46
Ocean color remote sensing of phytoplankton physiology & primary production by K. Westberry 1 , Mike J. Behrenfel Emmanuel Boss 2 , David A. Siegel 3 1 Department of Botany, Oregon State University 2 School of Marine Sciences, University of Maine

Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Embed Size (px)

Citation preview

Page 1: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Ocean color remote sensing of phytoplankton physiology &

primary production

Toby K. Westberry1, Mike J. Behrenfeld1  Emmanuel Boss2, David A. Siegel3

1Department of Botany, Oregon State University2School of Marine Sciences, University of Maine

3Institute for Computational Earth System Science, UCSB

Page 2: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Outline1. Introduction to problem

- Phytoplankton Chl v. Carbon - NPP modeling

2. Model- bio-optics- physiology

- photoacc./light limitation/nutrient stress

3. Results- surface & depth patterns- global patterns

4. Validation

5. Future directions

Page 3: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Carbon v. Chlophyll

• How to quantify phytoplankton

• Historically, net primary production (NPP) has been modeled as a function of chlorophyll concentration

• BUT, cellular chlorophyll content is highly variable and is affected by acclimation to light & nutrient stress and species composition

Chl is NOT biomass

Page 4: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Modeling NPP

NPP ~ [biomass] x physiologic rate

NPP ~ [Chl] x Pbopt

NPP ~ [C] x

Scattering (cp or bbp)

Ratio of Chl to scattering (Chl:C)

General

Chl-based

C-based

Page 5: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Phytoplankton C

• Scattering covaries with particle abundance (Stramski & Kiefer, 1991; Bishop, 1999; Babin et al., 2003)

• Scattering also covaries with phytoplankton carbon (Behrenfeld & Boss, 2003; Behrenfeld et al., 2005)

• Chlorophyll variations independent of carbon (C) are an index of changing cellular pigmentation

Page 6: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Scattering:Chl

From Behrenfeld & Boss (2003)

Page 7: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

0.0 0.2 0.4 0.6 0.8

0.000

0.001

0.002

0.003

0.004

0.005

bb

p (

m-1)

Chlorophyll (mg m-3)

‘physiology domain’

‘biomass domain’

C = (bbp – intercept) x scalar

75o

0o

15o

30o

90o

60o

45o

60o

75o90o

15o

30o

45o

75o

0o

15o

30o

90o

60o

45o

60o

75o90o

15o

30o

45o

NP

SP SA

NANP

SP

CP

SA

NA

SI

NICA

SO

L0

L1

L2

L3

L4

SO-all

Ch

loro

ph

yll

Varia

nce L

evel

excluded

‘cell size domain?’

= (bbp – 0.00035) x 13,000

28 Regional Bins based on seasonal Chl

variance

1. Chl:C is consistent with lab data Mean Chl:C=0.010, range=0.002-0.030(see synthesis in Behrenfeld et al. (2002))

2. C ~ 25-40% of POC(Eppley et al. (1992); DuRand et al. (2001); Gundersen et al. (2001), Obuelkheir et al. (2005),Loisel et al., (2001), Stramski et al., (1999))

Page 8: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Chl:C

(m

g m

g-1)

Light (moles photons m-2 h-1)

Growth rate (div. d-1)

Chl:C

Low Nutrient stress High

Labora

tory

Temperature (oC)

Low Nutrient stress High

Chl:C

(mg m

g-1)

Chl:C

Space

after Behrenfeld et al. (2005)

Chl:C registers physiology

Page 9: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Model

Page 10: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

CbPM overview• Invert ocean color data to estimate [Chl a] & bbp(443)

(Garver & Siegel, 1997; Maritorena et al., 2001)

• Relate bbp(443) to carbon biomass (mg C m-3)(Behrenfeld et al., 2005)

• Use Chl:C to infer physiology (photoacclimation & nutrient stress)

• Propagate information through water column

• Estimate phytoplankton growth rate () and NPP

Carbon-based Production Model (CbPM)

Page 11: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

CbPM details (1)

1. Let surface values of Chl:C indicate level of nutrient-stress

-nutrient stress falls off as e-z (z=distance from nitracline)

2. Let cells photoacclimate through the water column

Ig (Ein m-2 h-1)

Chl :

C

(div

ision

s d-1)

Page 12: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

CbPM details (2)

3. Spectral accounting for underwater light field

-both irradiance & attenuation

4. Phytoplankton growth rate,

5. Net primary production, NPP(z) = (z) x C(z)

))(3(

0max

0max 1 zPAR

TNCchl

Cchl

exy

yx

Light limitationNutrient limitation(& temperature)

Max. growth rate

Ig (Ein m-2 h-1)

Ch

l :

C

(div

ision

s d-1)

