NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

Embed Size (px)

Citation preview

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    1/61

    [302.044] Numerical Methodsin Fluid Dynamics

    Introduction to FVMConservation Laws, Fluxes Approach,

    and Discretization Strategies

    Univ. Assist. MSc. Francesco Roman

    [email protected]

    December 11th, 2014

    mailto:[email protected]:[email protected]
  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    2/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    Outline

    1 Conservation Laws

    2 Discrete Approach

    3 Finite Volume Method1D FVM

    2D FVMDiscretization Strategy

    [302.044] Univ. Assist. MSc. Francesco Roman 2/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    3/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + u T = ( T ) u = 0

    T = transported quantity;u = advection velocity = diffusion coefficient.

    [302.044] Univ. Assist. MSc. Francesco Roman 3/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    4/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + u T = ( T ) u = 0

    T = transported quantity;u = advection velocity = diffusion coefficient.

    To obtain the conservative form:

    T,t + u T = ( T ) u = 0 (u T ) = u T + T u

    T,t + (u T ) = ( T )

    [302.044] Univ. Assist. MSc. Francesco Roman 3/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    5/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + (u T ) = ( T ) , x = I d , t 0

    [302.044] Univ. Assist. MSc. Francesco Roman 4/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    6/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + (u T ) = ( T ) , x = I d , t 0

    Being the PDE pointwise valid, it can be integrated overinnitesimal volumes V :

    V T,t dV + V (u T )dV = V ( T )dV

    [302.044] Univ. Assist. MSc. Francesco Roman 4/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    7/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + (u T ) = ( T ) , x = I d , t 0

    Being the PDE pointwise valid, it can be integrated overinnitesimal volumes V :

    V T,t dV + V (u T )dV = V ( T )dV Introducing the Reynolds theorem:

    ddt V T dV = V T,t dV + V T u dV u = 0

    ddt V

    T dV +V

    (u T )dV =V

    ( T )dV

    [302.044] Univ. Assist. MSc. Francesco Roman 4/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    8/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + (u T ) = ( T ) , x = I d , t 0

    Being the PDE pointwise valid, it can be integrated over

    innitesimal volumes V ; Introducing the Reynolds theorem;

    [302.044] Univ. Assist. MSc. Francesco Roman 5/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    9/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion EquationT,t + (u T ) = ( T ) , x = I d , t 0

    Being the PDE pointwise valid, it can be integrated over

    innitesimal volumes V ; Introducing the Reynolds theorem;

    Introducing the Greens divergence theorem:

    V f dV =

    S = V

    f n dS

    ddt V T dV + S n (u T )dS = S n ( T )dS

    [302.044] Univ. Assist. MSc. Francesco Roman 5/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    10/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion Equation

    [302.044] Univ. Assist. MSc. Francesco Roman 6/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    11/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion Equation Differential form:

    T,t + u T = ( T ) u = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 6/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    12/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion Equation Differential form:

    T,t + u T = ( T ) u = 0

    Integral form:

    ddt V T dV + S n (u T T )dS = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 6/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    13/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Example ConvectionDiffusion Equation Differential form:

    T,t + u T = ( T ) u = 0

    Integral form:

    ddt V T dV + S n (u T T )dS = 0

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 6/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    14/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws Generic conservation law:

    ddt V UdV + S n F dS = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 7/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    15/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws Generic conservation law:

    ddt V UdV + S n F dS = 0

    Integrating the differential equation lowers the derivativeorder. Its importance is due to solutions which changeso rapidly in space that the spatial derivative does notexist (e.g. supersonic shock waves);

    [302.044] Univ. Assist. MSc. Francesco Roman 7/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    16/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws Generic conservation law:

    ddt V UdV + S n F dS = 0

    Integrating the differential equation lowers the derivativeorder. Its importance is due to solutions which changeso rapidly in space that the spatial derivative does notexist (e.g. supersonic shock waves);

    Discontinuous functions do not have derivatives at thediscontinuity location, so the differential form is invalidthere. On the contrary, because of weaker constraints,the integral conservation law is still valid;

    [302.044] Univ. Assist. MSc. Francesco Roman 7/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    17/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws Generic conservation law:

    ddt V UdV + S n F dS = 0

    Integrating the differential equation lowers the derivativeorder. Its importance is due to solutions which changeso rapidly in space that the spatial derivative does notexist (e.g. supersonic shock waves);

    Discontinuous functions do not have derivatives at thediscontinuity location, so the differential form is invalidthere. On the contrary, because of weaker constraints,the integral conservation law is still valid;

    Reducing the order of the spatial derivative simplies thespecial treatment generally required for discontinuities.

