15
Oikos OIK-01215 Bracken, M. E. S., Hillebrand, H., Borer, E. T., Seabloom, E. W., Cebrian, J., Cleland, E. E., Elser, J. J., Gruner, D. S., Harpole, W. S., Ngai, J. T. and Smith, J. E. 2014. Signatures of nutrient limitation and co-limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. – Oikos doi: 10.1111/oik.01215 Appendix 1–3

Oikos OIK-01215 - Oikos Journal | Synthesising ecology ·  · 2014-09-16Oikos OIK-01215 Bracken, M. E. S., Hillebrand, H., Borer, ... 0.136 0.196 3.636 A22 62 M Peri MS - - - - -

Embed Size (px)

Citation preview

Oikos OIK-01215

Bracken, M. E. S., Hillebrand, H., Borer, E. T., Seabloom,

E. W., Cebrian, J., Cleland, E. E., Elser, J. J., Gruner, D. S.,

Harpole, W. S., Ngai, J. T. and Smith, J. E. 2014.

Signatures of nutrient limitation and co-limitation:

responses of autotroph internal nutrient concentrations to

nitrogen and phosphorus additions. – Oikos doi:

10.1111/oik.01215

Appendix 1–3

Appendix 1. Studies included in the meta-analysis Table A1. Studies and data in the meta-analysis N P N +P

