17
DFT Philippe CHOMAZ, 2006 : 80

Observation functional An exact generalization of DFT

Embed Size (px)

DESCRIPTION

Observation functional An exact generalization of DFT. Philippe CHOMAZ - GANIL. States, observables, observations Variational principles Generalized mean-Field Hartree-Fock Hierarchies and fluctuations Exact generalized density functional Exact generalized Kohn-Sham Eq. 1. - PowerPoint PPT Presentation

Citation preview

Page 1: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Page 2: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Observation functional An exact generalization of DFT

Philippe CHOMAZ - GANIL

States, observables, observations Variational principles Generalized mean-Field Hartree-Fock Hierarchies and fluctuations Exact generalized density functional Exact generalized Kohn-Sham Eq. 1

Page 3: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

States

Observables

Observation

A) States, Observables and Observations

31

ψ Many-body wave functionHilbert or Fock space

ˆ O ψ ' = ˆ O ψ

< ˆ O >= ψ ˆ O ψ

Page 4: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

States

Observables

Observation

A) States, Observables and Observations

31

ψ Many-body wave functionHilbert or Fock space

ˆ D = ψ i pi ψ i

i

∑Density matrixLiouville space

ˆ O ψ ' = ˆ O ψ

< ˆ O >= ψ ˆ O ψ

< ˆ O >= Tr ˆ O ˆ D =<< ˆ O ˆ D >>

Scalar product in matrix space

<A

i

>

<A

j

>D

<a>

Page 5: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Static

Dynamics

B) Variational principles

31

ψ0 minE[ψ ] = ψ ˆ H ψ

i∂t ψ = ˆ H ψ

Schrödinger equation

I ψ[ ] = dt ψ i∂

∂t- ˆ H ψ

t0

t1∫

Extremum of the action I

Page 6: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Static

Dynamics

B) Variational principles

31

ψ0 minE[ψ ] = ψ ˆ H ψ

Zero Temperature minimum energy E

E − TS

ˆ D 0 minE[ ˆ D ] = Tr ˆ H ˆ D

Finite T minimum free energy

S[ ˆ D ] = −Tr ˆ D log ˆ D Entropy

i∂t ψ = ˆ H ψ

Schrödinger equation

I ψ[ ] = dt ψ i∂

∂t- ˆ H ψ

t0

t1∫

Extremum of the action I Balian and Vénéroni double principle

I ˆ B , ˆ D [ ] =< ˆ B >t1- dt tr ˆ B ∂t

ˆ D - ˆ H , ˆ D [ ] /i( )t0

t1∫€

∂tˆ D = ˆ H , ˆ D [ ] /i

Liouville equation

Observables backward from t1

Density forward from t0

ˆ B (t)

ˆ D (t)

Page 7: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Coherent states

Generalized density

Extremum action

C) Generalized mean-field

31

Group transformation

ψ Z( ) = ˆ R Z( ) ψ 0( ) = exp i Z. ˆ A ( ) ψ 0( )

ˆ R Z( )

ˆ A ≡ ˆ A l{ } Lie Algebra

Z ≡ Z l{ } Group parameters

∂t < ˆ A l >Z= − < ˆ H , ˆ A l[ ] /i >Z

Mean-field <=> Ehrenfest

ρl ≡< ˆ A l >Z

Page 8: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Coherent states

Generalized density

Extremum action

C) Generalized mean-field

31

Group transformation

ψ Z( ) = ˆ R Z( ) ψ 0( ) = exp i Z. ˆ A ( ) ψ 0( )

ˆ R Z( )

ˆ A ≡ ˆ A l{ } Lie Algebra

Z ≡ Z l{ } Group parameters

Maximum entropy trial state

With the constraints

ˆ D Z( ) =1

Z0

exp Z. ˆ A ( )

< ˆ A l >{ }

Constrained entropy

S'= S − Z. ˆ A

Lagrange multipliers

Z ≡ Z l{ }

∂t < ˆ A l >Z= − < ˆ H , ˆ A l[ ] /i >Z

Mean-field <=> Ehrenfest

ˆ B ′ Z ( ) = ′ Z 0 + ′ Z . ˆ A

Trial observables

ρl ≡< ˆ A l >Z

Page 9: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Lie algebra Observation Trial states

