10
島根大学地球資源環境学研究報告 22,111~120ページ(2003年12月) Geoscience Rept.Shimane Univ.,22,p.111~120(2003) Majorandtraceelementabundancesinthe<180μmfra fromthe Kando River,ShimanePrefbcture,JaOan Edwin Ortiz*and Ba皿y Roser* Aわstract Sieved fractions(<180μm)of86stream sediment samples ffom active channels of the K in east Shimane Prefecture were analyzed by X-ray fluorescence for major elements an alldatashowthatdistributions aregenerallynomalorareright-skewedtoiso sediments.Several elements(e.g.K20,Rb)have clearly bimodal distributions that are evidence of anthropogenic impacts for elements which could be affected,such as P205 clearcontrasts in the composition ofsediments collected upstream and downstream o upstream are more aluminous,andtendto have greaterabundances ofK20,P205,Mn Zr than those downstream.Conversely,Fe203T,TiO2,Sc and V are generally more abund dam site.These contrasts are related to source geology,with the catchment above the by granitoids and felsic volcanic rocks,and that below by mixed volcanic and sedimen and Omori Formations.The data clearly suggest that isolation ofthe upstream granitoid by clos皿e of the Shitsumi dam will ultimately lead to more mafic compositions in str reaches of the Kando River. Key words:Geochemistry,stream sediments,<180μm fねction,Kando River,Shimane lntroduction Studies of chemical compositions of river and stream sediments provide key baseline data that can be utilized in a variety of geological and geoenvironmental studies.This report contains X-ray fluorescence(XRF)analyses of the <180μm fraction f士om 86 stream sediment samples collected from the catchment of the Kando River,east ShimanePrefecture.TheKandocatchmentislocatedSWof Izumo City,and has an area of about448km2(Fig.1). Study of the Kando catchment is of particular relevance because a high dam is currently being constructed at Shitsumi.This structure will eventually isolate part of the present catchment from the downstream areas,thus modifying the volume and characteristics of sediments reaching the Sea of Japan. The purpose of this paper is to present the data obtained by XRF analysis,and to describe broad elemental abundances and variations of the fine fraction of sediments from the Kando River.Further and more detailed discussion of the results will be published elsewhere.The dataset reported here is intended to be used as comparative baseline data for similar studies of other river systems in the central San-in district,in addition to acting as a benchmark for meas皿ing future change in the composition ofthe sediment in the Kando Riveraftercompletion ofthe Shitsumi dam. *Dept.ofGeoscience,Shimane University,Matsue690-8504,Japan GeologicalOutline Although the geology of the Kando River locally complex,at a regioml scale it is relat Bedrock geology to the south(upstream)of dam site is domimted by largely Paleogene granitoids and felsic volcanic rocks(Fig.1). include granites, granites porphyries, gr ga.bbrOS,qUartZ diOriteS,and tOnaliteS,Where rocks consist of rhyolite to dacite lava and py and andesites(EBGMSP,1997).In contras stream area to the north is a more complex mainly Miocene rocks,p血cipally of the Omori,Hata,Matsue and Fujina Formations( lithostratigraphic units and their relatio subject of numerous studies with divers Takayasu,1986;Kano αα1.1989;1991;19 Morita&Nakayama,1999;Roserαα1.,2001). described in that area are varied,comprisi rhyolitic lavas and pyroclastic rocks,mafi locally derived sedimentary rocks,includ conglomerates and shales. Several tributaries of the Kando River dr consisting of dacite lavas and dacite py Mount Sanbe,located in the westem centr catchment area.Other minor lithotypes i basalt lava,dolerite,porPhyrite,and Sang and psammitic schist are scattered across the A significant contrast in source rock com exists between the areas above and below the 111

團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

  • Upload
    others

  • View
    105

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

島根大学地球資源環境学研究報告 22,111~120ページ(2003年12月)

Geoscience Rept.Shimane Univ.,22,p.111~120(2003)

團      Majorandtraceelementabundancesinthe<180μmfractionsofstreamsediments                       fromthe Kando River,ShimanePrefbcture,JaOan

Edwin Ortiz*and Ba皿y Roser*

                                       Aわstract

  Sieved fractions(<180μm)of86stream sediment samples ffom active channels of the Kando River and its tributaries

in east Shimane Prefecture were analyzed by X-ray fluorescence for major elements and l4trace elements.Histograms of

alldatashowthatdistributions aregenerallynomalorareright-skewedtoisolatedhighervalues,asistypicalforriver

sediments.Several elements(e.g.K20,Rb)have clearly bimodal distributions that are related to source.There is no

evidence of anthropogenic impacts for elements which could be affected,such as P205,Cr,Ni or Pb.The results show

clearcontrasts in the composition ofsediments collected upstream and downstream ofthe site ofthe Shitsumi dam.Those

upstream are more aluminous,andtendto have greaterabundances ofK20,P205,MnO,Na20,Ba,Ce,Nb,Rb,Th,Y and

Zr than those downstream.Conversely,Fe203T,TiO2,Sc and V are generally more abundant in samples from below the

dam site.These contrasts are related to source geology,with the catchment above the Shitsumi dam site being dominated

by granitoids and felsic volcanic rocks,and that below by mixed volcanic and sedimentary rocks ofthe Hata,Kawai-Kuri

and Omori Formations.The data clearly suggest that isolation ofthe upstream granitoid and felsic volcanic source terrane

by clos皿e of the Shitsumi dam will ultimately lead to more mafic compositions in stream sediments in the downstream

reaches of the Kando River.

Key words:Geochemistry,stream sediments,<180μm fねction,Kando River,Shimane

lntroduction

  Studies of chemical compositions of river and stream

sediments provide key baseline data that can be utilized in a

variety of geological and geoenvironmental studies.This

report contains X-ray fluorescence(XRF)analyses of the

<180μm fraction f士om 86 stream sediment samples

collected from the catchment of the Kando River,east

ShimanePrefecture.TheKandocatchmentislocatedSWofIzumo City,and has an area of about448km2(Fig.1).

Study of the Kando catchment is of particular relevance

because a high dam is currently being constructed at

Shitsumi.This structure will eventually isolate part of the

present catchment from the downstream areas,thus

modifying the volume and characteristics of sediments

reaching the Sea of Japan.

  The purpose of this paper is to present the data obtained

by XRF analysis,and to describe broad elemental

abundances and variations of the fine fraction of sediments

from the Kando River.Further and more detailed discussion

of the results will be published elsewhere.The dataset

reported here is intended to be used as comparative baseline

data for similar studies of other river systems in the central

San-in district,in addition to acting as a benchmark for

meas皿ing future change in the composition ofthe sediment

in the Kando Riveraftercompletion ofthe Shitsumi dam.

*Dept.ofGeoscience,Shimane University,Matsue690-8504,Japan

GeologicalOutline

  Although the geology of the Kando River catchment is

locally complex,at a regioml scale it is relatively simple.

