29
1 O2- and CO-Rich Atmospheres for Potentially Habitable Environments on TRAPPIST-1 Planets 1 Renyu Hu 1,2 , Luke Peterson 1,3 , and Eric T. Wolf 4 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 3 Northwestern University, Evanston, IL 60201 4 Laboratory for Atmospheric and Space Physics, Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303 [email protected] Short title: The O2-CO Runaway Abstract Small exoplanets of nearby M dwarf stars present the possibility to find and characterize habitable worlds within the next decade. TRAPPIST-1, an ultracool M dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and g can have a liquid water ocean on their surface given appropriate atmospheres of N2 and CO2. Particularly, climate models have shown that the planets e and f can sustain a global liquid water ocean, for ≥0.2 bar CO2 plus 1 bar N2, or ≥2 bars CO2, respectively. These atmospheres are irradiated by ultraviolet emission from the star’s moderately active chromosphere, and the consequence of this irradiation is unknown. Here we show that chemical reactions driven by the irradiation can produce and maintain more than 0.2 bar O2 and 0.05 bar CO if the CO2 is ≥0.1 bar. The abundance of O2 and CO can rise to more than 1 bar under certain boundary conditions. Because of this O2-CO runaway, habitable environments on the TRAPPIST-1 planets entail an O2- and CO-rich atmosphere with coexisting O3. The only process that would prevent the runaway is direct recombination of O2 and CO in the ocean, a reaction that is facilitated biologically. Our results indicate that O2,O3, and CO should be considered together with CO2 as the primary molecules in the search for atmospheric signatures from temperate and rocky planets of TRAPPIST-1 and other M dwarf stars. 1. Introduction The era of characterizing temperate and rocky exoplanets has begun. Ground-based surveys have found temperate planets hosted by M dwarf stars like the TRAPPIST-1 planets and LHS 1140 b (Gillon et al. 2017; Dittmann et al. 2017). The K2 mission and the Transiting Exoplanet Survey Satellite (TESS) are finding a few tens transiting and temperate planets around nearby M stars (e.g., Sullivan et al. 2015). Orbiting small stars, these planets provide an accelerated path toward finding and characterizing potentially habitable worlds. The TRAPPIST-1 planets already have transmission spectra measured by Hubble (de Wit et al. 2018; Zhang et al. 2018). With >7 times more collecting area and infrared instruments, the James Webb Space 1 © 2019. California Institute of Technology. Government sponsorship acknowledged.

O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

1

O2-andCO-RichAtmospheresforPotentiallyHabitableEnvironmentsonTRAPPIST-1Planets1RenyuHu1,2,LukePeterson1,3,andEricT.Wolf41JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA911092DivisionofGeologicalandPlanetarySciences,CaliforniaInstituteofTechnology,Pasadena,CA911253NorthwesternUniversity,Evanston,IL602014LaboratoryforAtmosphericandSpacePhysics,DepartmentofAtmosphericandOceanicSciences,UniversityofColorado,Boulder,[email protected]:TheO2-CORunawayAbstractSmallexoplanetsofnearbyMdwarfstarspresentthepossibilitytofindandcharacterizehabitableworldswithinthenextdecade.TRAPPIST-1,anultracoolMdwarfstar,wasrecentlyfoundtohavesevenEarth-sizedplanetsofpredominantlyrockycomposition.Theplanetse,f,andgcanhavealiquidwateroceanontheirsurfacegivenappropriateatmospheresofN2andCO2.Particularly,climatemodelshaveshownthattheplanetseandfcansustainagloballiquidwaterocean,for≥0.2barCO2plus1barN2,or≥2barsCO2,respectively.Theseatmospheresareirradiatedbyultravioletemissionfromthestar’smoderatelyactivechromosphere,andtheconsequenceofthisirradiationisunknown.Hereweshowthatchemicalreactionsdrivenbytheirradiationcanproduceandmaintainmorethan0.2barO2and0.05barCOiftheCO2is≥0.1bar.TheabundanceofO2andCOcanrisetomorethan1barundercertainboundaryconditions.BecauseofthisO2-COrunaway,habitableenvironmentsontheTRAPPIST-1planetsentailanO2-andCO-richatmospherewithcoexistingO3.TheonlyprocessthatwouldpreventtherunawayisdirectrecombinationofO2andCOintheocean,areactionthatisfacilitatedbiologically.OurresultsindicatethatO2,O3,andCOshouldbeconsideredtogetherwithCO2astheprimarymoleculesinthesearchforatmosphericsignaturesfromtemperateandrockyplanetsofTRAPPIST-1andotherMdwarfstars.1.IntroductionTheeraofcharacterizingtemperateandrockyexoplanetshasbegun.Ground-basedsurveyshavefoundtemperateplanetshostedbyMdwarfstarsliketheTRAPPIST-1planetsandLHS1140b(Gillonetal.2017;Dittmannetal.2017).TheK2missionandtheTransitingExoplanetSurveySatellite(TESS)arefindingafewtenstransitingandtemperateplanetsaroundnearbyMstars(e.g.,Sullivanetal.2015).Orbitingsmallstars,theseplanetsprovideanacceleratedpathtowardfindingandcharacterizingpotentiallyhabitableworlds.TheTRAPPIST-1planetsalreadyhavetransmissionspectrameasuredbyHubble(deWitetal.2018;Zhangetal.2018).With>7timesmorecollectingareaandinfraredinstruments,theJamesWebbSpace

1©2019.CaliforniaInstituteofTechnology.Governmentsponsorshipacknowledged.

Page 2: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

2

Telescope(JWST)willbecapableofprovidingamoredetailedlookintotheatmosphereofthesecoldexoplanets(Beichmanetal.2014).AkeyfactorthatimpactstheatmosphericcompositionsofrockyplanetsaroundMdwarfstarsisthestellarultraviolet(UV)irradiation.UVradiationdissociatesCO2intoCOandO,butthedirectrecombinationofthetwoproductsisslow.TwoOproducedthencombinetoformO2.IntheSolarSystem,theCO2atmosphereofMarsisstabilizedprincipallybycatalyticalcyclesofOHandHO2thatrecombineCOandO2(McElroy&Donahue1972;Nairetal.1994),whilethatofVenusisadditionallystabilizedbychlorinespecies(McElroyetal.1973).IfthestarisanMdwarf,itsirradiationisstronginthefar-UV(FUV)bandpassbutweakinthenear-UV(NUV)bandpass(Franceetal.2013).BecauseFUVradiationdissociatesCO2,andNUVradiationamplifiesthecatalyticalcyclesofOHandHO2,aliquid-water-oceanplanetofanMdwarfinclinestoaccumulateCOandO2intheatmosphere.UsingthespectrumoftheMdwarfGJ876,atmosphericphotochemistrymodelshavepredictedanO2mixingratioupto5%inanN2-dominatedatmospherewith0.05barCO2(Tianetal.2014;Domagal-Goldmanetal.2014;Harmanetal.2015).AtmosphericphotochemistrymodelshavealsoshownthatmassiveO2andCOwouldbeproducedfromCO2-dominatedatmospheresofdesiccated–andhenceuninhabitable–rockyplanetsofMdwarfstars(Gaoetal.2015).ClimatemodelsoftheplanetTRAPPIST-1e,f,andgindicatethattheyneedmorethan0.05barCO2tosustainagloballiquidwaterocean,sincetheplanetshavelosttheirprimordialhydrogenenvelopesduetoX-rayandextreme-UVirradiation(Bourrieretal.2017;Bolmontetal.2017).Foranatmospherewith1barN2andvariedabundanceofCO2ontheplanete,icewouldcover57%oftheplanetat0.1barCO2,andthecoveragedropsquicklytonearlyzeroat≥0.2barCO2(Wolf2017).Ontheplanetf,≥2barsCO2arerequired(Wolf2017;Turbetetal.2018).SubstitutingCO2withCH4orNH3asthemaingreenhousegaswouldbeunlikelytosustainthehabitability,fortheirmuchweakergreenhouseeffectandtendencytoformphotochemicalhazesthatcauseananti-greenhouseeffect(Turbetetal.2018).ThephotochemicallifetimeofCH4couldhoweverbequitelongonTRAPPIST-1planetsfortheweakerNUVradiation(e.g.,Rugheimeretal.2015).ToinvestigatetheeffectofthestellarirradiationonthishighCO2abundance,weuseourphotochemistrymodel(Huetal.2012;Huetal.2013)todeterminethesteady-statecompositionoftheatmospheresunderirradiation.Thephotochemistrymodelusestheatmosphericpressure-temperatureprofilesgeneratedbythe3Dclimatemodel(Wolf2017),whichwascalculatedforvariedpartialpressuresofCO2.Wefindthatmorethan0.2barO2and0.05barCOareproducedinthesteadystateiftheCO2partialpressureis≥0.1bar.TheabundanceofO2andCOcanrisetomorethan1barforgreaterCO2partialpressures,whichconstitutesan“O2-COrunaway”.Thepaperisorganizedasfollows.Wedescribeourmodels,includingthe3DclimatemodelinSection2,presenttheconditionsandthechemistryoftheO2-COrunawayinSection3,discussitsclimateimplications,feedback,andgeologiccontextinSection4,andconcludeinSection5.

