This equation should be solved to determine particle compositionThis equation should be solved to determine particle compositionconsidering chemically nonconsidering chemically non--equilibrium effects.equilibrium effects.

    Te~Th

    Consideration of chemically nonConsideration of chemically non--equilibriumequilibrium

    ∏−∏−=+⋅∇+

    = ==

    L N

    ii

    rN

    ii

    ffj

    rjjjj

    j rif

    i nnmYtY

    1 11)()(

    )(

    lllll

    ll ββ ααββρρ

    Ju

    Convection Diffusion Production by reactions

    Mass conservation of species j:

    #Disadvantages in treatment of chemically non-equilibrium(i) A large amount of data concerning reaction rates

    with a wide temperature range are necessary.(ii) Thermodynamic and transport properties

    cannot be calculated in advance as functions of T & P. They should be calculated at each position with local T & P and particle composition calculated.

    (iii) Numerical instability often occurs because of a wide range of reaction rates.

    An implicit method is usually adopted to solve the mass conservation equations.

    #Disadvantages in treatment of chemically non-equilibrium(i) A large amount of data concerning reaction rates

    with a wide temperature range are necessary.(ii) Thermodynamic and transport properties

    cannot be calculated in advance as functions of T & P. They should be calculated at each position with local T & P and particle composition calculated.

    (iii) Numerical instability often occurs because of a wide range of reaction rates.

    An implicit method is usually adopted to solve the mass conservation equations.

    Examples of chemically non-equilibrium modeling will be presented.Examples of chemically non-equilibrium modeling will be presented.

  • 3

    ExEx--1. 1. ModellingModelling of pulsed arc discharges in airof pulsed arc discharges in air

    Assumptions(1) Pressure surrounding the arc is the atmospheric pressure,

    i.e. 101325 Pa.(2) The one-temperature model is adopted, i.e. T=Te=Th.(3) Axisymmetric structure.(4) Optically thin.(5) Turbulence is neglected.(6) The electric field has only an axial component,

    while magnetic field has only an azimuthal one.(7) The dry-air plasma has 13 species:

    N2, N2+, N, N+, O2, O2+, O, O+, NO, NO+, and e.(8) Reaction rates depend on Arrehius’ law.(9) Chemically equilibrium(CE) is not dictated.

    Ez

    r

    Example 1: A pulsed arc discharge in air with Ipeak=72A, tf/th= 1.0/12 µs.

    Y.Tanaka, PSST, 14, 134, 2005

    Simple model-Mass conservation:

    -Momentum conservation:

    -Energy conservation:

    Governing equationsGoverning equations

    ( ) ( ) 2211 02 θσµυηυηυρυρυ HErr

    rrrr

    pr

    rrt z

    −−

    ∂∂

    ∂∂

    +∂∂

    −=∂

    ∂+

    ∂∂

    radz

    N

    j

    jjj PEr

    Yh

    CDr

    rrrh

    Cr

    rr

    hrrr

    ht

    −+

    ∂⋅

    ∂∂

    +

    ∂∂

    ∂∂

    =

    +

    ∂∂

    +

    +

    ∂∂

    ∑=

    2

    1 pp

    22

    11

    )2

    (1)2

    (

    σκρκ

    υυρυρ

    mm

    ( ) 01 =∂

    ∂+

    ∂∂

    rr

    rtυρρ

    -Mass conservation of species j:( ) ( ) ( ) 11

    1 11∑ ∏∏

    = ==

    −⋅−=

    ∂∂

    ∂∂

    −∂

    ∂+

    ∂∂ L

    l

    N

    ii

    rl

    N

    ii

    fl

    fjl

    rjlj

    jj

    jj rilf

    il nnmrY

    Drtrr

    Yrrt

    Y ββ ααββρυρρ

    nnnnnn NOOONNe 22 +++++− ++++=-Charge neutrality: -Equation of state: kTnp

    jj∑=

    ∫∞=

    02 rdr

    IEzπσ

    -Ohm’s law:

    -Ampere’s law:ξξσθ dEr

    H zr

    ∫= 01

    Solving these eqs. enables one to drive nj without CE assumption.

    t : time, ρ: mass density, r : radial position, υ : radial velocity, p: pressure, σ: electrical conductivity, µ0: permeability, Ez: electric field strength, Hθ: magnetic field strength, h: enthalpy, κ: thermal conductivity, Dj: effective diffusion coefficient, Cpm: effective specific heat, Yj: mass fraction, Prad: radiation loss, βjl: stoichiometric coefficient, αl : reaction rate

    t : time, ρ: mass density, r : radial position, υ : radial velocity, p: pressure, σ: electrical conductivity, µ0: permeability, Ez: electric field strength, Hθ: magnetic field strength, h: enthalpy, κ: thermal conductivity, Dj: effective diffusion coefficient, Cpm: effective specific heat, Yj: mass fraction, Prad: radiation loss, βjl: stoichiometric coefficient, αl : reaction rate

