53
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geochemical Characterization of Slags, Other Mine Waste, and Their Leachate from the Elizabeth and Ely Mines (Vermont), the Ducktown Mining District (Tennessee), and the Clayton Smelter Site (Idaho) by Nadine M. Piatak 1 , Robert R. Seal II 1 , Jane M. Hammarstrom 1 , Allen L. Meier 2 , and Paul H. Briggs 2 Open-File Report 03-260 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 U.S. Geological Survey, 954 National Center, Reston, VA 20192 2 U.S. Geological Survey, 973 Denver Federal Center, Denver, CO 80225

Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

US DEPARTMENT OF THE INTERIOR

US GEOLOGICAL SURVEY

Geochemical Characterization of Slags Other Mine Waste and Their

Leachate from the Elizabeth and Ely Mines (Vermont) the Ducktown

Mining District (Tennessee) and the Clayton Smelter Site (Idaho)

by

Nadine M Piatak1 Robert R Seal II1 Jane M Hammarstrom1 Allen L

Meier2 and Paul H Briggs2

Open-File Report 03-260

This report is preliminary and has not been reviewed for conformity with US Geological Survey editorial

standards or with the North American Stratigraphic Code Any use of trade firm or product names is for

descriptive purposes only and does not imply endorsement by the US Government

1US Geological Survey 954 National Center Reston VA 20192 2US Geological Survey 973 Denver Federal Center Denver CO 80225

TABLE OF CONTENTS

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip3

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip4

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip6

BULK ROCK CHEMISTRYhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11

MINERALOGYhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

SAMPLE DESCRIPTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

Vermont copper belthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11 Slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11 Sintered waste rockhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

Ducktown mining districthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35 Granulated slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

Calcinehelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip36 Clayton smelter sitehelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip37 Secondary mineralogyhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip40

LEACHATE DATAhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip40

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip50

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

2

LIST OF FIGURES

Figure 1 Locations of study areas showing sample sites in Vermonthelliphelliphelliphelliphelliphelliphelliphellip7

Figure 2 Representative photographs of sample siteshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip9

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining districthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip10

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00helliphelliphelliphellip10

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagramshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip15

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mineshelliphelliphellip16

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)- kirschsteinite-monticellite quadrilateral diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag sampleshellip28

Figure 9 Photomicrographs of slag and sintered waste rockhelliphelliphelliphelliphelliphelliphelliphelliphelliphellip34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely minehelliphelliphelliphelliphelliphelliphelliphelliphellip35

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktownhelliphelliphelliphelliphellip36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktownhelliphelliphelliphelliphellip37

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip38

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00)helliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

Figure 15 Photographs and photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktownhelliphelliphelliphelliphelliphelliphelliphelliphellip40

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachateshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip49

3

LIST OF TABLES

Table 1 Sample descriptionshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

Table 2 Geochemical data for bulk sampleshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag sampleshelliphelliphellip18

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag sampleshellip21

Table 5 Electron-microprobe analyses of spinel and hematite in slag sampleshelliphelliphellip26

Table 6 Electron-microprobe analyses of sulfide metallic phases and miscellaneous compounds in slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

Table 7 Analytical results of leaching testshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

4

ABSTRACT

Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements Two types of mine waste were examined in this study sintered waste rock and slag The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits) from the Copper Basin mining district near Ducktown Tennessee (Besshi-type massive sulfide deposits) and from the Clayton silver mine in the Bayhorse mining district Idaho (polymetallic vein and replacement deposits) The data in this report are presented as a compilation with minimal interpretation or discussion A detailed discussion and interpretation of the slag data are presented in a companion paper Data collected from sintered waste rock and slag include (1) bulk rock chemistry (2) mineralogy (3) and the distribution of trace elements among phases for the slag samples In addition the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States

INTRODUCTION

Abandoned mines and smelter sites commonly have mine-waste material including waste rock flotation tailings and slag which contain elevated concentrations of trace elements such as Cu Zn and Pb These potentially toxic trace metals may be released into the environment through natural weathering processes and have adverse effects on water quality In this study mine-waste material including slag and sintered waste rock was characterized by determining bulk major and trace-element chemistry and mineral chemistry Also the leachability of metals was examined using a modified version of the field-leach test developed by Hageman and Briggs (2000) for the characterization of mine waste

The suite of samples studied was collected from four mine sites The Elizabeth and Ely mines in the Vermont copper belt in Orange County Vermont exploited Besshishytype massive sulfide deposits The ores consisted of pyrrhotite chalcopyrite and minor sphalerite and pyrite (Offield and Slack 1993 Slack and others 2001) The Elizabeth mine was in operation from 1809 to 1958 and the Ely mine operated from the 1850rsquos to 1905 (Kierstead 2001) A variety of samples of waste rock and slag were examined from these two mines Summaries of the geology environmental geochemistry and mining history of the Elizabeth and Ely mines can be found in the Society of Economic Geologists Guidebook Series volume 35 (Crowley and others 2001 Hammarstrom and others 2001a Hammarstrom and others 2001b Hathaway and others 2001 Kierstead 2001 Seal and others 2001a Seal and others 2001b and Slack and others 2001)

Like the deposits in the Vermont copper belt the Ducktown mining district in Polk County Tennessee exploited Besshi-type massive sulfide deposits The primary ore minerals were pyrrhotite subordinate pyrite with minor chalcopyrite sphalerite magnetite and sparse galena (Magee 1968) The Ducktown mining district operated

5

from 1847 to 1987 Granulated slag (quenched in water) and calcine (ore which has been crushed concentrated and roasted) were collected and characterized from this site

In contrast to the Besshi-type massive sulfide deposits of Vermont and Tennessee the deposits in the Bayhorse mining district Idaho include polymetallic vein and replacement deposits (Hammarstrom and others 2002) The major sulfide minerals are galena sphalerite pyrite tetrahedrite and chalcopyrite (Ross 1937) A sample of air-cooled slag was collected from the Clayton smelters which operated intermittently from the 1880rsquos to 1902 reopened in 1913 and then again in 1935 This site smelted ore from several mines within the mining districts of Greyhound Ridge Seafoam Germania Basin and Bayhorse (Wells 1983)

This report forms the detailed analytical basis for the interpretation and discussion of petrographic and geochemical data by Piatak and others (2004) Additional data and interpretations for sintered waste rock from the Elizabeth and Ely mines calcine from Ducktown and two pot slag samples are included in this report

METHODS

The bulk chemical composition of the solid samples was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) following acid-digestion by a mixture of HCl-HNO3-HClO4-HF in USGS laboratories in Denver Colorado (Crock and others 1999) Also major oxide content was measured using wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) following fusion in a mixture of LiBO2 and LiB4O7 Interpretation in text is based on ICP-MS for minor elements and on ICP-AES for major elements except SiO2 content for which WD-XRF results are used Total sulfur was measured using a LECO S analyzer WD-XRF and LECO S analyses were preformed by XRAL Laboratories Ontario Canada

Mineralogical identification and the distribution of trace metals within phases was determined using transmitted- and reflected-light microscopy X-ray diffraction analysis (XRD) scanning electron microscopy (SEM) and electron-microprobe analysis (EPMA) in USGS laboratories in Reston Virginia XRD was performed using a Scintag X1 automated powder diffractometer equipped with a Peltier detector with CuKα radiation The XRD patterns were analyzed using Material Data Incrsquos JADE software and standard reference patterns (International Centre for Diffraction Data 1997) SEM analyses were performed with a JEOL JSM-840 SEM equipped with a backscattered electron detector a secondary electron detector and a PGT X-ray energy-dispersive system Spectra were collected using an accelerating voltage of 15-20 kV and a specimen current of 1 to 10 nA A JEOL JXA 8900A microprobe equipped with five wavelength-dispersive spectrometers was operated at an accelerating voltage of 15-20 kV a beam current of 20shy30 nA and a beam diameter of up to 5 microm The analyses were corrected for electron beammatrix and instrumental drift and dead time using either a ZAF or a Phi-Rho-ZshyCITZAF scheme supplied with the JEOL instrument software