Page 3: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

3

2.Methods2.1PhotochemistryModelThephotochemistrymodelusedinthisstudy(Huetal.2012;Huetal.2013)hasbeenvalidatedbycomputingtheatmosphericcompositionsofpresent-dayEarthandMars,sincetheoutputsagreedwiththeobservationsofmajortracegasesinEarth'sandMars'atmospheres.Themodelhasalsobeenusedtodeterminethephotochemicaloxygenbuildupinabioticatmospheres(Huetal.2012;James&Hu2018).Forthelatterpurpose,themodelhasbeencomparedwithotherphotochemistrymodelindetailandwehavefoundgoodagreement(Gaoetal.2015;Harmanetal.2018).Thephotochemistrymodelsolvestheone-dimensionalchemical-transportequationfor111O,H,C,N,andSspeciesincludingsulfurandsulfuricacidaerosols.ThefullspeciesandreactionlistcanbefoundinHuetal.(2012).Themodelseekstobalanceproductandlosstermsfromallchemicalandphotochemicalreactionsforeachgasateachaltitudelevel.Wetypicallydonotassumephotochemicalequilibriumforanygas;so,unlessotherwisestated,allgasesareincludedinthefullchemical-transportcalculation.Thesystemisconsideredasconvergedtoasteadystateiftheminimumvariationtimescaleisgreaterthan,forinstance,theageoftheSolarSystem(1017s).InthemodelsthatfeaturetheO2-COrunaway,theambientpressurechangesinthesimulationbecausetheproducedO2andCOmeaningfullycontributetothepressure.Ourphotochemistrymodelself-consistentlycalculatestheeffectofthechangingambientpressureonthekineticrates.Sincethephotochemistrymodelsolvedthecontinuityequationofnumberdensities(Huetal.2012),thetotalnumberdensityofeachlayerisobtainedbysummingthenumberdensitiesofallmoleculesinthatlayer.Assuch,thetotalnumberdensity,andthusthepressure,ofeachlayerisupdatedaftereachtimestepping.Thechangingpressureaffectstheratesoftermolecularreactions,becausetheyareproportionaltothetotalnumberdensity,andalsoaffectstheratesofphotolysisviaradiativetransferintheatmosphere.Theseeffectsareself-consistentlycalculatedineachtimestep.Inparticular,animportanttermolecularreactionisthedirectcombinationbetweenCOandOintheatmosphere,CO+O+M®CO2+M,anditsrateincreaseswiththeambientpressure.ThisfeedbackloopeventuallylimitsthesizeoftheatmospherewhentheO2-COrunawayisstrong.WeadopttheeddydiffusioncoefficientderivedfromthenumberdensityprofilesoftracegasesonEarth(Massie&Hunten1981).Theeddydiffusioncoefficientischaracterizedbyahighvalueintheconvectivetroposphere,aminimumcorrespondingtothetropopause,andanincreasingvaluewithsmallernumberdensitiesinthenon-convectivestratosphere.Whentheambientpressureincreases,theeddydiffusioncoefficientasafunctionofaltitudeisunchanged.Thisensuresvigoroustransportintheatmosphereandpreservesthesensitivityoftheeddydiffusioncoefficientontheconvectivenatureoftheatmosphere.Therecouldbe

Page 4: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

4

additionaleffectsofthechangingpressureontheeddydiffusioncoefficient,andwethuscautionthattheresultsmaybedependentontheassumptionoftheeddydiffusion.Tosimulatetheeffectoflightning,weadoptaterrestrialproductionrateofNOfromlightning,6´108cm-2s-1(Schumann&Huntrieser2007),whichisalreadygreaterthanthemajorityoftheparameterspaceexploredpreviouslyforN2-CO2-H2Oatmospheres(Wongetal.2017;Harmanetal.2018).Inaddition,itisfoundthatinanatmospheremoreO2-richthanEarth’satmosphere,theNOproductionratefromlightningcanbehigher,upto~109cm-2s-1(Harmanetal.2018).Wealsoconsiderthishigherproductionrateinasensitivitystudy.

ThestellarspectrumofTRAPPIST-1hasnotbeenmeasuredinUV.Therefore,weusetheUVspectrumofGJ876obtainedbytheMUSCLESprojectastheproxy(Franceetal.2016).ThesurveyusesHubbleobservationsintheUVtoreconstructintrinsicstellarLyman-aemissions.Thevisiblespectrumisobtainedfromground-basedobservations,andtheinfraredspectrumisfromthePHOENIXstellaratmospheremodels.GJ876,anM5VstarofTeff~3100K,isoneofthecloseststarstoTRAPPIST-1(Teff~2600K)intheMUSCLESsample.AsshowninFig.1,wescalethespectrumintheUVwavelength(<300nm)bythemeasuredLyman-afluxofTRAPPIST-1(Bourrieretal.2017,afactorof0.135withrespecttoGJ876,

Fig.1:Stellarspectrausedinthisstudy.AllspectraarescaledbytheirbolometricluminositywithrespecttoTRAPPIST-1.ThespectrumofGJ876isobtainedbytheMUSCLESproject,whichusesHubbleobservationsintheUVtoreconstructtheintrinsicstellarLyman-aemissions(Franceetal.2016).ThespectrumofTRAPPIST-1atwavelengths>300nmisthesameasthescaledGJ876spectrum,butatwavelengths<300nmadifferentscalingaccordingtothemeasuredLyman-afluxisapplied.ThespectrumofADLeo,amoreactiveMstar,isfromSeguraetal.(2005).TheLyman-areconstructionwasnotperformedonthespectrumofADLeo.

100 200 300 400 500 600Wavelength [nm]

10-10

10-8

10-6

10-4

Irrad

iation

[w/m

2 ]

Assumed TRAPPIST-1GJ 876AD Leo

Page 5: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

5

Youngbloodetal.2016),andthatinthevisiblewavelength(>300nm)bythemeasuredbolometricluminosityofTRAPPIST-1(VanGrooteletal.2018,afactorof0.0428withrespecttoGJ876,vonBraunetal.2014).Inaddition,weexploreinasensitivitystudyaspectralshapeintheUVasADLeo,anactiveM4.5Vstar.Fig.1showsthatthespectralshapeofADLeohasalargerFUV/NUVratio,buttheFUVfluxmaybeinaccurateastheLyman-areconstructionwasnotperformed.Lastbutnotleast,ourmodelensurestheredoxfluxbalanceoftheatmosphereandtheocean.Theconvergenceofthephotochemistrymodelitselfensuresthebalanceoftheredoxbudgetoftheatmosphere.However,thisdoesnotensurethattheresultsarerealisticonplanets,asthereisnoknownabioticwaytodepositreducingspeciesatthebottomoftheocean.Wethereforeenforcethebalanceoftheredoxbudgetoftheoceanbyrequiringthenettransferoftheredoxfluxbetweentheatmosphereandtheoceantobezero(Domagal-Goldmanetal.2014;Harmanetal.2015;James&Hu2018).Inpractice,thisbalanceisachievedbyincludingapseudoreturnfluxofhydrogen.Ifwefindanettransferoftheredoxfluxfromtheatmospheretotheoceaninaconvergedsolution,weincludethisnetfluxasareturnfluxofhydrogenfromtheoceantotheatmosphereandrelaunchthesimulation.Werepeattheprocessuntiltheimbalanceisnolargerthan1%oftheoutgassingredoxflux.Thisway,ourresultssatisfytheredoxbalanceforboththeatmosphereandtheocean.2.2OutgassingandDepositionWeusethevolcanicactivityrateofpresent-dayEarth,andtheper-massoutgassingratecalculatedformid-oceanridgebasalts(Gaillard&Scaillet2014)tocalculatethegasoutgassingrate.Theoutgassingrateis1.5´109cm-2s-1forCO,H2,andSO2,and1.5´108cm-2s-1forH2S(seeJames&Hu(2018)fordetails).TRAPPIST-1emayhaveatidalheatingfluxcorrespondingto1~10timesgeothermalheatflux(Lugeretal.2017;Papaloizouetal.2017).Wehaveperformedanadditionalsetofsimulationassuming10timeshighervolcanicoutgassingrateandfoundnonoticeabledifferenceintheO2orCOpartialpressure.Themodelhasafullsulfurchemistrynetwork(Huetal.2013),andwefindthattheoutgassedH2SandSO2iseitherrainedoutdirectlyoroxidizedtoH2SO4.TheH2SO4isthenrainedout.Theoutgassingrate,evenatthe10times,isnothighenoughtoproduceaH2SO4aerosollayerintheatmosphere.ThestandardmodelassumesadepositionvelocityofzeroforO2,andincludesadepositionvelocityofeitherzeroor10-8cms-1forCO.ThenonzerovalueforCOcomesfromassumingaqueousformationofformate(CO+OH-àCOOH-)astheratelimitingsteptoremoveCO(Kharechaetal.2005).Otherreactionsactingasaratelimitingstepwouldleadtoevenlowerdepositionvelocities(Harmanetal.2015),andthusthezerovalueforCOisincludedasanotherend-memberscenario.WefindthattheexactabundanceofO2versusCOintheO2-COrunawayscenariosisquitesensitivetothechoiceofthedepositionvelocityofCO(Section3.1).

Page 6: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

6

Inadditiontothestandardmodel,wehaveperformedadditionalsimulationstoevaluatetheeffectofpotentialsinksforO2intheocean.(1)Adepositionvelocityof10-8cms-1forO2wouldbepossibleforthepotentialrecombinationofO2andCOinhydrothermalflowthroughthemid-oceanridges(Harmanetal.2015).Weobservednonoticeablechangestotheresultswhenadoptingthisdepositionvelocity.(2)AsecondpotentialsinkofO2isFe2+inputintheoceanfromcrustformation.WedescribethetesttoincludethissinkinSection3.1.(3)AsalimitingscenarioweconsiderthepossibilitythatdirectrecombinationofO2andCOoccursrapidlyinthesurfaceocean.ThiswouldenabletherapiddepositionofbothO2andCO,andwealsodescribeitsimpacttotheresultinSection3.1.ForthescenarioswithsubstantialO2buildup,O3hasasubstantialmixingratioatthesurface,andthereforecanhaveasubstantialdepositionfluxontothesurface.ThiswouldmakethemodelresultssensitivetothechoiceofthedepositionvelocityofO3.SomeofthepreviousstudiesassumeO3tobetheshort-livedspeciesinphotochemicalequilibrium(Harmanetal.2015;Harmanetal.2018),thusremovingtheneedtospecifyadepositionvelocity.OnEarth,thedepositionvelocityofO3isverydifferentbetweenthelandandtheocean.Asaslightlysolublegas,O3’sdepositionvelocityovertheoceanislimitedbythemasstransferrateintheliquidphase(Broecker&Peng1982).UsingthetypicalmasstransfercoefficientandtheHenry’slawcoefficientforO3,thedepositionvelocityisapproximately10-3cms-1,andthisvalueisconsistentwiththemeasurementsoverEarth’socean(Hardacreetal.2015).ThesurfaceresistanceofO3isconsiderablysmalleroverEarth’sland,andthemeasureddepositionvelocityistypicallyontheorderof0.3cms-1.Whilethisvalueisalsovalidfordeserts(Hardacreetal.2015),thelowerresistanceismostlikelyduetotheprevalenceofbiosphereonEarth.Wethereforeadoptthevalueof10-3cms-1inthestandardmodel,andexploreavalueof0.1cms-1inasensitivitystudy.ThestandardvalueisthesameasusedinTianetal.(2014).2.3ClimateModelingandTemperature-PressureProfilesToinitializethephotochemicalmodel,weusethesubstellarhemispheremeanverticalprofilegeneratedbythe3Dclimatemodel(Wolf2017)inthisstudy.ThescenariosusedinthisstudyaresummarizedinTable1.Wefixthenumberdensityofwatervaporatthebottomoftheatmosphereaccordingtothe3Dmodel,andallowwatervaportocondenseoutasthetemperaturedropsasaltitude.Thetopoftheatmosphereisassumedtobe0.1Pa,correspondingtodifferentaltitudesbetweenthescenariosduetodifferenttemperaturesandmeanmolecularweights.ThemassandtheradiusofeachplanetarethemeasuredvaluesfromGrimmetal.(2018).Table1:Startingscenariosofthisstudyandtheirkeyclimatecharacteristicsbasedonthe3DmodelofWolf(2017).

