32
Oncological Imaging: radionuclide techniques Dr. Luigi Aloj [email protected]

Oncological Imaging: radionuclide techniques

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Oncological Imaging: radionuclide techniques

Oncological Imaging:

radionuclide techniques

Dr. Luigi Aloj

[email protected]

Page 2: Oncological Imaging: radionuclide techniques

What can we imageParticle

mass

Range

(H20)Imaging

a 4 µm No

b 0.0005 mm Indirectly

b+

(positron)0.0005 mm PET

g 0 m

Gamma

camera/

SPECT

Page 3: Oncological Imaging: radionuclide techniques

T1/2 (h) Eg (Kev)

99mTc 6.03 140111In 72 171-245

81mKr 13 (s) 190

131I 8.02 (d) 364123I 13.2 127

67Ga 78 93-184-300201Tl 73 135-167

Gamma emitting radionuclides

Page 4: Oncological Imaging: radionuclide techniques

Gamma camera, 1950s

Page 5: Oncological Imaging: radionuclide techniques

Planar imaging

99mTcO4Thyroid

scan131IWBS

99mTc-HEDPBone scan

Page 6: Oncological Imaging: radionuclide techniques

Single photon emission

computed tomography (SPECT)

Page 7: Oncological Imaging: radionuclide techniques

Hybrid imaging

Page 8: Oncological Imaging: radionuclide techniques

SPECT/CT

Page 9: Oncological Imaging: radionuclide techniques

Positron emission (b+)

Page 10: Oncological Imaging: radionuclide techniques

PET radionuclidesT1/2 (min) Eb

+ (kev)

11C 20 96013N 10 119015O 2.05 172018F 109.6 635

82Rb 1.3 3350

68Ga 68 1900124I 4.2 (days) 214094mTc 52 247076Br 966 398064Cu 762 571

Page 11: Oncological Imaging: radionuclide techniques

Advantages over gamma camera

– Intrinsically Tomographic

– Quantitative (KBq/ml)

– Very high sensitivity

– Dynamic studies and kinetic

modelling (pmol/min/g)

– Higher spatial resolution

– High specific activity ligands

• FDG ≈ 50-500 GBq/µmol (EOS)

• Typical patient dose ≈ 300 MBq

• Injected mass ≈ 1 nmol

• Glucose 5.5 mM in plasma

Page 12: Oncological Imaging: radionuclide techniques

PET-CT

Page 13: Oncological Imaging: radionuclide techniques

Normal whole body FDG-

PET/CT studyMIP

Page 14: Oncological Imaging: radionuclide techniques

Glucose uptake into tumours

Page 15: Oncological Imaging: radionuclide techniques

GLUCOSE VS FDG

Page 16: Oncological Imaging: radionuclide techniques

Extracellular

Intracellular

Glucose

Transporter

Hexokinase

ATP ADP

Glycolisis

Glu

P

FDG

P

GluGlu

Glu

GluGlu

Glu

FDG

FDG

FDG

FDG

FDG

FDG

FDG uptake

Page 17: Oncological Imaging: radionuclide techniques

Going way back

• FDG in Glioma (early

1980s)

– Di Chiro et al. Neurology,

1982, Vol.32 (12), p.1323

– Grading

– Residual disease vs

necrosis

– Recurrence vs necrosis

– The magic bullet

Page 18: Oncological Imaging: radionuclide techniques

Lymphoma, staging

Page 19: Oncological Imaging: radionuclide techniques

GIST, rapid response to imatinib

Page 20: Oncological Imaging: radionuclide techniques

BRAF mutant melanoma

Day 0

Metabolic response!

Day 28

Pt. 6 Time to progression 1 mo

Day 7 Day 14

Page 21: Oncological Imaging: radionuclide techniques

Limitations of FDG

•Poor target to background ratios in tissues

with high physiological FDG uptake

– Brain tumours

•Non FDG avid tumours

– Well differentiated Neuroendocrine Tumours

– Prostate cancer

– others

•Specificity: Inflammation, Infection

Page 22: Oncological Imaging: radionuclide techniques

Lopci et al., Eur J Nucl Med Mol Imaging (2015) 42:597–612

Page 23: Oncological Imaging: radionuclide techniques

Theranostics

(a portmanteau of therapeutics and

diagnostics) is a proposed process of

diagnostic therapy for individual patients -

to test them for possible reaction to taking

a new medication and to tailor a treatment

for them based on the test results.

Page 24: Oncological Imaging: radionuclide techniques

MOLECULAR RADIOTHERAPY:

Targeting the Sodium Iodide Symporter (NIS)

Diagnostic

agent

Therapeutic

agent123I, 131I, 99mTc 131I

Page 25: Oncological Imaging: radionuclide techniques

Treatment of differentiated thyroid cancer

with 131I

May 2005

Ant Post

Sep 2005

Ant Post

Mar 2006

Ant Post

Jan 2007

Ant Post

Page 26: Oncological Imaging: radionuclide techniques

Somatostatin receptor targeting

Neuroendocrine tumours

Octreotide

Late 1980s

111In-Octreotide

Early 1990s

Gamma camera

68Ga-DOTATOC/TATE

Early-mid 2000s

PET

Page 27: Oncological Imaging: radionuclide techniques

Companion compounds

Radiometal

68Ga, 111In

Linker

Ligand

Chelator

Target

90Y

177Lub

213Bi

225Ac212Pb

a

Page 28: Oncological Imaging: radionuclide techniques
Page 29: Oncological Imaging: radionuclide techniques

Twenty-five years and counting….

177Lu-DOTATATE

mid-late 2000s

First proper RCT NETTER-1

final PFS analysis, NEJM 2017

Control Arm

Treatment Arm

Page 30: Oncological Imaging: radionuclide techniques

T1/2 = 10 days, 4 a decays

J Nucl Med 2017; 58:1624–1631

• 14 patients

• Dose escalation

• Heavily

pretreated

• 8 pts multiple Rx

• 9/11 pts objective

response

Page 31: Oncological Imaging: radionuclide techniques

J Nucl Med 2019; 60:801–805

Page 32: Oncological Imaging: radionuclide techniques

Questions?

Dr. Luigi Aloj

[email protected]