A modified version of a Field-Leach Test developed by Hageman and Briggs (2000) was preformed on splits of the samples in USGS laboratories in Reston Virginia The samples were crushed and sieved to a diameter of less than 2 mm Each sample was

6

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 2: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

TABLE OF CONTENTS

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip3

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip4

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip6

BULK ROCK CHEMISTRYhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11

MINERALOGYhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

SAMPLE DESCRIPTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

Vermont copper belthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11 Slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip11 Sintered waste rockhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

Ducktown mining districthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35 Granulated slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

Calcinehelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip36 Clayton smelter sitehelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip37 Secondary mineralogyhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip40

LEACHATE DATAhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip40

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip50

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

2

LIST OF FIGURES

Figure 1 Locations of study areas showing sample sites in Vermonthelliphelliphelliphelliphelliphelliphelliphellip7

Figure 2 Representative photographs of sample siteshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip9

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining districthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip10

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00helliphelliphelliphellip10

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagramshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip15

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mineshelliphelliphellip16

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)- kirschsteinite-monticellite quadrilateral diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag sampleshellip28

Figure 9 Photomicrographs of slag and sintered waste rockhelliphelliphelliphelliphelliphelliphelliphelliphelliphellip34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely minehelliphelliphelliphelliphelliphelliphelliphelliphellip35

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktownhelliphelliphelliphelliphellip36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktownhelliphelliphelliphelliphellip37

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip38

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00)helliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

Figure 15 Photographs and photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktownhelliphelliphelliphelliphelliphelliphelliphelliphellip40

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachateshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip49

3

LIST OF TABLES

Table 1 Sample descriptionshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

Table 2 Geochemical data for bulk sampleshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag sampleshelliphelliphellip18

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag sampleshellip21

Table 5 Electron-microprobe analyses of spinel and hematite in slag sampleshelliphelliphellip26

Table 6 Electron-microprobe analyses of sulfide metallic phases and miscellaneous compounds in slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

Table 7 Analytical results of leaching testshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

4

ABSTRACT

Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements Two types of mine waste were examined in this study sintered waste rock and slag The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits) from the Copper Basin mining district near Ducktown Tennessee (Besshi-type massive sulfide deposits) and from the Clayton silver mine in the Bayhorse mining district Idaho (polymetallic vein and replacement deposits) The data in this report are presented as a compilation with minimal interpretation or discussion A detailed discussion and interpretation of the slag data are presented in a companion paper Data collected from sintered waste rock and slag include (1) bulk rock chemistry (2) mineralogy (3) and the distribution of trace elements among phases for the slag samples In addition the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States

INTRODUCTION

Abandoned mines and smelter sites commonly have mine-waste material including waste rock flotation tailings and slag which contain elevated concentrations of trace elements such as Cu Zn and Pb These potentially toxic trace metals may be released into the environment through natural weathering processes and have adverse effects on water quality In this study mine-waste material including slag and sintered waste rock was characterized by determining bulk major and trace-element chemistry and mineral chemistry Also the leachability of metals was examined using a modified version of the field-leach test developed by Hageman and Briggs (2000) for the characterization of mine waste

The suite of samples studied was collected from four mine sites The Elizabeth and Ely mines in the Vermont copper belt in Orange County Vermont exploited Besshishytype massive sulfide deposits The ores consisted of pyrrhotite chalcopyrite and minor sphalerite and pyrite (Offield and Slack 1993 Slack and others 2001) The Elizabeth mine was in operation from 1809 to 1958 and the Ely mine operated from the 1850rsquos to 1905 (Kierstead 2001) A variety of samples of waste rock and slag were examined from these two mines Summaries of the geology environmental geochemistry and mining history of the Elizabeth and Ely mines can be found in the Society of Economic Geologists Guidebook Series volume 35 (Crowley and others 2001 Hammarstrom and others 2001a Hammarstrom and others 2001b Hathaway and others 2001 Kierstead 2001 Seal and others 2001a Seal and others 2001b and Slack and others 2001)

Like the deposits in the Vermont copper belt the Ducktown mining district in Polk County Tennessee exploited Besshi-type massive sulfide deposits The primary ore minerals were pyrrhotite subordinate pyrite with minor chalcopyrite sphalerite magnetite and sparse galena (Magee 1968) The Ducktown mining district operated

5

from 1847 to 1987 Granulated slag (quenched in water) and calcine (ore which has been crushed concentrated and roasted) were collected and characterized from this site

In contrast to the Besshi-type massive sulfide deposits of Vermont and Tennessee the deposits in the Bayhorse mining district Idaho include polymetallic vein and replacement deposits (Hammarstrom and others 2002) The major sulfide minerals are galena sphalerite pyrite tetrahedrite and chalcopyrite (Ross 1937) A sample of air-cooled slag was collected from the Clayton smelters which operated intermittently from the 1880rsquos to 1902 reopened in 1913 and then again in 1935 This site smelted ore from several mines within the mining districts of Greyhound Ridge Seafoam Germania Basin and Bayhorse (Wells 1983)

This report forms the detailed analytical basis for the interpretation and discussion of petrographic and geochemical data by Piatak and others (2004) Additional data and interpretations for sintered waste rock from the Elizabeth and Ely mines calcine from Ducktown and two pot slag samples are included in this report

METHODS

The bulk chemical composition of the solid samples was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) following acid-digestion by a mixture of HCl-HNO3-HClO4-HF in USGS laboratories in Denver Colorado (Crock and others 1999) Also major oxide content was measured using wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) following fusion in a mixture of LiBO2 and LiB4O7 Interpretation in text is based on ICP-MS for minor elements and on ICP-AES for major elements except SiO2 content for which WD-XRF results are used Total sulfur was measured using a LECO S analyzer WD-XRF and LECO S analyses were preformed by XRAL Laboratories Ontario Canada

Mineralogical identification and the distribution of trace metals within phases was determined using transmitted- and reflected-light microscopy X-ray diffraction analysis (XRD) scanning electron microscopy (SEM) and electron-microprobe analysis (EPMA) in USGS laboratories in Reston Virginia XRD was performed using a Scintag X1 automated powder diffractometer equipped with a Peltier detector with CuKα radiation The XRD patterns were analyzed using Material Data Incrsquos JADE software and standard reference patterns (International Centre for Diffraction Data 1997) SEM analyses were performed with a JEOL JSM-840 SEM equipped with a backscattered electron detector a secondary electron detector and a PGT X-ray energy-dispersive system Spectra were collected using an accelerating voltage of 15-20 kV and a specimen current of 1 to 10 nA A JEOL JXA 8900A microprobe equipped with five wavelength-dispersive spectrometers was operated at an accelerating voltage of 15-20 kV a beam current of 20shy30 nA and a beam diameter of up to 5 microm The analyses were corrected for electron beammatrix and instrumental drift and dead time using either a ZAF or a Phi-Rho-ZshyCITZAF scheme supplied with the JEOL instrument software

A modified version of a Field-Leach Test developed by Hageman and Briggs (2000) was preformed on splits of the samples in USGS laboratories in Reston Virginia The samples were crushed and sieved to a diameter of less than 2 mm Each sample was

6

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 3: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

LIST OF FIGURES

Figure 1 Locations of study areas showing sample sites in Vermonthelliphelliphelliphelliphelliphelliphelliphellip7

Figure 2 Representative photographs of sample siteshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip9

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining districthelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip10

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00helliphelliphelliphellip10

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagramshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip15

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mineshelliphelliphellip16

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)- kirschsteinite-monticellite quadrilateral diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag sampleshellip28

