93
The cell biology of neuronal synapses Morgan Sheng 617.452.3716 ([email protected] ) The Picower Center for Learning and Memory Numerous Variable in size Heterogeneous in composition Dynamic Sheng M, Kim MJ. (2002) Postsynaptic Signaling and Plasticity Mechanisms. Science. 298:776-780.

Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 ([email protected]) The Picower

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

The cell biology of neuronal synapses

Morgan Sheng617.452.3716([email protected])The Picower Center for Learning and Memory

NumerousVariable in sizeHeterogeneous in compositionDynamic

Sheng M, Kim MJ. (2002) Postsynaptic Signaling and Plasticity Mechanisms. Science. 298:776-780.

Page 2: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PSD

SV

Central excitatory synapse (asymmetric, glutamatergic)

AMPArNMDAr

Page 3: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Scale bar = 20 nm

40 nm

40 nmEM image of native tetrameric AMPA receptors purified from brain

What is the resolution of EM? What is the size of AMPA receptor?

Page 4: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Glutamate receptor-channels mediateexcitatory synaptictransmission

NMDA subtype

AMPA subtype

Kainate subtype

What’s the affinity of GluRs for glutamate?

Page 5: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Toyoshima C and Unwin N. 1990. Three-dimensional structure of the nicotinicacetylcholine receptor from Torpedo electric organ by cryoelectron microscopy.J Cell Biol. 111:2623-35.

The most famous postsynaptic membrane is the muscle end-plate

Density of AChR in muscle postsynapticmembrane is ~10,000 per sq um

Page 6: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

7TM

4TM "ligand-gated channel superfamily"nAChR

GlyRGABA(A)R

5HT3R

3TM plus "P-loop"

Glutamate receptors

NMDA / AMPAR / KAR/ Delta

2TM plus "P-loop"P2X (ATP) receptor

heptahelicalserpentineGPCR (G protein)frizzled, smoothened

Membrane topology of ligand-gated ion channels (or ionotropic receptors)

G-protein coupled receptors

N

C

N

C

N

CN C

AMPAr: GluR1-4NMDAr: NR1, NR2A-D

How were these receptors cloned?

Page 7: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

C. elegans Glr-1-GFP in ventral nerve cord (Rongo and Kaplan 1999)

DGluRIIB at fly NMJ.Top, HRP immunocytochemistryBottom, immunofluorescence: Green,Myc-GluRIIB; Red, synaptotagmin(Peterson et al 1997 [Goodman lab])

Colocalization of PSD-95 with AMPAR-GluR1 in cultured hippocampal neurons(Rao A et al 1998 [Ann Marie Craig])

Glutamate receptors are specifically targeted to excitatory synapses

Page 8: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Excitatory synapses red, inhibitory synapses blue

Kristen Harris and colleagues

Usually one excitatory synapse per spine, on spine head

Page 9: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

mGluR

NMDA AMPA

How are glutamate receptors targeted and clustered in the postsynaptic membrane? How are they segregated from inhibitory (GABA) receptors?How are they aligned with the correct axon terminals?

What kinds of experimental approach?

Page 10: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

ImpuritiesCloning requires peptide seq (butnow mass spec);synapses heterogeneous; receptorsnot abundant (except TorpedoE.O.)

Informs about NATIVE complexStraightforward,Informs about size, biochemicalproperties

Purification ofreceptor complexfrom tissue

False positivesRequires known cloned protein asbait (affinity ligand), but Y2Hdoes not need purification ofligand;Can only isolate direct bimolecularinteractors;

Informs about direct protein-proteininteraction;Amenable to high thruput screening;Does not require solubility of ligand orinteractor

Yeast two-hybridscreen for receptorbinding proteins

Need purified affinity ligand (iecloned receptor)Interacting protein needs to beeasily solubilized and active

Informs about protein-protein interaction;affin purification can work for ternarycomplex, indirect interaction

Affinity purificationof receptor bindingproteins eg via GSTfusion

Screening labor intensive;Has to be done in “genetic”organism;Redundancy, lethality

Gives you “function” at cellular andorganismal level; Not biased byabundance or biochemical properties