Page 7: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

7

Planet N2 CO2 Tsurfglobe(K)

IceFraction

InitialMixingRatioofH2OatSurface

TopofAtmosphereAltitude(km)

TRAPPIST-1e 1bar None 227 86% 0.0018 88TRAPPIST-1e 1bar 0.0004

bar241 80% 0.0037 84

TRAPPIST-1e 1bar 0.01bar

254 73% 0.0056 84

TRAPPIST-1e 1bar 0.1bar 274 57% 0.0138 83TRAPPIST-1e 1bar 0.2bar 285 18% 0.0213 82TRAPPIST-1e 1bar 0.4bar 303 0% 0.0407 71TRAPPIST-1e 1bar 1bar 333 0% 0.1001 73TRAPPIST-1f None 1bar 227 100% 0.0007 56TRAPPIST-1f None 2bar 289 2% 0.0067 59TRAPPIST-1f None 5bar 335 0% 0.0444 66WhentheO2-COrunawayoccurs,O2andCOcontributemeaningfullytothetotalatmosphericpressure.Newlyforthiswork,wehaveconductedseveraladditional3Dclimatemodelsimulationstotestofclimateeffectsofthisincreasedatmosphericpressure.TheradiativeeffectsofO2andCOareprimarilyfeltindirectlythroughtheircontributiontothetotalatmosphericpressure,andsubsequentpressurebroadeningofCO2absorptionfeatures,whichcanhaveasignificantwarmingeffectonclimate(Goldblattetal.2009).Aspresentlyconfiguredour3DmodelhandlesonlyN2,H2O,andCO2,andthereforewehavesubstitutedN2asthebroadeninggasinthesesimulations.Whilethissubstitutioninthe3Dmodelintroducessomeuncertainty,still,wecangainausefulestimateoftheclimateconsequencesofaddingsignificantamountsofaradiativelyinactivebroadeninggas.WediscusstheclimatefeedbackinSection4.2.3.Results3.1TheO2-CORunawayThesteady-stateabundanceofO2jumpsby7–8ordersofmagnitudeto0.2–2baronTRAPPIST-1ewhentheCO2abundanceincreasesfrom0.01to0.1bar(Fig.2,thicklines).TheabundanceofCOalsoincreasesby4–5ordersofmagnitudeto>0.05bar.ThespreadoftheresultantabundancesofO2andCOiscausedbytheuncertaintiesintheirdepositionvelocities.Aswestartthecalculationfrom1barN2and0.1~1barCO2,thesteady-stateatmospherehasO2andCOasmaincomponents,aswellasasubstantialabundanceofO3.Wethuscallthisphenomenon“theO2-COrunaway.”TheabundanceofO2continuestograduallyincreasewithmoreCO2,buttherunawayispartiallystabilizedbythefactthatahigheratmosphericpressuremakesthedirectrecombinationreactionbetweenCOandOfaster.ForTRAPPIST-1e,theconditionfortheO2runawaycoincideswiththeconditionforaglobalocean,

Page 8: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

8

indicatingthatahabitableenvironmentontheplanetnecessarilyentailsanO2-andCO-richatmosphere.ForTRAPPIST-1fandg,moreCO2isrequired,andthusthesameresultappliesqualitatively.

Figs.3and4andTable2showtheverticalprofilesofkeymoleculesandtheredoxfluxesofthescenariosbeforeandaftertheO2-COrunaway.TheredoxbalancesoftheatmosphereandtheoceanarewellbalancedforthemodelsbeforeandaftertheO2-COrunaway,andtheremainingimbalancesareduetosubtledifferenceintheH2mixingratioonthegroundandthatatthehomopause.Thewatervaporprofilecalculatedbythe1Dphotochemistrymodelagreeswellwiththemeanwatervaporprofilecalculatedbythe3Dclimatemodel(seeSection4.2).AftertheO2-COrunaway,O2isessentiallywell-mixedintheatmosphere,andthemixingratioofO3peaksat~1mbar(Fig.3).AftertheO2-COrunaway,mostoftheHOx(OHandHO2)speciescombinetoformthe“reservoir”moleculeH2O2,andtheabundanceofthefreeradicalOHisextremelylow(Fig.4).ThisexplainstheinabilityoftheOH-HO2catalyticcycletorecombineCOandO2.Fig.4alsoshowsthataftertheO2-CO

Fig.2:Modeledicefractionandcolumn-integratedabundancesofO2,CO,andO3versustheabundanceofCO2.ThicklinesarethestandardmodelsthatincludeknownsurfacesinksofO2andCO,andtheshadedareasbetweenthethicklinesdenotethespreadoftheresultsduetothedepositionvelocityofCOrangingfromzeroto10-8cms-1.ThenonzerodepositionvelocityofCOleadstohigherabundanceofO2andlowerabundanceofCOthanthezerodepositionvelocity.ThinlinesarethemodelsthatadditionallyassumeadirectrecombinationreactionofO2andCOintheocean.O2andCObecomemaincomponentsoftheatmospherewhenpCO2is≥0.1bar;forTRAPPIST-1ethisjumpisroughlycoincidentwiththerequirementofagloballiquidwaterocean.

0

20

40

60

80

100

Ice F

racti

on [%

]TRAPPIST-1 e

0

20

40

60

80

100

Ice F

racti

on [%

]

TRAPPIST-1 f

Page 9: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

9

runaway,mostofthereactivenitrogenspeciescombinetoformHO2NO2abovethepressurelevelof0.1bar,thereservoirspeciesfornitrogen.WewilldiscussthebehaviorsofnitrogenphotochemistryinSection3.2.

OnemightaskwhethertheO2-COrunawaydependsontheassumptionsoftheboundaryconditions,particularlythelackofrapidsurfacesinksforO2andCO.WehaveexploredtheimpactsofgeochemicalsinksofO2andCOontheiratmosphericabundances,andtheO2-COrunaway.Thegeochemicalsinksareexpressedinthephotochemistrymodelasthevaluesforthedepositionvelocity.Conceptually,the

Fig.3:MixingratioprofilesofbackgroundgasesandoxygenspecieswithouttheO2runaway(solidlines,1barN2with0.01barCO2)andwiththeO2-COrunaway(dashedlines,1barN2with0.1barCO2).ThedepositionvelocityiszeroforO2andis10-8cms-1forCO.AftertheO2-COrunaway,O2becomesthedominantgasoftheatmosphere,andasubstantialO3layerforms.

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

N2CO2H2OCOH2CH4

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Mixing Ratio

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

O2O

O3

N2CO2H2O COH2

CH4

O2O

O3

Page 10: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

10

transferfluxfromtheatmospheretothesurfaceis𝜙 = 𝑣dep_max +𝑛- −/0123 = 𝑣dep𝑛-,

where𝑣dep_maxand𝑣depisthemaximumandeffectivedepositionvelocitiesofthegas,𝑛-isthegas’snumberdensityatthesurface,𝑀-isthemolalityinthesurfaceocean,𝛼istheHenry’sLawcoefficient,and𝐶isaunitconversionconstant.Theeffectivedepositionvelocitythusdependsonhowquicklytheoceancanprocessthedepositedmoleculeanddrive𝑀-awayfromtheequilibriumvalue.

AmajorpotentialsinkforO2istheFe2+inputtotheoceanfromcrustalformation.TheO2canoxidizeFe2+intheoceanandcauseBandedIronFormation(BIF,6FeO+O2®2Fe3O4).OnEarth,theestimatedrateofironoutputduringtheHamersleyBIFsinthelateArcheanis~3´1012molyr-1,or1.1´1010cm-2s-1(Holland2006).AssumingthisentireoutputofironisoxidizedtoFe3O4intheoceanbyO2,ithastwo

Fig.4:MixingratioprofilesofreactivehydrogenandnitrogenspecieswithouttheO2runaway(solidlines,1barN2with0.01barCO2)andwiththeO2-COrunaway(dashedlines,1barN2with0.1barCO2).ThedepositionvelocityiszeroforO2andis10-8cms-1forCO.

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

OHHO2H2O2

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Mixing Ratio

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

N2ONONO2N2O5HNO3HO2NO2

H2O2HO2

OH

HO2NO2

NO

N2ONO2

HNO3

N2O5

Page 11: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

11

effects:(1)thiswouldcorrespondtoanadditional8´109cm-2s-1equivalentHinfluxtotheatmosphere,doublingtheH2mixingratioaccordingtotheredoxbalance;(2)thiswouldbeasinkof𝜙max=2´109cm-2s-1forO2.Howtoimplementthislimitingsinkinthephotochemistrymodel?ForO2undertypicalconditions,themaximumdepositionvelocity𝑣dep_max=1.4´10-4cms-1.This𝑣dep_maxisdeterminedbythetwo-filmmodelofmasstransferbetweentheatmosphereandtheocean(Broecker&Peng1982)andisrelatedtothepistonvelocityandissensitivetothesolubilityofthegas,thewindspeed,andthetemperature(Domagal-Goldmanetal.2014;Harmanetal.2015).Therefore,whenthesurfacenumberdensity𝑛-issmall,therateofdepositionissmallerthanthelimitingsinkduetoBIF,and𝑣depshouldbecloseto𝑣dep_max.When𝑛-islarge,thedepositionfluxislimitedby𝜙max.WethereforeimplementthelowerboundaryconditionforO2duetoBIFasfollows:if𝑣dep_max𝑛- < 𝜙max,ironoxidationeffectivelyremovesO2intheocean,andthen𝑣dep = 𝑣dep_max;if𝑣dep_max𝑛- > 𝜙max,thedepositionvelocityislimitedbytherateofBIF,or𝑣dep = 𝜙max/𝑛-.Afterimplementingthisboundaryconditionandperforminganothersetofsimulations,wefindthattheformerconditionismetbeforetheO2-COrunaway,andthelatterconditionismetaftertheO2-COrunaway.InthecasesaftertheO2-COrunaway,theinclusionofBIFleadstoadecreaseoftheO2columnabundanceby<10%.WethereforeconcludethatBIFdoesnotsubstantiallyimpacttheonsetoftheO2-COrunaway.WenotethattherateofironproductionduringtheearlyArchean(andpresumablyonaterrestrialexoplanet)maybe20-foldhigherthantheHamersleyBIFs(Kasting2013).Hereweconsideritsimpact.The0.1-barCO2case(i.e.,theonsetoftheO2-COrunaway)hasanO2numberdensityof5.5´1019cm-3atthebottom,thefulldepositionofwhichwouldhaveafluxof7.7´1016cm-2s-1,about4´107largerthanthefluxintheHolland(2006)estimate.Thereforea20-foldincrease,evenifitoccurs,wouldnotmateriallychangeourresults.Additionally,weconsideralimitingscenariowithdirectrecombinationofO2andCOoccurringrapidlyinthesurfaceocean.InthiscasetheeffectivedepositionvelocitiesofO2andCOapproachtheir𝑣dep_max,whicharemainlycontrolledbysolubilitiesintheocean(1.2´10-4cms-1forCOand1.4´10-4cms-1forO2,Domagal-Goldmanetal.2014).TheO2-COrunawayispreventedinthiscase,andtheirabundancesmaxoutat10-3–10-4bar(Fig.1,thinlines).ThisreactionisperformedbyaerobicCO-oxidizingbacteriaonEarth(King&Weber2007),andisthusconceivableonanexoplanetwithliquidwaterandabundantO2andCOonthesurface.Table2:RedoxfluxesofrepresentativeatmosphericmodelsforTRAPPIST-1e(1).Model 𝒗dep(CO)=1E-8cms-