    [302.044] Univ. Assist. MSc. Francesco Roman 7/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    18/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws Generic conservation law:

    ddt V UdV + S n F dS = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 8/21

    ff

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    19/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM

    2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    The Navier-Stokes system, in its most general form, iswritten in terms of conservation laws:

    V ,t dV + S u n dS = 0

    V (u ),t dV + S (u )u n dS = V f dV S pn dS + S dS

    V [(e + u 2

    2 + )],t dV + S [(e + u 2

    2 + )]u n dS = S q n dS S n u dS

    [302.044] Univ. Assist. MSc. Francesco Roman 8/21

    l ff l bl

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    20/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    I l Diff i l P bl

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    21/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Lower derivatives order;

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    I l Diff i l P bl

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    22/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Lower derivatives order;

    Weaker constraints for the representable solutions;

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    I t l Diff ti l P bl

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    23/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Lower derivatives order;

    Weaker constraints for the representable solutions;

    Simpler treatment for discontinuities;

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    I t g l Diff ti l P bl

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    24/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Lower derivatives order;

    Weaker constraints for the representable solutions;

    Simpler treatment for discontinuities;

    Natural treatment for Fluid Dynamics equations;

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    Integral Differential Problems

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    25/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Lower derivatives order;

    Weaker constraints for the representable solutions;

    Simpler treatment for discontinuities;

    Natural treatment for Fluid Dynamics equations; Intrinsic conservativity property for the discrete schemes;

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    Integral Differential Problems

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    26/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    IntegralDifferential ProblemsConservation Laws

    Generic Conservation Laws

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Lower derivatives order;

    Weaker constraints for the representable solutions;

    Simpler treatment for discontinuities;

    Natural treatment for Fluid Dynamics equations;

    Intrinsic conservativity property for the discrete schemes;

    Finite Volume Methods are preferred to Finite DifferenceMethods in solving problems whose solution is not sosmooth or has local discontinuities.

    [302.044] Univ. Assist. MSc. Francesco Roman 9/21

    Conservation Laws

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    27/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Conservation LawsDiscrete Approach

    Conservation Laws Discrete Approach

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    [302.044] Univ. Assist. MSc. Francesco Roman 10/21

    Conservation Laws

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    28/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Conservation LawsDiscrete Approach

    Conservation Laws Discrete Approach

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Averaging the solution in each elementary volume:

    U = 1V V UdV

    [302.044] Univ. Assist. MSc. Francesco Roman 10/21

    Conservation Laws

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    29/61

    Conservation

    Laws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Conservation LawsDiscrete Approach

    Conservation Laws Discrete Approach

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Averaging the solution in each elementary volume:U =

    1V V UdV

    Discretizing the ux integral:

    S n F dS faces n

    k F k

    [302.044] Univ. Assist. MSc. Francesco Roman 10/21

    Conservation Laws

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    30/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Conservation LawsDiscrete Approach

    Conservation Laws Discrete Approach

    Generic conservation law:

    ddt V UdV + S n F dS = 0

    Averaging the solution in each elementary volume:U =

    1V V UdV

    Discretizing the ux integral:

    S n F dS faces n

    k F k

    Conservation law discretized in space:

    V dU dt

    faces

    n k F k

    [302.044] Univ. Assist. MSc. Francesco Roman 10/21

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    31/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Finite Volume MethodGeneral Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    [302.044] Univ. Assist. MSc. Francesco Roman 11/21