# System† Type Sample‡ %N %P Bio %N %P Bio %N %P Bio Cite

1 F Plant SS 0.535 -0.092 0.467 -0.080 0.670 -0.120 0.508 0.751 1.455 A3

2 F Plant SS 0.597 -0.399 0.532 -0.069 0.289 -0.253 0.588 0.299 1.537 A3

3 F Plant SS -0.116 -0.163 -0.449 - - - - - - A4

4 F Plant SS -0.001 0.000 -0.167 - - - - - - A4

5 F Plant SS -0.103 0.167 -0.588 - - - - - - A4

6 F Plant SS -0.294 -0.087 -0.904 - - - - - - A4

7 F Plant SS - - - - - - 0.360 - 1.205 A11

8 F Plant SS - - - - 0.411 0.182 - - - A42

9 F Cyano MS -0.084 -0.172 0.213 0.124 0.693 0.874 0.323 0.793 1.315 A35

10 F Cyano MS 0.010 0.125 0.039 0.084 0.964 1.226 0.174 1.076 1.251 A35

11 F Cyano MS -0.049 -0.029 0.387 0.141 0.851 1.445 -0.054 0.396 1.800 A35

12 F Peri MS - 0.186 -0.172 0.744 2.303 -2.833 0.714 2.027 -1.964 A10

13 F Peri MS - - - - 0.492 0.346 - - - A13

14 F Peri MS - - - - 0.430 0.505 - - - A13

15 F Peri MS - - - - - - -0.096 -0.071 0.121 A23

16 F Peri MS - - - - - - -0.119 -0.086 -0.736 A23

17 F Peri MS - - - - - - 0.419 0.104 1.149 A22

18 F Peri MS - - - - - - 0.088 0.485 -0.192 A22

19 F Peri MS - - - - - - -0.010 0.266 0.436 A22

20 F Peri MS - - - - - - 0.063 0.284 0.455 A22

21 F Peri MS - - - - - - -0.067 -0.166 -0.197 A22

22 F Peri MS - - - - - - -0.277 0.568 -0.549 A22

23 F Peri MS - - - - - - -0.005 0.497 0.510 A22

24 F Peri MS - - - - - - -0.052 0.580 0.200 A22

25 F Peri MS 0.098 -0.266 1.152 0.048 1.054 0.188 -0.061 0.543 0.127 A27

26 F Peri MS - - - - - - 0.391 0.919 2.395 A26

27 F Peri MS - - - - - - -0.044 0.085 0.077 A29

28 F Peri MS 0.086 -0.435 0.248 0.344 0.211 0.444 0.523 0.432 0.561 A38

29 F Peri MS - - - - - - 0.787 0.258 0.686 A37

30 F Peri MS 0.294 0.649 0.380 0.060 1.604 -0.122 0.361 1.985 0.114 A43

31 F Phyto MS - - - - - - 0.177 0.192 0.505 A19

32 F Phyto MS - - - - - - 0.245 -0.091 0.566 A19

33 F Phyto MS - - - - - - 0.244 0.443 0.581 A19

34 F Phyto MS - - - - - - 0.132 0.344 0.838 A19

35 M Seagrass SS -0.031 -0.122 - -0.141 -0.083 - -0.106 -0.261 - A1

36 M Seagrass SS 0.060 -0.057 0.366 0.000 0.231 0.367 0.060 0.355 0.590 A1

37 M Seagrass SS 0.072 -0.288 -0.200 0.021 0.405 0.098 0.052 0.318 0.512 A1

38 M Seagrass SS 0.046 0.000 0.047 0.098 1.253 0.747 0.139 0.724 0.946 A1

39 M Seagrass SS -0.021 0.036 0.433 0.061 0.711 0.507 0.091 0.465 0.575 A1

40 M Seagrass SS 0.112 0.129 0.445 0.058 1.277 0.837 0.112 0.727 0.838 A1

41 M Macrolgae SS 0.781 -0.227 0.116 -0.140 2.646 -0.399 0.626 1.858 0.226 A28

42 M Macrolgae SS 0.778 -0.129 0.287 -0.122 2.698 -0.399 0.643 2.076 0.510 A28

43 M Macrolgae MS 0.635 - 0.084 - - - - - - A20

44 M Macrolgae MS 0.448 - -0.023 - - - - - - A20

45 M Macrolgae MS 0.438 - 0.353 - - - - - - A20

46 M Macrolgae MS 0.117 - -0.056 - - - - - - A20

47 M Macrolgae MS 0.400 - 0.268 - - - - - - A20

48 M Macrolgae MS -0.063 -0.135 -0.148 -0.063 0.192 -0.076 0.251 0.011 -0.328 A1

49 M Macrolgae MS 0.104 -0.206 0.302 -0.116 0.123 0.727 0.095 0.212 0.419 A1

50 M Macrolgae MS 0.142 -0.301 0.140 0.046 0.905 -0.753 0.101 0.738 -0.606 A1

51 M Macrolgae MS 0.198 0.353 0.112 -0.056 0.316 0.853 -0.028 0.599 0.389 A1

52 M Macrolgae MS -0.163 -0.395 -0.354 0.107 0.900 0.209 0.172 0.498 0.461 A1

53 M Macrolgae MS 0.640 - 0.133 -0.051 - -0.091 0.692 - 0.275 A44