    )2,2(ijΩπ

    1 : 2O2→ 2O + O22 : O2 + NO → 2O + NO3 : O2 + N2→ 2O + N24 : O2 + O → 3O 5 : O2 + N → 2O + N 6 : NO + O2→ N + O + O27 : 2NO → N + O +NO 8 : NO + N2→ N + O + N29 : NO + O → N + 2O 10: NO + N → 2N + O 11: N2 + O2→ 2N + O212: N2 + NO → 2N + NO 13: 2N2→ 2N + N214: N2 + O → 2N + O 15: N2 + N → 3N16: N2 + e-→ 2N + e-17: N2 + O → NO + N18: NO + O → N + O219: N + O → NO+ + e-20: 2N → N2+ + e-21: 2O → O2+ + e-

    22: O + e- O+ + 2e-23: N + e- N+ + 2e-24: NO+ + O N+ + O225: O2+ + N N+ + O226: NO + O+ N+ + O227: O2+ + N2 N2+ + O228: O2+ + O O+ + O229: NO+ + N O+ + N230: NO+ + O2 O2+ + NO31: NO+ + O O2+ + N32: O+ + N2 N2+ + O33: NO+ + N N2+ + O34: N2+ + N N2 + N+35: N2+ + N2 + e- 2N236: N2+ + N + e- N2 + N37: N+ + N2 + e- N + N238: N+ + N + e- 2N39: O2 + e 2O + e40: O2 + e O2+ + 2e41: NO + e NO+ + 2e42: N2 + e N2+ +2e

    Reactions in dryReactions in dry--air plasmasair plasmas

    42 forward reactions &their backward reactions

    Totally 84 reactionswere taken into

    account

    Rate coefficients -Forward reactions: by Arrhenius lawusing data of C.Park (NASA)-Backward reactions:by the principle of detailed balancing

    ∑≠

    −=

    jiji

    i

    jj

    Dx

    YD

    1

    )1,1()1(

    12

    )(831

    ijji

    ji

    ij mmmmkT

    +=

    ∆ ππ

    ∑≠

    ∆=

    ejejj

    e

    nn

    kTe

    )1(

    2

    σ

    )1(

    1

    ijij p

    kTD∆

    =

    -Thermodynamic and transport properties depends on not only T& p but also particle composition nj at each time step at each position.

    Rapid transient phenomena in pulsed arc discharges

    ↓Chemical non-equilibrium

    k :Boltzmann const., T: temperature, e: electronic charge, nj: density of species j, mj: mass of species j, πΩij: collision integral between i-j, xi:mole fraction of species j, Yj: mass fraction of species j, p : pressure (Pa)

    k :Boltzmann const., T: temperature, e: electronic charge, nj: density of species j, mj: mass of species j, πΩij: collision integral between i-j, xi:mole fraction of species j, Yj: mass fraction of species j, p : pressure (Pa)

    Transport properties of dryTransport properties of dry--air arc plasmasair arc plasmas--11First order approximation of Chapman-Enskog method

    -Electrical conductivity

    -Effective diffusion coefficient

    Transport properties

  • 4

    ( )

    ∆+

    ∂∂

    += fjjj

    j HZTkTkT

    mh ln

    251 2

    j

    N

    jjhYh ∑

    =

    =1

    ∑=

    ∂∂

    =N

    j

    jj T

    hYC

    1pm( ) ( )

    ( )2/1/54.245.0/1

    1ji

    jijiij mm

    mmmm+

    −⋅−+=ξ

    ∑∑=

    =

    ∆=

    N

    jN

    iiji

    jj

    n

    nm

    1

    1

    )2(η

    )2,2()2(

    12

    )(1651

    ijji

    ji

    ij mmmmkT

    +=

    ∆ ππ

    ∑∑=

    =

    ∆=

    N

    iN

    jijjij

    i

    n

    nk1

    1

    )2(415

    ξκ

    Zj: internal partition function of species j, ∆Hfj: standard enthalpy of formation

    Zj: internal partition function of species j, ∆Hfj: standard enthalpy of formation

    Transport properties of dryTransport properties of dry--air arc plasmasair arc plasmas--22

    -Thermal conductivity

    -Viscosity

    Thermodynamic properties Transport properties

    Electric current waveformElectric current waveform

    The similar waveform to that in the experiment was adopted for comparison.

    -Peak value of current=72A

    -Time duration to peak= 1.0 µs

    -Time duration to half current=12.0µs0 1 2 3 4 5 6 7 8

    01020304050607080

    Ipeak=72 A, tf/th=1.0/12.0 µs

    Cur

    rent

    (A)

    Time (µs)

    Time evolution in temperatureTime evolution in temperature

    (x, y)=(0,0) : center axis of the arc

    An increase in temperature on center axisarises from increasing joule heating there.