Forward genetics:mutants thatmislocalize receptor

approach advantage disadvantage

Page 11: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

mGluR

NMDA AMPA

Postsynaptic glutamate receptors interact with distinctscaffolding / anchoring proteins

PSD-95 GRIP

PDZPDZdomaindomain

(D. Bredt, C. Garner, S. Grant, R. Huganir, M. Kennedy,P. Seeburg, P. Worley, E. Ziff)

Page 12: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

IESDV

ESVKI

NMDAR2/NR2

GluR2

PDZ2 ofPSD-95

PDZ5 of GRIP

Differential specificityOf PDZ domains(recognize ~4 aa at C-term)

(Class 1)

(Class 2)

2

5

Page 13: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Arg 318N

C

βB2

βC4

αAβA

βC

βEαB-2

-1

-3

Carboxylate binding loop

N

C

βB5

βB2

βA

βB

βDαB

0

βF

αB1

Structural basis PDZ domain – C-terminal binding

PDZ domains recognize at least 4 C-terminal residues0, -2 positions most important for specificityRecognition of the terminal carboxylate by a conserved loop

Page 14: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PDZ domain proteinsPresent in bacteria to mammalsAbundantly represented in sequenced genomes (100s)Typically contain multiple domains : “scaffold” proteinsBind to a specific set of proteins –

organize a specific signaling complexAssociated with specific domains of membrane

e.g. epithelial cell tight junctions, synapsesCan be relatively fixed in location (anchoring proteins)

or relatively dynamic (involved in trafficking)

The “logic” of C-terminal targeting motifs

Page 15: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

The variety ofproteins containingPDZ domains andother protein-proteininteraction modules

SH3 GuK

Page 16: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PKC

PKC

PKC

CaMCaM

PKC

rhodopsin rhodopsin

Gαq

TRPTRP

Charles Zuker,Craig Montell etc

InaD, a protein with 5 PDZ domains that organizes thephototransduction cascade in Drosophila

Page 17: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

mGluR

NMDA AMPA

Postsynaptic glutamate receptors interact with distinct scaffolding proteins and assemble into different signaling complexes

PSD-95

Homer

GRIP

PDZPDZdomaindomain

(D. Bredt, C. Garner, S. Grant, R. Huganir, M. Kennedy,P. Seeburg, P. Worley, E. Ziff)

nNOS

Page 18: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PSD-95

nNOS

NMDAR

Example of PSD-95 mediated “functional complex” of NMDAR and nNOS

nNOS is calcium/calmodulin regulated enzymeSpecifically coupled to calcium entry through NMDA receptors

Binds specifically to PDZ2 of PSD-95 (PSD-95 also binds toNMDA receptors via PDZ1 and PDZ2). PSD-95 is believed tophysically link and functionally couple nNOS to NMDA receptor.

How would you test that thiscomplex exists and that it isimportant for NMDAR-nNOS coupling?

Page 19: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Antisense knockdown of PSD-95 reduces NO productioninduced by NMDA receptor activation

Inhibition of PDZ2 interactions of PSD-95 inhibits nNOSactivation by NMDA receptorsand reduces excitotoxicity following ischemia/stroke in cultureand in rodents

Functional coupling by PSD-95 scaffold: example of nNOS

NMDA receptor function is unaffected by above

Page 20: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Homosynaptic hippocampal CA1 LTP and LTD

0.5

1

1.5

2

2.5

0 10 20 30 40 50

0

0.5

1

1.5

0 10 20 30 40 50

1 Hz, 900 pulses100 Hz, 100 pulses

Time (min) Time (min)

100 Hz, 100 pulses LTP 1 Hz, 900 pulses LTD

Page 21: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

AMPA receptorConstitutivecycling ofAMPA-Rsbetweensurface andintracellularpools

surface

intracellular

Synaptic plasticity can be mediated by presynaptic or postsynapticchanges

Page 22: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

AMPA receptorStrengthensynapse bydelivery of moreAMPARs tosurface (dependson GluR1)

Surface

Intracellular

Page 23: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

AMPA receptor

Weaken synapseby removingAMPARs fromsurface (dependson GluR2)

Surface

IntracellularLysosomedegradation

Page 24: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

LTP requires exocytosis/delivery of AMPA receptors tothe postsynaptic membrane(depends on GluR1 subunit)

LTD requires removal/endocytosis of AMPA receptorsfrom the postsynaptic membrane(depends on GluR2 subunit)

Most AMPA receptors are GluR1/GluR2 heteromers

Page 25: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

0 20 40 60 800

20

40

60

80

100

120

LFS

Control (A) Amph-SH3-W (B) Amph-SH3-M (C)

Nor

mal

ized

EPS

C A

mpl

itude

(%)

Time (min.)