54 M Macrolgae MS 1.053 - 0.273 0.005 - -0.096 1.202 - 0.323 A44

55 M Macrolgae MS 0.298 - 0.387 -0.058 - -0.220 0.632 - 0.237 A44

56 M Macrolgae MS 0.810 - 0.414 -0.022 - -0.220 0.896 - 0.429 A44

57 M Peri MS - - - - - - 0.001 0.280 -0.185 A8

58 M Peri MS - - - - - - 0.010 -0.073 0.345 A8

59 M Peri MS - - - - - - -0.041 -0.266 0.176 A8

60 M Peri MS - - - - - - -0.039 0.542 1.333 A22

61 M Peri MS - - - - - - 0.136 0.196 3.636 A22

62 M Peri MS - - - - - - -0.018 0.277 1.977 A22

63 M Peri MS - - - - - - -0.015 0.496 0.355 A22

64 M Peri MS - - - - - - -0.098 -0.163 1.293 A22

65 M Peri MS 0.075 0.131 1.208 0.033 0.849 0.514 0.070 -0.204 1.498 A21

66 M Peri MS 0.112 -0.009 3.326 0.126 -0.057 1.494 0.093 0.508 2.542 A21

67 M Peri MS 0.035 -0.879 2.843 -0.016 -0.068 -0.009 0.053 -0.299 1.354 A21

68 M Peri MS 0.023 -0.827 0.024 0.066 0.552 0.178 0.088 -0.653 2.267 A21

69 M Peri MS -0.134 -0.505 1.095 -0.006 0.243 0.257 -0.007 -0.128 0.051 A21

70 M Peri MS 0.040 -0.223 0.998 0.079 0.199 -0.615 -0.004 0.323 0.195 A21

71 M Peri MS - - - - - - -0.017 0.371 -0.299 A21

72 M Peri MS - - - - - - -0.021 -0.031 0.329 A21

73 M Peri MS - - - - - - 0.001 -0.286 0.898 A21

74 T Tree SS 0.038 - 0.642 0.129 - -0.579 0.050 - 1.360 A25

75 T Grass SS 0.232 -0.399 0.120 0.160 0.124 -0.051 -0.006 -0.068 0.422 A12

76 T Grass SS 0.170 0.207 1.340 0.090 0.940 0.072 -0.018 0.963 1.934 A40

77 T Grass SS 0.263 -0.700 1.023 0.039 0.656 -0.182 0.170 0.573 1.611 A40

78 T Grass SS -0.049 -0.120 -0.228 -0.185 0.588 0.883 0.000 0.428 0.937 A9

79 T Tree SS 0.223 - - - - - - - - A7

80 T Tree SS 0.296 - - - - - - - - A7

81 T Tree SS 0.091 -0.019 0.253 0.044 0.428 0.097 0.066 0.440 0.365 A48

82 T Herb SS - - - - - - -0.065 0.705 0.604 A33

83 T Bryophyte SS 0.401 - 0.015 0.328 - 1.365 0.206 - 1.749 A24

84 T Bryophte SS 0.048 - 0.806 0.038 - 4.104 0.014 - 3.341 A24

85 T Grass SS 0.136 1.696 - 0.055 0.140 - 0.165 1.649 - A36

86 T Grass SS 1.399 -0.479 0.093 1.001 0.307 0.551 1.026 0.317 0.655 A32

87 T Grass SS - - - - - - 0.002 0.637 0.858 A33

88 T Grass SS 0.202 -0.274 0.870 0.041 0.079 -0.056 0.302 -0.008 0.837 A14

89 T Grass SS 0.300 - 0.088 - - - - - - A5

90 T Tree SS 0.165 -0.034 0.455 0.044 0.065 -0.829 - - - A15

91 T Tree SS 0.180 -0.039 1.531 0.043 0.297 1.042 - - - A15

92 T Tree SS 0.264 0.051 1.043 0.070 0.706 2.982 - - - A15

93 T Tree SS -0.059 -0.391 -0.243 -0.059 -0.309 -0.134 0.067 0.084 -0.107 A16

94 T Tree SS - 0.045 0.334 - 0.399 0.189 - 0.138 0.460 A17

95 T Tree SS 0.105 - 2.472 -0.014 - 1.682 0.067 - 3.018 A34

96 T Tree SS - -0.105 2.236 - 0.824 1.882 - 0.491 3.007 A34

97 T Tree SS 0.166 -0.147 1.627 0.012 0.221 1.008 0.245 0.100 1.705 A47

98 T Tree SS 0.014 -0.061 1.758 -0.064 0.348 1.030 0.027 0.174 1.946 A47

99 T Tree SS 0.119 -0.035 0.262 - - - - - - A47

100 T Grass MS 0.479 0.072 0.525 -0.060 1.774 0.159 0.143 1.467 0.989 A41

101 T Grass MS 0.581 -0.700 0.251 0.008 0.656 1.069 0.608 0.573 1.175 A9

102 T Tree MS 0.296 - -0.813 - - - - - - A49

103 T Tree MS 0.048 -0.276 - -0.070 0.751 - 0.103 0.518 - A32

104 T Tree MS 0.130 -0.011 - -0.014 1.166 - 0.130 0.882 - A32

105 T Herb MS 0.345 -0.115 0.391 0.237 0.375 0.281 0.052 0.252 0.763 A33