Bedrock geology to the south(upstream)of the Shitsumi

dam site is domimted by largely Paleogene to Cretaceous

granitoids and felsic volcanic rocks(Fig.1).The granitoids

include  granites,  granites  porphyries,  granodiorites,

ga.bbrOS,qUartZ diOriteS,and tOnaliteS,WhereaS the VOICaniC

rocks consist of rhyolite to dacite lava and pyroclastic rocks,

and andesites(EBGMSP,1997).In contrast,the down-

stream area to the north is a more complex assemblage of

mainly Miocene rocks,p血cipally of the Kawai-Kuri,

Omori,Hata,Matsue and Fujina Formations(Fig.1).These

lithostratigraphic units and their relations have been the

subject of numerous studies with diverse foci(e.g.

Takayasu,1986;Kano αα1.1989;1991;1994;1997;

Morita&Nakayama,1999;Roserαα1.,2001).Lithotypes

described in that area are varied,comprising basaltic to

rhyolitic lavas and pyroclastic rocks,mafic intrusives,and

locally derived sedimentary rocks,including sandstones,

conglomerates and shales.

  Several tributaries of the Kando River drain catchments

consisting of dacite lavas and dacite pyroclastics from

Mount Sanbe,located in the westem central pa貰of the

catchment area.Other minor lithotypes including alkali

basalt lava,dolerite,porPhyrite,and Sangun Group basic

and psammitic schist are scattered across the area.

  A significant contrast in source rock compositions thus

exists between the areas above and below the dam,in terms

111

Page 2: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

112

Majorandtraceelementabundances inthe<180μmfractions ofstream sediments

              from the Kando River,Shimane Prefecture,Japan

STUDYAREA

6

SEA OF JAPAN

MOUNTSANBE

                    .………i§6;鍵撫難きiiii……iiiiiiき:i…ぞiiiミミミ!へ

                                  ・:1:1:::甲甲.,一:,・\\\\\\\’                       …ii縫iiiiiiiiiiiii~1……iill…………………ii蕪≧きミミ翻

          、、………………iiii儲…至、…、覇1…1難1濤,纏齢簸、二,厩1謡

…,,,,llllillll叢鶴1欝

:ヤ      =         一=煽}

莚皿萎簑瓢薫㎜㎜萎

㎜藝葦署萎㎜翌在葦㎜

釜窒㎜垂{宙羅講

…雑籔ロ¥萎聾塁漢”……

灘髪羅皿.=茎蘇…

!4彦髪\・ 一   椰W¥、 輌輔= 誕xxx

  z//髪¥二 ==一==猷¥鼎、W“、xxxx

霧雛熈.翁齢馨蕪灘熱、・

慧髪/ひ㌦;饗繍灘・蛸・…

髪饗笏灘…一一”……欝}一・議…醜、蝶

影//xx耀礁.贈….・、…………簿…霧…纏

x xx×轟     3 こ

鐵……認…縣鰻嚇.欝 .灘

“叢叢…巽9XXmXXXXX3…×X.∴~≧

嚢叢餐“x登u黙叢叢ハx護曝繋

xxxx・xxxx駁x“x猿轡m巽輝駁累一 疑……薫

}xxxx姦xxx×一8xxh^xaxxx▲咀:一塁蓑,二心▲..一一

蕩羅縫難燗、遣漢籍鰍馨……蕎

※}猿類叢叢狐瀬x‘x^甑xム昌∴’:.ム∴∴▲な員∴∴∴∴∴^“^

}           4ム   ((ム   ▲▲ ▲▲ム▲▲▲ム(

x駁数数駁駁叢叢x^響㌔¥¥孝▲.・▲▲潔“∴∴∴∴∴^▲一

          ム幽▲ム(▲(  (4ム ▲(▲((::

××XXXXXXXXXXXXX ム4畜ム止ム4轟.・ 4‘(44へ“轟

          ▲▲▲▲▲^ム4:(( ▲▲(ムム●鵠:辱

x×xxxxxxxxxxxxx ム((▲4▲止ム   (轟ム (ム(:

          ^ム(4(((( 一U(( ▲ (ム:■

XXXXXXXXXXXXXX× ム({轟轟轟轟(  :・ (▲・4ム.

  

@ ���ヘx輝輝ハ…撲“…、…一難………・… ………期灘

X X

》  25

   ●

        「

  

@ @ @ @ 

ソ

  

@ @ @ @ @ @㎜

  

@ @ @ @ @ @ @ 

d

  

@ @ @ @ @ @ @ @馨

  

@ @ @ @ @ @ @ @ @翻

  

@ @ @ @ @ @ @ @ @ @舅

  

@ @ @ @ @ @ @ @ @ @ 

@懸

  

@ @ @ @ @ @ @ @ @ @ @ @ 

|

  

@ @ @ @ @ @ @ @ @ @ @ @ @  ∞∞

Z

  

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @調

  

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ …皿

  

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @  

  

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ ㎜

  

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @■

  

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 

@翻

しEGENDStream

Samplelocation

Fault

Drainage divide

Quatemary deposits

M.Sanbe products

Alkali basalt lava

Matsue Formation

FujinaFormation

Dolerite,Basalt

Rhyolite-dacite

Omori Fonnation

Kawai-Kuri Fm

Hata Fonηation

Granitoids

Volcanic Rocks

Basic Schist(Sangun Gp)

Psammitic Sch.(Sangしm Gp

  ムムムムムムムムムム  ロ ス ド       リ レ リ ド :殿::::≧:::::::メ⊇綴λL.総}s

   ^ ム轟 ( ム▲4 ヌ ペ   ムムゆムムム   ス ペペ ベベ  ペ ペ ロ    く ン   ムと ムム ムらも ア^まxム・:‘^x^N∵^:‘=糞駁駁x糞24妻:糞ス

総li三綱三2舗驚三無 ゑべぺベドド び  ドベ ズ ヨペズ ぺ   ズ   ヌヌベズドスザデザ   ド   ス ド ロ ゑメ

綴織綴糠x類xllXllv綴ll綴糞綴駁燃鰭類、※二ゑ綴

  メ  ド    ド    サリの    り じ ゑ

XXXXX×X×XXXXXX宿P亀)二×X xx×xxXXXXXXXXX v x v、 xx x ドド  ズベドド ドメ   ズ   し リ リマ く な  

 XX×.×XXX××X×べX・ v∵v}ご XXXXX  『一 X×  XX:XXXXX×XX∴’}}∴}}}∪、“XXXXX XX XX      ズハ メ ソヤズマヤロリレ レヤ  ヨヤノん          =毛XXXXvxXも∵※ご}ごv:糞妻糞x妻 xコ6 、糞

     XXX●….、.. X.XX欝X

     iiiii灘※灘ii鋏lil驚      ×XXXXX××XX-XXXXXXXモXXXXxXズX      XXXXXXXK〆XXXXX×XXXX}XX×XXXXキ.      XXXXXXXくX×XXXXXXX》伊XX×XXX×

       XXXXXXXXX〆XX×、岬懸X鼻XX        妻li※i嚢※緬、1.xloixi・lu

          綴織真盛聡li……・、,づ糞=ll

           XXXXXXXXXXXX舎X:.・XXXX X)           xiii※i繊…i麟二1二二こ1

            ハハズ   ノび  くニ ぴゐレリマざ          糞綴織llぐ諏8 v二※こ湖x                         レ リ      ズ               ド ズ      ドあ   レ                       レ レ ソ   プ   に ズ コく ズ                 メ      リツリ

Xム w).××yxXXX葺《XXX  ×XXX其其X,X

      ×繍糊糞糞欝耀{1糞41二.ll:、x

                              ロ        ’ゴー=帽4;;:===:======一一一浴、・.