Figure 9 Photomicrographs of slag and sintered waste rockhelliphelliphelliphelliphelliphelliphelliphelliphelliphellip34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely minehelliphelliphelliphelliphelliphelliphelliphelliphellip35

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktownhelliphelliphelliphelliphellip36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktownhelliphelliphelliphelliphellip37

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip38

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00)helliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

Figure 15 Photographs and photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktownhelliphelliphelliphelliphelliphelliphelliphelliphellip40

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachateshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip49

3

LIST OF TABLES

Table 1 Sample descriptionshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

Table 2 Geochemical data for bulk sampleshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag sampleshelliphelliphellip18

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag sampleshellip21

Table 5 Electron-microprobe analyses of spinel and hematite in slag sampleshelliphelliphellip26

Table 6 Electron-microprobe analyses of sulfide metallic phases and miscellaneous compounds in slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

Table 7 Analytical results of leaching testshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

4

ABSTRACT

Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements Two types of mine waste were examined in this study sintered waste rock and slag The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits) from the Copper Basin mining district near Ducktown Tennessee (Besshi-type massive sulfide deposits) and from the Clayton silver mine in the Bayhorse mining district Idaho (polymetallic vein and replacement deposits) The data in this report are presented as a compilation with minimal interpretation or discussion A detailed discussion and interpretation of the slag data are presented in a companion paper Data collected from sintered waste rock and slag include (1) bulk rock chemistry (2) mineralogy (3) and the distribution of trace elements among phases for the slag samples In addition the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States

INTRODUCTION

Abandoned mines and smelter sites commonly have mine-waste material including waste rock flotation tailings and slag which contain elevated concentrations of trace elements such as Cu Zn and Pb These potentially toxic trace metals may be released into the environment through natural weathering processes and have adverse effects on water quality In this study mine-waste material including slag and sintered waste rock was characterized by determining bulk major and trace-element chemistry and mineral chemistry Also the leachability of metals was examined using a modified version of the field-leach test developed by Hageman and Briggs (2000) for the characterization of mine waste

The suite of samples studied was collected from four mine sites The Elizabeth and Ely mines in the Vermont copper belt in Orange County Vermont exploited Besshishytype massive sulfide deposits The ores consisted of pyrrhotite chalcopyrite and minor sphalerite and pyrite (Offield and Slack 1993 Slack and others 2001) The Elizabeth mine was in operation from 1809 to 1958 and the Ely mine operated from the 1850rsquos to 1905 (Kierstead 2001) A variety of samples of waste rock and slag were examined from these two mines Summaries of the geology environmental geochemistry and mining history of the Elizabeth and Ely mines can be found in the Society of Economic Geologists Guidebook Series volume 35 (Crowley and others 2001 Hammarstrom and others 2001a Hammarstrom and others 2001b Hathaway and others 2001 Kierstead 2001 Seal and others 2001a Seal and others 2001b and Slack and others 2001)

Like the deposits in the Vermont copper belt the Ducktown mining district in Polk County Tennessee exploited Besshi-type massive sulfide deposits The primary ore minerals were pyrrhotite subordinate pyrite with minor chalcopyrite sphalerite magnetite and sparse galena (Magee 1968) The Ducktown mining district operated

5

from 1847 to 1987 Granulated slag (quenched in water) and calcine (ore which has been crushed concentrated and roasted) were collected and characterized from this site

In contrast to the Besshi-type massive sulfide deposits of Vermont and Tennessee the deposits in the Bayhorse mining district Idaho include polymetallic vein and replacement deposits (Hammarstrom and others 2002) The major sulfide minerals are galena sphalerite pyrite tetrahedrite and chalcopyrite (Ross 1937) A sample of air-cooled slag was collected from the Clayton smelters which operated intermittently from the 1880rsquos to 1902 reopened in 1913 and then again in 1935 This site smelted ore from several mines within the mining districts of Greyhound Ridge Seafoam Germania Basin and Bayhorse (Wells 1983)

This report forms the detailed analytical basis for the interpretation and discussion of petrographic and geochemical data by Piatak and others (2004) Additional data and interpretations for sintered waste rock from the Elizabeth and Ely mines calcine from Ducktown and two pot slag samples are included in this report

METHODS

The bulk chemical composition of the solid samples was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) following acid-digestion by a mixture of HCl-HNO3-HClO4-HF in USGS laboratories in Denver Colorado (Crock and others 1999) Also major oxide content was measured using wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) following fusion in a mixture of LiBO2 and LiB4O7 Interpretation in text is based on ICP-MS for minor elements and on ICP-AES for major elements except SiO2 content for which WD-XRF results are used Total sulfur was measured using a LECO S analyzer WD-XRF and LECO S analyses were preformed by XRAL Laboratories Ontario Canada

Mineralogical identification and the distribution of trace metals within phases was determined using transmitted- and reflected-light microscopy X-ray diffraction analysis (XRD) scanning electron microscopy (SEM) and electron-microprobe analysis (EPMA) in USGS laboratories in Reston Virginia XRD was performed using a Scintag X1 automated powder diffractometer equipped with a Peltier detector with CuKα radiation The XRD patterns were analyzed using Material Data Incrsquos JADE software and standard reference patterns (International Centre for Diffraction Data 1997) SEM analyses were performed with a JEOL JSM-840 SEM equipped with a backscattered electron detector a secondary electron detector and a PGT X-ray energy-dispersive system Spectra were collected using an accelerating voltage of 15-20 kV and a specimen current of 1 to 10 nA A JEOL JXA 8900A microprobe equipped with five wavelength-dispersive spectrometers was operated at an accelerating voltage of 15-20 kV a beam current of 20shy30 nA and a beam diameter of up to 5 microm The analyses were corrected for electron beammatrix and instrumental drift and dead time using either a ZAF or a Phi-Rho-ZshyCITZAF scheme supplied with the JEOL instrument software

A modified version of a Field-Leach Test developed by Hageman and Briggs (2000) was preformed on splits of the samples in USGS laboratories in Reston Virginia The samples were crushed and sieved to a diameter of less than 2 mm Each sample was

6

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 4: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

LIST OF TABLES

Table 1 Sample descriptionshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

Table 2 Geochemical data for bulk sampleshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag sampleshelliphelliphellip18

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag sampleshellip21

Table 5 Electron-microprobe analyses of spinel and hematite in slag sampleshelliphelliphellip26

Table 6 Electron-microprobe analyses of sulfide metallic phases and miscellaneous compounds in slaghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

Table 7 Analytical results of leaching testshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

4

ABSTRACT

Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements Two types of mine waste were examined in this study sintered waste rock and slag The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits) from the Copper Basin mining district near Ducktown Tennessee (Besshi-type massive sulfide deposits) and from the Clayton silver mine in the Bayhorse mining district Idaho (polymetallic vein and replacement deposits) The data in this report are presented as a compilation with minimal interpretation or discussion A detailed discussion and interpretation of the slag data are presented in a companion paper Data collected from sintered waste rock and slag include (1) bulk rock chemistry (2) mineralogy (3) and the distribution of trace elements among phases for the slag samples In addition the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States

INTRODUCTION

Abandoned mines and smelter sites commonly have mine-waste material including waste rock flotation tailings and slag which contain elevated concentrations of trace elements such as Cu Zn and Pb These potentially toxic trace metals may be released into the environment through natural weathering processes and have adverse effects on water quality In this study mine-waste material including slag and sintered waste rock was characterized by determining bulk major and trace-element chemistry and mineral chemistry Also the leachability of metals was examined using a modified version of the field-leach test developed by Hageman and Briggs (2000) for the characterization of mine waste