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    32/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Finite Volume MethodGeneral Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    At rst the domain is divided into computational cells wherethe shape of the cell average function U j is known;

    [302.044] Univ. Assist. MSc. Francesco Roman 11/21

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    33/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Finite Volume MethodGeneral Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    At rst the domain is divided into computational cells wherethe shape of the cell average function U j is known;

    The uxes F k are the unknowns of the FVM and they arecalculated in two steps:

    [302.044] Univ. Assist. MSc. Francesco Roman 11/21

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    34/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    Finite Volume MethodGeneral Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    At rst the domain is divided into computational cells wherethe shape of the cell average function U j is known;

    The uxes F k are the unknowns of the FVM and they arecalculated in two steps: function reconstruction:

    F k requires the calculation of the function values andeventually of their derivative values at cell edges;U is approximated with a polynomial whose coefficientsare determined recovering the cell averages over acertain number of cells.

    [302.044] Univ. Assist. MSc. Francesco Roman 11/21

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    35/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    General Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    The uxes F k are the unknowns of the FVM and they arecalculated in two steps:

    [302.044] Univ. Assist. MSc. Francesco Roman 12/21

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    36/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVMDiscretizationStrategy

    General Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    The uxes F k are the unknowns of the FVM and they arecalculated in two steps: function reconstruction:

    U =P

    n =1

    an n (x ) , {n } = P interpolation functions

    V j + m UdV = U j + m V j + m , m = 0 , 1, 2,...,P 1{V j + m } = P cells surrounding the cell V j

    [302.044] Univ. Assist. MSc. Francesco Roman 12/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    37/61

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    38/61

    Conservation

    LawsDiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    The uxes F k are the unknowns of the FVM and they arecalculated in two steps: function reconstruction 1

    U =P

    n =1an n (x ) , {n } = P interpolation functions

    P

    n =1Am,n an = U j + m V j + m Am,n = V j + m n dV

    1 Introducing suitable quadrature formulae in dependence on the

    chosen polynomial rank, no quadrature errors are committed.[302.044] Univ. Assist. MSc. Francesco Roman 13/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    39/61

    Finite Volume Method

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    40/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method

    Starting point for each FVM:

    V dU dt

    faces

    n k F k

    At rst the domain is divided into computational cells wherethe shape of the cell average function U j is known;

    The uxes F k are the unknowns of the FVM and they arecalculated in two steps: function reconstruction; uxes evaluation.

    [302.044] Univ. Assist. MSc. Francesco Roman 14/21

    Finite Volume MethodG l A h

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    41/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method 1D Case

    The cell volume reduces to the width of the segment x i ;

    [302.044] Univ. Assist. MSc. Francesco Roman 15/21

    Finite Volume MethodG l A h

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    42/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method 1D Case

    The cell volume reduces to the width of the segment x i ; The ux integrals reduce to evaluation of the term at thecell edges:

    dU idt =

    F i+1

    /2 F

    i 1

    /2

    x i

    [302.044] Univ. Assist. MSc. Francesco Roman 15/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    43/61

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    44/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method 1D Case

    n is a piecewise constant polynomial:

    U i = a0

    [302.044] Univ. Assist. MSc. Francesco Roman 16/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    45/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method 1D Case

    n is a piecewise constant polynomial:

    U i = a0

    One unknown coefficient means a single constraint:

    x i +1 / 2

    x i 1 / 2a0 dx = U i x i a0 = U i

    [302.044] Univ. Assist. MSc. Francesco Roman 16/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    46/61

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    47/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method 1D Case

    n is a piecewise linear polynomial:

    U i = a0 + a1 , = x x i

    x j

    [302.044] Univ. Assist. MSc. Francesco Roman 17/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    48/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    General Approach

    Finite Volume Method 1D Case

    n is a piecewise linear polynomial:

    U i = a0 + a1 , = x x i

    x j

    Two unknown coefficient means a double constraint(symmetric stencil: x [x i 1 / 2 , x i +3 / 2 ] [ 1/ 2, 3/ 2]):