106 T Grass MS 0.263 - 0.149 - 0.118 -0.194 - - 0.213 A2

107 T Grass MS 0.245 -0.096 0.486 0.047 1.299 0.091 0.225 0.469 1.017 A6

108 T Grass MS 0.096 0.047 0.356 -0.042 0.618 0.308 0.102 0.686 0.608 A6

109 T Bryophyte MS 0.768 0.751 0.000 -0.110 1.210 0.118 0.773 1.715 0.318 A18

110 T Tree MS 0.978 -0.036 0.836 -0.011 0.593 0.615 1.015 1.096 2.048 A32

111 T Herb MS - - - - - - 0.215 - 0.015 A31

112 T Tree MS - - - - - - 0.205 - 0.935 A39

113 T Bryophyte MS 0.128 -0.105 0.024 0.125 0.449 0.321 0.207 0.562 0.000 A46

114 T Bryophyte MS -0.225 -0.305 0.220 -0.230 0.051 -0.049 0.104 0.254 -0.024 A46

115 T Tree MS 0.224 - -0.438 - - - - - - A49

116 T Tree MS -0.029 0.366 -0.066 0.184 -0.181 0.285 0.246 0.244 0.599 A25

117 T Tree MS 0.134 - 0.222 - - - - - - A45

118 T Tree MS 0.055 - 0.301 - - - - - - A45

†F = Freshwater, M = Marine, T = Terrestrial ‡SS = Single Species, MS = Multiple Species

Literature Citations

A1. Armitage, A. R., Frankovich, T. A., Heck, K. L. and Fourqurean, J. W. 2005. Experimental

nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae

community structure in Florida Bay. - Estuaries and Coasts 28: 422-434.

A2. Bennett, L. T. and Adams, M. A. 2001. Response of a perennial grassland to nitrogen and

phosphorus additions in sub-tropical, semi-arid Australia. - Journal of Arid Environments 48:

289-308.

A3. Best, E. P. H., Woltman, H. and Jacobs, F. H. H. 1996. Sediment-related growth limitation

of Elodea nuttallii as indicated by a fertilization experiment. – Freshwater Biology 36: 33-44.

A4. Boedeltje, G., Smolders, A. J. P. and Roelofs, J. G. M. 2005. Combined effects of water

column nitrate enrichment, sediment type and irradiance on growth and foliar nutrient

concentrations of Potamogeton alpinus. – Freshwater Biology 50: 1537-1547.

A5. Bowman, W. D., Gartner, J. R., Holland, K. and Wiedermann, M. 2006. Nitrogen critical

loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? - Ecological

Applications 16: 1183-1193.

A6. Bowman, W. D., Theodose, T. A., Schardt, J. C. and Conant, R. T. 1993. Constraints of

nutrient availability on primary production in two alpine tundra communities. - Ecology 74:

2085-2097.

A7. Britton, A. J., Helliwell, R. C., Fisher, J. M. and Gibbs, S. 2008. Interactive effects of

nitrogen deposition and fire on plant and soil chemistry in an alpine heathland. - Environmental

Pollution 156: 409-416.

A8. Castenholz, R. W. 1961. The effect of grazing on marine littoral diatom populations. -

Ecology 42: 783-794.

A9. Chiang, C., Craft, C. B., Rogers, D. W. and Richardson, C. J. 2000. Effects of 4 years of

nitrogen and phosphorus additions on Everglades plant communities. – Aquatic Botany 68: 61-

78.

A10. Craft, C. B., Vymazal, J. and Richardson, C. J. 1995. Response of Everglades plant

communities to nitrogen and phosphorus additions. - Wetlands 15: 258-271.

A11. Cronin, G. and Lodge, D. M. 2003. Effects of light and nutrient availability on the growth,

allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two

freshwater macrophytes. - Oecologia 137: 32-41.

A12. D'Antonio, C. M. and Mack, M. C. 2006. Nutrient limitation in a fire derived, nitrogen rich

Hawaiian grassland. - Biotropica 38: 458-467.

