42
Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

Observations of High Redshift Galaxies with CCAT

Alice Shapley (Princeton University)

October 10th, 2005

Page 2: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

2

Overview • CCAT will provide new windows on star formation for sub-ULIRG star-forming galaxies at high redshift, including information about dust, gas content, HII region physical conditions, and star-formation feedback

• New results at shorter (optical through mid-IR) wavelengths, CCAT observations will greatly enhance their meaning

Page 3: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

3

New results • Spitzer 24 m observations provide estimates of Lbol for L~1011-1012 L galaxies (LIRGS) at z~2-3, but this is indirect

• M-Z relation, gas fractions in star-forming galaxies at z~2, using optical and near-IR imaging and spectroscopy

• Physical conditions appear to be different in high redshift HII regions (z~1-2), based on rest-frame optical emission lines

Page 4: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

4

Relevant Observations with CCAT • submm continuum --> LFIR, Lbol, Tdust

• CO lines --> Mgas (molecular, assuming conversion factor), gas fractions, Schmidt law

• [CII] 158 m, [OI] 63 m, [OIII] 88, 52 m --> (HII region and ISM physical conditions, densities, cooling)

• Different probes of star formation

Page 5: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

5

z>2 color-selection

• Adjust z~3 UGR crit. for z~2 (Adelberger et al. 2004) • Spectroscopic follow-up with optimized UV-sensitive setup (Keck I/LRIS-B) (Steidel et al. 2004)

Page 6: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

6

z>2 color-selection

• Adjust z~3 UGR crit. for z~2 (Adelberger et al. 2004) • Spectroscopic follow-up with optimized UV-sensitive setup (Keck I/LRIS-B) (Steidel et al. 2004)

Page 7: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

7

Redshift Distributions

Unsmoothed

LBG: z~3 (940) SLBG=1.7/arcmin2

nLBG=1.4x10-3Mpc-3

BX: z=2-2.5 (816) BX=5.2/arcmin2

nBX=2.0x10-3 Mpc-

3

BM: z=1.5-2.0 (118) BM=3.8/arcmin2

nBM=1.7x10-3Mpc-3

750 gals at z=1.4-2.5

(Steidel et al. 2004; Adelberger et al. 2004)BX/BM/LBG with R<=25.5

Page 8: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

8

Redshift Distributions

Unsmoothed

LBG: z~3 (940) SLBG=1.7/arcmin2

nLBG=1.4x10-3Mpc-3

BX: z=2-2.5 (816) BX=5.2/arcmin2

nBX=2.0x10-3 Mpc-

3

BM: z=1.5-2.0 (118) BM=3.8/arcmin2

nBM=1.7x10-3Mpc-3

750 gals at z=1.4-2.5

(Steidel et al. 2004; Adelberger et al. 2004)BX/BM/LBG with R<=25.5

Other surveys & space densities:• K20 (z=1.4-2.5): ~10-4/Mpc3

• GDDS (z=1.6-2.0):~10-4/Mpc3 • SMG (z~2.5): ~10-5 /Mpc3

• FIRES(z=2-3.5): uncertain

Page 9: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

9

Other redshift desert surveys

Other surveys with galaxies at z~1.4-2.5

• K20/BzK (Cimatti et al.) (K<20 selection) (~40)

• Gemini Deep Deep (Abraham et al.) (K<20.6, photo-z) (34)

• FIRES (Franx, van Dokkum et al.) (J-K selection) (~10)

• Radio-selected SMG (Chapman et al.) (73) (+18 OFRG)

Now that there are several groups using different selection techniques to find galaxies at z~2, we need to understand how

the samples relate to each other.