1

𝒗dep(O2)=0

𝒗dep(CO)=1.2E-4cms-1𝒗dep(O2)=1.4E-4cms-1

𝒗dep(CO)=0𝒗dep(O2)=0

CO2 0.01bar 0.1bar 0.01bar 0.1bar 0.01bar 0.1bar

Page 12: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

12

EscapeH -3.1E+8 -2.9E+9 -3.1E+8 -7.1E+8 -3.1E+8 -1.5E+9H2 -5.4E+9 -2.8E+9 -5.4E+9 -5.0E+9 -5.4E+9 -4.2E+9Total -5.7E+9 -5.7E+9 -5.7E+9 -5.7E+9 -5.7E+9 -5.7E+9OutgassingH2 3.0E+9 3.0E+9 3.0E+9 3.0E+9 3.0E+9 3.0E+9CO 3.0E+9 3.0E+9 3.0E+9 3.0E+9 3.0E+9 3.0E+9H2S 9.0E+8 9.0E+8 9.0E+8 9.0E+8 9.0E+8 9.0E+8NO(2) -1.2E+9 -1.2E+9 -1.2E+9 -1.2E+9 -1.2E+9 -1.2E+9Total 5.7E+9 5.7E+9 5.7E+9 5.7E+9 5.7E+9 5.7E+9DryandWetDepositionO2 7.9E+11 O3 3.4E+9 2.7E+8 3.4E+8HO2 2.9E+5 1.5E+8 1.4E+7H2O2 5.8E+7 1.1E+10 4.7E+9CO -2.0E+6 -1.1E+10 -9.1E+9 -8.1E+11 CH2O -2.8E+6 -7.8E+5 -2.8E+6 CHO2 -2.4E+6 -2.4E+6 H2S -1.1E+8 -9.0E+8 -1.1E+8 -3.7E+8 -1.1E+8 -8.5E+8H2SO4 1.0E+7 1.7E+7 9.9E+6 1.0E+7 NO 1.1E+8 1.6E+8 1.1E+8 NO2 1.7E+6 4.0E+8 2.7E+6 1.9E+7 1.7E+6 1.8E+8NO3 1.3E+9 5.4E+6 2.4E+7N2O5 1.2E+9 2.4E+5 1.3E+7HNO 5.1E+8 4.5E+8 5.1E+8 HNO2 2.6E+7 1.3E+8 5.8E+7 1.8E+9 2.6E+7 1.6E+9HNO3 3.6E+6 1.1E+5 9.7E+6 1.4E+7 3.6E+6 5.0E+4HNO4 2.2E+6 1.7E+7 3.0E+7Total 5.4E+8 -5.0E+9 -8.5E+9 -4.1E+9 5.5E+8 6.0E+9ReturnH2FluxH2 -5.5E+8 5.0E+09 8.5E+9 4.1E+9 -5.5E+8 -6.1E+9OverallFluxBalance

1.0E+4 1.1E+6 1.1E+7 -7.9E+6 8.6E+5 -4.5E+6(1)TheredoxfluxisexpressedastheequivalentofunitHinfluxtotheatmosphere.H2O,CO2,N2,andSO2aredefinedasredoxneutral.Forexample,depositionofaCOmoleculewouldcreatearedoxfluxof-2,anddepositionofaO3moleculewouldcreatearedoxfluxof+6.

Page 13: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

13

(2)TheNOfluxisincludedtosimulatelightningproductionofNO.

InadditiontothesinkofO2,thephotochemistrymodeltakesotherinputparameterssuchastheNOproductionratefromlightning,thestellarspectrum,andthedepositionvelocityofO3.OnemightaskwhethertheseparameterssignificantlybearsupontheO2-COrunaway.WehavetestedthesensitivityofthemodelontheseparametersusingTRAPPSIT-1easthetestcase(Fig.5).First,wefindthatincludingaterrestrialrateofNOproductionbylightningreducestheresultingO2partialpressurebyonlyafactorof~2insomecases,andtheexactvalueofthelightningproductionrateneartheterrestrialratehaslittleimpact(Fig.5,Panela).Thislackofsensitivityhastodothenitrogenphotochemistry,whichwillbediscussedinSection3.2.Second,wefindthattheonsetoftheO2-COrunawayismildlysensitivetothestellarspectralshape.ThereislittledifferencebetweenthestandardmodelandthemodelusingtheGJ876’sspectrum.WhenusingtheADLeo’sspectrum,however,theO2-COrunawayrequiresahigherpartialpressureofCO2,~0.2bar(Fig.5,Panelb).ThissensitivityreaffirmsthepointthattheO2-COrunawayisdrivenbythehighFUV/NUVratiooftheirradiationoflateMdwarfs.TheADLeo’sspectrumhasalowerFUV/NUVratiocomparedtotheGJ876’sspectrumortheassumedTRAPPIST-1spectrum,andthereforeitislessabletodrivetheO2-COrunaway.Third,changingtheO3depositionvelocityfromthestandardvalue(10-3cms-1)toahighervalue(10-1cms-1)onlyhassomeimpacttothecaseof0.1barCO2,andoverallitdoesnotaffecttheonsetoftheO2-COrunaway.Insum,theO2-COrunawayappearstoberobustagainstreasonableuncertaintiesinthelightningrate,stellarspectrum,anddepositionvelocities.3.2NitrogenPhotochemistryonMdwarfs’PlanetsOurphotochemistrymodelsshowthatnitrogenchemistryintheatmosphereinitiatedbylightningcannotpreventtheO2-COrunaway.Lightningmainlyproduces

Fig.5:SensitivityoftheonsetoftheO2-COrunawayonthelightningrate,thestellarspectralshape,andthedepositionvelocityofO3.ThesensitivitystudiesareperformedonthemodelsofTRAPPSIT-1e,andtheresultsfromvariedparametersareshownwithrespectivelinestyles.Thesolidlinesarefromthestandardmodel.TheonsetoftheO2-COrunawayisnotsensitivetothelightningrateorthedepositionvelocityofO3,andismildlysensitivetothespectralshape.

10-4 10-3 10-2 10-1 100

CO2 Abundance [Bar]

10-10

10-5

100

Abun

danc

e [B

ar] N2

O2COO3

10-4 10-3 10-2 10-1 100

CO2 Abundance [Bar]10-4 10-3 10-2 10-1 100

CO2 Abundance [Bar]

(a) NO production rate by lightningdashed: 0dotted: 109 cm-2 s-1

(b) Stellar spectral shapedashed: GJ 876dotted: AD Leo

(c) O3 deposition velocitydashed: 0.1 cm s-1

Page 14: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

14

NOinanN2-CO2-O2atmosphere(Wongetal.2017;Harmanetal.2018;Rimmer&Helling2016).ReactivenitrogenspeciesfacilitatecyclesofOHandHO2inEarth’sstratosphereandhavebeensuggestedtoreducetheabundanceofaccumulatedO2inCO2-richplanetaryatmospheresbymanyordersofmagnitude(Harmanetal.2018).AmaincatalyticcycleenabledbyreactivenitrogenspeciesisNO+HO2®NO2+OH,NO2+hv®NO+O,whichisfollowedbyCO+OH®CO2+H.Ourmodelindicatesthattheeffectoflightning,however,islimitedtowithinafactorof~2.ThisisbecausemostofthereactivespeciesislockedinthereservoirmoleculesHO2NO2andN2O5(Fig.4),andthuscannotparticipateinthecatalyticcycles.ThesereservoirmoleculesarephotodissociatedbyNUVirradiationinEarth’sstratosphere,butthisphotodissociationisseverelylimitedonanMdwarf’splanet.HO2NO2alsodissociatesthermallyinthetroposphere,butthedissociationinthestratosphereappearstobemoreimportantforenablingthecatalyticcycles.OurmodelincludesphotodissociationofHO2NO2viaovertuneandcombinationbandsinthenearinfrared(Roehletal.2002)whereanMdwarf’semissionisstrong,butfindsthatthetotalphotodissociationrateatthetopoftheatmosphereisstillmorethananorderofmagnitudelessthanthataroundaSun-likestar.Additionally,thereservoirmoleculesareefficientlyrainedoutfromtheatmosphere.IfwedonotincludeHO2NO2orN2O5inthemodel,wewouldreproducetheorders-of-magnitudeeffectbylightning.Thedetailofnitrogenphotochemistryisdescribedinthefollowing.Harmanetal.(2018)foundthatthesteady-stateabundanceofO2wouldbereducedbymanyordersofmagnitudebyincludinglightningproductionofNO.Harmanetal.(2018)howeverdidnothaveHO2NO2orN2O5intheirchemicalnetwork.Hereweperformasetofmodelswith1barN2and0.05barCO2,thesameasHarmanetal.(2018),withonemodelusingourchemicalnetworkandtheotherwithoutHO2NO2orN2O5.TheresultsareshownincomparisoninFig.6.Tobecomparable,themodelshereareforahypothetical1-Earth-radiusand1-Earth-massplanetinthehabitablezoneofGJ876.Theboundaryconditionsarethesameasthestandardmodelspreviouslydescribed.BecausetheresultsareinsensitivetothespectralshapechangingfromtheassumedTRAPPIST-1toGJ876,themodelspresentedinFig.6canalsobeinterpretedinthecontextoftheTRAPPIST-1models(Figs.2-5)asacaseinthemiddleoftheO2-COrunaway.IfN2O5andHO2NO2(sometimescalledHNO4)arenotincludedinthechemicalnetwork,themixingratioofO2wouldindeedbereducedbymanyordersofmagnitude(Fig.6,dashedlines).TheO3wouldbealmostcompletelyremoved.ThisresultisconsistentwithHarmanetal.(2018)intermsoftheeffectoftheNOandNO2cycleandingeneralwiththebasicunderstandingofterrestrialatmosphericchemistry,thattheNOandNO2cyclehelpreduceO3.NotethattheamountofO2nearthesurfaceisstillmuchhigherthanthatinHarmanetal.(2018),whichmaybe

Page 15: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

15

duetodifferentchoicesofspeciesinphotochemicalequilibrium,anddifferentboundaryconditionsassumed(Section4.1).WhenN2O5andHO2NO2areincludedinthechemicalnetwork,theresultsaredramaticallydifferent.Weseethat(1)mostofthenitrogenotherthanN2orN2OarelockedintheformofHO2NO2inthestratosphere,andtheN2O5reservoirisalsosignificant(Fig.6,solidlines,alsoinFig.4,dashedlines);(2)summingthereactivenitrogenspecies(nitrogenspeciesotherthanN2orN2O),themixingratioissmallerthanthecasewithoutN2O5orHO2NO2;and(3)themixingratioofO2remainsconstantthroughouttheatmosphereratherthanbeingreducedbymanyordersofmagnitude.