The suite of samples studied was collected from four mine sites The Elizabeth and Ely mines in the Vermont copper belt in Orange County Vermont exploited Besshishytype massive sulfide deposits The ores consisted of pyrrhotite chalcopyrite and minor sphalerite and pyrite (Offield and Slack 1993 Slack and others 2001) The Elizabeth mine was in operation from 1809 to 1958 and the Ely mine operated from the 1850rsquos to 1905 (Kierstead 2001) A variety of samples of waste rock and slag were examined from these two mines Summaries of the geology environmental geochemistry and mining history of the Elizabeth and Ely mines can be found in the Society of Economic Geologists Guidebook Series volume 35 (Crowley and others 2001 Hammarstrom and others 2001a Hammarstrom and others 2001b Hathaway and others 2001 Kierstead 2001 Seal and others 2001a Seal and others 2001b and Slack and others 2001)

Like the deposits in the Vermont copper belt the Ducktown mining district in Polk County Tennessee exploited Besshi-type massive sulfide deposits The primary ore minerals were pyrrhotite subordinate pyrite with minor chalcopyrite sphalerite magnetite and sparse galena (Magee 1968) The Ducktown mining district operated

5

from 1847 to 1987 Granulated slag (quenched in water) and calcine (ore which has been crushed concentrated and roasted) were collected and characterized from this site

In contrast to the Besshi-type massive sulfide deposits of Vermont and Tennessee the deposits in the Bayhorse mining district Idaho include polymetallic vein and replacement deposits (Hammarstrom and others 2002) The major sulfide minerals are galena sphalerite pyrite tetrahedrite and chalcopyrite (Ross 1937) A sample of air-cooled slag was collected from the Clayton smelters which operated intermittently from the 1880rsquos to 1902 reopened in 1913 and then again in 1935 This site smelted ore from several mines within the mining districts of Greyhound Ridge Seafoam Germania Basin and Bayhorse (Wells 1983)

This report forms the detailed analytical basis for the interpretation and discussion of petrographic and geochemical data by Piatak and others (2004) Additional data and interpretations for sintered waste rock from the Elizabeth and Ely mines calcine from Ducktown and two pot slag samples are included in this report

METHODS

The bulk chemical composition of the solid samples was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) following acid-digestion by a mixture of HCl-HNO3-HClO4-HF in USGS laboratories in Denver Colorado (Crock and others 1999) Also major oxide content was measured using wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) following fusion in a mixture of LiBO2 and LiB4O7 Interpretation in text is based on ICP-MS for minor elements and on ICP-AES for major elements except SiO2 content for which WD-XRF results are used Total sulfur was measured using a LECO S analyzer WD-XRF and LECO S analyses were preformed by XRAL Laboratories Ontario Canada

Mineralogical identification and the distribution of trace metals within phases was determined using transmitted- and reflected-light microscopy X-ray diffraction analysis (XRD) scanning electron microscopy (SEM) and electron-microprobe analysis (EPMA) in USGS laboratories in Reston Virginia XRD was performed using a Scintag X1 automated powder diffractometer equipped with a Peltier detector with CuKα radiation The XRD patterns were analyzed using Material Data Incrsquos JADE software and standard reference patterns (International Centre for Diffraction Data 1997) SEM analyses were performed with a JEOL JSM-840 SEM equipped with a backscattered electron detector a secondary electron detector and a PGT X-ray energy-dispersive system Spectra were collected using an accelerating voltage of 15-20 kV and a specimen current of 1 to 10 nA A JEOL JXA 8900A microprobe equipped with five wavelength-dispersive spectrometers was operated at an accelerating voltage of 15-20 kV a beam current of 20shy30 nA and a beam diameter of up to 5 microm The analyses were corrected for electron beammatrix and instrumental drift and dead time using either a ZAF or a Phi-Rho-ZshyCITZAF scheme supplied with the JEOL instrument software

A modified version of a Field-Leach Test developed by Hageman and Briggs (2000) was preformed on splits of the samples in USGS laboratories in Reston Virginia The samples were crushed and sieved to a diameter of less than 2 mm Each sample was

6

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 5: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

ABSTRACT

Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements Two types of mine waste were examined in this study sintered waste rock and slag The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits) from the Copper Basin mining district near Ducktown Tennessee (Besshi-type massive sulfide deposits) and from the Clayton silver mine in the Bayhorse mining district Idaho (polymetallic vein and replacement deposits) The data in this report are presented as a compilation with minimal interpretation or discussion A detailed discussion and interpretation of the slag data are presented in a companion paper Data collected from sintered waste rock and slag include (1) bulk rock chemistry (2) mineralogy (3) and the distribution of trace elements among phases for the slag samples In addition the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States

INTRODUCTION

Abandoned mines and smelter sites commonly have mine-waste material including waste rock flotation tailings and slag which contain elevated concentrations of trace elements such as Cu Zn and Pb These potentially toxic trace metals may be released into the environment through natural weathering processes and have adverse effects on water quality In this study mine-waste material including slag and sintered waste rock was characterized by determining bulk major and trace-element chemistry and mineral chemistry Also the leachability of metals was examined using a modified version of the field-leach test developed by Hageman and Briggs (2000) for the characterization of mine waste

The suite of samples studied was collected from four mine sites The Elizabeth and Ely mines in the Vermont copper belt in Orange County Vermont exploited Besshishytype massive sulfide deposits The ores consisted of pyrrhotite chalcopyrite and minor sphalerite and pyrite (Offield and Slack 1993 Slack and others 2001) The Elizabeth mine was in operation from 1809 to 1958 and the Ely mine operated from the 1850rsquos to 1905 (Kierstead 2001) A variety of samples of waste rock and slag were examined from these two mines Summaries of the geology environmental geochemistry and mining history of the Elizabeth and Ely mines can be found in the Society of Economic Geologists Guidebook Series volume 35 (Crowley and others 2001 Hammarstrom and others 2001a Hammarstrom and others 2001b Hathaway and others 2001 Kierstead 2001 Seal and others 2001a Seal and others 2001b and Slack and others 2001)

Like the deposits in the Vermont copper belt the Ducktown mining district in Polk County Tennessee exploited Besshi-type massive sulfide deposits The primary ore minerals were pyrrhotite subordinate pyrite with minor chalcopyrite sphalerite magnetite and sparse galena (Magee 1968) The Ducktown mining district operated

5

from 1847 to 1987 Granulated slag (quenched in water) and calcine (ore which has been crushed concentrated and roasted) were collected and characterized from this site

In contrast to the Besshi-type massive sulfide deposits of Vermont and Tennessee the deposits in the Bayhorse mining district Idaho include polymetallic vein and replacement deposits (Hammarstrom and others 2002) The major sulfide minerals are galena sphalerite pyrite tetrahedrite and chalcopyrite (Ross 1937) A sample of air-cooled slag was collected from the Clayton smelters which operated intermittently from the 1880rsquos to 1902 reopened in 1913 and then again in 1935 This site smelted ore from several mines within the mining districts of Greyhound Ridge Seafoam Germania Basin and Bayhorse (Wells 1983)

This report forms the detailed analytical basis for the interpretation and discussion of petrographic and geochemical data by Piatak and others (2004) Additional data and interpretations for sintered waste rock from the Elizabeth and Ely mines calcine from Ducktown and two pot slag samples are included in this report

METHODS

The bulk chemical composition of the solid samples was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) following acid-digestion by a mixture of HCl-HNO3-HClO4-HF in USGS laboratories in Denver Colorado (Crock and others 1999) Also major oxide content was measured using wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) following fusion in a mixture of LiBO2 and LiB4O7 Interpretation in text is based on ICP-MS for minor elements and on ICP-AES for major elements except SiO2 content for which WD-XRF results are used Total sulfur was measured using a LECO S analyzer WD-XRF and LECO S analyses were preformed by XRAL Laboratories Ontario Canada