                              X X X 、く X X X                              X X X × 耳 X X l                              ズ   ヌ   ス   み よ

XXX“XXXXXXXX8XXXXXXXXXXX・v ヲVvv一(XXXX)り})※籔三1難i唾 P蕪孝1鰹撚嚇二・vliiξ}}三熱二i二二..

i銀撫黍三iiiiiiiiil濃蕪雑塞l

iii灘iii鍵iiiiii蝶lii…灘llill鞍」X  、    XXX ・,X ・,.・…X×XXXXX一}∵vv)齢}}}})

X X×又XXX×XX @X XX    XX 一×XXXX v)}v))))、))})1-1鵜(綴織1281撒糞=32:xx機…こさllll轡) X  XXXXXXXXXXXXXXX XXXXX×XX×)))))ヤ)v)v駁lx醸駁禁X駁XX駁XXX駁糞XX駁糞㌦こ〕罵{}v                           〉

四誕灘湿灘恢

跡湿螺ゆハ簗駄

鵜識………驢馬

鼓駁x))}13・v))ご※二))v㌦

       糞

       ズ  7X X X-x        x x       )

x,、 j、

p5一二蔦

17く,x x x x:33x x,×x x x

ll※i燃xii藻ド ド   ド ド  ド   ズ ロ  ぼ    レ ツ

XXXXズXXX jX× j) j) j) j) j) Av

X XXXXv})v〉 v v、)一×x『   ズ  ゑ  ベ  ス     じ  レ  リ          ヌ  ド  ス       

XXXXXX》 Xv)}v})}uv,}’)ンペ ド べ      ヤ マ リ リヤ レリ マ ロ

ズドロ ド ズ  @レやちロロロレレ ヤレ   ビ  ドベ ヤリちげげノリツじノしレ

庶x獣x綴v二15二靴v  XXXN×x唖   v)∵、

        ド                                           ロ   レ   レ   し

XXXX CXXX @XXXX}二二二二})}脚:二漏

v      X x X   } v 〉

 x x 〕【 x X    v }

x x x x x

X X x X   }

 x x   ) )

x 、   v ) v

      O

        O.51  2  3

)∪) e)v

5Km

Fig.1.Map showing thegeneralizeddistribution oflithotypes inthecatchmentofthe Kando Riverandlocation ofsample sites.

  Geology based on the1:200,000geological map of Shimane Prefecture(Editorial Board of the Geological map of Shimane

  Prefecture,1997).

Page 3: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

Edwin Ortiz and Barry Roser 113

ofboth lithotype and chemistry.It is possible,therefore,that

intermption of sediment flow down the Kando River by the

Shitsumi dam will cause a change in the composition of

both suspended sediment(very fine sand to mud)and

coarser bedload(coarse to fine sand)in the downstream

areas.

Samplingan(l Sample Preparation

Fi614Sα脚ling

  Sampling was conducted on eight days during autumn

2002(Sept.25,0ct.1,9,23,25,29,Nov.8,12).On all

except one day weather was fine,and streams were clear

and low.Rain fell on NOv.8th(samples K65-77),stream

levels were raised by10-20cm,and waters were slightly

turbid.Samples were collected with a plastic water scoop,

from active channels.Sub-samples taken over a channel

lengthof20-50mwerecombinedassinglesamplesandstoredinplastic zip-topbags.Wherepossible,both sides of

streams were sampled.

  Samples sites were selected using a1:50,000topographic

base map,to which geology had been added from the1:

200,000geological map of Shimane Prefecture(EBGMSP,

1997).Site selection was based on areal coverage,and with

the aim of sampling representative drainages containing the

range of lithotypes seen in the area.A number of samples

were also collected from the main channe1,downstream to

near the mouth of the river.Sample locations are given in

Figure1,numbered in order ofcollection.

  Sampling was not possible at some intended sites due to

lack of sand or silt-sized materia1,particularly in upland

areas.At a number of localities,samples could not been

taken exactly where desired due to lack of access,as many

smaller channels were fully-confined by steep concrete

walls.In some cases channel floors were also concreted,and

no samples could be collected.Lack of fines in channels

between successive dams or weirs at some sites also meant

that samples had to be taken from standing water behind

these structures,rather than from freely flowing channels.A

total of86samples were collected,representing a sampling

density of one sample/5.2km2.This density is considered

acceptable for the nature of the study.

S岬ρ1ερ即α醜ion

  Bulk samples collected the day before were placed in

stainless trays,and dried in a drying cabinet at80-90℃.

Each sample was then passed through a stainless steel mesh

sieve to remove granules and pebbles coarser than2mm.

That fraction was weighed and retained.The<2mm

fraction was then weighed.Total sample weights were

generally between1000and1500g,averaging1235g.The<2mm fraction was split into quarters or eighths using a

simple alumina chute.Depending on size and silt content,a

quarter or eighth split(half for2samples)was then hand

sieved through an83mesh stainless steel sieve to separate

sufficient<180μmmateria1(c.5-20g)forXRF analysis.

Onaverage,the<180μmffactioncomprised13.4%ofthe

materia1<2mm.Only in nine samples did the<180μm

fraction comprise30%ormore.

  The<180μmf士actionswerethengroundinanautomatic

agate pestle and mortar for15mimtes,and a7-8g sub-

sample placed in glass vials.These sub-samples were then

dried at110℃foratleast24hpriorto detemination ofloss

on ignition(LOI).

AmlyticalMethoαs

  Gravimetric LOI deteminations were made by weighing

the dried samples into ceramic crucibles,followed by

ignition in amuffle fumace at1000℃for atleasttwo hours.

LOI was then calculated from the net weight loss.The

ignited material was then manually disaggregated or re-

crushed in an agate pestle and mortar,and retumed to a110

℃oven for at least24hours.This ignited material was used

for preparation of the fusion beads for X-ray fluorescence

analysis(anhydrous basis).

  Analyses of m句or elements and l4trace elements(Ba,

Ce,Cr,Ga,Nb,Ni,Pb,Rb,Sc,Sr,Th,V,Y,Zr)were made

using a Rigaku RIX-2000XRF at Shimane University.All

analyses were pe㎡ormed on glass beads prepared in an

automatic bead sampler(fusion240seconds,agitation360

seconds),using an alkali flux comprising80%lithium

tetraborate and20%1ithium metaborate,with a sample to

flux ratio of 1:2.Analytical methods,instrumental

conditions and cahbration follow those described by

Kimura and Yamada(1996).Analyses were monitored by

repeat analyses of seven GSJ and USGS standards,from

new beads not included in the original calibration.The

results were verified by cross-calibration against the

recommended values for those seven standards.Additional

descriptions ofthe general methods used are given in Roser

8∫α1.(2000,2001).