    Electric current

    -Atmospheric air-11 species(N2, N2+, N, N+,O2, O2+, O, O+,NO, NO+,e)

    -84 kinds of reactions

    -Atmospheric air-11 species(N2, N2+, N, N+,O2, O2+, O, O+,NO, NO+,e)

    -84 kinds of reactions

    Time evolution in pressureTime evolution in pressure

    A rapid decrease in pressure around the axis can be seen.A discontinuous surface is generated Shock-wave

  • 5

    Time evolution in mass densityTime evolution in mass density

    A rapid decrease in ρ around the axis and an increase in ρ surrounding the arc are due to the generated shock-wave.

    A rapid decrease in ρ around the axis and an increase in ρ surrounding the arc are due to the generated shock-wave.

    Time evolution in Time evolution in particle composition distributionparticle composition distribution

    N2N2+NN+O2O2+OO+NONO+e-

    A rapid change in composition arising from dissociation and ionization reactions can be seen until about t=1.0 µs. From t>1.0 µs, the composition change is due mainly to the radial transport.

    A rapid change in composition arising from dissociation and ionization reactions can be seen until about t=1.0 µs. From t>1.0 µs, the composition change is due mainly to the radial transport.

    Dominant reactions for Dominant reactions for generation/disappearance of speciesgeneration/disappearance of species

    0.0 0.2 0.4 0.6 0.8 1.0-20

    -10

    0

    10

    20

    N2 + O NO + N

    N + O NO+ + e-

    [x104]

    2N N2+ + e-

    N2 + e- 2N + e-

    N + e- N+ + 2e-

    Radial position (mm)

    Mas

    s pro

    duct

    ion

    rate

    (kg

    m-3 s-

    1 )

    NO + N N2 + O

    NO+ + e- N + O

    N + O2 NO + O

    N2+ + e- 2N

    N+ + 2e- N + e-

    Mass production rate of N atomby each reactionat t=0.4 µs after ignition

    Mass production rate of N atomby each reactionat t=0.4 µs after ignition

    Gen

    .D

    isap

    p. Gen.: N2+e 2N + eDisapp.:N+e N+ +e

    Dominant reactions for generation/disappearance Dominant reactions for generation/disappearance of species at 0.4 of species at 0.4 µµs after arc ignitions after arc ignition

    NO+ + e-→ N + ON + O → NO+ + e-NO+

    O+ + 2e-→ O + e-N+ + 2e-→ N + e-

    O + e-→ O+ + 2e-N + e-→ N+ + 2e-e

    -

    NO + N → N2 + ON2 + O → NO + NNOO+ + 2e-→ O + e-O + e-→ O+ + 2e-O+O + e-→ O+ + 2e-O+ + 2e-→ O + e-OO2+ + e-→ 2O2O → O2+ + e-O2+N + O2→ NO + O2O + N2→ O2 + N2O2

    N+ + 2e-→ N + e-N + e-→ N+ + 2e-N+N + e-→ N+ + 2e-N2 + e-→ 2N + e-NN2+ + e-→ 2N2N → N2+ + e-N2+N2 + e-→ 2N + e-NO + N → N2 + ON2

    DisappearanceGeneration

    NO N2O2

    O NO+ N

    N2+

    N+O+

    O2+

    Heavy particle chemistryat t=0.4 µs

  • 6

    Comparison with experimental resultsComparison with experimental results--1:1:Neutral particle density, electron densityNeutral particle density, electron density

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

    2

    4

    6

    8

    10

    12[x1025]

    t=2.0 µs

    t=0.8 µs

    Neu

    tral

    par

    ticle

    den

    sity

    (m-3)

    Radial position (mm)

    t=0.4 µs

    Experimental results were obtained with a two-wavelength laser-interferometer by Akazaki et al.

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.10.20.30.40.50.60.70.80.9

    t=0.4 µs@LTE

    [x1024]

    t=2.0 µs

    t=0.8 µs

    t=0.4 µs

    Ele

    ctro

    n de

    nsity

    (m-3)

    Radial position (mm)

    Good agreements between calculation results and experimental ones.Good agreementsGood agreements between calculation results and experimental ones.

    Red:Present cal. results Red:Present cal. results

    Comparison with experimental resultsComparison with experimental results--22Arc radius, expanding velocity of shock waveArc radius, expanding velocity of shock wave

    rs: Radial position of shock wave surfacerc: Arc channel radius defined as the radius in which 90% electrons is included.

    0 1 2 3 4 5 6 70.00.51.01.52.02.53.03.54.0

    Measured

    Calculated

    rs

    rc

    Rad

    ius

    r c, r

    s (m

    m)

    Time (µs)

    10-1 100 1010.00.51.01.52.02.53.03.5

    Vel

    ocity

    (km

    s -1)

    Time (µs)

    d rs/dt

    Good agreementsGood agreementsbetween calculation results and experimental ones.