Mineralogical identification and the distribution of trace metals within phases was determined using transmitted- and reflected-light microscopy X-ray diffraction analysis (XRD) scanning electron microscopy (SEM) and electron-microprobe analysis (EPMA) in USGS laboratories in Reston Virginia XRD was performed using a Scintag X1 automated powder diffractometer equipped with a Peltier detector with CuKα radiation The XRD patterns were analyzed using Material Data Incrsquos JADE software and standard reference patterns (International Centre for Diffraction Data 1997) SEM analyses were performed with a JEOL JSM-840 SEM equipped with a backscattered electron detector a secondary electron detector and a PGT X-ray energy-dispersive system Spectra were collected using an accelerating voltage of 15-20 kV and a specimen current of 1 to 10 nA A JEOL JXA 8900A microprobe equipped with five wavelength-dispersive spectrometers was operated at an accelerating voltage of 15-20 kV a beam current of 20shy30 nA and a beam diameter of up to 5 microm The analyses were corrected for electron beammatrix and instrumental drift and dead time using either a ZAF or a Phi-Rho-ZshyCITZAF scheme supplied with the JEOL instrument software

A modified version of a Field-Leach Test developed by Hageman and Briggs (2000) was preformed on splits of the samples in USGS laboratories in Reston Virginia The samples were crushed and sieved to a diameter of less than 2 mm Each sample was

6

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 6: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

from 1847 to 1987 Granulated slag (quenched in water) and calcine (ore which has been crushed concentrated and roasted) were collected and characterized from this site

In contrast to the Besshi-type massive sulfide deposits of Vermont and Tennessee the deposits in the Bayhorse mining district Idaho include polymetallic vein and replacement deposits (Hammarstrom and others 2002) The major sulfide minerals are galena sphalerite pyrite tetrahedrite and chalcopyrite (Ross 1937) A sample of air-cooled slag was collected from the Clayton smelters which operated intermittently from the 1880rsquos to 1902 reopened in 1913 and then again in 1935 This site smelted ore from several mines within the mining districts of Greyhound Ridge Seafoam Germania Basin and Bayhorse (Wells 1983)

This report forms the detailed analytical basis for the interpretation and discussion of petrographic and geochemical data by Piatak and others (2004) Additional data and interpretations for sintered waste rock from the Elizabeth and Ely mines calcine from Ducktown and two pot slag samples are included in this report

METHODS

The bulk chemical composition of the solid samples was determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) following acid-digestion by a mixture of HCl-HNO3-HClO4-HF in USGS laboratories in Denver Colorado (Crock and others 1999) Also major oxide content was measured using wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) following fusion in a mixture of LiBO2 and LiB4O7 Interpretation in text is based on ICP-MS for minor elements and on ICP-AES for major elements except SiO2 content for which WD-XRF results are used Total sulfur was measured using a LECO S analyzer WD-XRF and LECO S analyses were preformed by XRAL Laboratories Ontario Canada

Mineralogical identification and the distribution of trace metals within phases was determined using transmitted- and reflected-light microscopy X-ray diffraction analysis (XRD) scanning electron microscopy (SEM) and electron-microprobe analysis (EPMA) in USGS laboratories in Reston Virginia XRD was performed using a Scintag X1 automated powder diffractometer equipped with a Peltier detector with CuKα radiation The XRD patterns were analyzed using Material Data Incrsquos JADE software and standard reference patterns (International Centre for Diffraction Data 1997) SEM analyses were performed with a JEOL JSM-840 SEM equipped with a backscattered electron detector a secondary electron detector and a PGT X-ray energy-dispersive system Spectra were collected using an accelerating voltage of 15-20 kV and a specimen current of 1 to 10 nA A JEOL JXA 8900A microprobe equipped with five wavelength-dispersive spectrometers was operated at an accelerating voltage of 15-20 kV a beam current of 20shy30 nA and a beam diameter of up to 5 microm The analyses were corrected for electron beammatrix and instrumental drift and dead time using either a ZAF or a Phi-Rho-ZshyCITZAF scheme supplied with the JEOL instrument software

A modified version of a Field-Leach Test developed by Hageman and Briggs (2000) was preformed on splits of the samples in USGS laboratories in Reston Virginia The samples were crushed and sieved to a diameter of less than 2 mm Each sample was

6

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 7: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

combined with either deionized water (DIW) or a solution that approximates eastern United States precipitation (ESP) at a solution to sample ratio of 201 A mixture of sulfuric acid and nitric acid was added to the deionized water to adjust the pH to 42 plusmn 01 to produce synthetic eastern precipitation solution (US EPA 1994) The mixtures were shaken initially for one minute and after 24 hours filtered through 045 microm nitrocellulose filters Filtered splits were analyzed for cations by ICP-MS and ICP-AES and for anions (sulfate and chloride) by ion chromatography (IC) in USGS laboratories in Denver Colorado and Ocala Florida respectively

SAMPLE DESCRIPTION

Pot slag (air-cooled) and sintered waste rock were collected from the Elizabeth and Ely mines (Figure 1 and Table 1) The molten slag produced by smelting the ore was poured into pots and then dumped in waste piles Examples of these slag-pot casts are shown in Figure 2A and B Two of the pot slag samples from the Elizabeth mine were subdivided as rind (first few centimeters from the chilled margin) and core and were analyzed separately Also texturally distinctive splits of samples 01JH27 (Elizabeth) 01JH28 (Elizabeth) and 01JH34 (Ely) were examined separately In contrast to the pot slag samples the sintered waste rock consists of both ore and host rock which was broken or crushed and heated without melting (Figure 2C)

Figure 1 Locations of study areas showing sample sites in Vermont A Locations of Elizabeth and Ely mines B Sketch map of Elizabeth mine site C Sketch map of Ely mine site Sample sites designated with a red X

7

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 8: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 1 Sample descriptions

Sample number Mining district Mine Type Sample description Mineralogy Comments Location description Smelter site Smelting

date 98JHNP-B-RS Vermont Elizabeth waste rock red oxidized rock quartz feldspar spinel hematite sintered rock Tailings pile 3 (TP3) na a na

copper belt jarosite minor mica 98JHNPB-s Vermont Elizabeth waste rock dark gray to black coarse sand to silt- quartz hematite jarosite sintered roasted Tailings pile 3 (TP3) na na

copper belt sized fragments rock 00JH05 Vermont Elizabeth air-cooled slag gray to black flow banding with fayalite spinel sulfides vesicular spinifex West slope of Copperas Hill Sargent 1880shy

copper belt some areas botryoidal iridescent and texture Brook 1890 gray glassy surface

01JH27a Vermont Elizabeth pot slag gray to black with yellow coatings fayalite spinel sulfides vesicular spinifex Base of tailings pile (TP1) Heckscher 1905shy copper belt texture smelter 1909

01JH27b Vermont Elizabeth air-cooled slag gray to black flow banding and fayalite spinel sulfides fine-grained to Base of tailings pile (TP1) Heckscher 1905shy copper belt rough blocky surface yellow glassy smelter 1909

coatings 01JH28 Vermont Elizabeth air-cooled slag black and dark gray layers flow fayalite spinel sulfides quartz vesicular spinifex North bank of the West Branch of Furnace 1854-67

copper belt banding brown red and iridescent texture the Ompompanoosuc River Flat 1884 coatings

01JH28core Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides core spinifex and North bank of the West Branch of Furnace 1854-67 copper belt surfaces blocky texture the Ompompanoosuc River Flat 1884

01JH28rind Vermont Elizabeth pot slag dark gray red coatings and glassy fayalite spinel sulfides rind vesicular North bank of the West Branch of Furnace 1854-67 copper belt surfaces spinifex texture the Ompompanoosuc River Flat 1884

01JH37core Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides core spinifex na na na copper belt iridescent coatings texture

01JH37rind Vermont Elizabeth pot slag gray to black red brown and fayalite spinel sulfides rind spinifex na na na copper belt iridescent coatings texture

00JH34 Vermont Ely pot slag dark gray red and brown coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

00JH38 Vermont Ely pot slag dark gray brown and green coatings fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt texture Brook 1905

01JH31A Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite waste rock Upper mine waste pile na na copper belt sulfide