50pA

25ms

A B C

Inhibiting clathrin-dependent endocytosis in postsynaptic neuronsprevents the expression of hippocampal homosynaptic LTD

Page 26: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Both LTP and LTD are NMDA receptor-dependent(blocked by specific antagonist APV)

0.5

1

1.5

2

2.5

0 10 20 30 40 50

0

0.5

1

1.5

0 10 20 30 40 50

1 Hz, 900 pulses100 Hz, 100 pulses

Time (min) Time (min)

50 µM APV50 µM APV

Page 27: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Ca2+

glutamate/ NMDA

MK-801polyamine

glycine

Zn2+

Mg2+

LTD LTP

“moderate”

Ser/Thr PhosphatasesRap, p38 and JNK MAPK

“high”

CaMKIIRas - ERK

NMDA receptor

A central question in neuroscience –how does a single receptor and common 2nd messengergive rise to opposite outcomes?

Page 28: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

C C

N N

Ca2+

NR1(a-h) NR2A-NR2Dglutamate/ NMDA

MK-801polyamine

glycine

Zn2+

Mg2+

tyrosineserine

Heteromeric NMDA Receptors: 4 subunits per channel

Main subunit compositions in forebrain• NR1 / NR2A• NR1 / NR2B• NR1 / NR2A / NR2B

Page 29: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NR2B antagonists inhibit LTD

20 ms

1 mV

1

2

1

2

Time (min)

Control, n = 7

0.5 !M Ro25-6981, n = 7

3 !M Ifenprodil, n = 7

Control

12

Ro25-6981

12

Ifenprodil

1.2

1.0

0.8

0.6

0.4

0.2

0.00 10 20 30 40 50 60 70

1 Hz 900 sec“OK, so maybe NR2B antagonists are just inhibiting NMDAreceptors excessively”

(Liu L et al Science 2004)

Page 30: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

LTP is not affected by NR2B antagonists

20 ms

1 mV

1

2

1

2

Time (min)

Control, n = 6

0.5 !M Ro25-6981, n = 6

3 !M Ifenprodil, n = 5

Control

1

2

Ro25-6981

1

2

Ifenprodil

2.0

1.8

1.6

1.4

1.2

1.0

0.80 10 20 30 40 50 60

(Liu L et al Science 2004)

Page 31: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NR2A-selective NMDA receptor antagonist

Auberson et al. (2002), Bioorganic & Medicinal Chemistry Letters, 12, 1099-1102

Page 32: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NVP-AAM077 blocks LTP

20 ms

1 mV

1

2

Time (min)

Control, n = 7

0.4 !M NVP-AAM077, n = 6

Control

2.0

1.8

1.6

1.4

1.2

1.0

0.80 10 20 30 40 50 60

1

2

NVP-AAM077

12

(Liu L et al Science 2004)

Page 33: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

20 ms

1 mV

1

2

Time (min)

Control, n = 7

0.4 !M NVP-AAM077, n = 6

Control NVP-AAM077

1.2

1.0

0.8

0.6

0.4

0.2

0.00 10 20 30 40 50 60 70

NVP-AAM077 does not affect LTD

(Liu L et al Science 2004)

Page 34: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Ca2+

glutamate/ NMDA

MK-801polyamine

glycine

Zn2+

Mg2+

LTD LTP

“moderate”

PhosphatasesRap – p38 / JNK

“high”

CaMKIIRas - ERK

NR2A NR2B

Subunits are coupleddifferentially tosignaling pathwaysprobably via distinctprotein interactions

Page 35: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

How would you identify proteins specifically associatedwith NR2A versus NR2B?

