18
OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright 1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes Building Analysis Classes (Modified considerably by your Instructor)

OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright 1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

Embed Size (px)

Citation preview

Page 1: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 1/18

Use Case Analysis – continued

Control ClassesBuilding Analysis Classes(Modified considerably by your Instructor)

Page 2: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 2/18

Control Classes

A class used to model control behavior specific to one or more use cases.

Encapsulate use-case-specific behavior. Behavior of a control object is closely related to

the realization of a specific use case. Might ‘say’ control objects "run" the use-

case realizations. Some control objects can participate in more

than one use-case realization if the use-case tasks are strongly related.

Similarly, some use cases may require more than one control class; but in general, there is a one-to-one correspondence – as a heuristic.

Page 3: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 3/18

Use Case

Use-case dependent, Environment independent

<<control>>

Analysis class stereotype

What is a Control Class?

Is a Use-case behavior coordinator; sequences; controls; orchestrates use-case.

One control class per use case (generally)

Page 4: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 4/18

Control Classes – not always needed

Provides coordinating behavior in the system. The system sometimes can perform some use

cases without control classes (just using entity and boundary classes) – particularly use case only involves simple manipulation of stored information.

Complex use cases generally require one or more control classes to coordinate the behavior of other objects in the system.

Examples of control classes include• Transaction managers, • Resource coordinators and • Error handlers. Think about these

activities!!

Page 5: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 5/18

Control Classes decouple: Decouple boundary objects from one

another, making the system more tolerant of changes in the system boundary. Boundary objects may be several; can make

cohesive, separate, easy to change / modify…

Also decouple from control classes use-case behaviors to the entity objects, making them (the entity objects) more reusable across use cases and systems.

Note: we are in the initial stages of ‘design’

Decoupling may positively affect some of the non-functional requirements (that are addressed in design in considerable detail), such as maintainability, performance, reusability.

Page 6: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 6/18

Control Class provided behavior: Surroundings-independent (does not change when

the surroundings / environment change) Define control logic

Order/Direct sequence of activities to realize the use-case. (Consider Registering for Courses use case….

Changes little if the internal structure or behavior of the entity classes changes

Control Classes use or set the contents of entity classes, and thus need to coordinate behaviors of entity classes

Is not performed in the same way every time it is activated (flow of events features several states)

One recommendation for the initial identification of control classes is one control class per use case.

Page 7: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 7/18

The Role of a Control Class

Coordinate the use-case behavior

Customer

<<boundary>>

<<boundary>>

<<control>><<boundary>>

<<entity>> <<entity>>

• Several control objects of different control classes can participate in one use case. This is particularly true if the use case is rather complex and requires much coordination of access of entity objects, etc.

• As stated, not all use cases require a control object but most do – at least one.Example: if the flow of events in a use case is related to one entity object, a boundary object may realize the use case in cooperation with the entity object.

• You can start by identifying one control class per use case realization, and then refine this as more use-case realizations are identified and commonality is discovered.

Database

Page 8: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 8/18

Role of Control Class and Control Objects

Control classes contribute to understanding the system. Represents the dynamics of the system, Handles the main tasks and control flows.

When the system performs the use case, a control object is created.

Control Objects usually die once their corresponding use case or scenario (story) has been performed. (Normally NOT persistent)

Page 9: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 9/18

Course Catalog SystemRegister for CoursesStudent

<<control>>RegistrationController

Example: Finding Control Classes Recommend: Identify one control class per use case (again)

Each control class is responsible for orchestrating/controlling the processing that implements the functionality described in the associated use case.

Here, the RegistrationController <<control>> class has been defined to orchestrate the Register for Courses processing (sequencing of activities) within the system. (Controller accepts inputs, ‘knows’ where required data and functionality reside, sends key messages to entities, sequences all actions to satisfy use case, sends data back to input actor via boundary objects, etc….)

Page 10: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 10/18

Now, Summarizing Analysis Classes in general:

Summary of Analysis Classes: View of Participating Classes (VOPC)

For each use-case realization (note the loop) there is one or more class diagrams depicting its participating classes, along with their relationships.

Such class diagrams have been called “View of Participating Classes” diagrams (VOPC, for short) – next overhead…

Page 11: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 11/18

Student Course Catalog SystemRegister for Courses

Use-Case Diagram

Analysis Model (classes only listed – no relationships shown here…)

<<boundary>>RegisterForCoursesForm

<<boundary>>CourseCatalogSystem

<<control>>RegistrationController

<<entity>>Student

<<entity>>Schedule

<<entity>>CourseOffering

Example: Summary: Analysis Classes - VOPC• The diagram shows the classes participating in the Register for Courses use case• The part-time student and full-time student classes have been omitted for brevity (they both inherit from Student. Class relationships will be discussed later.