    Red:Calculated result

    SummarySummaryDevelopment of 1-D Chemical non-equilibrium model of pulsed arc dischargesin dry air at atmospheric pressure (84 reactions considered)

    Development of 1-D Chemical non-equilibrium model of pulsed arc dischargesin dry air at atmospheric pressure (84 reactions considered)

    Time evolutions in temperature, pressure, mass density, particle composition in a pulsed arc discharge was obtained.

    Shock-wave generationDominant reactions for each particle

    Comparison with experimental results:-Neutral particle density, -Electron density, -Arc conducting radius and its expanding velocity, -Radial position of shock-wave surface and its expanding velocity

    Good agreements were obtained.

    Keywords:-Chemically non-equilibrium -Reaction rates-Convection and diffusion

    NonNon--equilibrium modeling of arcs/thermal plasmasequilibrium modeling of arcs/thermal plasmas1.1. Chemically nonChemically non--equilibrium effectsequilibrium effects2.2. Thermally nonThermally non--equilibrium effectsequilibrium effects3.3. NonNon--MaxwellianMaxwellian EEDFEEDF

  • 7

    Cross-section of plasma torch and reactor

    Plasma torch Reactor chamber

    8-turn coil

    Quartz tubeCooling water

    155mm

    910mm

    Gasinjection

    Water-cooled SUS wall

    Calculation space

    330mm 150mm

    35mm

    Frequency: 450 kHz, RF.Power: 13.5, 27.0 kW Pressure: 1, 0.5, 0.3 atmGas:Sheath gas Ar/additional gas=98/2 slpm( e.g.)Additional gas N2=2, N2+H2=1+1, N2+O2=1.56+0.44 slpm(air)

    Frequency: 450 kHz, RF.Power: 13.5, 27.0 kW Pressure: 1, 0.5, 0.3 atmGas:Sheath gas Ar/additional gas=98/2 slpm( e.g.)Additional gas N2=2, N2+H2=1+1, N2+O2=1.56+0.44 slpm(air)

    Calculation conditions

    (1) Steady state(2) Axisymmetric structure(3) Laminar flow, therefore the turbulent effect is negligible.(4) Optically thin(5) Chemically non-equilibrium condition is allowed.(6) Te can be different from Th

    2T-NCE Modeling of Ar plasmas with molecular gases

    For Ar+N2+O2 plasma:13 species: N2, N2+, N, N+, O2, O2+, O, O+, NO, NO+, Ar, Ar+, e

    For Ar+N2+O2 plasma:13 species: N2, N2+, N, N+, O2, O2+, O, O+, NO, NO+, Ar, Ar+, e

    Assumptions

    Particles considered

    Governing equations0=)(∇+

    ∂∂ uρρ ・

    t-Mass conservation:

    ( ) ( ) [ ]∗ℜ+

    ∂∂

    •∇+∇•∇+∂∂

    −=•∇+∂

    )(∂rHEz

    uzpu

    tu &&

    θσµηηρρ

    0uu

    ( ) ( ) [ ]*022)( zHErvw

    rrrp

    t&&

    θσµρυηηυηυρρυ ℜ++−

    ∂∂

    •∇+∇•∇+∂∂

    −=•∇+∂

    ∂ uu

    ( ) ( )r

    rrw

    rvwww

    tw

    ∂∂

    −+∇•∇=•∇+∂

    ∂ )()( ηρηρρ u

    -Momentum conservation:

    Axial:

    Radial:

    Swirl:

    ( ) ( ) ( )[ ] eh0

    htrh

    ee

    EQYhDThth LN

    jjjj

    rf

    +∆−∇′•∇+∇•∇=′•∇+∂

    )′(∂ ∑∑)=⋅( lll

    l

    ββ

    ρλρρ u

    -Energy conservation for heavy particles:

    -Energy conservation for electrons:( ) eh

    0radee

    ee

    treeeee

    ee251

    25 EQPEET

    mTTnTn

    t

    LN

    j rf−∆−−+

    •∇−∇•∇=

    •∇+

    ∂∂ ∑∑

    )≠⋅(

    lll

    l

    ββθθσκλκκ Γ2

    5u

    -Mass conservation for each particle:

    ( )∑ ∏∏

    −⋅−+∇•∇=•∇+

    ∂ L

    l

    N

    ii

    rl

    N

    ii

    fl

    fjl

    rjljjjj

    j rilf

    il nnmYDYtY ββ ααββρρ

    ρ)()(

    )(u

    etc…-Maxwell eq. for vector potential:

    -Equation of state-Charge neutrality

    θθ ωσµ AjA && 02 =∇

    Reaction heat

    Energy transfer between h & e

    1: O2 + O2→ O + O +O22: O2 + NO → O + O + NO3: O2 + N2 → O + O + N2 4: O2 + O → O + O + O5: O2 + N → O + O + N6: O2 + Ar → O + O + Ar7: NO + O2 → N+ O + O2 8: NO + NO → N + O +NO9: NO + N2 → N + O + N2

