40
Observational signatures of r-process jets in core-collapse supernovae Nobuya Nishimura YITP, Kyoto University “Multi-Messenger Astrophysics in the Gravitational Wave Era” @YITP Kyoto

Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Observational signatures of r-process jets in core-collapse supernovae

Nobuya Nishimura YITP, Kyoto University

“Multi-Messenger Astrophysics in the Gravitational Wave Era” @YITP Kyoto

Page 2: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Pt, Au

EuBa

r-process: “cosmic alchemy”

N=126

N=50N=82

Th, U

Page 3: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

The rapid-neutron-capture process

metal-poor halo stars (13 samples)

• rapid n capture vs. β-decayNn ~ 1023 /cm3

(Nn ~ 105 /cm3 for the slow process) • the nucleosynthesis “path” goes to

very neutron-rich nuclei

“solar r” ≈ [solar obs.] - “s-proc. calc.”

Cowan+2019 Cowan+2019

Page 4: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

r-process nucleosynthesis “flow”

Page 5: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Astronomical site(s) of the r-process

neutrino-driven wind

proto-NS

BHSupernovae (cc-SNe)?

Supernova

Merger

neutron star (NS) mergers?NS NS

r-process is observed? in Kilonova/Macronova

w/ GW170817

•no direct observation •theoretical difficulty •(no very n-rich matter)

massive star (10>Msun)

another mechanism magneto-driven jet?

magnetar

Page 6: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Talk plan• Introduction

• MR-driven “jet” supernovae? • Production of r-process nuclei

• central engine and abundances • (vs. r-process observation in metal-poor stars)

• Ejection of r-process nuclei • shock propagation and r-nuclei ejection

• (uncertainties due to nuclear-physics inputs) • Summary

References - Winteler+NN+(2012) ApJL 750:L22 - NN, Takiwaki, Thielemann (2015) ApJ 810:109 - Tsujimoto & NN (2015) ApJL 810:L10 - NN, Sawai, Takiwaki+(2017) ApJL 836:L21 - Tsujimoto & NN (2018) ApJL 863:L27

Page 7: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Production of r-process nuclei the central engine of MR-SNe

•NN, Takiwaki & Thielemann (2015) ApJ •NN, Sawai, Takiwaki+(2017) ApJL

Page 8: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

r-Process in magneto-rotational supernovae•Magnetar •strong magnetic field ~1015 G(~1 % of all neutron stars)

•Magneto-driven Supernovae? •GRB central engine •Hypernovae •Super luminous SNe

hypernova/jet-like SN

•MR-SNe (magnetar formation) •“the classics”: Symbalisty(1984), Cameron(2003) •2D: Nishimura+NN+(2006); NN+(2012,2015,2017) •3D: Winteler+NN+(2012); Mösta+(2014,2018), Halevi&Mösta(2018)

•“Collapsar model” (BH + disk + jet) •2D: Fujimoto+(2007); Fujimoto, NN, Hashimoto(2009); •Ono+(2009, 2012)

NN+2015

Page 9: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

3D effects on jet-propagation

Mösta+(2018) Halevi&Mösta(2018)Winteler+NN+(2012)

strong jet in 3Ddeformation

by hydro-instabilitymisalliance of

B-filed and rotation

low Lν

large misalliance

*difference is due to uncertainty

Talks by Mösta and Halevi in this week?

Page 10: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

magnetic-field enhancement process?

NN+2015 NN+2017

axi-symmetric (2D); long-term, high-resolutionB-field winding MRI w/ ν-heating

prompt delayeddelayed

delayed prompt x 4

magnetic-jet

heating

intermediate

Page 11: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Various r-process in several jet SNe

“prompt” “delayed”

2D-hydro w/ parametric rotation & B-fields (NN+2015, based on Takiwaki+2009) •Strong (prompt)-jets •very n-rich from the inside of the PSN (strong e--capture)