Page 10: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

Dust: Bolometric Luminosities and Extinction

Page 11: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

11

Mid-IR Lum. from Spitzer/MIPS

(Reddy et al. 2005)

• Spitzer/MIPS 24 m band probes PAH emission at z=1.5-2.6, probe of L5-8m

• Average ratio of L5-8

to LIR is 28.3 for local star-forming galaxies; use this to convert MIPS to bolometric IR luminosities

• Optical and near-IR-select gals at z~2 have <LIR>~3-5x1011 L

Page 12: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

12

Mid-IR Lum. Vs. LX(bol)

(Reddy et al. 2005)

• Using z~2 galaxies in the GOODS-N field, it is possible to do X-ray “stacking” analysis, as a function of L5-8 (10-20 gals per bin)

• LX probes bolometric SFR (not AGN)

• Strong linear correlation between L5-

8 and LX

• Evidence that L5-8 is a good SFR indicator

Page 13: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

13

Mid-IR Lum. Vs. LFIR(bol)

(Reddy et al. 2005)

• Compare LFIR derived from L5-8 with LFIR measured from SCUBA and other sources

• For SCUBA/SMG sources, FIR inferred from MIR is low by a factor of ~2-10 (Tdust, AGN)

• We need direct comparisons for fainter galaxies (CCAT)!!

Page 14: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

14

Lbol vs. Dust Extinction

(Reddy et al. 2005)

• Relationship between Lbol and extinction evolves from z~0 to z~3

• Galaxies at fixed extinction are ~100X more luminous (or galaxies at fixed luminosity are less dusty)

• Geometry, evolution of dust distribution

• Direct Lbol at high-z is critical for this analysis

• CCAT will provide this (Tdust, Lbol)

Page 15: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

Metallicities & Gas Fractions

Page 16: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

16

Evolution of Galaxy Metallicities• Gas phase oxygen abundance in star-forming galaxies• Fundamental metric of galaxy formation process, reflects gas reprocessed by stars, metals returned to the ISM by SNe explosions (HII regions in sf-galaxies, stars in early-type). • Departures from closed-box expectations can reveal evidence for outflow/inflow• Galaxies display universal correlations between Luminosity (L), Stellar mass (M), and metallicity (Z)• 10,000s of galaxies in the local universe with O/H• Now the challenge is to obtain these measurements at high redshift (evolution will give clues)• Measuring gas fractions is very important to quantify how much material has been processed into stars -- currently very indirect!!!

Page 17: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

17

Abundance Indicators: Bright (R23)

(Kobulnicky et al. 1999)

• High-Z branch: R23 decreases as Z increases

• Low-Z branch: R23 decreases as Z decreases

• Uncertainty in which branch R23 corresponds to

• Systematic differences from direct method

Page 18: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

18

Local L-Z Relationship

(Tremonti et al. 2004)

• Lots of local emission line measurements (10000’s, 2dF, Sloan)

• At z=0.5-1, 3 groups (>=200 gals, CFRS, DGSS, CADIS, TKRS)

• At z>2 there were < 10 measurements (mainly LBGs)

• DLAs provide metallicity information from abs lines, but hard to relate

Page 19: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

19

Local M-Z Relationship

(Tremonti et al. 2004)

• M-Z possibly more fundamental than L-Z relationship

• closed box model relates gas fraction and metallicity, according to the yield

• SDSS sample revealed lower effective yield in lower mass galaxies

• importance of feedback

Page 20: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

20

Near-IR spectroscopy of z~2 gals

• z~2 ideal for measuring several neb lines in JHK• evidence of M-Z relation at z~2, gas fractions are necessary part of interpretation (CCAT)

Page 21: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

21

[NII]/H ratios: z~2 metallicities

• relationship between [NII]/Hand O/H

• N is mixture of primary and secondary origin

• age, ionization, N/O effects, integ. spectra, DIG, AGN

(Pettini & Pagel 2004)

N2=log([NII] 6584/H)

12+log(O/H)=8.9+0.57xN2

~0.18, factor of 2.5 in O/H

Page 22: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

22

z~2 M-Z Relationship

(Erb et al. 2005)

• New sample of 87 star-forming galaxies at z~2 with both M* and [NII[/H (gas phase O/H) measurements

• Divide into 6 bins in M* , which increases as you move down

• clear increase in [NII]/H with increasing M*

• M-Z at z~2!!