    10: NO + O → N + O + O11: NO + N → N + O + N12: NO + Ar→ N + O + Ar13: N2+O2→N+N+O214: N2+NO →N+N+O15: N2+N2→N+N+N216: N2+O →N+N+O17: N2+N →N+N+N18: N2+Ar →N+N+Ar19: N2+e →N+N+e20: N2+O →NO+N

    Ex.: Reactions in Ar-N2+O2 plasma21: NO + O → N +O222: N + O → NO+ + e23: N + N → N2++e24: O + O → O2+ + e25: O + e → O+ + e + e26: N + e → N+ + e + e27: NO+ + O → N+ + O2 28: O2+ + N → N+ + O229: NO + O+ → N+ + O230: O2+ + N2→ N2+ + O231: O2+ + O → O+ + O232: NO+ + N → O+ + N233: NO+ + O2→O2+ +NO34: NO+ + O → O2+ +N35: O+ + N2→N2++O36: NO+ + O →O2+ +N37: N2+ + N →N2 + N+38: N2++ N2 + e →N2+N239: N2++ N + e →N2+N40: N+ +N2 + e →N2+N

    41: N++ N +e → N +N42: O2 + e → O+O + e43: O2 + e → O2++e+e44: NO + e → NO++e+e45: N2 + e → N2++e +e46: Ar++e+e→ Ar + e 47: Ar+Ar→ Ar+ +e+Ar

    94 reactions were considered.94 reactions were considered.

    Reaction rate coefficients:#Temperature-dependent approximation1. Arrhenius type: α=aTbexp(-c/T) 2. Lennard-Jones type:

    α=aexp(b+cT+dT2)exp(-c/T)#. Energy Distribution

    Function:

    Reaction rate coefficients:#Temperature-dependent approximation1. Arrhenius type: α=aTbexp(-c/T) 2. Lennard-Jones type:

    α=aexp(b+cT+dT2)exp(-c/T)#. Energy Distribution

    Function: ∫∞

    =

    0

    2/1

    )()(2 εεεεσα dfmef

    ll

    Maxwellian for heavy particles

  • 8

    Ex. Rate coefficients of electron impact reactionsEx. Rate coefficients of electron impact reactions

    ∂∂

    −=∑ εεεσδε

    ε nnmm

    NENeJ

    sss 2)()/2(3

    )/(22/1

    22f

    ∂∂

    −=s

    gg

    esnkT

    kTn

    Mm

    mNJ

    εεεεσδε

    2)(22

    2

    2/1el

    [ ])(2)( 2/12/1 εσεε sjsj mR

    =

    2/10 )()( εεε fnn e=

    ee,

    0elf )()()(

    +

    ∑ ∫

    ∂∂

    +∂

    ∂+

    ∂∂

    −∂∂

    −=∂

    js

    sjs

    ndnR

    NJJ

    tn sj

    εε

    εεε

    εεε εε

    ε

    : Energy gain by electron by E

    : Energy loss in elastic collisions

    Rate of inelastic collisions such as excitation, ionization

    EEDF: Electron energy distribution function

    Electron-electron collision term

    ∫∞

    =

    0

    2/1

    )()(2 εεεεσα dfmef

    ll

    Rate coefficient of electron impact reactions

    Two-term expansion of 0-D Boltzmann eq.10-2 10-1 100 101 102

    10-2310-22

    1x10-2110-2010-1910-18

    Electr.ex

    Ioni.Momen.

    Vib.ex

    Cro

    ss se

    ctio

    n (m

    2 )

    Electron energy (eV)

    e-N2e-N2

    50 100 150 200 25010-12

    10-11

    1x10-10

    1x10-9

    Electron impactionization98%Ar-2%air Eq.Tg=3000 K

    N2

    NO

    ArO2

    NO

    Rat

    e co

    effic

    ient

    [m3 /s

    ]E/N [x10-17 V m2]

    50 100 150 200 25010-12

    10-11

    1x10-10

    1x10-9 Eq.Comp.@Tg=4000 K

    Eq.Comp.@Tg=3500 K

    Eq.Comp.@Tg=300-3000 K

    Electron impactionization of N98%Ar-2%air Eq.

    Rat

    e co

    effic

    ient

    [m3 /s

    ]

    E/N [x10-17 V m2]

    Transport properties of thermal plasma

    ∑∑=

    =

    =N

    jN

    jijj

    jj

    n

    nm

    1

    1

    )2(η

    ∑=

    ∆= N

    jejjej

    e

    n

    nk

    1

    )2(

    tre 4

    15

    ξλ

    The first order approximation of Chapman-Enskog method

    The first order approximation of Chapman-Enskog method

    −=

    N

    ji ij

    j

    jj

    DxY

    D1

    Transport and thermodynamic properties for heavy particles and electrons are calculated at each position using non-equilibrium composition and collision integrals.