Page 36: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PSD

SV

Central excitatory synapse (asymmetric, glutamatergic)

AMPArNMDAr

Page 37: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Qualitative Views of Postsynaptic Density

Kim E and Sheng M, Nature Rev Neurosci (2004)Husi H and Grant SG Trends Neurosci. (2001)

Garner, Nash and Huganir, Trends Cell Biol (2000) Sheng M and Kim MJ, Science (2002)

Page 38: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Stoichiometry of Proteins in “average” PSD (360 nm, 1.1 GDa) counted by mass spec

Glu

R2

Glu

R2

AMPAR (15)

Glu

R1

Glu

R2

Glu

R2

Glu

R3

(2-3)(12)

mGluR (~20)

SynGAP (~350)IRSp53 (50)

Cheng, D. et al. (2006) Mol Cell Proteomics 2006 Feb 28; [Epub ahead of print]Sugiyama, Y. et al. (2005) Nat Methods 2:677-84Chen, X. et al. (2005) Proc Natl Acad Sci U S A. 102:11551-6

CaMKII(200-400Dodecamer )

NMDAR (~20)

NMDA

R1NM

DAR2PSD-95 (~300;family ~400)

Homer (~60)GKAP family(~150)

Shank family(~150)

Page 39: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Rotary shadow EM view from synaptic cleft View from cytoplasmic side

Structural organization of the postsynaptic density (PSD)

EM images from Xiaobing Chen and Tom Reese (NIH)

NMDAR

AMPAR

PSD-95 family

Model of synaptic surface of average PSD showingglutamate receptors and PSD-95 family scaffolds(with appropriate size and stoichiometry)

Page 40: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

mGluRNMDAr

PSD-95

GKAP Homer

Shank: a higher order scaffold in the PSD

ShankAnk SH3 Proline SAM

Page 41: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower
Page 42: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower
Page 43: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower
Page 44: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

aa

Postsynapticmembrane

PSD-95 NR2

nNOS

ShankGKAP

NR2

PSD-95 nNOS

CRIPT

GKAP

Shank

DLC

0

10

20

30 nmDLC

CRIPT

Juli Valtschanoff Richard Weinberg

Postsynaptic membrane

PSD

Page 45: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PSDspine

F-actin

Microtubules

SER

S.A.

SER

The PSD is located on specialized compartment (dendritic spine)

dendritic shaft

Actin is the predominanat cytoskeleton of spines

Page 46: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Kristen Harriset alSpines are Motile and

Plastic

Number / size of spineschanges with:AgeDiseaseHormonal cycleHibernationEnvironment richnessSynaptic Activity

Page 47: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

The following features of spines and synapses arehighly positively correlated:• Size of dendritic spine head• Size of PSD and presynaptic active zone• Abundance of postsynaptic AMPA receptors• Strength of synapse; stability of spine

• Growth of spines is co-ordinated with functionalmaturation and strengthening of synapses• Dendritic spines are morphological correlates offunctional excitatory synapsesWhat molecules control spine/synapse size?

Page 48: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Shank

mGluRNMDAr

GKAP

PSD-95

Homer

Shank: a “master scaffold” of the PSD that interfaces with theactin cytoskeleton

cortactinβ-PIX IRSp53α-fodrin

F-actin

Page 49: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Shank promotes enlargement of dendritic spines

Page 50: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Mouse knockout of Shank1 has:Altered PSD protein compositionSmaller spinesSmaller synapses

Behaviorally:Enhanced learning but impaired long term retention of memory

Page 51: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

GKAPShank1

GKAPShank1

A

DC

B

Shank mRNA is localized in dendrites

Page 52: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

•Most mRNAs are localized in cell bodies of neurons (targeting signals carried by proteins)•A subset of mRNAs is specifically targeted to dendrites (egCaMKII, Arc/Arg3.1, Shank1)•Targeting signal typically within 3’ UTR of mRNA•Translational control determinants found also in 3’UTR•Machinery for protein translation exist in dendrites(polyribosomes often at base dendritic spines)•Regulated local protein synthesis presumably plays a role inlocal (synapse-specific) changes in dendritic structure andfunction

Dendritic mRNAs

Page 53: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

mGluR

NMDA AMPA

Postsynaptic glutamate receptors interact with distinctscaffolding / anchoring proteins

ConsistentRel. Stable Heterogeneous

Dynamic

PSD-95

Homer

GRIP

PDZPDZdomaindomain

(D. Bredt, C. Garner, S. Grant, R. Huganir, M. Kennedy,P. Seeburg, P. Worley, E. Ziff)

Page 54: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Whywasteenergy?