Fig.6:Atmosphericmodelswith1barN2and0.05barCO2,includingaNOsourceof6´108moleculecm-2s-1atthesurfacemimickingtheeffectoflightning(solidlines),andthesameNOsourcebutwithoutN2O5orHO2NO2inthechemicalnetwork(dashedlines).ThesemodelsusethestellarspectrumofGJ876,correspondingtoHarmanetal.2018).Theeffectoflightningislimitedwhenthereservoirmoleculesareincludedinthechemicalnetwork.

10-16 10-14 10-12 10-10 10-8 10-6

Mixing Ratio

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

N2ONONO2N2O5HNO3HO2NO2

10-10 10-8 10-6 10-4 10-2 100

Mixing Ratio

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

N2CO2H2OCOH2O2O3CH4

Page 16: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

16

WhydoesincludingN2O5andHO2NO2inthechemicalnetworkhavesuchalargeeffect?Inthestratosphere,HO2NO2isformedbythefollowingcombinationreactionHO2+NO2+MàHO2NO2+ManddestroyedbyphotolysisHO2NO2+hvàHO2+NO2HO2NO2+hvàHO+NO3andreactionwithOHHO2NO2+OHàH2O+NO2+O2Similarly,forN2O5,itsformationisbycombinationofNO2andNO3,anditsdepletionisbyphotolysis.HO2NO2andN2O5areimportantspeciesinEarth’satmospherebuttheydonotovertakeNOorNO2asthemainreactivenitrogenspecies.Undertheconditionsthatcorrespondtopresent-dayEarth’smid-latitude,ourmodelpredictedthemixingratioprofilesofNO,NO2,N2O5,HNO3,andHO2NO2inthemiddleatmospherethatarefullyconsistentwithmeasurementsfromballoons(Senetal.1998;Hu2013).OnaterrestrialplanetofMdwarfstars,however,theUVirradiationfluxthatdrivesthephotolysisofHO2NO2andN2O5ismorethanoneorderofmagnitudelower(Table3),andthereforethesespeciescanaccumulatetoahigherabundance,overtakingNOorNO2asthemainreactivenitrogenreservoir.ThisiswhatweseeinthesolidlinesofFig.6.WehaveincludedthephotodissociationofHO2NO2viaovertoneandcombinationbandsinthenearinfrared(Roehletal.2002)inourcalculations,becausethenear-infraredirradiationonaplanetinthehabitablezoneofMdwarfstarsiscomparabletothatofSun-likestars.Table3indicatesthatwhilethenear-infrareddissociationcontributesdominantlytothetotaldissociationrate,andtotaldissociationrateisstillmorethanoneorderofmagnitudelessthanthevalueforSun-likestars.Table3:Top-of-atmospherephotolysisrates(Jvalues)ofHO2NO2andN2O5onEarthandonTRAPPIST-1e.ThecontributionfromovertoneandcombinationbandsofHO2NO2inthenearinfraredtotheJvaluesforTRAPPIST-1eisalsoshown.Reaction JEarth(s-1) JTRAPPIST-1e(s-1) Inwhichcausedbynear

infraredirradiationHO2NO2+hvàHO2+NO2

1.83´10-4 9.66´10-6 6.28´10-6

HO2NO2+hvàHO+NO3

4.89´10-5 8.90´10-7 0

N2O5+hvàNO3+NO2

4.82´10-5 6.56´10-7 0

N2O5+hvàNO3+NO+O

1.45´10-4 2.52´10-6 0

Additionally,morenitrogeninHO2NO2andN2O5leadstomorerapidremovalofreactivenitrogenfromtheatmosphere.Withoutthesespecies,theonlyeffectiveremovalpathwayofreactivenitrogenisthedepositionandrainoutofHNO,HNO2,

Page 17: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

17

andHNO3.ItiswellknownthatHO2NO2andN2O5arehighlysolubleorreactiveinwaterandrainoutveryefficiently.Also,heterogeneousreactionsofN2O5onandwithinatmosphericaerosolsorclouddropletsfurtherfacilitaterainout(Wangetal.2017).Therefore,formationofthesespeciesleadstomorerapidremovalandreductionofthetotalreactivenitrogenmixingratio,asweseeinFig.6.Finally,wepointoutthattheatmospherehasasubstantialamount(1ppb)ofN2Oproducedabiotically.TheproductionpathisN2+O(1D)+M®N2O+MThekineticrateofthisreactionismeasuredrecently(Estupinánetal.2002)andthisreactionisnottypicallyincludedinphotochemistrymodelsofplanetaryatmospheres.AgainbecauseofthelowNUVirradiation,thisabioticN2Ocanaccumulateto1ppbintheatmospheresofTRAPPIST-1planets.ThelongerlifetimeofN2OinplanetaryatmospheresaroundMstarshasbeensuggestedpreviously(Seguraetal.2005).Notably,thisN2OisthesourceofNOandNO2intheupperatmosphere(Fig.6),viaN2O+O(1D)®NO+NOThissourceofNOexistswithoutanylightningevents.ItisthereforenecessarytoalsoincludeN2OinthephotochemicalmodelofrockyandpotentiallyhabitableplanetsaroundMdwarfstars.4.Discussion4.1ComparisonwithPriorStudiesTofurtherconfirmthattheO2andCObuildupwefoundisnotamodelartifact,wecomparewithtwopriorstudiesthatstudiedN2-CO2atmospheresofterrestrialplanetsinthehabitablezoneofMdwarfstars(Tianetal.2014;Harmanetal.2015).Thetwostudiesbuiltmodelsforahypothetical1-Earth-radiusand1-Earth-massplanet,having1barN2atmospherewith0.05barCO2.NotethatthelevelofCO2theyassumedislessthanthelevelofCO2requiredforglobalhabitabilityonTRAPPIST-1e.BothstudiesusedthehabitablezoneofGJ876astherepresentativecase,andappliedthesamemethodtomaintaintheredoxbalanceofboththeatmosphereandtheocean(i.e.,thepseudoH2flux).Forcomparison,wesetupamodelofa1-Earth-radiusand1-Earth-massplanet,having1barN2atmospherewith0.05barCO2,atthe0.21-AUorbitaldistancefromtheMstarGJ876.Wesetupthesamepressure-temperatureprofileasTianetal.(2014),i.e.,thesurfacetemperatureof288Kandthestratospheretemperatureof180K.Weusethesameprofileoftheeddydiffusioncoefficientfromterrestrialmeasurements,adoptedbyTianetal.(2014).Whilethesefactorsarenotexplicitlystated,wesuspectthattheyaretreatedthesamewayasinHarmanetal.(2015).Weusethesameemissionratesastheseworks:theemissionrateofH2is1010cm-2s-1,andthatofothergasesiszero.NotethatourmodelshaveamoreexpandedchemicalnetworkincludingHO2NO2andN2O5,andthechoicesofspeciesinphotochemicalequilibriumaretypicallydifferentbetweenphotochemicalmodels.

Page 18: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

18

ThemaindifferencebetweenTianetal.(2014)andHarmanetal.(2015)isinthedepositionvelocities.Weadoptthedepositionvelocitiesthateachworkused.InTianetal.(2014),thedepositionvelocitiesofCOandO2are10-6cms-1,andO3asalong-livedspecieshasadepositionvelocityof10-3cms-1.Fig.7showsourresultsinthiscase.TheresultsaresufficientlyconsistentwithTianetal.(2014)intermsofthemixingratiosofCOandO2,aswellasthepeakmixingratioofO3.

Harmanetal.(2015)assumedadepositionvelocityof10-8cms-1forCO,andzeroforO2,andassumedO3tobeashort-livedspecies.TheamountofO2inourresultisconsistentwithHarmanetal.(2015),howevertheamountofCOinourresultisafactorofafewgreater(Fig.8).ThedifferencemaybeduetothefactthatthemodelofHarmanetal.(2015)had15speciesassumedtobeinphotochemicalequilibrium,whileourmodeldoesnothaveany.NotethattheO2columnabundanceinbothcases,assuming0.05barCO2,fallsbetweenthevaluefor0.01barCO2and0.1barCO2inourTRAPPIST-1emodels(Fig.2).Thiscomparisonshowsthatthe0.05barCO2casethatthepreviousstudieshaveassumedhappenstobeinthetransitionintotheO2-COrunaway.AsmallincreaseintheCO2partialpressurewillleadtoalargeincreaseintheaccumulationofphotochemicalO2.ComparingFig.7andFig.8,wefindthatassumingO3tobeoneofthespeciesinphotochemicalequilibrium,ornot,introducessubstantialvariationtothemodelresults.O3mayhavesubstantialabundanceatthesurface,anditsdepositionmaycontributetotheoverallredoxbalanceoftheatmosphere(Table2).4.2ClimateFeedbackoftheO2-CORunaway

Fig.7:ResultsusingthesameparametersasTianetal.(2014).