•Weaker (delayed) jets • less neutron-rich due to strong neutrino absorption

VS

Page 12: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Various r-process in several jet SNe

solar r

B12very neutron-rich matter in SN core (“proto-magnetar”) significant effect of e--capture (off β-equilibrium)

ν-absorption ν-absorption

in ν-sphere

metal-poor stars

solar-like

solar-like

Page 13: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Diversity in metal-poor star abundances?- many r-rich Galactic halo stars

show the solar r-pattern - r-process has happened

from the early Galaxy - astrophysical models

reproduce this commonpattern (Z>40; A>90)

Cowan+2019

- However, growing evidence for “weak” r-process patterns(e.g., Honda+2006)

Cowan+2019

Page 14: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Magneto-rotational instability in CC-SN

resolution

Δrmin = 100, 50, 25, 12.5 mSawai & Yamada (2014, 2016)

- MR-hydro code (山桜: “YAMAZAKURA”) - MRI enhance B-fields of the core - neutrino-heating also affects explosion - 2D axisymmetric - initial condition: - 15Msun (Fe: 1.4Msun) (Woosley&Heger1995) - rotation (core): 2.7 rad/s - B-fields: 2x1011 G (B flux: 7x1027 cm2G)

> magnetar candidate

Ye Entropy

Entropy + B-fields(3D)

Page 15: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Need those strong initial B-fields?

Problem: varying B-fields/rotation > requires MRI convergence for each case and comparison among models are difficult Adopt: varying Lν > effective strength of B-fields in explosion dynamics

heating- dominated

magnetically- dominatedplasma-β

intermediate

Page 16: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Need those strong initial B-fields?

heating- dominated

magnetically- dominated

Ye

intermediate

heating- dominated

Entropy, S

Page 17: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

r-process abundancesNN+(2017), based on Sawai models

prompt vs delayed (NN+2015,

Takiwaki models)

“intermediate” r-process?

heating

magneticsolar

metal poor stars solar-like r process

“weak” heavy r pattern HD122563 (Honda+2006)

Page 18: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Alternative r-process sources in early galaxy?

nucleosynthesis yields: github.com/nnobuya/mrsn

discussion on GCE (several Talks in this WS)

strong jet weak jet“intermediate” r-process?

Page 19: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Multiple r-process sources in GCE?

Wehmeyer+(2015,2019): different event rates for MR-SNe

0.1%

NS mergers + MR-SNe

NS mergers cannot explain early chemical evolution of r-process elements, e.g., Eu? → shorter delay time or another source

comprehensive GCE analysis after GW170817 (e.g., Côté+2018)

Page 20: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Tsujimoto & NN (2015)Chemical evolution models

GCE models suggest: - event rate: 0.5 % of CC-SNe - large Eu ejection: ~10-5 Msun agree with our MR-SN models (e.g. NN+2015, 2017)

Eu evolution by MR-SNe in dSph galaxies

increase of Eu, which are not explained

by NS-NS mergers

Page 21: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

10-3

10-2

10-1

100 CC-SNe

Rare-class CC-SNeNS mergerFr

equency

Time (Metallicity)

-5

-4

-3

-2

-4 -3.5 -3 -2.5 -2 -1.5

[Ba/

H]

[Fe/H]

Segue 1ComBer

Bootes IIHercules

Segue 2

Leo IV

-5

-4

-3

-2

-1

-4 -3.5 -3 -2.5 -2 -1.5 -1

[Eu/

H]

[Fe/H]

DracoSculptorCarina

jump in Dracojump in Sculptor

gradual increase in Sculptor

Eu floor

Eu ceiling

-2

-1.5

-1

-0.5

0

0.5

1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

[Eu/

H]

[Fe/H]

Fornax

Sgr

Leo I

r-process abundance feature

What we learned from faint dwarf galaxiesmassive faint ultra faint

10-3

10-2

10-1

100 CC-SNe

Rare-class CC-SNeNS mergerFr

equency

Time (Metallicity)

10-3

10-2

10-1

100 CC-SNe

Rare-class CC-SNeNS mergerFr

equency

Time (Metallicity)

Page 22: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

How to get such n-rich ejecta?