Results and Discussion

  The<180μmfractionXRFdataarelistedonahydrousbasis in Table 1.LOI contents were generally low to

moderate(<10%),but sporadic high values>10%were

observed,due to the presence of significant quantities of

organic matter in some samples.Many ofthe samples with

elevated LOI values were collected from sites behind small

dams or weirs.Organic matter may be especially significant

in these samples.This will be verified by CHNS analysis.

However,some high values were also recorded from open

channel sites(Table1).

  Elemental abundances show considerable ranges,even

after nomalization to100%anhydrous to eliminate the

effect of varying LOI(Table2).The average composition

over the entire suite is similar to that of average Upper

Continental Crust,except for depletion in Nb and slight

Page 4: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

SaNr TYPE

Kl

K2K3K4K5K6★

K7K8K9★

K10Kl l

K12K13☆

K14K15☆

K16K17K18K19K20

K21K22K23K24K25★

K26K27K28K29☆

K30

K31★

K32K33K34K35K36K37K38K39K40

K41K42K43K44K45★

K46K47K48K49K50

MCBMCBMCBAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBB

Table1.M司orand traceelementanalyses ofthe<180μmfractions,Kando River(hydrous basis).M司orelementvalues weightpercent,trace elementvaluesp.p.m.

Sio2 TiO、 Al、0。Fe、0、T MnO  MgO  CaO  Na、O  K、O P、0。 LOl   TotaI Ba Ce Cr  Ga Nb Ni Pb Rb Sc Sr Th