    Transport and thermodynamic properties for heavy particles and electrons are calculated at each position using non-equilibrium composition and collision integrals.

    ∑∑≠

    =

    ∆=

    eiN

    jijjij

    i

    n

    nk

    1

    )2(

    trh 4

    15

    ξλ

    ∑≠

    ∆= N

    ejejj

    e

    ee

    n

    nkTe

    )1(

    2

    σ

    ∑≠

    +=

    ejh

    j

    je

    e

    e kTmY

    kTmY

    pρ-Mass density

    -Effective diffusion coefficient

    -Translational thermal conductivity for heavy particles

    -Translational thermal conductivity for electrons

    -Electrical conductivity

    -Viscosity

    Influenced markedly by temperature and composition

    2D-Temp. distribution by 1T-CE and 2T-NCE methods

    0 200 400 600 8006040200

    9000

    Axial position (mm)

    Rad

    ial p

    ositi

    on (m

    m)

    0204060

    7000 K

    80009000

    2T-NCE2T-NCE

    1T-CE:LTE1T-CE:LTE

    Ar-air plasmaP=0.3atm

    0 200 400 600 800604020

    0

    9000 Th

    Axial position (mm)

    Rad

    ial p

    ositi

    on (m

    m)

    0204060 Te

    7000 K

    80009000

    0 200 400 600 800604020

    0

    9000 Th

    Axial position (mm)R

    adia

    l pos

    ition

    (mm

    )

    0204060 Te

    7000 K

    8000900098%Ar+2%[email protected] [email protected]

    98%Ar+2%[email protected] [email protected]

    0 200 400 600 8006040200

    Th

    Axial position [mm]

    0204060

    Te6000 K

    7000 K8000 K9000 K

    Rad

    ial p

    ositi

    on [m

    m]

    98%Ar+2%[email protected] [email protected]

    98%Ar+2%[email protected] [email protected]

    Temperature distribution of Ar-N2+O2 & Ar-N2 plasmas

  • 9

    Radial T distribution for Ar-N2+O2 & Ar-N2 plasma

    98%Ar+2%N298%Ar+2%N2

    0 5 10 15 20 25 30 3502468

    10

    Th

    Te

    Tem

    pera

    ture

    [kK

    ]

    Radial position [mm]

    Te>Th: thermal non-eq.

    Inclusion of O2 causes shrinkage of a plasma

    z=155mm, mid coil

    P=0.3atm P=0.3atm

    0 5 10 15 20 25 30 3502468

    10

    Th

    Te

    Tem

    pera

    ture

    [kK

    ]

    Radial position [mm]

    98%Ar+2%air(1.56%N2+0.44%O2)98%Ar+2%air(1.56%N2+0.44%O2)

    P=0.3atm13.5kW

    0 5 10 15 20 25 30 3502468

    10

    ThTe

    Tem

    pera

    ture

    [kK

    ]Radial position [mm]

    98%Ar+1%N2+1%H298%Ar+1%N2+1%H2

    Power balance in Ar-N2 plasma

    0 10 20 3002468

    10

    Th

    Te

    Tem

    pera

    ture

    [kK

    ]

    Radial position [mm]

    98%Ar+2%N2 plasma@[email protected]

    z=155mm, mid coil

    0 5 10 15 20 25 30 35-60

    -40

    -20

    0

    20

    40

    60

    R-cond. -div(heΓe)

    -Σ∆Ql -Prad -Eeh

    σ|Eθ|2

    Pow

    er [M

    W/m

    3 ]

    Radial position [mm]0 5 10 15 20 25 30 35

    -60

    -40

    -20

    0

    20

    40

    60

    Diff.R-cond.Z-conv. -Σ∆Ql

    EehR-conv.

    Pow

    er [M

    W/m

    3 ]

    Radial position [mm]

    Electrons

    Heavy particles

    0 200 4006040200

    Axial positi

    0204060 8000 K9000 K

    Rad

    ial p

    ositi

    on [m

    m]

    N atom mass fraction by 1T-CE and 2T-NCE methods

    Ar-air plasmaP=0.3atm

    0 5 10 15 20 25 30 351017

    10181019102010211022

    1x10231024

    1x1025

    O+

    O N+

    NO

    Ar+, eN O2

    N2Ar

    Num

    ber

    dens

    ity [m

    -3]

    Radial position [mm]0 5 10 15 20 25 30 3510

    17

    10181019102010211022

    1x10231024

    1x1025

    NO+O+

    O N+

    NO

    Ar+, eNO2

    N2

    Ar

    Num

    ber

    dens

    ity [m

    -3]

    Radial position [mm]

    0 200 400 600 800604020

    0

    0.002

    0.004 1T-CE

    Axial position (mm)

    Rad

    ial p

    ositi

    on (m

    m)

    0204060 2T-CE

    0.004

    0.0060.008 2T-NCE2T-NCE

    1T-CE:LTE1T-CE:LTE

    2T-NCE2T-NCE 1T-CE(LTE)1T-CE(LTE)

    98%Ar+2%air ICP

    N atom

    N atom

    Conclusions

    -A 2D-2T-NCE model: > it was developed for high power

    argon induction thermal plasmas with molecular gases (Ar+N2, Ar+N2+H2, Ar+N2+O2, Ar+CO2+H2, Ar+CH4+O2 ).