    1 / 2

    1 / 2 (a 0 + a1 )d = U i

    3 / 21 / 2 (a 0 + a1 )d = x i +1 x i U i +1

    a 0 = U ia 1 = U i +1 U i

    [302.044] Univ. Assist. MSc. Francesco Roman 17/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    49/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    pp

    Finite Volume Method 1D Case

    n is a piecewise linear polynomial:

    U i = a0 + a1 , = x x i

    x j

    Two unknown coefficients mean a double constraint(symmetric stencil: x [x i 1 / 2 , x i +3 / 2 ] [ 1/ 2, 3/ 2]);

    [302.044] Univ. Assist. MSc. Francesco Roman 18/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    50/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    pp

    Finite Volume Method 1D Case

    n is a piecewise linear polynomial:

    U i = a0 + a1 , = x x i

    x j

    Two unknown coefficients mean a double constraint(symmetric stencil: x [x i 1 / 2 , x i +3 / 2 ] [ 1/ 2, 3/ 2]);

    Centred Scheme:

    F i +1 / 2 =F (U i ) + F (U i +1 )

    2

    [302.044] Univ. Assist. MSc. Francesco Roman 18/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    51/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    pp

    Finite Volume Method 1D Case

    [302.044] Univ. Assist. MSc. Francesco Roman 19/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    52/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 1D Case

    n is a piecewise parabolic polynomial:

    U i = a0 + a1 + a2 2 , = x x i

    x j

    [302.044] Univ. Assist. MSc. Francesco Roman 19/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    53/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 1D Case

    n is a piecewise parabolic polynomial:

    U i = a0 + a1 + a2 2 , = x x i

    x j

    Three unknown coefficients mean a triple constraint;

    [302.044] Univ. Assist. MSc. Francesco Roman 19/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    54/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 1D Case

    n is a piecewise parabolic polynomial:

    U i = a0 + a1 + a2 2 , = x x i

    x j

    Three unknown coefficients mean a triple constraint;

    QUICK Scheme:

    F i +1 / 2 = F (U i 1 ) + 6 F (U i ) + 3 F (U i +1 )

    8

    [302.044] Univ. Assist. MSc. Francesco Roman 19/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    55/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 2D Case

    The cell volume reduces to the width of the area of theelement;

    [302.044] Univ. Assist. MSc. Francesco Roman 20/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    56/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 2D Case

    The cell volume reduces to the width of the area of theelement;

    The ux integrals reduce to evaluation of the term at thecell edges:

    [302.044] Univ. Assist. MSc. Francesco Roman 20/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    57/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 2D Case

    The cell volume reduces to the width of the area of theelement;

    The ux integrals reduce to evaluation of the term at thecell edges:

    3 uxes for triangular elements; 4 uxes for quadrangular elements; 5 uxes for pentangular elements; ...

    [302.044] Univ. Assist. MSc. Francesco Roman 20/21

    Finite Volume MethodGeneral Approach

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    58/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method 2D Case

    The cell volume reduces to the width of the area of theelement;

    The ux integrals reduce to evaluation of the term at thecell edges:

    3 uxes for triangular elements; 4 uxes for quadrangular elements; 5 uxes for pentangular elements; ...

    V i d U i

    dt

    faces

    n ik F ik

    [302.044] Univ. Assist. MSc. Francesco Roman 20/21

    Finite Volume MethodDiscretization Strategy

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    59/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method Discretization Strategy

    The equations will be considered in their conservative form;

    [302.044] Univ. Assist. MSc. Francesco Roman 21/21

    Finite Volume MethodDiscretization Strategy

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    60/61

    ConservationLaws

    DiscreteApproach

    FiniteVolumeMethod1D FVM2D FVM

    DiscretizationStrategy

    Finite Volume Method Discretization Strategy

    The equations will be considered in their conservative form;

    An integral approach is a natural representation for theNavierStokes system and it is the most suitable one forFinite Volume Methods;

    [302.044] Univ. Assist. MSc. Francesco Roman 21/21

  • 8/9/2019 NumOpOpenFOAM Tutorial Finite Volume Method, Dictionary Syntax and Implementation DetailsenFOAM_P01

    61/61