62.93

61.74

63.40

57.59

56,97

55,81

56.03

60.68

53.09

58.03

57.41

61,03

57,39

59,37

54.61

58.04

55.33

59.28

60.53

57.77

57.70

53.29

50.98

62,80

50,56

56.31

47.15

59.29

54.75

54,00

57.12

56,90

56.80

60.20

63,19

64.02

60,11

60.70

59,04

61,88

60.30

59.75

58.60

58.88

56.76

59.21

61.87

60,61

59,97

62.91

1.08

1.06

0,67

1,07

1.54

0.87

1.43

0,66

0,62

0.64

0,84

0,86

0.44

0.82

0.53

1.07

0.51

0.83

0,46

0.93

0,52

0.58

0.40

0,70

0,39

0.55

2.06

0,60

0.66

0.57

0.59

0,53

0.58

0.46

0.38

0.40

0.43

0.93

0.69

0,65

1.00

0.83

0.79

0,81

0.63

0.57

0.95

1.12

1,29

1,33

14.32

15,21

15,77

16,20

14,46

15.37

14.88

16.26

17.86

17.10

16.60

16.39

17.10

15.66

15.20

16.08

20,08

15.86

16.30

15.99

16.22

16.11

15.90

16.42

17.40

18.68

14,28

16.32

16,73

18.06

17.39

16.62

17.60

16.77

17.33

17.25

16,25

15.59

15.65

16,26

16,65

16.15

18.44

17.50

18.70

18.50

15.21

15,61

15.40

13.87

8.33

8.98

5.53

10。58

11,34

6.93

12.11

6.86

7,08

6.74

9.49

7.30

5.26

6.11

4.28

9.03

4,88

7.70

4.51

8.72

5.77

6.93

5.70

5.67

4.85

6.30

21.05

7,02

6.28

4.68

6.21

7.74

6.15

5.14

3.84

4.05

4.53

8.13

5.97

5.78

8,28

7.77

6.50

7.77

5.13

5.70

8.28

8,59

10.05

9.82

0.18

0.19

0.14

0.27

0.25

0.20

0,32

0,33

0,14

0,45

0,35

0.25

0.26

0.16

0.12

0.26

0.19

0.23

0.24

0.34

0.48

0.64

0.51

0.23

0.18

0.30

0.43

0.36

0.24

0.17

0.23

0.34

0.17

0.23

0.13

0.14

0.20

0.25

0.18

0.22

0.22

0.23

0.18

0,32

0.16

0.26

0,20

0,20

0,19

0.20

1.18

1,29

1,14

1,03

1,41

1.06

0,97

0,88

0,99

1.01

1.12

1.15

0.75

1.04

0.84

1.23

1.13

1.25

0.98

1,30

0.96

0.99

0.84

1.14

0.95

1.24

1.28

1.05

1,28

1,12

1.18

0.99

1.22

1.41

1,28

1.28

1.25

1.25

0.99

1,15

1.53

1,25

1,09

1.42

1,12

1,03

1.35

1.22

1,43

1.06

3,04

3,21

3,26

2.17

2.21

1,82

1.82

1.82

1.63

2.15

2.45

2.53

1.70

2,52

2.02

2,64

2.97

2.79

2.60

2。94

2.30

2.39

2.35

2.98

2,52

2,81

2.15

2.67

2.72

2.26

2,57

2.90

3.14

4,78

4,63

4,32

4.43

3.04

2,47

2,81

3.20

3,06

2.22

2.85

2,60

2,57

2.47

1.53

2,87

1.66

2.83

3.21

3,08

2.52

1.58

1.28

1.95

1,99

1.54

2.10

2.73

2.58

2.21

2.19

1.79

2.52

3.09

2.98

2.62

2.80

2.40

2.20

1.84

3.57

2.37

3.23

2.63

3.37

2,43

2.23

2.66

3.13

3.35

3.62

3.87

3.85

3.55

2.99

2.18

3.08

2.52

1,98

1.68

2,32

1,99

3,00

2.37

1.86

2.23

2.12

1.95

2,11

2,35

2,58

2,40

2,44

2,46

2.89

2,23

2,36

2.33

2.95

3.14

2,39

2.44

2.44

2.10

2.24

2.52

2.24

2.34

2.14

2,08

2.46

2.08

2.35

1.93

2.54

2,11

2.13

2.40

2.18

2.32

1.56

1.71

1,81

1.71

2.27

2.06

2.36

1,62

1,42

1.35

1.76

1,30

2.69

1.65

1.09

1.46

1.44

0.11

0.14

0.13

0.17

0.15

0.21

0.19

0.19

0,35

0.27

0.15

0.15

0.18

0,16

0.19

0.20

0.16

0,15

0,13

0.17

0.21

0,24

0,25

0.12

0.23

0.20

0.18

0.21

0.23

0,36

0.23

0.25

0.15

0.29

0,18

0.21

0.23

0,12

0.12

0.14

0,12

0,14

0,12

0.14

0.23

0,10

0.14

0.16

0.12

0,11

3.57

2.85

3.97

6.09

7.23

13.97

7.49

7.62

14.54

9.34

6.25

4.77

11.46

9.82

17.53

6.51

9.28

6.57

8,48

6.68

10,71

14.54

18.71

3.81

18.47

8,38

5,66

6.66

12,43

14,64

9.32

8,73

8,39

5,30

2,24

2.45

5,71

4,58

10.62

5.63

4,65

7,39

9.21

6.32

11,52

6,63

5.35

8.15

4.90

5.55

99,52

99,99

99,43

100.25

99.53

99.97

99,65

100,18

100,08

100,19

99.72

99.97

99.91

100.23

99.55

100.03

99.72

99,87

99.36

99.88

99.62

100,04

99.55

99.90

100,00

100,35

98,79

100.08

99.85

100.20

99,90

100,30

99.88

99.76

98.79

99,77

98.41

99.86

99.96

99,94

100.08

99,98

100.18

100,10

100.12

100.24

99.84

100.12

99.91

100.08

348348358426446504422475452477

453487543411392400415366392417

462438413365388419431

446419432

466415393386411427403402380415

326347356394366389353304324307

4667521057765

120605964

10561

6962596873575766

494770686082123846559

5711773494246486951

59

41

T0S2S7

ゥ6639384848

37Q8P3R3X9X6T3R0R4S8

`刀5433215425516935181722161728555726593888487815798136昭3228σ1647204250335540

17P8P8Q0P9P7

рP817191818151716182019η侶η桿1218152021侶17171917伯1719181719171820192020202218182018

70744150001680000990889990209097987770897777707577

 1 11111111  1111  1     121 1       1       1

15

W81241娼1318142621娼32141224172948朽1312178101615351524225227491251521724181523926惚2327輯30”

24Q8

盾Q0給”梼2571918278131021⑩4033271584296給2118旭1122杷121634331627173021171525侶柑20192320

58708395971079611710097

78105114891039087899883

58419261416488153096

87898969788774555878

564749654211055404750

14.2

11.1

10.2

12.7

12.2

11.6

12,6

10,5

12.2

10.8

10.9

14.3

7.2

13.4

8.6

14,9

11.3

11.6

8.8

13.1

9.2

8.5

7.3

12.5

8.8

11,2

12.0

10,4

12,7

11.8

13.4

11.9

10.2

7.8

7.0

6.5

8.1

10.3

9.8

10.9

20.9

16.4

16.8

19.3

15.2

9,5

17.8

20,5

20,8

16,9

286422460226251

214194207167226

286256195282234269399304366358

332327268379350397259322325303

331

354405782783733703380335376

355321318330405356270193313194

7049673807

5090418222

 1 2112111

22.9

10.6

18.8

10,3

11,0

12.8

15,5

10.0

10.1

13.5

8.6

8.5

13.6

12.4

13.1

16.8

16.9

17.4

9.8

10.0

9,5

12.0

14.6

5.8

5.7

6.9

5.4

11.1

8.2

11.8

6,5

5,9

5.6

8.1

5.7

16.1

6.0

4.4

6.4

6.2

V220209107169295141

237999287

15514668

13571

20363

18459174

6086551065974

43810812085

899510074484967178132110

2141831431629998212239305264

Y17

l183525243325332830222229292529282025222338273032292924242321211211”綿23172121232122183020231919

222365246622407226395264190257

858248190213173325243219178384

1942101673351533831642325316202

252225327181

132138162360244265

188209160194137241

165161

197207

=斜

言号目きO憲。。。一聾①日ききOき8の一三ぎく一。。O交ヨ富&ogo房一お聾のa冒。日。・

  

@ 

@ 

@ 

@ 

@ 

@ 

ャヨ浮。囚帥巳o盈<①おo。げ冒き①ギ9。。εβ一巷g

Page 5: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

ぼ        カ

訓51525354555657585960616263餌65666768697071727374757677787980818283848586

SKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

E      BBBBBB    B BBBBB

瀞BBBBBBBBBBBB鵬鵬鵬鵬B㏄B鵬BBBBBBBB㏄BB鵬鵬㏄鵬㏄

2196902077023540554229059027339116469

D543305』」£β4£4お4079β7お92」4」4520557299

S6158引60邸6266615860餌62引58餌63596063引55596160引衡57576259566161615962

2838856107211464006271822792066544004

020481£756β58β97708£2£029β7£9β溜99377君

¶1t-αtOOOα0αα00αOtα011110001000001000

3813434738858160643257128204321972842

20

タ59」5β」9£」6234048」334‘82377」023£5£679

川15161316141414171616拾161615恰給恰16151416朽15給141414朽1516個朽14蔦15蔦

Fe203T 而偽3B⑲想給料⑯釧想拾葡14⑯伽湘旧辞”調”加⑬蒲祀想想創%溜舶詞伯想加背糾

MOOOOα0000α0α00000α0α0000000000000000

90

R側側瀞側⑳創価寵⑯㎜β6銘26舶葡362B23£旧多調翫側石926舶罷墾㏄βB

M111111011111111111111111101111111111

創。

フ』旧£B渥£旧朋563g』6餌葡銘£ゆ価暫26艦盈W創鶴糾餌⑳理£696釧酒26駝御苑

C121111134332223323222222222222223223

0443179894799508463967960816025388362

恥O£」7£732233099」27£342012」235β9£‘5ββ」7

N212111233333223312222222222121122222

0053190473287300248483720866585246516

~45923443£O」」34」」」97β25££453475β£777潟

 111111221222222211111111111111111111

 394503274165803346422346425554562784

qjlj」」」1122」」」2jjjljj」」1111」」」』1111」1

・0α0000αα000000000α0000αααα0000αααα0α

P α5020田”96396512202036四〇9刀950855器2668653305肝66乃肝990958裕㌫32刀95

L ■ . … 、 ・ ・ ・ ・ ・ … ‘ ・ … 

‘ ・ ・ ・ ・ … . ・ ・ , 一 ・ ・ . ・

 585058556334652475545657856158252893

    イー                                        

イー    

」一

Table1(ctd).

Total  Ba

252010266396698024366302626062486289

700‘8540」69238595」2」2770‘52溜23237£9229

99167765a8蕉6丘95587701897乳62877779666

  司一                           

1 一         イー

445650973064911438648578953018810488

2394」304」3£3』jj2222902n32」ββ227β03」9

009000000090000000090000009000900009

009000000090000000090000009000900009

11  111111一  

イー11」114一’一1  

111111  1」一」一  

11」一-

533328196834985620485452734020893637

31

S2S0R2R1

R0R8

冾R9373932424036363138363335323535353534373647403733373735

蝕415647娼42384156577148引53674755405541僧474038q353637324630引524841咽46

α4542342029343024娼団”28617716mね27483753槍2928395270嘱60373047255840朽

   1

Gはホ20181817η裕19192018191920191919柏181820相相18η16四”171817191917桿18

恥一

V97676699108把9118969688677659576688777

辿22乞60131319侶押23171011353681110”231217912伯1931292533均14241029烈8

堕伯16231220桧162321253335232531321731192021恰201819朽19旭2322102826141624

堕引5963465158857556606588828570723566585437515254娼菊323659494262555959釧

C242850280311961099143610739151276682

Sa5aa乳a嬬スαaaεtaαaααaaαtaαaa乳t蕉9α57εa5

 1111111 11 1111 21112212111211211111

r491742511575166423778392234749829207

Sね28侶191917ね55餌5858314233葡482040232623192021”1717桿3026223236272535

発翁器穏罷器酪56倒5656雛韮5939発59器

        イー  ー  イ[,  イー

V821764999823993447222172495313031135

 212517361673003206606459656176990335

 2231211 11 1121121133221113211113111

Y』232218221817捻恰13朽13232024”17202121伯2022別21柑侶檜202018201919212218

乙592211070585733328613139299832047660

 η2319252116162330颯朽19202923231725142532182015侶”281220恰15伯2816給24

Notes: SaNr=Sample number.TYPE=Catchment type;A-above dam site;B-secondary drainages belowdam site;MCB-main channel belowdam site.