01JH31B Vermont Ely waste rock brown gray red rock fragments quartz feldspar spinel hematite mine waste rock Upper mine waste pile na na copper belt sulfide

01JH34a Vermont Ely pot slag gray iridescent brown and green fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt coatings texture Brook 1905

01JH34b Vermont Ely pot slag gray to black flow banding fayalite spinel sulfides vesicular spinifex North bank of Schoolhouse Ely 1867shy copper belt iridescent brown and red coatings texture Brook 1905

01CB23 Ducktown Ducktown calcine dark red silt-sized fragments quartz spinel hematite gypsum sintered rock Davis Mill Creek watershed na na mining district sulfides

01CB25 Ducktown Ducktown granulated slag black conchoidally fractured sandshy glass hematite sulfides glassy Davis Mill Creek watershed Ducktown 1920s-mining district sized bits 1987

53JH00 Bayhorse various pot slag gray metallic luster iridescent fayalite-kirschsteinite hedenbergite vesicular spinifex North bank of Salmon River Clayton 1880s-mining district mines white and green coatings spinel sulfide texture smelter 1902

a not availableapplicable

8

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 9: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

A B

C D

E F

Figure 2 Representative photographs of sample sites A Slag pile (sample 00JH05) at the Elizabeth mine B Slag pile along Schoolhouse Brook at the Ely mine C Sintered waste rock from the Elizabeth mine TP3 area The black is 98JHNPB-s and the red is 98JHNP-B-RS D Low-sulfur calcine (sample 01CB23) at Ducktown E Granulated slag pile (sample 01CB25) along Davis Mill Creek at Ducktown F Black pile on left side of the river is air-cooled slag at the Clayton smelter site sample 53JH00

Low-sulfur calcine and granulated slag were collected from the Ducktown mining district (Figure 3) Mineralogical characterization and environmental impacts of waste at this site is discussed by Moyer and others (2000 2002) The calcine is crushed concentrated and roasted ore (Figure 2D) In contrast the granulated slag is the product of melting the calcine with a flux removing the Cu matte and cooling the waste material

9

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 10: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

in a stream of flowing water which caused it to fracture into sand-sized particles (Anonymous-Polk County Publishers) A pile of granulated slag is located along Davis Mill Creek (Figure 2E)

Davis

Ocoee

Mill

River

01CB23

01CB25

X X

Tennessee N

1 km

North Potato Creek

Cree

k

Figure 3 Location of calcine (01CB23) and granulated slag (01CB25) samples collected from the Ducktown mining district Sample sites are designated with a red X

An air-cooled slag sample was collected from the Clayton smelter site (Figure 4) The slag was dumped directly on the banks of the Salmon River (Figure 2F)

Salmon River

SquawCreek

Kinnikinic C

reek

Clayton75 44o15

44o2230

R17E

T12N T11N

Clayton mine

0

0

1 2 Miles

1 2 3 Km

Challis Stanley

IDAHO

x

N

53JH00

114o30

Figure 4 Location of Clayton Idaho smelter site and slag sample 53JH00 (designated with a red X)

10

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 11: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

BULK-ROCK CHEMISTRY

The bulk chemical analyses indicate that the chemical compositions of the samples are heterogeneous (Table 2) The bulk chemistry of the samples is plotted on the FeO-Al2O3-SiO2 and CaO-FeO-SiO2 ternary diagrams in Figures 5A and B respectively Most samples are composed primarily of oxides of Fe and Si with varying amounts of Al and Ca The calcine (01CB23) from Ducktown is an exception and is predominantly ferric iron oxide (Fe2O3) The waste-rock samples from the Ely mine contain higher concentrations of SiO2 and lower concentrations of FeO compared to the pot slag samples In contrast the pot slag samples from the Elizabeth mine plot near or between the waste rock samples (Figure 5A and B) In general the samples collected from Vermont contain higher concentrations of Al K and Na compared with the Ducktown and Clayton samples Slag samples 01JH27 (Elizabeth) and 53JH00 (Clayton) contain the highest concentrations of Ca (41 wt and 31 wt respectively) compared to all other samples (lt19 wt )

The samples also display variations in trace-element concentrations (Table 2) The calcine and granulated slag from Ducktown are low in Cu (1400 mgkg and 2000 mgkg respectively) compared to as much as 13500 mgkg for slag from Vermont and 7550 mgkg for slag from the Clayton smelter site Several slag samples from the Vermont copper belt contain high concentrations of Co such as 00JH34 (922 mgkg) 01JH34 (716 mgkg) and 00JH05 (600 mgkg) Sample 01JH27 contains the highest concentration of Cr (276 mgkg) The Clayton smelter slag contains anomalous concentrations of several elements compared to the other samples These elements include the following Ag (200 mgkg) As (555 mgkg) Mn (22000 mgkg) Pb (63000 mgkg) Sb (1710 mgkg) Sn (363 mgkg) Sr (285 mgkg) W (175 mgkg) and Zn (19700 mgkg)

MINERALOGY

Vermont copper belt

Slag

Slag samples from the Elizabeth and Ely mines are composed of olivine-group minerals glass spinels sulfides native metals and quartz Many of the samples display an increase in grain size from glassy rinds to megascopically crystalline interiors For example Figure 6A illustrates a glassy rind (top of photomicrograph) and an increase in the grain size of olivines away from this rind (bottom of photomicrograph) Flow textures are also evident in slag deposited in the molten state The olivine-group minerals are a dominant phase in most samples and commonly display spinifex texture within a glassy or finely crystalline matrix Radial and parallel olivine laths up to several centimeters long observed in slag samples suggest rapid cooling (Figure 6B C and D) Less commonly olivine crystals in the interior of a sample are subhedral to euhedral (Figure 6E) The individual microprobe analyses and averages for olivine in each slag

11

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 12: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 2 Geochemical data for bulk samples See Crock and others (1999) for explanation of methods Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 c

B-RS a B-RS B-s a B-s Dup core rind core rind major oxides

Al2O3 WD-XRF wt na d 682 na 425 na 756 871 875 998 822 823 808 841 na 608 na 75 86 598 673 na 046 na 348 215 CaO WD-XRF wt na 048 na 053 na 14 628 626 293 288 291 147 149 na 151 na 186 172 087 173 na 082 na 473 456 Cr2O3 WD-XRF wt na 001 na lt001 na 001 004 004 002 002 001 001 002 na 001 na lt001 001 002 lt001 na lt001 na lt001 lt001 Fe2O3 WD-XRF wt na 5441 na 7902 na -- -- -- -- -- -- -- -- na -- na -- 407 261 -- na 9381 na -- --FeO e WD-XRF wt na -- na -- na 5494 3730 3759 3336 4681 4606 4577 4760 na 5636 na 4576 -- -- 5086 na -- na 4761 3588 K2O WD-XRF wt na 115 na 08 na 096 133 134 152 111 119 11 103 na 09 na 128 189 123 097 na 011 na 053 046 MgO WD-XRF wt na 116 na 092 na 208 204 204 358 223 224 255 263 na 118 na 154 143 107 14 na 051 na 188 118 MnO WD-XRF wt na 003 na 001 na 006 006 006 017 011 011 008 008 na 014 na 022 022 003 016 na 002 na 068 27 Na2O WD-XRF wt na 1 na 029 na 132 133 133 251 14 142 137 14 na 064 na 083 095 082 068 na 003 na 032 lt001 P2O5 WD-XRF wt na 004 na 003 na 005 007 007 013 013 013 006 006 na 012 na 012 015 031 012 na 004 na 008 029 SiO2 WD-XRF wt na 2944 na 1117 na 3101 4129 4151 4338 3511 3558 3465 3618 na 306 na 3842 3975 5597 3471 na 378 na 3542 2908 TiO2 WD-XRF wt na 047 na 026 na 039 045 045 052 045 043 044 045 na 041 na 046 047 044 042 na 003 na 017 009 LOI WD-XRF wt na 415 na 345 na lt001 lt001 lt001 lt001 lt001 lt001 lt001 lt001 na lt001 na lt001 27 57 lt001 na 025 na lt001 lt001