To maximizespeed andmagnitude ofnet change

As neuronsmature, they cycleAMPA receptorsless rapidly…

Massive cyclingbetween synapseand intracellularpool;Delivery andremoval are bothregulated

AMPA receptor

Page 55: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Control synaptic strength by changing number of AMPA receptors

AMPArNMDAr

Weaken synapse by removingAMPA receptors(by endocytosis)

Page 56: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Control synaptic strength by changing number of AMPA receptors

AMPArNMDAr

Weaken synapse by removingAMPA receptors(by endocytosis)

Page 57: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Control synaptic strength by changing number of AMPA receptors

AMPArNMDAr

Strengthen synapse by deliveringmore AMPA receptors(by exocytosis)

Page 58: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

How do you measure exocytosis?

(of a specific membrane protein fromintracellular compartment to cellsurface?)

Page 59: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

AMPA receptors:

Glutamate-gated cation channels

Tetrameric, composed of homologous subunits: GluR1, -2, -3, -4

Major AMPA receptor compositions:GluR1/2 and GluR2/3 heteromers (adult hippocampus)

Page 60: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

HA Thrombin cleavage site

Extracellular

Intracellular

HA/T-GluR construct

Page 61: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

HA/T-GluR2

HA/T-GluR1

0 minSteady-state 10 min 30 min

Reappearance of surface HA-immunoreactivity following thrombin

Page 62: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Steady-state 0 min 10 min 30 min

GluR2/R1C

GluR1/R2C

C-tail determines differential kinetics of GluR exocytosis

Page 63: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NMDAControl Glycine Gly + Wort

GluR1

10 min

GluR2

10 min

Exocytosis of GluR1, but not GluR2, is stimulated by NMDA-R activation

0

10

20

30

40

% s

tead

y-st

ate

Wort InsGly+APV

Ins+Wort

Gly+Wort

Control Gly NMDA BFA

HA/T-GluR2HA/T-GluR1

Page 64: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

GluR1 +GluR2

GluR1

Steady-state 0 min 10 min

GluR2%

of s

tead

y-st

ate

GluR2 GluR1+GluR2

GluR10

10

20

30

40

GluR1 isdominantoverGluR2in exocytosisof hetero-mericreceptors

Page 65: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

GluR2 exocytosis is constitutive, rapidimplying exchange for surface receptors

GluR1 exocytosis is inducible by activityspecifically by NMDA receptor activation

Cytoplasmic C-term tail determines exocytoticproperties

GluR1/GluR2 heteromer behaves like GluR1GluR1 “dominant” in terms of exocytosis

Subunit dependence of AMPA receptor exocytosis

Page 66: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

GluR1 determines rate and site ofAMPA receptor secretion andrequired for synaptic potentiation.

Which subunit(s) of AMPAreceptors control endocytosis?

Page 67: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

AMPA receptor internalization is dynamin-dependent

Ab feeding assay:Surface GluRs arelabeled on liveneurons with Ab,and the complexallowed tointernalize, thenvisualized byfluorescent 2ndaryAb

Page 68: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Rapid internalization of AMPAR in response to stimulation

10 mins 10 mins

Page 69: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

GluR2 endocytosis occurs constitutively but isfurther induced by activity

AMPA- or NMDA-receptor activation

GluR1 endocytosis is constitutive, uninducible

Cytoplasmic C-term tail determines endocytoticproperties

GluR1/GluR2 heteromer behaves like GluR2GluR2 “dominant” in terms of endocytosis

Subunit dependence of AMPA receptor internalization

Page 70: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Extracellular

Intracellular

GluR2

GRIPNSF

(J. Henley, R. Huganir, E. Ziff)

AP2Clathrinadaptor

Inducible internalization of GluR2 requires interaction with AP2

Page 71: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

ControlPep-2m

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Control

Pep-2m

1

2 3

1 2 3

20

0pA

40ms

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

ControlPep-2m

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

ControlPep-2m

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Control

Pep-2m

1

2 3

1 2 3

20

0pA

40ms

20

0pA

40ms

20

0pA

40ms

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

Controlpep-K844A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-K844A

Control

200p

A

40ms

1

2

3

1 2 3

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

Controlpep-K844A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

Controlpep-K844A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-K844A

Control

200p

A

40ms

200p

A

40ms

200p

A

40ms

1

2

3

1 2 3

Pep2m(NSF + AP2)