Page 13: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

nLw

C

chlbbp

Kd(490) PAR(0+) MLD NO3

Kd() Ed()

Chl:C

zno3, zno3

PAR(z)

SeaWiFS FNMOC WOA01

Austin & Petzold (1986)Maritorena et al. (2001) NO3 > 0.5 M

Morel (1988)

Chl:Cnut

Photoacclimation

NPP

Light limitation

INPUTS

OUTPUTS

* if z<MLD, * red arrows indicate relationships exist ONLY when z>MLD* Run with 1° x1° monthly mean climatologies (1999-2004)

0dzXd

Page 14: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Results

Page 15: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Example profiles (1)

Stratified, shallow mixed layer, oligo-trophic

MLD =25mzNO3 =110mzeu =105m

Sargasso Sea (35°N, 65°W, Aug)

Page 16: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Example profiles (2)

Deep mixed layer, nutrient replete

MLD =95mzNO3 =0mzeu =40m

North Atlantic (50°N, 30°W, Apr)

Page 17: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Chl NPPD

epth

(m

)

mg Chl m-3 d-1 mg C m-3 d-1

Example profiles (mean)

- c.f. Morel & Berthon (1989)

Annual mean northern hemisphere

Page 18: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

South Pacific (L0)(central gyre)

Equatorial (L3)

South Pacific (L2)(non-gyre)

North Atlantic (L3)

Surface patterns

Month # since 1997

Chl (mg Chl m-3)

C (mg C m-3)

Chl:C (mg mg-1)

Page 19: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Summer (Jun-Aug)

Winter (Dec-Feb)

(d-1)

Growth rate, • Persistently elevated in upwelling regions

• Chronically depressed in open ocean

• Can see effects of mixing depth & micro-nutrient limitation

(d-1) (d-1)

Annual mean Annual mean (L0 only)

Page 20: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

NPP patterns

∫NPP (mg C m-2 d-1)

Summer (Jun-Aug)

Winter (Dec-Feb)

• O(1) looks like Chl- gyres, upwelling, seasonal blooms

• Large seasonal cycle at high latitudes (ex., N. Atl.)

Page 21: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

NPP patterns (2)

• large spatial (& temporal) differences in carbon-based NPP from chl-based results (e.g., > ±50%)

• differences due to photo- acclimation and nutrient-stress related changes in Chl : C

mg C

m-2 d

-1

Page 22: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Seasonal NPP patterns (N. Atl.)

Western N. Atl

Eastern N. Atl

CBPM

VGPM

Page 23: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Seasonal NPP patterns

CbPM

VGPM

• seasonal cycles dampened in tropics, but strengthened and delayed in “spring bloom” areas

Page 24: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Annual NPP

∫NPP (Pg C) VGPM This model

Annual 45 52

Gyres 5 (11%) 13 (26%)

High latitudes 19 (42%) 12 (23%)

Subtropics? 18 (39%) 25 (48%)

Southern Ocean(<-50°S)

2 (4%) 3 (5%)

• Although total NPP doesn’t change much (~15%), where and when it occurs does

Page 25: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Validation

Page 26: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Surface Chl:C at HOTC

hlor

ophy

llb bp

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Chl:C

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

1998 1999 2000 2001 2002

• Prochlorococcus cellular fluorescence at HOT ~(in situ Chl : C) (Winn et al., 1995)

• Satellite Chl :C

HOT

Page 27: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Chl(z) & Kd(z) at BATS

Model compared toBermuda Atlantic Time-series Study/Bermuda Bio-Optics Project (BATS/BBOP)HPLC Chl & CTD fluorometer

Page 28: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

∫NPP at HOT & BATS∫N

PP (

mg C

m-2 d

-1)

Page 29: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

NPP(z) at HOTN

PP (

mg C

m-3 d

-1)

Serial day since 09/1997

Page 30: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

- Uniform mixed layer (step function) v. in situ incubations

- Discrepancies due to satellite estimates, NOT concept

NPP(z) at HOT

Page 31: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Future directions

Page 32: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Next steps (model)

• Sensitivity to inputs (e.g., MLD, MODIS)

• Error budget

• Inclusion of CDOM(z)

• Change photoacclimation with depth

• change bbp to C relationship-diatoms, coccolithophorids, coastal

• Further validation

Page 33: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Next steps (applications)

• Look at finer spatial/temporal scales

•Knowledge of & dC/dt allow statements about loss processes

• Recycling efficiency (wrt nutrients)

• Characterization of ocean in terms of nutrient and light limitation patterns

• Inclusion of concepts/data into coupled models

Page 34: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Thanks

PrincetonJorge SarmientoPatrick ShultzMike Hiscock

UCSBNorm NelsonStephane MaritorenaManuela Lorenzi-Kayser

[email protected]