Hamiltonian

Independent particles Mean Field

D) Hartree Fock

31

One-body density

ψ Z( ) = exp i ΣijZijˆ c i

+ ˆ c j + h.c.( ) ψ 0( )€

ρ ji =< ˆ c i+ ˆ c j >

ˆ A l ≡ ˆ c i+ ˆ c j One-body observables

Thouless theorem (Slaters)

ˆ D Z( ) = exp ΣijZijˆ c i

+ ˆ c j + h.c.( ) /Z0

Independent particle state

ˆ H = ε ijij

∑ ˆ c i+ˆ c j +

1

4Vijkl

ijkl

∑ ˆ c i+ˆ c j

+ˆ c l ˆ c k

ˆ H , ˆ c i+ˆ c j[ ] = εki

ˆ c k+ˆ c j −ε jk

ˆ c i+ˆ c k

k

∑ + 1

2Vkljm

ˆ c k+ ˆ c l

+ˆ c m ˆ c j −Viklmˆ c i

+ˆ c k+ˆ c m ˆ c l

klm

ˆ c i+ˆ c j

+ˆ c kˆ c l Z= ρ liρ kj − ρ kiρ lj

i∂tρ ij = − < ˆ H , ˆ c j+ ˆ c i[ ] >Z = W, ρ[ ]ij

Wij = ε ij + Vikjl ρ lk

kl

∑ = δE[ρ ]/δρ ji

Page 10: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Exact dynamics

Hierarchy

Projections <A> Minimum entropy Correlation MF Langevin Mean-Field

E) Hierarchies and fluctuations

31

Close the Lie Algebra including A an H

ˆ H , ˆ A l[ ] /i = −Glˆ A , ˆ a ( )

ˆ H , ˆ a m[ ] /i = −gmˆ A , ˆ a ( )

⎧ ⎨ ⎪

⎩ ⎪

∂t p ˆ A l f =Gl p ˆ A f ,p ˆ a f( )

∂t p ˆ a m f =gm p ˆ A f ,p ˆ a f( )

⎧ ⎨ ⎪

⎩ ⎪

p ˆ a f (p ˆ A f ) = tr ˆ a ˆ D Z(p ˆ A f )( )

δ p ˆ a f = p ˆ a f − p ˆ a f (p ˆ A f )

∂t p ˆ A l f =Gl p ˆ A f ,p ˆ a f (p ˆ A f )( ) + δGl p ˆ A f ,δ p ˆ a f( )

Gl p ˆ A f ,p ˆ a f (p ˆ A f )( ) =p ˆ H , ˆ A l[ ] /i f z≡ Wl p ˆ A f( )

Coupled equations

<A

i

><A

j

>

D(0)

D(t)

<a >

n( )

t( )

<Aj

>

<Ai

>

<A >

Page 11: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Exact State Exact Observations

Exact E functional

Min in a subspace

Constrained energy

<=> external field

F) Exact generalized Density functional

31

Or

Generalized density

ψ0

ˆ D 0 = ψ 0 ψ 0

ρl =< ˆ A l >

E[ρ] = min< ˆ A >=ρ

< ˆ H >

ρl ≡< ˆ A l >= Tr ˆ A l ˆ D =<< ˆ A l ˆ D >>

F Z[ ] = min ˆ D < ˆ H − Σl Z l

ˆ A l >

ˆ U = −Σl Z lˆ A l

F Z[ ] = minρ E[ρ] − Σl Z l ρ l

ρl =< ˆ A l >

Page 12: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Exact E functional

For a set of observations

Exact ground state E

=> exact densities ρ Variation Equivalent to mean-field Eq.

with Lie algebra including Al , {Al ,

A’m }

G) Exact Generalized Kohn-Sham Eq.