•multi-D (deformation) •weaker B fields (w/ enhancement)

more “realistic” conditions

energetic (high density, large mass ejection) and fast ejection of material by strong jets

Page 23: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Short Summary• MR-SNe are still possible sites for the r-process • However, strong-magnetic jets are needed to produce heavier r-nuclei: unavailable so far in “realistic” progenitor/MHD set-up

We want to discuss possible “observational” properties of such events: r-process-jet supernovae.

long-term evolution of r-process ejection (propagation of r-process-rich jet in the progenitor)

Page 24: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Collaboration with J. Matsumoto, H. Sawai and T. Takiwaki

Ejection of r-process nuclei from engine to remnant

Page 25: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Strong-magnetic jet: (strong r)

NN, Sawai+2017

108 cm

x 5

•hydrodynamicsw/o B-fields

•“jet” injection •Wolf-Rayet(no H-layer)

hydrodynamical simulation by J. Matsumoto

temperature

temperature

x 10

Ejet = 1051 erg

Page 26: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Strong-magnetic jet: (strong r)

Page 27: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

jet-SN explosion

1000 km (108 cm)

MR-SNe simulations

Lagrangian “tracer particles”

Page 28: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Weker magnetic-jet: intermediate r

very n-richmedium n-rich very n-richmedium n-rich

weak magnetic jet strong magnetic jet

Page 29: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Evolution of hydro vs r-process

0.5 s

5 s

50 s

1 s

strong r weak rstrong r

weak r

Page 30: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Elemental distribution in ejecta

based on the nucleosynthesis condition of NN+2017: very n-rich > strong r medium n-rich > “intermediate r”

stronger magnetic jetweak magnetic jet

> Future observation will provide new insights?

Page 31: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Summary• MR-SNe are still possible sites for the r-process • However, strong-magnetic jets are needed to produce heavier r-nuclei: unavailable so far in “realistic” progenitor/MHD set-up

We want to discuss possible “observational” properties of such events: r-process-jet supernovae.

• Hydrodynamical simulation of jet-SNe (w/ r-nuclei) • propagation of n-rich matter in outer layer with abundance evolution of r-process

• Spacial abundance distribution can characterize explosion feature of central engine of MR-SNe

Page 32: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Uncertainties in the nuclear-physics “input” impacts on the r-process

Collaboration with T.Rauscher, R. Hirschi, G. Cescutti, A. Murphy

Page 33: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

r-process nucleosynthesis “flow”RIBF (1e-4 pps limit)

Page 34: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Theoretical uncertanitiesmass formula

β-decay

Large uncertainty in the r-process range

Recent experiments reach only limited region

* In addition, reaction and fission rates are not well determined

by Y. Itho

by NN(w/ half-lives by Lorusso+2015)

10-6

10-5

10-4

10-3

60 80 100 120 140 160 180 200

Abundance

Mass number, A

RIBF(2015)

FRDM(MPK03)

Page 35: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

nuclear mass (+reaction and decay ratesFRDM ETFSI

Nishimura+2006

Uncertainty studies

����������������

���� ��� ���� ���� ��� ��� ��

Abun

danc

e

Mass number, A

JINA Reaclib(v2.3b)(n,γ)/(γ,n): FRDM(2012)

����������������

���� ��� ���� ���� ��� ��� ��

Abun

danc

e

Mass number, A

JINA Reaclib(v2.3b)(n,γ)/(γ,n): FRDM(2012)

����������������

���� ��� ���� ���� ��� ��� ��Ab

unda

nce

Mass number, A

JINA Reaclib(v2.3b)(n,γ)/(γ,n): FRDM(2012)

����������������

���� ��� ���� ���� ��� ��� ��

Abun

danc

e

Mass number, A

JINA Reaclib(v2.3b)(n,γ)/(γ,n): FRDM(2012)

����������������

���� ��� ���� ���� ��� ��� ��

Abun

danc

e

Mass number, A

JINA Reaclib(v2.3b)(n,γ)/(γ,n): FRDM(2012)