A13. Daoust, R. J. and Childers, D. L. 2004. Ecological effects of low-level phosphorus

additions on two plant communities in a neotropical freshwater wetland ecosystem. - Oecologia

141: 672-686.

A14. Darby, F. A. and Turner, R. E. 2008. Below-and aboveground Spartina alterniflora

production in a Louisiana salt marsh. - Estuaries and Coasts 31: 223-231.

A15. Feller, I. C., McKee, K. L., Whigham, D. F. and O'Neill, J. P. 2002. Nitrogen vs.

phosphorus limitation across an ecotonal gradient in a mangrove forest. - Biogeochemistry 62:

145-175.

A16. Fox, L. R. and Morrow, P. A. 1992. Eucalypt responses to fertilization and reduced

herbivory. - Oecologia 89: 214-222.

A17. Gleeson, S. K. and Good, R. E. 2003. Root allocation and multiple nutrient limitation in the

New Jersey Pinelands. - Ecology Letters 6: 220-227.

A18. Gordon, C., Wynn, J. M. and Woodin, S. J. 2001. Impacts of increased nitrogen supply on

high Arctic heath: the importance of bryophytes and phosphorus availability. - New Phytologist

149: 461-471.

A19. Guildford, S. J., Hecky, R. E., Taylor, W. D., Mugidde, R. and Bootsma, H. A. 2003.

Nutrient enrichment experiments in tropical Great Lakes Malawi/Nyasa and Victoria. - Journal

of Great Lakes Research 29: 89-106.

A20. Hatcher, B. G. and Larkum, A. W. D. 1983. An experimental analysis of factors controlling

the standing crop of the epilithic algal community on a coral reef. - Journal of Experimental

Marine Biology and Ecology 69: 61-84.

A21. Hillebrand, H. 1999. Effect of biotic interactions on the structure of microphytobenthos. -

Berichte aus dem Institut für Meereskunde as der Christian-Albrechts-Universität zu Kiel.

A22. Hillebrand, H. and Kahlert, M. 2001. Effect of grazing and nutrient supply on periphyton

biomass and nutrient stoichiometry in habitats of different productivity. - Limnology and

Oceanography 46: 1881-1898.

A23. Hillebrand, H., Worm, B. and Lotze, H. K. 2000. Marine microbenthic community

structure regulated by nitrogen loading and grazing pressure. - Marine Ecology Progress Series

204: 27-38.

A24. Iversen, C. M., Bridgham, S. D. and Kellogg, L. E. 2010. Scaling plant nitrogen use and

uptake efficiencies in response to nutrient addition in peatlands. - Ecology 91: 693-707.

A25. Lawrence, D. 2001. Nitrogen and phosphorus enhance growth and luxury consumption of

four secondary forest tree species in Borneo. - Journal of Tropical Ecology 17: 859-869.

A26. Liess, A. 2006. Nutrient Stoichiometry in benthic food webs – interactions between algae,

herbivores and fish. - Acta Universitatis Upsaliensis.

A27. Liess, A. and Hillebrand, H. unpublished data.

A28. Menéndez, M., Hererra, J, and Comin, F. A. 2002. Effect of nitrogen and phosphorus

supply on growth, chlorophyll content and tissue composition of the macroalga Chaetomorpha

linum (O.F. Müll.) Kütz. in a Mediterranean coastal lagoon. – Scientia Marina 66: 355-364.

A29. Mulholland, P. J., Steinman, A. D., Palumbo, A. V., Elwood, J. W. and Kirschtel, D. B.

1991. Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory

streams. - Ecology 72: 966-982.

A30. Ngai, J. T. and Jefferies, R. L. 2004. Nutrient limitation of plant growth and forage quality

in Arctic coastal marshes. - Journal of Ecology 92: 1001-1010.

A31. Niinemets, U. and Kull, K. 2005. Co-limitation of plant primary productivity by nitrogen

and phosphorus in a species-rich wooded meadow on calcareous soils. - Acta Oecologica 28:

345-356.