major elements Al ICP-AES wt 359 3 221 19 442 36 43 43 49 41 4 4 41 325 3 428 38 42 28 32 035 023 2215 1 12 Al ICP-MS wt 36 371 22 24 na 487 556 556 632 483 471 431 446 na 391 na 481 481 312 369 na 022 na 104 114 Ca ICP-AES wt 03 028 009 01 0955 083 41 4 19 18 18 089 092 0925 093 105 1 11 053 11 0315 046 3185 18 31 Ca ICP-MS wt 03 031 01 012 na 099 45 448 211 184 184 086 089 na 104 na 108 105 051 103 na 044 na 16 279 Fe ICP-AES wt gt30 19 gt30 28 411 37 26 26 24 33 32 33 33 465 38 374 34 23 16 36 658 49 386 21 32 Fe ICP-MS wt 35 223 46 327 na 496 335 335 298 395 378 36 369 na 506 na 421 253 16 41 na 584 na 217 336 K ICP-AES wt 091 086 073 07 101 085 11 11 12 093 094 097 1 079 076 116 11 15 11 089 011 007 051 023 039 K ICP-MS wt 095 093 072 076 na 097 12 12 127 092 092 087 09 na 083 na 113 148 101 081 na 006 na 02 032 Mg ICP-AES wt 064 058 037 041 1345 11 11 11 2 12 12 14 14 0705 058 086 081 074 055 07 026 025 123 062 063 Mg ICP-MS wt 068 072 039 044 na 146 145 145 262 148 142 153 158 na 076 na 104 085 058 081 na 024 na 064 063 Na ICP-AES wt 069 069 02 02 1295 1 1 1 19 11 11 12 12 0515 05 072 07 076 066 062 0045 003 05 025 01 Na ICP-MS wt 074 0741 021 0218 na 122 115 115 223 118 115 115 12 na 0575 na 0751 0771 0644 0607 na 0026 na 0233 0082 P ICP-AES wt lt001 004 lt001 003 lt0005 008 004 004 01 01 01 01 009 0005 01 002 01 02 025 01 lt0005 002 0015 004 02 P ICP-MS wt na 0008 na 0002 na 0014 003 003 0064 0053 0053 0016 0017 na 0054 na 0052 0064 0145 0042 na 0005 na 0015 0114 Si ICP-AES wt 129 na 532 na na na na na na na na na na na na na na na na na na na na na na S LECO S wt 115 102 111 103 102 141 085 096 082 046 041 112 085 158 154 138 138 184 364 1 na 044 na 174 086 Ti ICP-AES wt 025 002 013 lt001 0247 lt001 02 02 006 lt001 003 lt001 lt001 0226 002 0278 006 lt001 lt001 001 0016 lt001 011 lt001 lt001 Ti ICP-MS wt na 0207 na 013 na 031 0363 0363 0426 0338 0312 0291 0302 na 0322 na 0368 0287 0288 0287 na 0011 na 0063 0061

minor elements Ag ICP-AES mgkg na 7 na 5 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 5 6 lt4 lt2 4 lt2 lt4 180 Ag ICP-MS mgkg 4 58 1 38 na 12 021 026 12 084 061 24 1 na 094 na 096 42 55 098 na 35 na 061 200 As ICP-AES mgkg na lt20 na lt20 lt10 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt10 lt20 lt10 lt20 lt20 lt20 lt20 22 38 lt10 lt20 580 As ICP-MS mgkg 59 65 5 4 na 08 lt05 lt05 1 15 15 2 15 na 07 na lt05 06 09 lt05 na 39 na 12 555 Au ICP-AES mgkg na lt20 na lt20 lt8 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 lt20 lt20 lt8 lt20 lt8 lt20 lt20 Au ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Ba ICP-AES mgkg 25 20 26 74 140 26 86 84 80 65 66 27 29 222 93 248 140 230 64 130 162 lt2 240 64 140 Ba ICP-MS mgkg 26 22 26 87 na 41 112 112 99 77 76 39 41 na 130 na 171 257 67 162 na 12 na 70 170 Be ICP-AES mgkg 02 lt2 lt01 lt2 lt1 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 lt2 lt2 lt1 lt2 lt1 lt2 lt2 Be ICP-MS mgkg na 03 na lt01 na 05 11 1 09 07 05 06 06 na 12 na 11 17 03 16 na lt01 na 03 12 Bi ICP-AES mgkg na lt20 na lt20 lt50 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 lt20 lt20 lt50 lt20 lt50 lt20 lt20 Bi ICP-MS mgkg na 24 na 09 na lt 005 lt 005 lt 005 009 02 02 02 008 na 01 na lt 005 06 13 02 na 21 na lt 005 14 Cd ICP-AES mgkg na 7 na 6 lt2 10 8 8 6 10 10 10 10 lt2 10 lt2 10 8 6 10 lt2 21 lt2 6 10 Cd ICP-MS mgkg 39 39 12 11 na 2 043 041 17 24 22 34 31 na 27 na 084 3 34 19 na 41 na 051 03 Ce ICP-AES mgkg na lt8 na lt8 lt5 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt5 lt8 12 8 34 lt8 8 lt5 lt8 14 8 8 Ce ICP-MS mgkg na 08 na lt 01 na 52 13 13 12 96 92 56 59 na 17 na 23 40 98 23 na 4 na 16 22