LOI=loss on ignition.Astered samples were collected from behind weirs.

団O∈ぎ○昌一N帥昌O切”塁力OooO【

=い

Page 6: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

116

M勾orandtraceelementabundancesinthe<180μmffactions ofstream sediments

           from the Kando River,Shimane Prefecture,Japan

Table2.Summary statistics for all<180μm fraction samples

  (anhydrous normalized data).Nニ86.

Element  Mean  Min   Max  SDp 10

M司りrθ,θmeηfS碑%ノ

Sio、

Tio、

Al,O,

Fe、O、T

MnOMgOCaONa、O

K,O

P、O,

64.23

0,92

17,43

8.04

0,24

1.30

2,83

2.70

2.14

0,18

πaoe e,θmθηfsρρmク

50.63

0.39

14.67

3.98

0.10

0.85

1.62

1.49

1,18

0,11

324.5

33.0

10.8

15.1

  5.2

  7.9

  5.0

34.4

  6.7

182.9

  2,4

49,9

11.6

136.3

69.89

2.21

22,20

22,60

0.75

2.06

5,06

4,01

3.55

0.42

614.2

132,0

141.3

  23.5

  23,9

  63.6

  42,7

129.1

  23.7

828,2

  30.7

470.5

  46,8

1762.7

2.46

0.35

1,58

2.53

0.11

0.20

0.68

0,59

0,50

0.06

61,1

20,4

23.9

  1.3

  2.7

12,8

  7.3

23,9

  4,3

142.2

  5.1

83,4

  6,4

196,1

1

0.1

0.01

Kando Riverく180岬average/UCC

aerabibbCrh  r

BCCGNNPRSSTVYZ

422.7

60,9

45.1

19,7

  9,1

23.1

21.3

75,7

14,7

349.6

10.1

172.1

23.6

275.7

MinimumMaximumPopulation standard deviation

Nb Pb U K Ca Zr Th Na Sr Rb M◎La Ce Si Al Ba Sc Y FもTi Ni Cr V

Fig.2.Multi-element plot showing the average composition

  (anhydrous normalized)of the<180μm fractions from the

  Kando River(data from Table2)normalized against the Upper

  Continental Crust(UCC)averageofTaylor&McLennan(1985).

  Elements are arranged from left to right in order of increasing

  normalized abundancein average Mesozoic-Cenozoic greywacke

  (Condie1993)relative to UCC,following the methodology of

  Dinelliαα1.(1999).The m句or elements are normalized as

  oxides.

Min

MaxSDp

enrichment in Zr(Fig.2).The largest departure from UCC

composition is seen among the elements linked with mafic

minerals phases or mafic igneous detritus,which increase

fromleftto rightin the segment Sc-V.

  Histograms of anhydrous-no㎜alized major element

abundances show the data for a number of elements(SiO2

(Fig.3a),Fe203T,MnO,P205)resemble normal distribu-

tions,but all show some anomalous values.One sample

(K27)has very low SiO2(50.63%),which is caused by

marked enrichment in Fe203T(22.60%),TiO2(2.21%),and

MnO(0.46%),presumably through Fe-Ti-Mn oxide heavy

mineral concentration or authigenic crust materia1.MnO

(Fig.3b)and TiO2are strongly skewed to higher values,as

is P205.The distribution ofK20is clearly bimoda1(Fig.3c);

this may also be the case forMgO and CaO.A1203(Fig.3d)

and Na20 contents show considerable variation,with

polymodal distributions and skew to highervalues.

  Among the trace elements,two elements(Ba(Fig.4a),

Pb)show relatively normal distributions,with little

evidence of skewing or anomalous values.The remainder

show moderate or marked skew to higher values.This is

mostpronounced forCe,Cr,Ni,Th,V,and Zr(Fig.4b),for

which a small number of samples have contents more than

two standard deviations from the mean.The most

anomalous values forZr(1762ppm),V(471ppm),Ce(132

ppm)are seen in sample K27,which also has the extreme

values ofFe,Ti andMn,as noted above.The distribution of

the Rb data is clearly bimoda1(Fig4c),with the two modes

split almost equally about the mean.Weak tendency for

polymodality is also seen in the Ga(Fig.4d),Nb,and Sr

distributions.

  The results of this study provide baseline data for the

<180μm fraction of stream sediments from the Kando

River.The generally norma1,right-skewed distributions are

typical offfactions taken from river sediments.Most ofthe

elements analyzed to date are not prone to m句or

disturbances from anthropogenic so皿ces,with the possible

exception of P205(from fertilizer),and metallic elements

such as Cr,Ni,and Pb.The abundances of all four of these

elements are unexceptiona1,and hence there is no clear

evidence of influence from human activity. The

compositions observed thus primarily reflect that of the

source rock types,and of the soils developed on them.

Skewed distributions are predictable,as are occasional

anomalous values exceeding two standard deviations from

the mean.In this case,anomalous values ofFe,Mn,Ti,Ce,

Cr,Ni,Th,V,Y and Zr are most likely due to

concentrations ofhigh-density accessory minerals.Probable

phases involved include the Fe-Ti oxides which formed the

basis ofthe historic iron industry in the area(Fe,Ti,Cr,Ni,

V),fragments of authigenic or pedogenic Fe-Mn oxide

coatings,and heavy minerals such as zircon and apatite(Ce,

Th,Y,Zr)that occur in the granitoids.High values for each

ofthese groups are commonly contained in single samples。

  Heavy mineral concentration cannot,however,explain

Page 7: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

Edwin Ortiz and Ban甲Roser 117

25

20    『「)         0

    イー               -

のΦ五E田も」2EコZ

5

0

(a)Sio2

Mean64.23

Min50.63

Max69.89

Std Dev2.46

2sd

x

50   52   54   56   58   60   62   64   66   68   70

25

20

15

10

5

x

2sd

(b)MnO

Mean O.24

Min O.10

Max O.75

Std Dev O.11

0.04  0.12  0.20  0.28  0.36  0.44  0,52  0.60  0.68  0.76

0

25

20

    5         0

    1                1

のΦ五∈霧ち」2∈コZ 5

0

0

(c)K20

Mean2.14

Min1.18

Max3.55

Std De》0.50

x

2sd

.6    1,0    1.4    1,8    2.2    2.6    3.0    3,4    3.8

           wt%oxide

25

20

15

10

5

x

(d)A1203

Mean17.43

Min14.67

Max22.2

Std Dev1.58

2sd

 14   15   16   17   18   19   20   21   22   23

            wt%oxide

O

Fig.3.Examples of histograms of m勾or element abundances(anhydrous normalized data)in the<180