K844A(Neither)

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-R845A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-R845A

Control

200p

A

40ms

1

2

3

1 2 3

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-R845A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-R845A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-R845A

Control

200p

A

40ms

200p

A

40ms

200p

A

40ms

1

2

3

1 2 3R845A(NSF)

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-!A849-Q853

Norm

aliz

ed

EP

SC

Am

pli t

ude

(%)

Time (min)

Control

20

0p

A

40ms

Pep- ! A849-Q853

1

2

3

1 2 3

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-!A849-Q853

Norm

aliz

ed

EP

SC

Am

pli t

ude

(%)

Time (min)

Control

20

0p

A

40ms

20

0p

A

40ms

20

0p

A

40ms

Pep- ! A849-Q853

1

2

3

1 2 3D849-Q853(AP2)

Disrupting GluR2interaction with AP2by postsynapticinfusion of interferingpeptide blocks longterm depression, along-lastingweakening ofsynapses induced bylow frequencystimulation (1 Hz for15 min)

Page 72: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NMDARNMDAR

ShankShank

Shank

neuroliginErbB4

K ch

GKA

P

GKA

P

GKA

P

HH

HH

HH HH

PSD-95 PSD-95Fyn

nNO

S

SynG

AP

SynG

AP

SP

AR

CR

IPTAbundance

StoichiometryGeometryTemporal dynamicsHeterogeneity: spatial, developmentalPlasticity

The PSD changes dynamically in size and composition

Page 73: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower
Page 74: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NMDARNMDAR

GKA

P

GKA

P

GKA

P

ShankShank

Shank

HH

HH

HH HH

PSD-95 PSD-95Fyn

nNO

S

SynG

AP

SynG

AP

SP

AR

CR

IPT

AMPA

Dynamic organization of PSD: How do AMPA receptors cycle in and out of postsynaptic membrane?

AMPAAMPA

Page 75: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

0 min 5 min 15 min

Differential pattern of surface accumulation of GluR1 vs GluR2

GluR2

GluR1

Page 76: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NMDA

mGluR

PSD-95

Homer

AMPA

GRIP

The dynamic trafficking of AMPA receptors

ConsistentRel. Stable Heterogeneous

Dynamic

Page 77: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PSDspine

F-actin

Page 78: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

PSDspine

F-actin

Microtubules

SER

S.A.

SER

Page 79: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

1-1440

Shank1B

Shank1B

Homer1b+

Shank1B

Homer1b+

Shank merge

vector

TrxIP3R

Page 80: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

ShankShank

Shank

HH

HH

HH HH

NMDARNMDAR neuroliginErbB4

K ch

GKA

P

GKA

P

GKA

P

PSD-95 PSD-95Fyn

nNO

S

SynG

AP

SynG

AP

SP

AR

CR

IPT

IP3R IP3R

SER

Page 81: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Central excitatory synapse (asymmetric, glutamatergic)

AMPArNMDAr

Page 82: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Rapid and regulatedAMPArinternalization incultured neuronsmeasured by surface‘Antibody feeding’or biotinylationassays10 mins 10 mins

Quantitative time course ofAMPAr internalization:Basal rate ~15-20% in 10 minStimulated: ~50-60% in 10 m

Lin et al Nat Neurosci 2000

Page 83: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

A Model

Basal

GluR2

GluR3

PDZ-protein

GluR1

NSF

PotentiationStg?