31

Generalized density

ρl =< ˆ A l >

E[ρ] = min< ˆ A >=ρ

< ˆ H >

E0 = minρ E[ρ]

0 = ∂ρ lE[ρ]δρ l

l

∑ = W l [ρ]δρ l

l

Exact E and ρ in an external field U=zlAl

Page 13: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Remarks

Exact for E

and all observations <Al > =ρl included in E[ρ]

Easy to go from a set of Al to a reduced

set A’l

=> E’[ρ‘]=minρ‘=cst E[ρ]

G) Exact Generalized Kohn-Sham Eq.

31

Page 14: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

The only information needed is the energy

=> functionals of ρ Local density approximation

Energy density functional

Local densities

matter , kinetic , current

Mean field

H) Density functional theory : LDA

35

E = drH (r)∫€

< ˆ H >= E[ ˆ ρ ]

hij[ ˆ ρ ] =δE

δρ ji

^

H (r) = H [{ρ AB (r)}]

ρAB (r) = trδ(r − ˆ r ) ˆ A ̂ ρ ˆ B

ραμ =ρσ ατ μ

τ μ =ρpσ α τ μ p

Jαμ = ρ pσ α τ μ

δE = tr ˆ h δ ˆ ρ = dr rstst

∑∫ ˆ h δ ˆ ρ rst

δE[ ˆ ρ ] =AB

∑ dr∂H

∂ρ AB

(r)δρ AB (r)∫ =AB

∑ dr∂H

∂ρ AB

(r) tr[δ(r − ˆ r ) ˆ A δ ˆ ρ ˆ B ∫ ]

δE[ ˆ ρ ] =AB

∑ tr[∂H

∂ρ AB

(ˆ r ) ˆ A δ ˆ ρ ˆ B ] ⇒ ˆ h =AB

∑ ˆ B ∂H

∂ρ AB

(ˆ r ) ˆ A

ˆ A l ⇒ ˆ B δ(r − ˆ r ) ˆ A

Page 15: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

H) LDA: Skyrme case

ρ(r) = trδ(r − ˆ r ) ˆ ρ

ρ3 = trδ ˆ r ˆ τ 3 ˆ ρ = ρ p − ρ n

τ(r) = trδ(r − ˆ r )ˆ p ̂ ρ ̂ p

τ 3 = trδ ˆ r ˆ τ 3 ˆ p ̂ ρ ̂ p

36

J(r) = trδ(r − ˆ r )ˆ p × ˆ σ ̂ ρ

J3 = trδ ˆ r ˆ p × ˆ σ ̂ ρ τ 3

+...

1

1

⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎨ ⎪ ⎪

⎩ ⎪ ⎪

ˆ h q =1

2mq*

ˆ p 2 + U0q(ˆ r ) + U3q

(ˆ r ) + Ueffq(ˆ r ) + ...

ˆ h =AB

∑ ˆ B ∂H

∂ρ AB

(ˆ r ) ˆ A

Standard case few densities Matter isoscalar isovector kinetic isoscalar isovector Spin isoscalar isovector

Energy functional

Mean-field q=(n,p)

Page 16: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80

Standard case few densities

Matter isoscalar isovector kinetic isoscalar isovector Spin isoscalar isovector

Energy functional

Mean-field q=(n,p)

H) LDA: Skyrme case

ρ(r) = trδ(r − ˆ r ) ˆ ρ

ρ3 = trδ ˆ r ˆ τ 3 ˆ ρ = ρ p − ρ n

τ(r) = trδ(r − ˆ r )ˆ p ̂ ρ ̂ p

τ 3 = trδ ˆ r ˆ τ 3 ˆ p ̂ ρ ̂ p

36

J(r) = trδ(r − ˆ r )ˆ p × ˆ σ ̂ ρ

J3 = trδ ˆ r ˆ p × ˆ σ ̂ ρ τ 3

+...

Skyrmeparameters

1

1

⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎨ ⎪ ⎪

⎩ ⎪ ⎪

ˆ h q =1

2mq*

ˆ p 2 + U0q(ˆ r ) + U3q

(ˆ r ) + Ueffq(ˆ r ) + ...

Page 17: Observation functional  An exact generalization of DFT

DFT Philippe CHOMAZ, 2006

: 80