A32. Ostertag, R. 2010. Foliar nitrogen and phosphorus accumulation responses after

fertilization: an example from nutrient-limited Hawaiian forests. - Plant and Soil 334: 85-98.

A33. Pietikainen, A., Kytoviita, M. M. and Vuoti, U. 2005. Mycorrhiza and seedling

establishment in a subarctic meadow: effects of fertilization and defoliation. - Journal of

Vegetation Science 16: 175-182.

A34. Raich, J. W., Russell, A. E., Crews, T. E., Farrington, H. and Vitousek, P. M. 1996. Both

nitrogen and phosphorus limit plant production on young Hawaiian lava flows. -

Biogeochemistry 32: 1-14.

A35. Rejmánková, E. 2001. Effect of experimental phosphorus enrichment on oligotrophic

tropical marshes in Belize, Central America. - Plant and Soil 236: 33-53.

A36. Rejmánková, E. and Snyder, J. M. 2008. Emergent macrophytes in phosphorus limited

marshes: Do phosphorus usage strategies change after nutrient addition? - Plant and Soil 313:

141-153.

A37. Rosemond, A. D. 1993. Interactions among irradiance, nutrients, and herbivores constrain a

stream algal community. - Oecologia 94: 585-594.

A38. Rosemond, A. D., Mulholland, P. J. and Elwood, J. W. 1993. Top-down and bottom-up

control of stream periphyton: effects of nutrients and herbivores. - Ecology 74: 1264-1280.

A39. Shaver, G. R., Bret-Harte, S. M., Jones, M. H., Johnstone, J., Gough, L., Laundre, J. and

Chapin, F. S., III. 2001. Species composition interacts with fertilizer to control long-term change

in tundra productivity. - Ecology 82: 3163-3181.

A40. Sims, L., Pastor, J., Lee, T. and Dewey, B. 2012. Nitrogen, phosphorus and light effectson

growth and allocation of biomass and nutrients in wild rice. – Oecologia 170: 65-76.

A41. Soudzilovskaia, N. A., Onipchenko, V. G., Cornelissen, J. H. C. and Aerts, R. 2005.

Biomass production, N: P ratio and nutrient limitation in a Caucasian alpine tundra plant

community. - Journal of Vegetation Science 16: 399-406.

A42. Steinman, A. D. 1994. The influence of phosphorus enrichment on lotic bryophytes. -

Freshwater Biology 31: 53-63.

A43. Stelzer, R. S. and Lamberti, G. 2001. Effects of N : P ratio and total nutrient concentrations

on stream periphyton community structure, biomass, and elemental composition. – Limnology

and Oceanography 46: 356-367.

A44. Teichberg, M., Fox, S. E., Aguila, C., Olsen, Y. S. and Valiela, I. 2008. Macroalgal

responses to experimental nutrient enrichment in shallow coastal waters: growth, internal

nutrient pools, and isotopic signatures. - Marine Ecology Progress Series 368: 117-126.

A45. Tripler, C. E., Canham, C. D., Inouye, R. S. and Schnurr, J. L. 2002. Soil nitrogen

availability, plant luxury consumption, and herbivory by white-tailed deer. - Oecologia 133: 517-

524.

A46. van der Hoek, D., van Mierlo, A. and van Groenendael, J. M. 2004. Nutrient limitation and

nutrient-driven shifts in plant species composition in a species-rich fen meadow. - Journal of

Vegetation Science 15: 389-396.

A47. Vitousek, P. M., Walker, L. R., Whiteaker, L. D. and Matson, P. A. 1993. Nutrient

limitations to plant growth during primary succession in Hawaii Volcanoes National Park. -

Biogeochemistry 23: 197-215.

A48. von Oheimb, G., Power, S. A., Falk, K., Friedrich, U., Mohamed, A., Krug, A.,

Boschatzke, N. and Härdtle, W. 2010. N: P ratio and the nature of nutrient limitation in Calluna-

dominated heathlands. - Ecosystems 13: 317-327.