OSURobert O’MalleyJulie Arrington Allen MilligenGiorgio Dall’Olmo

Page 35: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Extra

Page 36: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

0 5 10 15 20 25 300.01

0.04

0.07

0.10

0.13

0.16

0.19

0 1 2 3

0.005

0.020

0.035

0.050

0.065

0.080

0.20.40.60.81.00.001

0.006

0.011

0.016

Ch

l:C

(m

g m

g-1)

Light (moles m-2 h-1)

Temperature (oC)

Ch

l:C

max

Growth rate (div. d-1)

Ch

l:C

min

Low Nutrient stress High

3 primary factors

Light

Temperature

Nutrients

Chl:C physiologyLa

bora

tory

Chl:Cmax

Chl:Cmin

Dunaliella tertiolecta20 oCReplete nutrientsExponential growth phase

Geider (1987) New Phytol. 106: 1-34

16 species = Diatoms

= all other species

Laws & Bannister (1980) Limnol. Oceanogr. 25: 457-473

Thalassiosira fluviatilis = NO3 limited cultures

= NH4 limited cultures

= PO4 limited cultures

Page 37: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Nutrient-limited &/or light-limited + photoacclimation

Uniform

Light-limited + photoacclimation

z=zNO3

z=MLD

z=0

z=∞Relative PAR Relative NO3

Depth-resolved CBPM

* Iterative such that values at z=zi+1 depend on values at z=zi *

Page 38: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

GSM01 (Maritorena et al., 2002)

• Non-linear least squares problem with 3 unknowns and 5 equations

• Solved by minimization of of squared sum of residuals (between obs & estimate)

• Result is Chl, acdm(443), bbp(443)

0

0

2

*1 0 0

0

0

( )

(

( ) ( / )( )

( ) ( /) () exp[ ( )])( )

i

bwi

i

bp

bw bp cph dm

bbRrs g

b b ahl a SC

Page 39: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

The Model (con’t)

700

400

))1,((),()( dezEdzPAR zzKd

satC

chl

C

chl

)3(

max

max 1 mldPAR

TNCchl

Cchl

exx

zC

ChlzPAR exezC

Chl 075.0)(3 1)022.0045.0(022.0)(

)(3)(3 1)022.0045.0(022.0/2)( zPARzPARsatC

Chl exexz

Page 40: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

CBPM data sources

- SeaWiFS: nLw(), PAR, Kd(490)- GSM01: Chl a, bbp(443)- FNMOC: MLD- WOA 2001: ZNO3

- Chl, C, & Chl:C- - NPP

INPUT (surface) OUTPUT ((z))

Run with 1° x1° monthly mean climatologies (1999-2004)

Page 41: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Example profiles (3)

Deep winter mixing,Very low light, Nutrient replete

MLD =>300mzNO3 =0mzeu =

Southern Ocean (50°S, 130°W, Aug)

Page 42: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

(d-1) (d-1)

Annual mean Annual mean (L0 only)

Growth rate, (2)

Page 43: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

NPP patterns (Jun-Aug)

This work

∫NPP (mg C m-2 d-1)VGPM (Chl-based model)

∫NPP (mg C m-2 d-1)

• large spatial & temporal

differences in carbon-based

NPP from Chl-based results

(e.g., > ±50%)

• Chl-based model interprets high

Chl areas as high NPP

• differences due to photo-

acclimation and nutrient-stress

related changes in Chl : C

Page 44: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

NPP patterns (2)

• large spatial & temporal differences in carbon-based NPP from chl-based results (e.g., > ±50%)

• seasonal cycles dampened in tropics, but strengthened and delayed in “spring bloom” areas

• differences due to photo- acclimation and nutrient-stress related changes in Chl : C

mg C

m-2 d

-1

C-basedChl-based

Page 45: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Annual NPP

Models are very sensitive to input sources

VGPM CBPM This model

Annual ∫NPP (Pg C)

45 (61) 75 52

MLD -- 18 8

Chl 8-10 ?? 4

Kd 26 37 29

∫NPP for changeIn input

OR SHOW BY OCEAN BASIN AND/OR SEASON TO SHOW REDISTRIBUTION??

Page 46: Ocean color remote sensing of phytoplankton physiology & primary production Toby K. Westberry 1, Mike J. Behrenfeld 1 Emmanuel Boss 2, David A. Siegel

Conclusions

• Spectral, depth-resolved NPP model that includes photoacclimation, light & nutrient limitation

- based on phytoplankton scattering-carbon relationship

•Consistencies with field data ongoing validation

• Spatial patterns in ∫PP markedly different than Chl-based models

- also different seasonal cycles (timing/magnitude)

[email protected]