  μm fraction,Kando River.Min=minimum;Max=maximum;Std Dev=standard deviation;vertical

  bar x=mean;horizontal bar(2sd)ニ±2standard deviations from the mean.(a)SiO2-no㎜al

  distribution;(b)MnO-skewed to higher values;(c)K20-bimoda1;(d)A1203-considerable variation

  with polymodality and skew to higher values.

the tendency forbimodality seen for some elements,such as

Mg,K,Ga,and Rb,which are nomally concentrated in

clays or low-density silicate phases.Such elements are more

likely to be controlled by the composition of so皿ce

lithotypes.The Kando catchment is almost equally divided

between Paleogene to Cretaceous granitoids and felsic

volcanics in the south,and a mixed assemblage of Hata,

Kawai-Kuri and Omori Formation volcanics and sediments

in the north,along with small amounts of mafic rocks.

Consequently,the watershed above the new dam site is

primarily felsic,and that below somewhat more mafic.As a

first step in examining the influence of so皿ce rock

lithotype,we have divided the sample sites into three

categories:

(1).Sites above the dam site(all sites upstream of Site3),

    representing the total catchment forthe new dam.

(2).Mainchannel sitesbelowthedam site(3,63,64,2,66,

    65,68,1,79,82,83,84-86),which now carry

    granitoid-derived material originating from above site

    3,and material from secondary catchments below the

    dam site.

(3).Secondary drainages below the dam site.These

catchments will form the main source of sediment after

completion ofthe dam.

  Simple element-A1203 variation diagrams reveal

significant differences in the chemistry of the samples in

each category.The first feat皿e ofthe m勾or elements is that

the<180μm fractions above the dam site are generally

more aluminous(>17wt%)than those in the main channel

or in the secondary drainages below the dam site(Fig.5).

Althoughthere is littledifferenceinCaO(Fig.5a)andMgO

between the three categories,some contrasts are evident for

the remaining major elements,although overlap is

considerable.Fe203T(Fig.5b),TiO2,and to a lesser extent

SiO2are generally more abundant in samples from below

the dam site,especially when A1203contents are low(<

17%).Main channel samples below site3tend to have

intermediate values.In contrast,K20,P205(Fig.5c;d),

MnO and to some extent Na20show greater values above

thedam site.Mainchannel samples are againintermediate.

  Trace element abundances also show some clear contrasts

between the groups.Th,Rb(Fig.6a;b),Ba,Ce,Nb,Y and

Zr show clear enrichment in the fractions collected above

Page 8: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

118

M勾orandtraceelementabundancesinthe<180μmfractionsofstreamsediments

              丘om the Kando River,Shimane Prefecture,Japan

25

20

    5          0

    1             1

のΦ五E⑩29$∈コZ

5

0

(a)Ba

Mean423

Min325Max614

Std De〉61

x

2sd

450    500   550   600   650

30

25

20

15

10

5

0

x

1 (b)Zr

Mean276

Min136Max1763

Std Dev196

25d

250 300 350  400 0 200   400   600   800  1000  1200  1400  1600  1800

25

20

    5         0

    イー             -

ωΦ五∈0222∈コZ

5

(c)Rb

Mean76

Min34Max129

Std Dev24

x

2sd

25

20

15

10

5

x

(d)Ga

Mean19.7

Min15.1

Max23,5

Std Dev1.3

2sd

    2030405060708090100110120130  1415161718192021222324                      ppm                      ppm

Fig.4.Examples ofhistograms oftrace element abundances(anhydrous normalized data)in the<180,αm

  fraction,Kando River.Min=minimum;Max=maximum;Std Dev=standard deviation;vertical barx

  =mean;horizontal bar(2sd)=±2standard deviations from the mean.(a)Ba&nd(b)Zr-relatively

nomaldistributionswithskewtohighervalues;(c)Rb-bimodal;(d)Ga-polymodaL

                                              o   O

6

」冊              【∠

Φ窟×O雷峯

 140

(a)CaO

●▲

●●●

● aboveO MC beIow▲ beIow

       ム         ム       ム

羅鰍:…皇二3●●

   ▲       ○     ●L    ●▲     ●     ●▲▲ ▲   ▲   ▲

16 18 20 22 24

16

12

8

4

 140

(b)Fe203T  ▲   ●

   ●      ▲

ム          

▲8 あ  鬼   o▲▲幽8

卜難い㍗.         ▲●●

16 18 20 22 24

4

     2

Φロ×Oま崖

 140

(c)K20

           

、よ.:纏3

▲免』鬼籔        ▲ ▲ ▲▲

  ●

 ●

 、

 ●

▲●, 

3

▲   ▲

16 り         

wt%AI20322 24

0.4

0.2

0.0

(d〉P205♂

    ●

 ●

  ▲

   ● 

●    ▲

 も●●

8  ▲

     ▲

  ●

 ●● ▲

.確蒙

  

@副畢

    ●O▲

    ● ▲

     ▲

      Oo

     ▲▲

14 16 ま        

wt%A120322 24

Fig.5.Examples ofmajor element-A1203variations in the<180μm fraction(anhydrous no㎝alized data),

  Kando River,according to position w童th respect to the dam site.MC below=main channel below the

  dam site.(a)CaO-little difference between groups;(b)Fe203T-greater abundances in samples fヤom

  below the dam site;(c)K20and(d)P205-greater abundances in samples from above the dam site.

Page 9: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

Edwin Ortiz and Barry Roser 119

40

30

∈Ω.20α

10

 140

(a)Th

● aboveO MC bebw▲ beIow

         ●

       ●             ●

  ●       ●         ●              ひ                                 

。懲=㌻●・▲く~垂尾鱒、 ▲▲

      ▲

16 18 20 22 24

120

80

40

 140

   ●

 ●

   ●    ▲

 ● 

 ●   ▲

 ▲●

● ●0

  ● ●▲

●    ▲

   ●●   ▲

%%電.。翫滞へ

   象。庵

b●  ∬▲▲亀

R● o ▲

)   

● ▲

b ▲ も ▲

(    ▲

40 30

16

30

∈Ω.20α

10

18 20 22 24

(c)Sc

    ▲集  ▲        へ▲ ▲

 ▲▲塗         ▲

全輝凝.3:.‘.・

       ひ馨●▲・8

20

(d)Ga

  ●    ▲      2

、δ、:蕊齢2・・.

q ▲           ●

     て          ね                    て     て     り                  

                wt%A1203            wt%A1203

Fig.6.Examplesoftraceelement-A1203vari&tionsinthe<180μmffaction(anhydrousnormalizeddata),

 Kando River,according to position with respect to the dam site.MC below=main chamel below the

 dam site.(a)Th and(b)Rb-greater abundances in samples ffom above the dam site;(c)Sc-greater

 abundances in samples ffom below the dam site;(d)Ga-little difference between groups.