Page 23: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

23

z~2 M-Z Relationship

(Erb et al. 2005)

• Evol. Comparison with SDSS, where Z is based on [NII]/Ha (for both samples)

• Clear offset in relations --> at fixed stellar mass, z~2 galaxies significantly less metal rich than local gals

• Not evolutionary (z~2 probably red&dead by z~0)

Page 24: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

24

z~2 M-Z Relationship

(Erb et al. 2005)

• Important: measure change of Z with (gas fraction)

• Must estimate Mgas, which we do from H, to sfr, to gas (assuming Schmidt law)

• Very indirect!

• Low stellar mass objects have much higher

Page 25: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

25

z~2 M-Z Relationship

• Different models for feedback, using different yields and different outflow rates

• Data are best fit by model with super-solar yield and outflow rate greater than SFR (for all masses)

• Rate of change of with metallicity gives evidence for feedback ; is very important (measure with CCAT, CO lines)

(Erb

et al. 2005)

Page 26: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

HII Region Physical Conditions

Page 27: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

27

z~2 Physical Conditions• Well-defined sequence in [OIII]/H vs. [NII]/H in local galaxies (SDSS) (star-formation vs. AGN)

• z~2 star-forming galaxies are offset from this locus (as is DRG)

• ne, ionization parameter, ionizing spectrum (IMF, star-formation history)

• Implications for derived O/H(Erb et al. 2005)

Page 28: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

28

z~1 Physical Conditions• Well-defined sequence in [OIII]/H vs. [NII]/H in local galaxies (SDSS) (star-formation vs. AGN)

• z~1.4 star-forming galaxies are offset from this locus (as is DRG)

• ne, ionization parameter, ionizing spectrum (IMF, star-formation history)

• Implications for derived O/H(Shapley et al. 2005)

Page 29: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

29

z~2 Physical Conditions

• Among K<20 galaxies (brightest 10%), [SII] line ratio indicates high electron density

• Inferred electron density is ~1000/cm3,

• This is higher than in local HII regions used to calibrate N2 vs. O/H relationship

(Pettini et al. 2005)

Page 30: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

30

Beyond [NII]/Ha: All the lines

(van Dokkum et al. 2005)

H NOHO• Deriving Oxygen Abundance from [NII]/H relied on several assumptions

• Physical conditions appear different. Observations of full set of lines important for constraining sfr in high redshift objects

• GNIRS/Gemini

Page 31: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

31

Beyond [NII]/Ha: All the lines

(van Dokkum et al. 2005)

H NOHO• FIR [OIII] lines, accessible with CCAT at >200 m for z>1.5

• independent probe of HII region physical conditions

• [CII] 158 m line, probes physical conditions in different phase (compare with CII* 1335)

Page 32: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

32

Summary• New results about dust, star formation, chemical enrichment, and feedback, using optical, near-IR, and mid-IR imaging and spectroscopy

• CCAT observations can provide independent measurements of dust, gas, and star-formation rates for these objects, as well as probing physical conditions

• Both continuum and line emission measurements will be crucial for physical understanding

Page 33: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

33

Q1700+64: Distribution of M*• Mstar,med=2.0x1010 Msun

• Distributions with and without IRAC data very similar (uncertainties smaller with IRAC data)• Stellar mass density of z~2 BX/MD galaxies is ~108MsunMpc-3 16% of z=0 stellar mass density (Cole et al. 2001)• caveats: IMF, bursts• relate to z~3, evolution (???? Weak constraints)• Better constraints for most massive gals (8%)(Steidel et al. 2005)

6/72 have M*>1011M &

contain 50% of the mass

Page 34: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

34

Direct Abundance Determination

• Use [OIII] 4363/(5007,4959) to get Te, [SII] to get ne

• Problem: 4363 weak, even in local low-Z gals; star-forming gals are not very metal-poor--NO HOPE at high redshift