10-10 10-8 10-6 10-4 10-2 100

Mixing Ratio

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

N2CO2H2OCOH2O2O3

Page 19: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

19

AsphotochemicallyproducedO2andCObecomemainconstituentsintheatmosphere,theycontributemeaningfullytothetotalpressure.O2hasnostronginfraredabsorptionbands,andCOabsorptionoccursonlyattheshouldersoftheplanetarythermalemissionspectra.TheirprimarycontributiontoradiationisthroughpressurebroadeningofCO2absorptionlinesandRayleighscattering,withthepressurebroadeningeffectbeingthedominantofthetwo(Goldblattetal.2009).Severaladditional3DclimatemodelsimulationsareconductednewlyforthisworktotesttheeffectsofincreasedbroadeninggaspartialpressuresontheclimateofTRAPPIST-1e,summarizedinTable4.3DsimulationsareconductedforTRAPPIST-1ewith0.1barand0.2barCO2,andwithbroadeninggaspartialpressuresof1.5,2,and4barsrespectively.Table4:Newclimatescenariosmodeledforthisstudyandtheirkeyclimatecharacteristics.Planet N2 CO2 Tsurf

globe(K)IceFraction

TRAPPIST-1e 1bar 0.1bar 274 57%TRAPPIST-1e 1.5bar 0.1bar 286 12%TRAPPIST-1e 2bar 0.1bar 291 0.3%TRAPPIST-1e 4bar 0.1bar 320 0%TRAPPIST-1e 1bar 0.2bar 285 18%TRAPPIST-1e 1.5bar 0.2bar 297 0%TRAPPIST-1e 2bar 0.2bar 308 0%TRAPPIST-1e 4bar 0.2bar 332 0%

Fig.8:ResultsusingthesameparametersasHarmanetal.(2015).

10-10 10-8 10-6 10-4 10-2 100

Mixing Ratio

10-1

100

101

102

103

104

105

Pres

sure

[Pa]

N2CO2H2OCOH2O2O3

Page 20: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

20

Theresultsofthe3DclimatemodelswithincreasedatmosphericpressureareshowninFig.9.Usinga3Dclimatemodel,wecanself-consistentlyincorporatetheeffectsofpressurebroadeningandRayleighscattering,alongwithresultantclimatologicalfeedbacks.Increasingthebackgroundpressurebyupto4foldsyieldsincreasestotheglobalmeansurfacetemperaturebyafewtensofK;eventhoughsignificant,thisdoesnotchangethegeneralassessmentregardinghabitabilityforatmosphereswith≤0.2barCO2.However,forhigherbackgroundpressuresproducedbylargerCO2amounts,thecombinedeffectsmaycauseTRAPPIST-1ebecomingtoohottobereasonablyhabitable.Inaddition,O3isagreenhousegaswithhaveanabsorptionbandinthemiddleoftheplanetarythermalemissionspectra(9.6µm).Atexpectedconcentrations,however,itscontributiontothegreenhouseeffectisdwarfedbythatofCO2andH2O(Kiehl&Trenberth1997),andthuswouldnotsignificantlyraisethesurfacetemperature.GiventheO2runawayandtheclimatemodels,weconcludethatforTRAPPIST-1etoremaingloballyhabitableitmusthavepCO2inasomewhatnarrowrangebetween0.01and0.2bar.OnemightwonderifsubstitutingO2/COwithN2intheclimatemodelisreasonable.O2/COandN2havemeanmolecularweightswithin~15%,specificheatswithin~10%,andneitherhavestrongabsorptionbandsintheplanetarythermalemissionspectra.BothO2andN2arediatomicmoleculesandthusdonothavevibrationalorrotationalabsorptionmodes,andthusarenotconventionalgreenhousegases.TheabsorptionfeatureofCOat~100µmisswampedbyH2Orotational-vibrationabsorptionbands.ThefeatureofCOat~5µmmayshowthroughbothCO2andH2O,butthisspectralregionislocatedwhereboththermalemittedandincidentstellarradiationarerelativelysmall.Inaddition,insufficientlydenseatmosphereseachmolecularpairfeaturescollisioninducedabsorption(CIA)intheinfraredwhichcanaffectclimate.But,inmoistatmospheres,asmodeledhere,O2-O2CIAat6.4µmisswampedbytheH2Ofeatureinthissamespectralregion(Hopfneretal.2012),andN2-N2CIA,whichaffectswavelengthslongwardof~30µm,isswampedbyH2Orotational-vibrationabsorptionbands(Wordsworth&Pierrehumbert2013).Intotal,theradiativeeffectsofO2,CO,andN2areprimarilyfeltindirectlythroughtheircontributiontothetotalatmosphericpressure,andsubsequentpressurebroadeningofCO2absorptionfeatures,whichcanhaveasignificantwarmingeffect

Fig.9:GlobalmeansurfacetemperatureofTRAPPIST-1eversustheabundanceofCO2(x-axis)andthebroadeninggasamount(legend).Thetemperatureiscalculatedin3Dclimatemodelsimulations,withtheH2Oabundanceandthecloudfeedbackself-consistentlymodeled(Wolf2017).WeconsiderincreasestothetotalpressurebyincreasingtheN2backgroundamount,ratherincludingO2orCOexplicitlyintheclimatemodel.Increasingthebackgroundpressureresultsinmeaningfulincreasesinthemeansurfacetemperature.

240

260

280

300

320

340

Surfa

ce te

mpe

ratu

re (K

)

TRAPPIST-1 e

10-4 10-3 10-2 10-1 100 101

CO2 partial pressure (bar)

240

260

280

300

320

340

Surfa

ce te

mpe

ratu

re (K

) broadening gas 1 bar1.5 bar2 bar4 bar

Page 21: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

21

onclimate(Goldblattetal.2009).Collisionsbetweenmoleculesshiftsabsorptionfromlinecenterstowardthewings,withtheendresultbeingmoretotalradiationbeingabsorbed.IncreasingthetotalpressureoftheatmospherealsoincreasesRayleighscattering,whichwouldacttocooltheplanet,counteractingtheabovediscussedeffectofpressurebroadening.However,theincreaseingreenhouseforcingfromenhancedpressurebroadeningdominatesovertheincreaseinreflectionduetoenhancedRayleighscatterings(Goldblattetal.2009).NotethattheRayleighscatteringcross-sectionsforO2,CO,andN2arealsoquiteclose(Thalmanetal.2014).COhasanabsorptionbandat~2.3µm,andthisbandcontributestonear-infraredabsorptionofstellarradiationfromTRAPPIST-1.However,thenear-infraredabsorptionofCO2andH2Owillbemoresignificant.Thus,substitutingN2forO2andCOinourmodelshouldnotgiverisetoalargeerrorinthermalorstellarforcings.

OuratmosphericchemistrymodelalsopredictsthattheO2-richatmospheresonTRAPPIST-1planetsshouldhaveasignificantO3layer(Fig.3),andthisisconsistentwithpreviousmodelsofO2-richplanetsfoundaroundM-dwarfstars(Seguraetal.2005;Meadowsetal.2018).ThatO3isalsoabsentfromour3Dclimatemodel.However,notethatbecauseM-dwarfstarsemitseveralordersofmagnitudelessradiationinthenear-UVregion(l≥200nm),astratosphericO3layerwouldhavelittleradiationtoabsorb,andwouldnotformastratosphericinversion.Indeed,simulationsofO2-richplanetsaroundM-dwarfstarsindicatethatthestratospherictemperatureswouldremaincold(Seguraetal.2005;Meadowsetal.2018).WhileO3isagreenhousegas,withhaveanabsorptionbandat9.6µm,atexpectedconcentrationsitscontributiontothegreenhouseeffectisdwarfedbythatofCO2andH2O(Kiehl&Trenberth1997),andthusisnotasignificantdriverofclimatechange.Basedontheabovediscussions,wefeelthatsubstitutingN2forO2andCO

Fig.10:Globalmeantemperatureandwaterprofilesof3DclimatemodelsassumingvariedbackgroundN2partialpressureforTRAPPIST-1e.Thewatervaporprofilesarelargelyconsistentwiththeprofilespredictedbyour1Dphotochemistrymodel(Fig.3).Thestratosphereremainscoldandwater-depletedwhenmorethan1barofN2isassumed.

160 190 220 250 280 310 340Temperature (K)

1000

100

10

1

Pres

sure

(mb)

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Specific Humidity (kg kg-1)

0 1 2 3Cloud water (10-5 kg m-3)

1 bar N2 + 0.1 bar CO21.5 bar N2 + 0.1 bar CO22 bar N2 + 0.1 bar CO24 bar N2 + 0.1 bar CO2

a b c

Page 22: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

22

willnotradicallyaltertheresultantclimatesinour3Dmodel,andprovidesusefulestimatesforclimatechangeforTRAPPIST-1eunderthickeratmospheres.Finally,webrieflydiscuss“thefeedbackofthefeedback”:theeffectofthechangedtemperatureprofileaftertheO2-COrunawayontotheatmosphericphotochemistryitself.Fig.10showsthemeanpressure-temperatureandwaterprofilesfromthe3DclimatemodelsassumingvariedpartialpressureofN2.Thesimilarityoftheseprofilesisstriking:thestratosphere’stemperatureandwatervaporabundancestaylow,andonlythelowestlayersoftheatmosphereexperiencehighertemperaturesaftertheO2-COrunaway.Assuch,eventhoughnewphotochemicalsimulationswerenotperformedwiththenewclimatestudies,thechangeinthetemperatureprofileanditsimpactontheatmosphericchemistryislikelylimitedtothebottomlayersoftheatmosphere,andthusunlikelytosignificantlyaffecttheO2-COrunaway.4.3GeologicContextfortheO2-CORunawaySilicateweathering,ifitoccursonarockyplanet,helpskeepingpCO2inadesirablerangethatisconsistentwithaliquidwaterocean(Walkeretal.1981).TheO2-COrunaway,togetherwiththeenhancedwarmingduetopressurebroadening,increasesthesensitivityofthesurfacetemperatureonpCO2.ThisincreasedsensitivitywouldallowsilicateweatheringtomaintainpCO2intherequirednarrowrange.AnotherquestioniswhethertheO2-COrunawaystateissustainable.OurphotochemistrymodelsassumefixedcolumnabundancesofCO2,andthereforeimplyappropriateratesofvolcanicoutgassingthatmaintainthefixedabundances.Fig.11showstheimpliedCO2outgassingrateforvariedassumptionsofthedepositionvelocities.Weseethatinthestandardmodels,aswellasthemodelsincludingtheBandedIronFormation(BIF)asthesinkforO2,theimpliedCO2outgassingrateoftherunawayscenariosisclosetotheoutgassingratebyridgevolcanismonpresent-dayEarth(Fig.11,blackandbluelines).Inthosecases,theO2-COrunawaystateiswellsustainablebyreasonablerateofreplenishmentfromtheplanetaryinterior.However,ifafixeddepositionvelocityforO2isused,evenassmallas10-8cms-1presumablyduetorecombinationinhydrothermalflows,averylargeCO2outgassingratewouldberequiredtosustaintherunawaystate(i.e.,outoflimitonFig.11,redlines).Isthisscenariorealistic?Infact,theimpliedCO2outgassingratedoesnotnecessarilycomefromtheinterioroftheplanetas“new”

Fig.11:OutgassingrateofCO2impliedbytheCO2partialpressure,forvariedassumptionsofthedepositionvelocities(cms-1).TheoutgassingratebyridgevolcanismonEarthis0.4~1´1010cm-2s-1(Sleep&Zahnle2001).WhentheCO2partialpressureissmall,asmallnegativevaluefortheoutgassingrateisimplied;thisisbecauseafixedoutgassingrateofCOisassumed.