Depression

AP2

Page 84: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Extracellular

Intracellular

GluR2

GRIPNSF

(J. Henley, R. Huganir, E. Ziff)

AP2 and NSF bind toexactly overlappingsites in GluR2

AP2Clathrinadaptor

Inducible internalization of GluR2 requires interaction with AP2

Page 85: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

ControlPep-2m

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Control

Pep-2m

1

2 3

1 2 3

20

0pA

40ms

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

ControlPep-2m

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

ControlPep-2m

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Control

Pep-2m

1

2 3

1 2 3

20

0pA

40ms

20

0pA

40ms

20

0pA

40ms

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

Controlpep-K844A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-K844A

Control

200p

A

40ms

1

2

3

1 2 3

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

Controlpep-K844A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

0 10 20 30 40 50 60 700

20

40

60

80

100

120

LFS

Controlpep-K844A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-K844A

Control

200p

A

40ms

200p

A

40ms

200p

A

40ms

1

2

3

1 2 3

Pep2m(NSF + AP2)

K844A(Neither)

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-R845A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-R845A

Control

200p

A

40ms

1

2

3

1 2 3

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-R845A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-R845A

Norm

aliz

ed

EP

SC

Am

plit

ude

(%)

Time (min)

Pep-R845A

Control

200p

A

40ms

200p

A

40ms

200p

A

40ms

1

2

3

1 2 3R845A(NSF)

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-!A849-Q853

Norm

aliz

ed

EP

SC

Am

pli t

ude

(%)

Time (min)

Control

20

0p

A

40ms

Pep- ! A849-Q853

1

2

3

1 2 3

LFS

0 10 20 30 40 50 60 700

20

40

60

80

100

120

Control

Pep-!A849-Q853

Norm

aliz

ed

EP

SC

Am

pli t

ude

(%)

Time (min)

Control

20

0p

A

40ms

20

0p

A

40ms

20

0p

A

40ms

Pep- ! A849-Q853

1

2

3

1 2 3D849-Q853(AP2)

•Peptides that interfere with NSF binding cause “rundown” of basal transmissionand partial ‘occlusion’ of LTD•Peptides that interfere with AP2 binding abolish LTD but do not cause rundown•AP2 binding appears to be critical for NMDA receptor-dependent internalizationand LTD

Page 86: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Proline RichAnk SH3 PDZ SAM

Shank requires Homer binding for spine promoting effect

Multimerization

PPPEEFANKPPVPPKP

GKAP Homer CortactinSpineenlargement

Page 87: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Homer / Ves1

EVH1 Coiled-coilEVH1

ShankmGluRIP3R / RyR

-PPXXF-

mGluRIP3R / RyRShank-PPXXF-

(J.C. Tu, B. Xiao, P. Worley et al)

Dimeric Homer cross-links Shankand other binding partners

Page 88: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

ShankmGluRIP3R / RyR

-PPXXF-

Homer1b/c

EVH1

Coiled coil

EVH1

mGluRIP3R / RyRShank-PPXXF- Homer1a (splice variant

lacks coiled-coil)

Homer 1a, an immediate early genethat antagonizes coiled-coil Homer

Activity-inducednatural dominantnegative – interfereswith CC-Homercrosslinking

W24A

Page 89: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

0

2

4

6

8

10

12

N. o

f clu

ster

s/10µ

m

vector H1a H1b H1aW24A

*

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

Homer1a

Homer1b

vector

H1aW24A

Homer Shank merge

Homer1a overexpression causes loss of Shank from synapses

Page 90: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

Scaffold proteins Shank and Homer cooperate topromote morphological growth and functionalmaturation of spines (dependent on Homer)

Dominant negative Shank and Homer cause lossof synapses / spines

Synaptic level of Shank increases with braindevelopment and decreases with synapticactivity (negative feedback) through synthesis ofHomer1a and ubiquitin-proteasome mediateddegradation of Shank

Page 91: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

GFP Homer1b+

GFP Shank1B Homer1b

Shank and Homer cooperate to promote spine growth

GFP Shank1B Homer1b+ +

Page 92: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

NMDARNMDAR

ShankShank

Shank

neuroliginErbB4

K ch

GKA

P

GKA

P

GKA

P

HH

HH

HH HH

PSD-95 PSD-95Fyn

nNO

S

SynG

AP

SynG

AP

SP

AR

CR

IPT

Page 93: Numerous The cell biology of neuronal synapsesweb.mit.edu/7.61/restricted/pdfs/Sheng.pdf · The cell biology of neuronal synapses Morgan Sheng 617.452.3716 (msheng@mit.edu) The Picower

The brain can changein response toexperience(“plasticity”)

Plasticity of the brainchanges with age