(figure from van Zee 2000)

Z=1/25 Zsun

Page 35: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

35

L-Z relation and evolution

(Garnett 2002)

Evolution of L-Z provides clues…

• Correlation over 11 mags in MB and factor of 100 in (O/H) (SF gals)

• Ellipticals show analogous trend

• Fainter gals have higher gas fraction (younger, lower sfr); or outflows more important

Page 36: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

36

Stellar Populations & Masses Near/Mid-IR Imaging

• Deep J, K imaging with WIRC, Palomar 5-m, to Ks~22.5, J~23.8

• 4 fields, ~420 galaxies with zsp> 1.4

• Spitzer IRAC data in Q1700 field, 3.6, 4.5, 5.4, 8 m

• Use for modeling stellar populations, masses

Ks (2.15 m)

(Barmby et al. 2004, Steidel et al. 2005)

Page 37: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

37

Stellar Populations & Masses Near/Mid-IR Imaging

• Deep J, K imaging with WIRC, Palomar 5-m, to Ks~22.5, J~23.8

• 4 fields, ~420 galaxies with zsp> 1.4

• Spitzer IRAC data in Q1700 field, 3.6, 4.5, 5.4, 8 m

• Use for modeling stellar populations, masses

IRAC (4.5 m)

(Barmby et al. 2004, Steidel et al. 2005)

Page 38: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

38

Near-IR spectroscopy of z~2 gals H spectra of 101 z~2 gals KeckII/NIRSPEC• Kinematics: linewidths, Mdyn, some spatially-resolved, tilted lines, compare with stellar masses• Line ratios: HII region metallicities, physical conditions• H fluxes: SFRs, compare with UV, models• Offsets between nebular, UV abs and Ly em redshifts -> outflows

M*=41011 M

K=19.3, J-K=2.3 M*=5109 M

Page 39: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

39

Measuring gas masses at z~1-3• In addition to filling in huge gap in O/H vs. z, and testing evolution of L-Z relation….

• In simple closed-box chemical evolution models:

Z=y ln (1/)• =Mgas/(Mstar+Mgas), y=yield of heavy elements

• Using broad-band photometry, fit stellar populations and determine Mstar

• Test for the importance of outflows (effective yield)

Page 40: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

40

Measuring O/H at z~1

• At z~1.3-1.4, [NII]/H in H-band, [OIII]/H in J-band

• At z~1, [NII]/H in J-band, [OIII]/H in NIRSPEC1 band

• DEEP2 gals already have [OII]

• DEEP2 z-hist from Coil et al. 2004, ~5000 gals, 10% of survey

• Statistical O/H sample (50-100) at z=1-1.5

Page 41: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

41

Different Estimates of Dust

(Reddy et al. 2005)

• measures dust from UV slope

• LFIR/L1600 measures dust from inferred ratio of FIR (based on MIPS) to UV luminosity

• Local starbursts show correlation between and FIR/UV

• MIPS implies correlation works for z~2 galaxies on avg.

Page 42: Observations of High Redshift Galaxies with CCAT Alice Shapley (Princeton University) October 10th, 2005

42

Does Calzetti Work?• Stack 171 zspec=1.4-2.5 S.F. galaxies (excluding all direct detections, AGN)

• 10 detection in X-ray <SFR(Xray)> = 42 Msun/yr

• 5 detection in radio <SFR(Radio)>=50Msun/yr (LIRG)

• Corresponds to <SFR(1500)> = 8.5 Msun/yr

• <A(1500)>= factor of 4.9, very similar to results at z~3, and to inference from UV colors with CSF+Calzetti

• K<20 z=1.4-2.5 BX/BM: <SFR(Xray)>=130 Msun/yr (Reddy et al. 2005) Star-forming BzK gals: <SFR(Xray)>=170 Msun/yr (Daddi et al. 2004)

Chandra Stack (CDFN 2Ms exposure)

(Reddy & Steidel 2004)