10-4 10-3 10-2 10-1 100

CO2 Partial Pressure [Bar]

0

1

2

3

4

5

CO2 O

utga

ssing

Rat

e [cm

-2 s-1

]

1010 TRAPPIST-1 e

Vdep(CO) = 1E-8, Vdep(O2) = 0Vdep(CO) = 1E-8, Vdep(O2) = 1E-8Vdep(CO) = 1.2E-4, Vdep(O2) = 1.4E-4Vdep(CO) = 1E-8, Vdep(O2) = BIF

Page 23: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

23

CO2;instead,theveryrecombinationprocessinhydrothermalflowsthatconsumesO2willproducesCO2.TheO2-COrunawaystatewouldthereforebesustainableviacyclingthroughthedeepocean.Lastly,whenthesurface-oceanrecombinationofCOandO2isassumed,theO2-COrunawaydoesnotoccur(Fig.2),butalarge“outgassingrate”isstillrequiredforpCO2>0.1bar.Thisoutgassingratecanbesustainedbytheproductoftherecombinationitself.Inall,theO2-COrunawayappearstobesustainablefromageochemicalpointofview,andthesustainabilitymayinvolvereplenishmentofCO2fromtheplanetaryinterior,orcyclingofCO,O2,andCO2throughthedeepocean.Assuch,theO2-andCO-richatmospheremodeledheredoesnotrequireanyplanetaryoutgassingoutsideoftypicalgeologicalregimes;nordoesitrequireahighlyoxidizedordrieduppermantle,presumablyproducedbylossofhydrogenintospaceoveralongactiveperiodoftheMdwarfs(Lugar&Barnes2015;Tian&Ida2015;Bolmontetal.2017).TheatmospheremodeledherehasO2andCOco-existingatlargeabundances,differentfromthepredictedmassiveO2atmospheresfromaccumulativehydrogenlossthatwouldhavelittleCO(Bolmontetal.2017;Lincowskietal.2018).5.ConclusionWeuseanatmosphericphotochemistrymodeltostudytheeffectofstellarUVradiationonvariedabundanceofCO2ontherockyplanetsinthehabitablezoneofthelateMdwarfTRAPPIST-1.OurmodelsshowthatforasmallabundanceofCO2,anatmospherewithO2andCOasmaincomponentswouldbethesteadystate.This“O2-COrunaway”isrobustagainstthenitrogencatalyticalcyclesfromlightning,reasonableuncertaintiesinthestellarspectrum,aswellasvariousgeochemicalsinksforO2andCO,includingtheBandedIronFormation.FortheplanetsTRAPPIST-1e,f,andg,sincetheyrequiresizableabundanceofCO2tobehabitable,themodelspresentedhereimplythatvirtuallyallhabitablescenariosoftheTRAPPSIT-1planetsentailanO2-richatmosphere.TheO2-COrunawaycanonlybepreventedbyassumingadirectrecombinationofO2andCOinthesurfaceocean,whichwouldprobablyrequirebiochemistry.TheO2-COrunawaymechanismdescribedherealsoappliestotemperateandrockyplanetsofotherlow-temperatureMdwarfstars,afewtensofwhichareexpectedtobediscoveredbytheTESSmission(Sullivanetal.2015).Thisisbecausethecauseoftherunaway,thestrongFUVandweekNUVirradiation,appliestomanymoderatelyactiveMdwarfstars(Loydetal.2016).ThecalculationspresentedherenotonlyshowthatthespectralfeaturesofO2andO3cannotberegardedasrobustsignsofbiogenicphotosynthesis(Tianetal.2014;Domagal-Goldmanetal.2014;Harmanetal.2015),butalsoshowthatO2andCOarelikelydominantgasesonhabitableplanetsofMdwarfstars.Thesegaseshavespectralfeaturessuitablefordetectionwithhigh-resolutionspectroscopy(Snellenetal.2010;Lovisetal.2017).TheabsorptionfeaturesofO2,O3,CO,andCO2,aswellasthecollision-inducedabsorptionfeaturesofO2(Lincowskietal.2018;Misraetal.2014),shouldtherefore

Page 24: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

24

bethefirstchoicesforobservationprogramstocharacterizetheatmospheresoftemperateandrockyplanetsofMdwarfstarsAcknowledgementsWethankY.L.Yung,J.F.Kasting,C.E.Harman,andS.Seageronhelpfuldiscussionofatmosphericphotochemistry.RYHwassupportedbyNASAExoplanetsResearchProgramgrantnumber80NM0018F0612andgrantnumber15038.004fromtheSpaceTelescopeScienceInstitute,whichisoperatedbyAURA,Inc.,underNASAcontractNAS5-26555.TheresearchwascarriedoutattheJetPropulsionLaboratory,CaliforniaInstituteofTechnology,underacontractwiththeNationalAeronauticsandSpaceAdministration.ReferencesBeichman,C.,Benneke,B.,Knutson,H.,Smith,R.,Lagage,P.O.,Dressing,C.,...&Giardino,G.(2014).ObservationsoftransitingexoplanetswiththeJamesWebbSpaceTelescope(JWST).PublicationsoftheAstronomicalSocietyofthePacific,126(946),1134.Bolmont,E.,Selsis,F.,Owen,J.E.,Ribas,I.,Raymond,S.N.,Leconte,J.,&Gillon,M.(2017).Waterlossfromterrestrialplanetsorbitingultracooldwarfs:implicationsfortheplanetsofTRAPPIST-1.MonthlyNoticesoftheRoyalAstronomicalSociety,464(3),3728-3741.Bourrier,V.,Ehrenreich,D.,Wheatley,P.J.,Bolmont,E.,Gillon,M.,deWit,J.,...&Triaud,A.H.M.J.(2017).ReconnaissanceoftheTRAPPIST-1exoplanetsystemintheLyman-αline.Astronomy&Astrophysics,599,L3.Broecker,W.S.,&Peng,T.H.(1982).TracersintheSea.DeWit,J.,Wakeford,H.R.,Lewis,N.K.,Delrez,L.,Gillon,M.,Selsis,F.,...&Burgasser,A.J.(2018).Atmosphericreconnaissanceofthehabitable-zoneEarth-sizedplanetsorbitingTRAPPIST-1.NatureAstronomy,2(3),214.Dittmann,J.A.,Irwin,J.M.,Charbonneau,D.,Bonfils,X.,Astudillo-Defru,N.,Haywood,R.D.,...&Tan,T.G.(2017).Atemperaterockysuper-Earthtransitinganearbycoolstar.Nature,544(7650),333.Domagal-Goldman,S.D.,Segura,A.,Claire,M.W.,Robinson,T.D.,&Meadows,V.S.(2014).AbioticozoneandoxygeninatmospheressimilartoprebioticEarth.TheAstrophysicalJournal,792(2),90.Estupinán,E.G.,Nicovich,J.M.,Li,J.,Cunnold,D.M.,&Wine,P.H.(2002).InvestigationofN2Oproductionfrom266and532nmlaserflashphotolysisofO3/N2/O2mixtures.TheJournalofPhysicalChemistryA,106(24),5880-5890.

Page 25: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

25

France,K.,Froning,C.S.,Linsky,J.L.,Roberge,A.,Stocke,J.T.,Tian,F.,...&Walkowicz,L.M.(2013).TheultravioletradiationenvironmentaroundMdwarfexoplanethoststars.TheAstrophysicalJournal,763(2),149.France,K.,Loyd,R.P.,Youngblood,A.,Brown,A.,Schneider,P.C.,Hawley,S.L.,...&Davenport,J.R.(2016).TheMUSCLEStreasurysurvey.I.Motivationandoverview.TheAstrophysicalJournal,820(2),89.Gaillard,F.,&Scaillet,B.(2014).Atheoreticalframeworkforvolcanicdegassingchemistryinacomparativeplanetologyperspectiveandimplicationsforplanetaryatmospheres.EarthandPlanetaryScienceLetters,403,307-316.Gao,P.,Hu,R.,Robinson,T.D.,Li,C.,&Yung,Y.L.(2015).StabilityofCO2atmospheresondesiccatedMdwarfexoplanets.TheAstrophysicalJournal,806(2),249.Gillon,M.,Triaud,A.H.,Demory,B.O.,Jehin,E.,Agol,E.,Deck,K.M.,...&Bolmont,E.(2017).SeventemperateterrestrialplanetsaroundthenearbyultracooldwarfstarTRAPPIST-1.Nature,542(7642),456.Goldblatt,C.,Claire,M.W.,Lenton,T.M.,Matthews,A.J.,Watson,A.J.,&Zahnle,K.J.(2009).Nitrogen-enhancedgreenhousewarmingonearlyEarth.NatureGeoscience,2(12),891.Grimm,S.L.,Demory,B.O.,Gillon,M.,Dorn,C.,Agol,E.,Burdanov,A.,...&Bolmont,É.(2018).ThenatureoftheTRAPPIST-1exoplanets.Astronomy&Astrophysics,613,A68.Hardacre,C.,Wild,O.,&Emberson,L.(2015).Anevaluationofozonedrydepositioninglobalscalechemistryclimatemodels.AtmosphericChemistryandPhysics,15(11),6419-6436.Harman,C.E.,Schwieterman,E.W.,Schottelkotte,J.C.,&Kasting,J.F.(2015).AbioticO2levelsonplanetsaroundF,G,K,andMstars:possiblefalsepositivesforlife?.TheAstrophysicalJournal,812(2),137.Harman,C.E.,Felton,R.,Hu,R.,Domagal-GoldmanS.D.,Segura,A.,Tian,F.,&Kasting,J.F.(2018).AbioticO2LevelsonPlanetsaroundF,G,K,andMStars:EffectsofLightning-producedCatalystsinEliminatingOxygenFalsePositives.TheAstrophysicalJournal,866(1),56.Holland,H.D.(2006).Theoxygenationoftheatmosphereandoceans.PhilosophicalTransactionsoftheRoyalSocietyofLondonB:BiologicalSciences,361(1470),903-915.