Page 12: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 12/18

Supplement the Use-Case Descriptions For each use-case realization

Find Classes from Use-Case Behavior - DONE! But nothing in them! Distribute Use-Case Behaviors to these Classes

Now we need to allocate responsibilities of the use cases to the analysis classes and model this allocation by describing the way the class instances collaborate to perform the use case in use-case realizations.

Purpose of Distributing Use Case Behavior to Classes is to: Express the use-case behavior in terms of collaborating

objects, and thus Equivalently: Determine the responsibilities of analysis

classes.

For each resulting analysis class, do: (see loop?) Describe Responsibilities (behaviors) Describe Attributes and Associations (lectures ahead and following…) Qualify Analysis Mechanisms (more coming on this last item; quality

metrics; non-functional requirements, such as persistence…)

Use-Case Analysis Steps – Next Major Step…

Page 13: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 13/18

Use Case

Use-Case RealizationSequence Diagrams Collaboration Diagrams

Distribute Use-Case Behaviors to Classes For each use-case flow of events: (Note: this is a loop!!!)

Identify analysis classes (Step thru flow of events) Have identified classes. Now, see where they are applied in the

use case flow of events. Static: Allocate use-case responsibilities to analysis classes

(look for the verbs and actions in use case flow…) Dynamic: Model analysis class interactions in interaction

diagrams need to show interactions of system with its actors. Interactions all begin with an actor, who invokes the use

case (Use cases don’t start themselves!)

Page 14: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 14/18

Interactions among Actors? No.

Interactions BETWEEN actors should NOT be modeled. (Can show inheritance, surrogates, etc. but no ‘interactions.’)

By definition, actors are external, and are out of scope of the system being developed. Thus, you do not include interactions between actors in

your system model.

How to distribute behavior to classes:

Page 15: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 15/18

Guidelines: Allocating Responsibilities to Classes This allocation of responsibilities is crucial! Use analysis class stereotypes as a guide

Boundary Classes (the Interface)

• Behaviors that involves communication with an actor Entity Classes (Persistent Data)

• Behaviors that involves the data encapsulated within the abstractions. (All data manipulation, retrieval…)

Control Classes (the Use Case flow of events)

• Behaviors specific to a use case or part of a very important flow of events

Notice, all these allocations are of behaviors.

(continued)

Page 16: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 16/18

Guidelines: Allocating Responsibilities to Classes (cont.) A driving influence on where a responsibility should go is the

location of the data needed to perform the operation.

Who has the data needed to perform the responsibility?

Example: “System displays Patient data on monitor.”

• Where is the patient data? Patient object. (entity object)

• Who can ‘get’ the data? Patient object! (may imply a retrieval from a database, but ultimately the patient object has the data and the responsibility to get it.)

Who coordinates (issues message to patient object) to get this data? Control class.

Once the data is ‘obtained,’ who will “display” the data to the actor? Boundary class. Look for data and verbs and nouns!

Page 17: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 17/18

Guidelines: Allocating Responsibilities to Classes (cont.) Design options:

For a class that has the data, put the responsibility for access, for manipulation, for modification, etc. with the data – best case!!!

If multiple classes have the data:• 1. Put the responsibility with one class and add a

relationship to the other (a dependency relationship)• 2. Create a new class, put the responsibility in the new

class, and add relationships to classes needed to perform the responsibility

• 3. Put the responsibility in the control class, and add relationships to classes needed to perform the responsibility

Page 18: OOAD Using the UML - Use-Case Analysis, v 4.2 Copyright  1998-1999 Rational Software, all rights reserved 1/18 Use Case Analysis – continued Control Classes

OOAD Using the UML - Use-Case Analysis, v 4.2Copyright 1998-1999 Rational Software, all rights reserved 18/18

Guidelines: Allocating Responsibilities to Classes (cont.)

Be careful when adding relationships -- all relationships should be consistent with the abstractions they connect.

Don’t just add relationships to support the implementation without considering the overall affect on the model.

When a new behavior is identified, check to see if there is an existing class that has similar responsibilities, reusing classes where possible.

Only when sure that there is not an existing object that can perform the behavior should you create new classes.