                                    10    0

the dam site.This association of elements is compatible

with the granitoid and felsic volcanic source at these sites,

and the greater concentration of K20in the samples of this

group.Contents of Cr,Ni,and Sr also tend to be a little

greater in that group,but the distinction is not as clear-cut.

In the secondary drainages below the dam site,Sc(Fig.6c)

and V abundances are clearly greater than those above the

dam site or in the main channe1,consistent with their

enrichment in Fe203T and TiO2.Only Ga(Fig.6d)and Pb

show little contrast between the three groups.

  In all the variation diagrams,samples from the main

channel fall between the distributions of those from above

and below the dam site.This reflects mixing of detritus

derived from the lithologically varied catchments in the

lower area with granitoid-felsic volcanic detritus derived

from upstream.This and the clear associations of elements

with each group suggest that source lithotype is the main

determinant ofbulk composition.

Conclusions

  Bulk chemical compositions of<180μm fractions in

sediments from the Kando River and its tributaries reflect

thenatureoftheirsourcelithotypes.Aclearcontrastin

composition exists between sediments derived from

granitoids and felsic volcanics in the south(upstream of the

Shitsumi dam site)with those from more varied and more

mafic lithotypes(Hata,Kawai-Kuri and Omori Formations)

in the north.Isolation of the felsic catchments in the south

by completion ofthe Shitsumi dam will inevitably lead to a

shift in the composition of sediments in the Kando River

below the dam site,toward a more mafic character.

Acknowle“gements

  This work was part of a collaborative project with The

Tokuoka Laboratory for Study of Brackish Water

Environments,Matsue.Our thanks to Takao Tokuoka for

suggesting the project and for facilitating it,and to Masami

Saito (Tokuoka Laboratory) for her help with

administration.We are also grateful to Miwa Akashi and

Minoru Oono of Takeshita Engineering Consultant Co.for

their invaluable assistance during field work.

References

Condie,K C.1993:Chemical composition and evolution of the upper

 continental cmst:Contrasting results from surface samples and shales.

 Ch8n¢∫cαl Gεology,104,1-37.

Dinelli,E;Lucchini,F.;Mordenti,A.;Paganelli,L.1999:Geochemistry of

 Oligocene-Miocene sandstones of the northen Apennines(Italy)and

 evolution of chemical feat皿es in relation to provenance changes.

 S84’〃18n∫αぢソG80109』y,127,193-207.

Editorial Board ofGeological map ofShimane Prefecture(EBGMSP)1997.

 Geological map ofShimane Prefecture(1:200,000).

Kano,K,Takeuchi,K.,Oshima,K and Bunno,M.1989.Geology of the

 Taisha district.With geological sheet map at a scale of1:50,000.

 Tsukuba,Geological Survey of Japan,30p.*

Kano,K.,Takeuchi,K.,and Matsuura,H.199L Geology of the Imaichi

 district With geological sheet map at a scale of1:50,000.Tsukuba,

 Geologica1SurveyofJapan,7gP.*

Page 10: 團 Majorandtraceelementabundancesinthe ......XXXXCXXX@XXXX }二二二二})}脚:二漏 v X x X } v 〉 x x 〕【 x X v } x x x x x X X x X } x x ) ) x 、 v )

120

Majorandtraceelementabundances in the<180μmfractions ofstream sediments

       from the Kando River,Shimane Prelect皿e,Japan

Kano,K.,Yamauchi,S.,Takayasu,K.,Matsuura,H.and Bunno,M.1994。

 GeologyoftheMatsue district、With geologic&l sheetmap ata scale of1:

 50,000.Tsukuba,Geological Survey of Japan,126p、*

Kano,K.,Matsuura,H.,Sawada,Y.,andTakeuchi,K.1997.Geology ofthe

 Iwami-Oda and Oura districts.With geological sheet map at a scale of1:

 50,000.Tsukuba,Geological Survey ofJapan,118p.*

Kimura,J.一1.and Yamada,Y.1996.Evaluation of major and trace element

 analyses using a flux to sample ratio of two to one glass beads・/0μrnα1げ

 ルf’n8rology,P8孟rologyαn4E60no碗cG80108y,91,62-72.

Morita,H.and Nakayama,K.1999.Stratigraphy of the Middle Miocene in

 southwestempartofIzumo City in ShimanePrefect皿eofSWJapan,and

 subsiding properties of its sedimentary basin.G80so’8ncθ、R8poπsげ

 Sh〃nαnεUn∫v8rs妙,18,25-39.*

Roser,B.P.,Tateishi,Y.and N段kayama,K.200L Whole-rock geochemical

 compositions ofMiocene sedimentary and volcanic rocks from the Izumo

 一Matsue districts and Shimane Peninsula,SW Japan.G80sc18ncεR8por∫s

 げSh’n観n8Un’v8rs∫乏y,20,69-82.

Roser,B.P.,Kimura,J.一1.,and Hisatomi,K.2000.Whole-rock elemental

 abundances in sandstones and mudrocks from the Tanabe Group,Kii

 PeninSUla,Japa.n.G80SC∫8nC6RεpOπSαSh枷αn8Un∫V8rS∫乏y,19,101-

 112.

Takayasu,K.1986.Diversification in the molluscan faum of the Miocene

 Izumo Group,San-in district,southwest Japan.Pα180n∫ologioαl Soc∫⑳げ

 」αPαn5確’αIP叩8r,29,173-186.

Taylor,S.R.and McLenmn,S、M l985.丁加60n枷8η孟α!crμs∫ゴ∫s

 co’npos観onαn48vol碗’on.Oxford,Blackwell Scientific,312pp.

In Japanese,English abstract or summary*

(Received:Oct.31,2003,Accepted:Dec.12,2003)

(要 旨)

エドウィン・オルティス、パリー・P・ロザー、2003、島根県神戸川における<180μm画分河川堆

積物の主成分微量成分組成,島根大学地球資源環境学報告,22,111-120.

  神戸川とその支流から86の堆積物試料を採取し,180μm画分を篩い分けてXRF分析を行った.

 全体の組成は河川堆積物に特徴的な元素分布を示すが,K,0やRbについてはバイモーダルな分布

 を示した.組成は志津見ダムの上流と下流で顕著な差を示す.下流の組成はより塩基性成分が卓越

 することを示している.このダムの上流には酸性の珪長質岩が分布し,下流には波多・川合一久利,

 大森層の中性火山岩が露出する.志津見ダムによって上流の酸性火山岩フラックスが下流で妨げら

 れていることが,下流域の塩基性成分の富化の原因であると結論づけられる.