A49. Vourlitis, G. L., Pasquini, S. C. and Mustard, R. 2009. Effects of dry-season N input on the

productivity and N storage of Mediterranean-type shrublands. - Ecosystems 12: 473-488.

Appendix 2. General linear models evaluating effects of nutrient treatment and ecosystem

type on internal N concentrations, internal P concentrations, and biomass

Dependent Variable: Internal [N]

Sum of

Source df Squares Mean Square F-value P-value

Model 8 1.55 0.19 2.68 0.008

Error 224 16.23 0.07

Corrected Total 232 17.78

R2 = 0.09

Source df Type III SS Mean Square F-value P-value

Nutrient added 2 0.53 0.26 3.63 0.028

System 2 0.04 0.02 0.29 0.746

System x Nutrient 4 0.42 0.10 1.44 0.223

Contrast df Contrast SS Mean Square F-value P-value

Single vs. Multiple 1 0.19 0.19 2.62 0.107

N vs. P 1 0.38 0.38 5.24 0.023

Standard

Parameter Estimate Error t-value P-value

Intercept 0.06 0.05 1.25 0.214

Nutrient (N) 0.18 0.07 2.68 0.008

Nutrient (N+P) 0.15 0.07 2.13 0.034

Nutrient (P) 0.00 . . .

System (Fresh) 0.09 0.10 0.92 0.360

System (Mar) -0.07 0.07 -0.88 0.383

System (Terr) 0.00 . . .

System x Nut (Fresh x N) -0.25 0.14 -1.84 0.067

System x Nut (Fresh x N+P) -0.11 0.12 -0.84 0.399

System x Nut (Fresh x P) 0.00 . . .

System x Nut (Mar x N) 0.08 0.10 0.79 0.430

System x Nut (Mar x N+P) 0.03 0.10 0.29 0.775

System x Nut (Mar x P) 0.00 . . .

System x Nut (Terr x N) 0.00 . . .

System x Nut (Terr x N+P) 0.00 . . .

System x Nut (Terr x P) 0.00 . . .

Dependent Variable: Internal [P]

Sum of

Source df Squares Mean Square F-value P-value

Model 8 19.71 2.46 9.10 <0.001

Error 195 52.78 0.27

Corrected Total 203 72.49

R2 = 0.27

Source df Type III SS Mean Square F-value P-value

Nutrient added 2 17.33 8.67 32.02 <0.001

System 2 0.67 0.33 1.23 0.293

System x Nutrient 4 1.64 0.41 1.51 0.200

Contrast df Contrast SS Mean Square F-value P-value

Single vs. Multiple 1 1.25 1.25 4.61 0.0330

N vs. P 1 15.97 15.97 58.99 <0.001

Standard

Parameter Estimate Error t-value P-value

Intercept 0.51 0.10 5.25 <0.001

Nutrient (N) -0.55 0.14 -4.01 <0.001

Nutrient (N+P) 0.06 0.14 0.44 0.659

Nutrient (P) 0.00 . . .

System (Fresh) 0.32 0.18 1.82 0.071

System (Mar) 0.19 0.15 1.26 0.211

System (Terr) 0.00 . . .

System x Nut (Fresh x N) -0.32 0.25 -1.29 0.197

System x Nut (Fresh x N+P) -0.40 0.23 -1.73 0.085

System x Nut (Fresh x P) 0.00 . . .

System x Nut (Mar x N) -0.34 0.22 -1.58 0.116

System x Nut (Mar x N+P) -0.45 0.21 -2.20 0.029

System x Nut (Mar x P) 0.00 . . .

System x Nut (Terr x N) 0.00 . . .

System x Nut (Terr x N+P) 0.00 . . .

System x Nut (Terr x P) 0.00 . . .