����������������

���� ��� ���� ���� ��� ��� ��

Abun

danc

e

Mass number, A

JINA Reaclib(v2.3b)(n,γ)/(γ,n): FRDM(2012)

S=100 kB/nucleon

FRDM( ’92 → ’12)

by NN (test calculation)Comprehensive studies (by Monte-Carlo) reaction/decay rate uncertainty due to mass

Mumpower+2015

Page 36: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Monte-Carlo network code• Monte-Carlo framework • PizBuin MC-driver(developed by Rauscher, NN, Hirschi)

• a simple “Brute-force” approach • parallelized by OpenMP for sharedmemory architectures (paralleled easily, but harder debugging. . .)

• Nuclear Reaction network • Network solver: - WinNet: the latest Basel network, Winteler+, 2012

• Reaction rates: - Reaclib: (Rauscher & Thielemann 2000) - T-dependent beta-decay (Takahashi & Yokoi 1987, Goriely 1999)

• T-dependent uncertainty: - Provided by Reaclib format, based on Rauscher 2012

Piz Buin (mountain)

References - Rauscher, NN+2016, MNRAS 463 ➖ NN+2017, MNRAS 469

- NN+2018, MNRAS 474 ➖ Cescutti, Hirschi, NN+2018, MNRAS 478

- NN+2019, MNRAS 389

Page 37: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Rate uncertainty: (n,g) and β-decay

10-7

10-6

10-5

10-4

10-3

10-2

80 100 120 140 160 180 200

Abu

ndan

ce

Mass number, A

solar abundance

90% range

the peak of Y distribution

the impact of fission rates is ignored

rate uncertainty range: (n,g) x0.02/x50, β-decay x0.05/x20uncertainty region (90% probability) of r-process

Page 38: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

10-7

10-6

10-5

10-4

10-3

10-2

80 100 120 140 160 180 200

Abu

ndan

ce

Mass number, A

10-7

10-6

10-5

10-4

10-3

10-2

80 100 120 140 160 180 200

Abu

ndan

ce

Mass number, A

Rate uncertainty: (n,g) and β-decayrate uncertainty range: (n,g) x0.02/x50, β-decay x0.05/x20

uncertainty region (90% probability) of r-process

different “trajectories” (astrophysical environments)

weak r intermediate r

Page 39: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

Key reactions?: r-process“correlation analysis”

10-7

10-6

10-5

10-4

10-3

10-2

80 100 120 140 160 180 200

Abu

ndan

ce

Mass number, A

10-7

10-6

10-5

10-4

10-3

10-2

80 100 120 140 160 180 200

Abu

ndan

ce

Mass number, A

fixing 357 rates357 rates (mainly β-decay)have effects (if not very strong)

β-decay:130Cd, 134In134Sn, 196Yb, 197Lu

→ not many key reactions (can be smaller than astrophysical uncertainty)

reaction # reaction #

relevant reactions(n-cap & β-decay)4897

β-decay β-decay(n,g) (n,g)

Page 40: Observational signatures of r-process jets in core-collapse supernovaemmgw2019/slide/2nd/Nishimura.pdf · 2019. 9. 30. · mass formula β-decay Large uncertainty in the r-process

“Key” reactions for different models

���

���

���

��� ��� ���� ���� ����

All: β-decay

������������������

Max

|rco

r|

���

���

���

��� ��� ���� ���� ����

All("intermediate" r): n,β-decay

������������������

Max

|rco

r|

���

���

���

��� ��� ���� ���� ����

All: (n,γ)

������������������

Max

|rco

r|

���

���

���

��� ��� ���� ���� ����

(n,γ)-only: (n,γ)

������������������

Max

|rco

r|

β-decayβ-decay

strong r intermediate r

N N

ZZ

Summary: • r-process calculations have a large uncertainty due to nuclear mass, reaction rates and decay rates

• the impacts of such uncertainties may change in different astrophysical conditions for the r-process