Page 26: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

26

Hopfner,M.Milz,M.Buehler,S.,Orphal,J.andG.Still.(2012).Thenaturalgreenhouseeffectofatmosphericoxygen(O2)andnitrogen(N2).GRL39,L10706.Hu,R.(2013).Atmosphericphotochemistry,surfacefeatures,andpotentialbiosignaturegasesofterrestrialexoplanets(Doctoraldissertation,MassachusettsInstituteofTechnology).Hu,R.,Seager,S.,&Bains,W.(2012).Photochemistryinterrestrialexoplanetatmospheres.I.Photochemistrymodelandbenchmarkcases.TheAstrophysicalJournal,761(2),166.Hu,R.,Seager,S.,&Bains,W.(2013).Photochemistryinterrestrialexoplanetatmospheres.II.H2SandSO2photochemistryinanoxicatmospheres.TheAstrophysicalJournal,769(1),6.James,T.S.andHu,R.(2018).PhotochemicalOxygeninNon-1-barCO2AtmospheresofTerrestrialExoplanets.TheAstrophysicalJournal,867(1),17.Kasting,J.F.(2013).WhatcausedtheriseofatmosphericO2?ChemicalGeology,362,13-25.Kiehl,J.T.andK.E.Trenberth(1997).Earth’sAnnualGlobalMeanEnergyBudget.Bull.Amer.Meteo.Soc.78,2,197.King,G.M.,&Weber,C.F.(2007).Distribution,diversityandecologyofaerobicCO-oxidizingbacteria.NatureReviewsMicrobiology,5(2),107.Kharecha,P.,Kasting,J.,&Siefert,J.(2005).Acoupledatmosphere–ecosystemmodeloftheearlyArcheanEarth.Geobiology,3(2),53-76.Lincowski,A.P.,Meadows,V.S.,Crisp,D.,Robinson,T.D.,Luger,R.,Lustig-Yaeger,J.,&Arney,G.N.(2018).EvolvedClimatesandObservationalDiscriminantsfortheTRAPPIST-1PlanetarySystem.TheAstrophysicalJournal,867(1),76.Lovis,C.,Snellen,I.,Mouillet,D.,Pepe,F.,Wildi,F.,Astudillo-Defru,N.,...&Delfosse,X.(2017).AtmosphericcharacterizationofProximabbycouplingtheSPHEREhigh-contrastimagertotheESPRESSOspectrograph.Astronomy&Astrophysics,599,A16.Loyd,R.P.,France,K.,Youngblood,A.,Schneider,C.,Brown,A.,Hu,R.,...&Tian,F.(2016).TheMUSCLESTreasurySurvey.III.X-raytoinfraredspectraof11MandKstarshostingplanets.TheAstrophysicalJournal,824(2),102.Luger,R.,&Barnes,R.(2015).ExtremewaterlossandabioticO2builduponplanetsthroughoutthehabitablezonesofMdwarfs.Astrobiology,15(2),119-143.

Page 27: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

27

Luger,R.,Sestovic,M.,Kruse,E.,Grimm,S.L.,Demory,B.O.,Agol,E.,...&Burgasser,A.(2017).Aseven-planetresonantchaininTRAPPIST-1.NatureAstronomy,1(6),0129.Massie,S.T.,&Hunten,D.M.(1981).Stratosphericeddydiffusioncoefficientsfromtracerdata.JournalofGeophysicalResearch:Oceans,86(C10),9859-9868.McElroy,M.B.,&Donahue,T.M.(1972).StabilityoftheMartianatmosphere.Science,177(4053),986-988.McElroy,M.B.,DakSze,N.,&LingYung,Y.(1973).PhotochemistryoftheVenusatmosphere.JournaloftheAtmosphericSciences,30(7),1437-1447.Meadows,V.S.,Arney,G.N.,Schwieterman,E.W.,Lustig-Yeager,J.,Lincowski,A.P.,Robinson,T.,Domagal-Goldman,S.D.,Deitrick,R.,Barnes,R.K.,Fleming,D.P.,Luger,R.,Driscoll,P.E.,Quinn,T.R.,andD.Crisp.(2018).TheHabitabilityofProximaCentaurib:EnvironmentalStatesandObservationalDiscriminants.Astrobiology18(2),133.Misra,A.,Meadows,V.,Claire,M.,&Crisp,D.(2014).Usingdimerstomeasurebiosignaturesandatmosphericpressureforterrestrialexoplanets.Astrobiology,14(2),67-86.Nair,H.,Allen,M.,Anbar,A.D.,Yung,Y.L.,&Clancy,R.T.(1994).AphotochemicalmodeloftheMartianatmosphere.Icarus,111(1),124-150.Papaloizou,J.C.,Szuszkiewicz,E.,&Terquem,C.(2017).TheTRAPPIST-1system:Orbitalevolution,tidaldissipation,formationandhabitability.MonthlyNoticesoftheRoyalAstronomicalSociety,476(4),5032-5056.Rimmer,P.B.,&Helling,C.(2016).Achemicalkineticsnetworkforlightningandlifeinplanetaryatmospheres.TheAstrophysicalJournalSupplementSeries,224(1),9.Roehl,C.M.,Nizkorodov,S.A.,Zhang,H.,Blake,G.A.,&Wennberg,P.O.(2002).Photodissociationofperoxynitricacidinthenear-IR.TheJournalofPhysicalChemistryA,106(15),3766-3772.Rugheimer,S.,Kaltenegger,L.,Segura,A.,Linsky,J.,&Mohanty,S.(2015).EffectofUVradiationonthespectralfingerprintsofEarth-likeplanetsorbitingMstars.TheAstrophysicalJournal,809(1),57.Schumann,U.,&Huntrieser,H.(2007).Thegloballightning-inducednitrogenoxidessource.AtmosphericChemistryandPhysics,7(14),3823-3907.

Page 28: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

28

Segura,A.,Kasting,J.F.Meadows,V.,Cohen,M.,Scalo,J.,Crisp,D.,Butler,R.A.H.,andG.Tinetti(2005).BiosignaturesfromEarth-likePlanetsAroundMDwarfs.Astrobiology5(6),706.Sen,B.,Toon,G.C.,Osterman,G.B.,Blavier,J.F.,Margitan,J.J.,Salawitch,R.J.,&Yue,G.K.(1998).Measurementsofreactivenitrogeninthestratosphere.JournalofGeophysicalResearch:Atmospheres,103(D3),3571-3585.Sleep,N.H.,&Zahnle,K.(2001).CarbondioxidecyclingandimplicationsforclimateonancientEarth.JournalofGeophysicalResearch:Planets,106(E1),1373-1399.Snellen,I.A.,DeKok,R.J.,DeMooij,E.J.,&Albrecht,S.(2010).Theorbitalmotion,absolutemassandhigh-altitudewindsofexoplanetHD209458b.Nature,465(7301),1049.Sullivan,P.W.,Winn,J.N.,Berta-Thompson,Z.K.,Charbonneau,D.,Deming,D.,Dressing,C.D.,...&Ricker,G.R.(2015).TheTransitingExoplanetSurveySatellite:Simulationsofplanetdetectionsandastrophysicalfalsepositives.TheAstrophysicalJournal,809(1),77.Thalman,R.,Zarzana,K.J.,Tolbert,M.A.,andVolkamer,R.(2014).Rayleighscatteringcross-sectionmeasurementsofnitrogen,argon,oxygen,andair.J.Quant.Spec.Rad.Trans.147,171-177.Tian,F.,&Ida,S.(2015).WatercontentsofEarth-massplanetsaroundMdwarfs.NatureGeoscience,8(3),177.Tian,F.,France,K.,Linsky,J.L.,Mauas,P.J.,&Vieytes,M.C.(2014).HighstellarFUV/NUVratioandoxygencontentsintheatmospheresofpotentiallyhabitableplanets.EarthandPlanetaryScienceLetters,385,22-27.Turbet,M.,Bolmont,E.,Leconte,J.,Forget,F.,Selsis,F.,Tobie,G.,...&Gillon,M.(2018).Modelingclimatediversity,tidaldynamicsandthefateofvolatilesonTRAPPIST-1planets.Astronomy&Astrophysics,612,A86.VanGrootel,V.,Fernandes,C.S.,Gillon,M.,Jehin,E.,Manfroid,J.,Scuflaire,R.,...&Delrez,L.(2018).StellarparametersforTRAPPIST-1.TheAstrophysicalJournal,853(1),30.VonBraun,K.,Boyajian,T.S.,vanBelle,G.T.,Kane,S.R.,Jones,J.,Farrington,C.,...&Kephart,M.(2014).Stellardiametersandtemperatures–V.11newlycharacterizedexoplanethoststars.MonthlyNoticesoftheRoyalAstronomicalSociety,438(3),2413-2425.

Page 29: O2- and CO-Rich Atmospheres for Potentially Habitable ...dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and

29

Walker,J.C.,Hays,P.B.,&Kasting,J.F.(1981).Anegativefeedbackmechanismforthelong‐termstabilizationofEarth'ssurfacetemperature.JournalofGeophysicalResearch:Oceans,86(C10),9776-9782.Wang,Z.,Wang,W.,Tham,Y.J.,Li,Q.,Wang,H.,Liang,W.,...&Wang,T.(2017).FastheterogeneousN2O5uptakeandClNO2productioninpowerplantandindustrialplumesobservedinthenocturnalresiduallayerovertheNorthChinaPlain.AtmosphericChemistryandPhysics,17(20),12361.Wolf,E.T.(2017).AssessingthehabitabilityoftheTRAPPIST-1systemusinga3Dclimatemodel.TheAstrophysicalJournalLetters,839(1),L1.;andWolf,E.T.(2018).Erratum:AssessingtheHabitabilityoftheTRAPPIST-1systemUsinga3DClimateModel.TheAstrophysicalJournalLetters,855,L14.Wong,M.L.,Charnay,B.D.,Gao,P.,Yung,Y.L.,&Russell,M.J.(2017).NitrogenoxidesinearlyEarth'satmosphereaselectronacceptorsforlife'semergence.Astrobiology,17(10),975-983.Wordsworth,R,andPierrehumbert,R(2013).Hydrogen-NitrogenGreenhouseWarminginEarth’sEarlyAtmosphere.Science339,64.Youngblood,A.,France,K.,Loyd,R.P.,Linsky,J.L.,Redfield,S.,Schneider,P.C.,...&Rugheimer,S.(2016).TheMUSCLESTreasurySurvey.II.IntrinsicLyαandextremeultravioletspectraofKandMdwarfswithexoplanets.TheAstrophysicalJournal,824(2),101.Zhang,Z.,Zhou,Y.,Rackham,B.V.,&Apai,D.(2018).TheNear-infraredTransmissionSpectraofTRAPPIST-1Planetsb,c,d,e,f,andgandStellarContaminationinMulti-epochTransitSpectra.TheAstronomicalJournal,156(4),178.