    -Non-equilibrium effects:>Thermally and chemically non-equilibrium condition

    can be seen near the wall in the plasma torch region. >Non-equilibrium affects prediction

    of distribution of particle composition.

    -Full coupling with Boltzmann equation-Transport of excited particles-Detailed model of radiation transport -Separate treatment for electron and ion

    -Full coupling with Boltzmann equation-Transport of excited particles-Detailed model of radiation transport -Separate treatment for electron and ion

    Future works

  • 10

    Keywords:-Non-Maxwellian electron energy distribution function (EEDF)

    -Boltzmann equation- Low electron density situation

    with high electric field strength

    NonNon--equilibrium modeling of arcs/thermal plasmasequilibrium modeling of arcs/thermal plasmas11 Chemically nonChemically non--equilibrium effectsequilibrium effects22 Thermally nonThermally non--equilibrium effects in ICPequilibrium effects in ICP33 NonNon--MaxwellianMaxwellian EEDFEEDF

    Introduction Introduction NonNon--MaxwellianMaxwellian EEDFEEDF

    Critical electric field strength for hot air, air+Cu, CO2, SF6 at 300-3500K

    Equilibrium composition calc.+Boltzmann eq.

    Critical electric field strength for hot air, air+Cu, CO2, SF6 at 300-3500K

    Equilibrium composition Equilibrium composition calc.+calc.+BoltzmannBoltzmann eqeq..

    Dielectric properties of hot gasDielectric properties of hot gas

    For further reliability and compactness of a CB, prediction of dielectric property of hot gas is important for various gases.

    GWP of SF6=23900 Candidates (SF6 mixed gas, N2,CF3I, CO2, Air)

    The present work

    -There remains a hot gas with temperatures around 3000K after arc interruption.

    -Transient recovery voltage(TRV) is applied to the hot gas.

    Y.Tanaka, JPD, 37, 2004,IEEE DEI, 12, 2005.

    Circuit breakers

    Electrical breakdown can occur through the hot gas.

    Non-Maxwellian EEDF

    Procedure on prediction of dielectric strength of hot gasProcedure on prediction of dielectric strength of hot gas

    Target: Gas kind SF6, Air, CO2, Air+CuTemperature 300-3500KElectric field Uniform

    Estimation of critical electric field, which gives α=α−η=0 ,at different gas temperatures.

    Calculation of effective ionization coefficient α=α−ηof hot gases by solving Boltzmann equationusing electron impact cross-section & composition data.

    Particle compositions (ex. equilibrium composition) of hot gases are calculated.

    Equilibrium composition of 99%Air+1%Cu at 1.0 Equilibrium composition of 99%Air+1%Cu at 1.0 atmatm

    1000 1000010-6

    10-510-410-310-210-1100

    Cu2 N2+

    N3

    NO+

    O-

    3000300 30000

    O2+

    Cu2+Cu+

    e-

    O+N+

    Cu(g)

    NO2

    N

    N2O

    O

    NO

    O2Cu(cr,l)

    N2

    Mol

    e fr

    actio

    n

    Temperature (K)

    Dominant particles: N2, O2, NO, N2O, N, O, Cu(cr,l), Cu(g), Cu+, e

    Drastic increase in Cu(g)

  • 11

    Calculation of effective ionization coefficientCalculation of effective ionization coefficient

    ∂∂

    −=∑ εεεσδε

    ε nnmm

    NENeJ

    sss 2)()/2(3

    )/(22/1

    22f

    ∂∂

    −=s

    gg

    esnkT

    kTn

    Mm

    mNJ

    εεεεσδε

    2)(22

    2

    2/1el

    [ ])(2)( 2/12/1 εσεε sjsj mR

    =

    2/10 )()( εεε fnn e=

    ee,

    0elf )()()(

    +

    ∑ ∫

    ∂∂

    +∂

    ∂+

    ∂∂

    −∂∂

    −=∂

    js

    sjs

    ndnR

    NJJ

    tn sj

    εε

    εεε

    εεε εε

    ε

    : Energy gain by electron by E

    : Energy loss in elastic collisions

    Rate of inelastic collisions such as excitation, ionization

    EEDF: Electron Energy Distribution Function

    Electron-electron collision term

    ∑ ∫∑ ∫∞∞

    =

    −=

    sattachs

    sionis dfm

    edfme

    NN 0

    2/1

    d0

    2/1

    d

    )()(21)()(21 εεεσδυ

    εεεσδυ

    ηαα

    Effective ionization coefficient

    Two-term expansion of 0-D Boltzmann eq.