Dependent Variable: Biomass

Sum of

Source df Squares Mean Square F-value P-value

Model 8 17.41 2.18 3.03 0.003

Error 222 159.38 0.72

Corrected Total 230 176.79

R2 = 0.10

Source df Type III SS Mean Square F-value P-value

Nutrient added 2 9.71 4.85 6.76 0.001

System 2 7.86 3.93 5.47 0.005

System x Nutrient 4 1.32 0.33 0.46 0.764

Contrast df Contrast SS Mean Square F-value P-value

Single vs. Multiple 1 9.69 9.69 13.49 <0.001

N vs. P 1 0.08 0.08 0.11 0.742

Standard

Parameter Estimate Error t-value P-value

Intercept 0.60 0.15 3.89 0.0001

Nutrient (N) -0.08 0.21 -0.36 0.7182

Nutrient (N+P) 0.47 0.22 2.19 0.0299

Nutrient (P) 0.00 . . .

System (Fresh) -0.45 0.29 -1.54 0.1255

System (Mar) -0.42 0.24 -1.78 0.0758

System (Terr) 0.00 . . .

System x Nut (Fresh x N) 0.01 0.40 0.02 0.9870

System x Nut (Fresh x N+P) -0.10 0.37 -0.28 0.7774

System x Nut (Fresh x P) 0.00 . . .

System x Nut (Mar x N) 0.37 0.32 1.17 0.2444

System x Nut (Mar x N+P) 0.06 0.32 0.19 0.8457

System x Nut (Mar x P) 0.00 . . .

System x Nut (Terr x N) 0.00 . . .

System x Nut (Terr x N+P) 0.00 . . .

System x Nut (Terr x P) 0.00 . . .

Appendix 3. Effects of N, P, and N+P on biomass

As we found previously using a partially overlapping dataset (Elser et al. 2007), adding

multiple nutrients (both N and P together) enhanced producer biomass to a greater extent than

addition of either N or P alone in all three ecosystems. This was particularly evident across all

ecosystems (GLM: F2,222 = 6.8, P = 0.001; single-nutrient vs. N+P contrast: F1,222 = 13.5, P <

0.001; Table A2, Fig. A1), but biomass responses to addition of N and P together also tended to

be greater than those of addition of N alone or P alone in freshwater, marine, and terrestrial

systems (Fig. A1). In particular, whereas addition of N alone or P alone did not result in

increased biomass in freshwater systems (95% CIs for N-addition and P-addition overlap zero; P

> 0.572), simultaneous addition of N and P enhanced freshwater producer biomass (t = 3.1, df =

26, P = 0.004; Fig. A1).

Table A2. Comparisons of nutrient (N, P, and N+P) enrichment effects on biomass across

ecosystems.

Response Factor df F-statistic P-value

Biomass Nutrients added (N vs. P vs. N+P) 2 6.76 0.001

Ecosystem (fresh vs. mar vs. terr) 2 5.47 0.005

Nutrients x Ecosystem 4 0.46 0.764

Contrast: Single nutrient vs. N+P 1 13.49 <0.001

Contrast: N vs. P 1 0.11 0.742

Error 222

Figure A1. Effects of nitrogen (N) additions, phosphorus (P) additions, and simultaneous N and

P additions on producer biomass. (A) Across freshwater, marine, and terrestrial ecosystems, we

observed greater producer biomass responses in experimental treatments where both N and P

were added than in treatments where either N or P were added alone (single- versus multiple-

nutrient contrast, P = 0.008). (B) The same general pattern held for comparisons within

freshwater, marine, and terrestrial systems, and biomass responses to nutrient (N, P, or N+P)

additions did not differ between systems (P > 0.178). Values are mean log-response ratios

(LRRs) ± 95% confidence intervals. Parenthetical numbers indicate sample sizes.

-0.90

-0.60

-0.30

0.00

0.30

0.60

0.90

1.20

1.50

Freshwater Marine Terrestrial

Bio

mas

s e

ffec

t (L

RR

)

N

P

N + P

(B) Within ecosystems

(13) (12) (27) (27) (22) (33) (36) (30) (31)

(A) Across ecosystems

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N P N + P

Bio

ma

ss

eff

ec

t (L

RR

)

(76) (64) (91)