    ElectronElectron--ion collisions and electronion collisions and electron--electron collisionselectron collisions

    Λ=

    +−→

    ln4

    )()()1()(

    2

    4ei

    iiii

    επσ

    εσδεσδεσ

    eei

    ssss

    (Coulomb cross section)

    Electron-ion collisions

    Obtained by solving the Fokker-Planck equation using the Rosenbluth potentials

    Obtained by solving the Fokker-Planck equation using the Rosenbluth potentials

    Electron-electron collisions

    ∂∂

    +

    ∂∂

    ∂∂

    ∂∂

    +=

    ∂∂

    − εεεϕ

    εεεεϕε

    εα

    2223 2/1

    2/322/1

    ee

    nnnnntn

    Electron impact cross sections for Air+CuElectron impact cross sections for Air+Cu

    10-2 10-1 100 101 10210-22

    10-21

    10-20

    10-19

    10-18

    Electr.exVib.ex.

    Diss.ex.

    Ioni.

    Momem.

    Cro

    ss se

    ctio

    n (m

    2 )

    Electron energy (eV)

    10-2 10-1 100 101 10210-2310-22

    1x10-2110-2010-1910-18

    Electr.ex

    Ioni.Momen.

    Vib.ex

    Cro

    ss se

    ctio

    n (m

    2 )

    Electron energy (eV)

    e-O2e-O2

    e-N2e-N2

    10-2 10-1 100 101 10210-2310-2210-2110-2010-1910-18

    Electr.ex

    Vib.ex

    Ioni.

    Momem.

    Cro

    ss se

    ctio

    n (m

    2 )

    Electron energy (eV)

    e-NOe-NO

    10-2 10-1 100 101 10210-22

    10-21

    10-20

    10-19

    10-18

    Electr.ex. Ioni.

    Momem.

    Cro

    ss se

    ctio

    n (m

    2 )

    Electron energy (eV)

    e-Cue-Cu

    Effective ionization coefficient Effective ionization coefficient vsvs E/NE/N and and TTgg

    100%Air100%Air 99% Air + 1% Cu99% Air + 1% Cu

    50 100 150 200 250-0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Tg=2000 K

    ( α -

    η ) /

    N (

    m2 )

    [x10-21]

    100%Air

    99%Air+1.0%Cu

    E/N (Td)50 100 150 200 250

    -0.10.00.10.20.30.40.50.60.70.80.91.0

    4000K3500K

    3000K

    2500K2000K

    300-1000K

    [x10-21]

    (α-η

    ) / N

    (m

    2 )

    E/N (Td)

  • 12

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.55060708090

    100110120130

    [x103]

    100% Air

    99%Air+1%Cu

    Red

    uced

    cri

    tical

    ele

    ctri

    c fie

    ld

    stre

    ngth

    (E/

    N) cr

    (T

    d)

    Gas temperature (K)

    Critical electric field strength of air Critical electric field strength of air vsvs TTgg-Ecr is proportionto density N.

    Ionization potential:-N2 15.58 eV-O2 12.07 eV-NO 9.25 eV-Cu 7.73 eV

    -Decline in (E/N)crfrom 1500K arises from NO ionization and O2 dissociation.

    -Remarkable decayin (E/N)cr results fromCu(g) production.

    1000100

    101

    102

    99%Air-1%Cu

    Mesured by Rothhardt

    SF6

    the present work for 0.1 MPa

    Mesured by Rothhardt

    Measured by Shade

    The present work for 0.1 MPa-SF6

    Calculated by Cliteur for 0.7MPa-SF6

    CO2

    Air

    500300 2000 5000

    Cri

    tical

    red

    uced

    ele

    ctri

    c fie

    ld

    stre

    ngth

    E

    /p

    (kV

    /cm

    /atm

    )

    Gas temperature (K)

    Comparison of critical electric field strength Comparison of critical electric field strength vsvs TTgg

    SummarySummary

    -Chemically non-equilibrium effect:

    It can affect the prediction of particle composition and also temperature, in particular, around the fringe of plasmas.

    -Thermally non-equilibrium effect : Te>ThTe>Th can be seen around the fringe of plasmas.It also affects particle composition there for thermal plasmas.

    -Non-Maxwell EEDF: Hot gas to which electric field applied Dielectric strength of hot gas can be predicted by Boltzmannequation solution with high-temperature composition.

    NonNon--equilibrium models should be adopted equilibrium models should be adopted for advanced understanding of thermal plasmas/arc plasmas.for advanced understanding of thermal plasmas/arc plasmas.