12

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 13: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Co ICP-AES mgkg na 140 na 210 400 400 180 180 190 360 350 360 360 744 610 249 240 260 150 550 251 260 106 79 27 Co ICP-MS mgkg 160 152 250 265 na 600 247 248 260 491 472 445 448 na 922 na 330 325 145 716 na 306 na 66 61 Cr ICP-AES mgkg 129 94 91 35 82 52 190 180 110 100 58 88 89 73 43 60 34 53 80 10 36 lt2 42 20 lt2 Cr ICP-MS mgkg na 125 na 75 na 114 276 251 164 150 102 122 127 na 104 na 83 80 82 56 na 89 na 40 19 Cs ICP-MS mgkg na 38 na 17 na 36 32 33 65 38 37 44 45 na 24 na 31 37 66 25 na 02 na 08 14 Cu ICP-AES mgkg 4000 3800 2600 3100 6570 7600 1700 1600 6500 7300 5900 14000 8100 8010 6400 5230 6100 10000 12000 6800 1390 1600 3660 2200 8400 Cu ICP-MS mgkg na 4000 na 3300 na 8420 1900 1800 7040 7320 5900 13500 7640 na 6940 na 6340 10100 11500 6390 na 1400 na 2000 7550 Dy ICP-MS mgkg na 035 na 017 na 17 23 23 29 23 22 18 19 na 24 na 28 31 27 28 na 027 na 13 17 Er ICP-MS mgkg na 02 na 012 na 098 13 13 16 13 13 11 11 na 13 na 15 16 12 15 na 012 na 068 083 Eu ICP-AES mgkg na lt4 na lt4 lt2 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt4 lt2 lt4 lt2 lt4 lt4 lt4 lt4 2 lt4 2 lt4 lt4 Eu ICP-MS mgkg na 008 na 002 na 02 038 037 044 034 034 025 027 na 053 na 058 073 068 058 na 011 na 094 13 Ga ICP-AES mgkg na lt8 na lt8 22 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 17 lt8 17 lt8 lt8 10 lt8 14 lt8 23 lt8 lt8 Ga ICP-MS mgkg na 97 na 54 na 11 12 12 12 11 11 11 12 na 92 na 11 11 13 95 na 15 na 73 62 Gd ICP-MS mgkg na 028 na 011 na 12 2 19 24 19 19 15 16 na 22 na 27 32 27 26 na 03 na 14 19 Ge ICP-MS mgkg na 03 na 02 na 05 03 03 05 05 05 05 05 na 07 na 05 04 04 06 na 04 na 04 17 Ho ICP-AES mgkg na lt8 na lt8 lt4 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 lt8 lt8 lt4 lt8 lt4 lt8 lt8 Ho ICP-MS mgkg na 006 na 003 na 03 039 039 048 04 04 032 034 na 039 na 047 05 041 046 na 004 na 021 026 In ICP-MS mgkg na 03 na 01 na 08 02 02 03 07 07 06 06 na 11 na 1 06 02 11 na 08 na 24 62 La ICP-AES mgkg na lt4 na lt4 lt2 lt4 6 6 6 4 4 lt4 lt4 3 8 6 10 20 6 10 lt2 lt4 11 8 10 La ICP-MS mgkg na 05 na lt 01 na 27 73 72 67 55 54 3 31 na 92 na 12 20 64 12 na 25 na 86 15 Li ICP-AES mgkg na 8 na lt4 24 20 25 24 43 26 26 34 35 24 23 25 24 10 10 23 3 lt4 22 10 8 Li ICP-MS mgkg na 82 na 37 na 23 27 27 48 28 27 36 37 na 25 na 26 13 10 26 na 13 na 10 8 Mn ICP-AES mgkg 264 180 206 110 464 400 400 390 1200 790 790 540 550 1120 1000 1700 1600 1500 150 1100 344 280 5220 3000 20000 Mn ICP-MS mgkg 210 220 140 130 na 540 520 520 1500 970 940 600 620 na 1400 na 2000 1600 160 1300 na 310 na 3100 22000 Mo ICP-AES mgkg na 22 na 20 41 41 20 22 20 46 48 28 28 67 59 38 31 27 9 40 4 lt4 7 lt4 10 Mo ICP-MS mgkg na 24 na 21 na 51 25 25 24 52 50 32 33 na 67 na 34 29 10 47 na 38 na 3 17 Nb ICP-AES mgkg lt10 lt8 lt10 lt8 15 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 14 lt8 20 lt8 lt8 lt8 lt8 7 lt8 19 lt8 lt8 Nb ICP-MS mgkg na 02 na 01 na 13 34 34 28 24 23 14 15 na 41 na 53 5 08 51 na 04 na 22 21 Nd ICP-AES mgkg na 10 na 20 lt9 24 21 21 20 24 23 21 21 lt9 31 14 29 28 20 31 lt9 34 13 20 10 Nd ICP-MS mgkg na 07 na 017 na 36 78 77 79 64 62 41 42 na 99 na 12 18 94 13 na 2 na 84 11 Ni ICP-AES mgkg na 27 na 50 21 30 20 20 21 36 34 37 30 29 30 11 21 60 30 31 38 40 11 10 20 Ni ICP-MS mgkg 22 23 46 47 na 19 85 76 14 26 24 27 18 na 18 na 85 57 26 18 na 22 na 28 56 Pb ICP-AES mgkg na 52 na lt8 26 lt8 lt8 lt8 lt8 10 10 10 lt8 18 lt8 9 lt8 10 21 lt8 164 170 86 40 34000 Pb ICP-MS mgkg 77 79 13 13 na 14 81 11 26 35 33 37 24 na 12 na 20 27 33 11 na 247 na 47 63000 Pr ICP-MS mgkg na 013 na lt 005 na 072 17 17 17 14 13 082 084 na 22 na 28 45 18 28 na 05 na 2 27 Rb ICP-MS mgkg na 30 na 23 na 30 36 36 51 34 32 33 35 na 30 na 40 63 40 35 na 33 na 99 13 Re ICP-MS mgkg na lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 lt 005 lt 005 na lt 005 na lt 005 lt 005 Sb ICP-MS mgkg lt01 lt01 lt01 lt01 na 01 lt01 02 lt01 lt01 lt01 lt01 lt01 na 02 na 06 lt01 lt01 01 na 13 na 03 1710 Sc ICP-AES mgkg na 10 na 10 11 20 20 20 20 20 20 20 20 10 20 12 20 20 20 20 lt2 10 2 7 10 Sc ICP-MS mgkg na 87 na 46 na 12 13 13 16 12 12 11 12 na 12 na 13 10 12 10 na lt 05 na 16 29 Se ICP-MS mgkg na 16 na 92 na 61 29 28 24 25 2 51 29 na 10 na 88 24 19 58 na 58 na 18 26 Sm ICP-MS mgkg na 019 na 006 na 091 17 17 19 15 14 11 11 na 2 na 26 34 22 25 na 034 na 15 21 Sn ICP-AES mgkg na lt10 na lt10 lt50 20 lt10 lt10 lt10 10 10 lt10 lt10 lt50 10 lt50 10 lt10 lt10 10 lt50 20 lt50 lt10 260 Sn ICP-MS mgkg na 05 na lt 05 na 08 lt 05 lt 05 lt 05 1 09 07 07 na 18 na 08 06 lt 05 14 na 49 na 82 363 Sr ICP-AES mgkg 17 10 lt10 lt4 45 29 110 110 69 61 63 35 36 76 72 63 54 33 26 71 12 4 184 98 320 Sr ICP-MS mgkg na 14 na 61 na 34 113 111 64 58 56 35 36 na 70 na 53 32 24 71 na 12 na 82 285 Tb ICP-MS mgkg na 005 na 002 na 021 03 029 037 029 028 023 025 na 033 na 039 044 038 038 na 004 na 018 026 Te ICP-MS mgkg na 02 na lt 01 na lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 lt 01 na lt 01 na lt 01 lt 01 lt 01 lt 01 na 01 na lt 01 04 Ta ICP-AES mgkg na lt80 na lt80 lt40 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 lt80 lt80 lt40 lt80 lt40 lt80 lt80 Th ICP-AES mgkg na lt8 na lt8 lt6 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 lt8 lt8 lt8 lt6 lt8 lt6 lt8 9 Th ICP-MS mgkg na 01 na lt 005 na 08 23 22 18 15 15 09 09 na 26 na 39 72 13 36 na 07 na 22 26 Tl ICP-MS mgkg 09 1 03 04 na 04 02 02 05 03 03 06 05 na 02 na 02 06 07 02 na 11 na 05 lt01

13

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 14: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 2 (cont) Elizabeth Ely Ducktown Clayton

Element Method Units 98JHNP- 98JHNP- 98JHNP 98JHNP 00JH05b 00JH05 01JH27 01JH27 01JH28 01JH28 01JH28 01JH37 01JH37 00JH34b 00JH34 00JH38b 00JH38 01JH31A 01JH31B 01JH34 01CB23b 01CB23 01CB25b 01CB25 53JH00 B-RS a B-RS B-s a B-s Dup core rind core rind

Tm ICP-MS mgkg na 003 na 002 na 014 018 018 022 018 017 015 015 na 018 na 021 022 016 021 na 002 na 009 011 U ICP-AES mgkg na lt200 na lt200 lt100 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 lt200 lt200 lt100 lt200 lt100 lt200 lt200 U ICP-MS mgkg na 07 na 04 na 23 28 28 18 24 24 25 25 na 28 na 41 32 16 32 na 06 na 17 82 V ICP-AES mgkg na 78 na 42 129 93 97 94 120 120 100 98 100 192 180 196 160 120 1300 130 22 7 55 20 50 V ICP-MS mgkg 91 82 47 43 na 101 112 103 128 125 104 89 94 na 220 na 177 116 1430 121 na 28 na 11 46 W ICP-MS mgkg na 07 na 02 na 12 15 15 22 26 26 19 2 na 15 na 13 04 06 14 na 05 na 04 175 Y ICP-AES mgkg lt20 lt4 lt10 lt4 10 6 10 10 10 10 10 8 8 11 9 13 10 10 10 10 lt2 lt4 12 5 6 Y ICP-MS mgkg na 2 na 12 na 11 14 14 18 15 14 12 12 na 14 na 16 16 12 17 na 16 na 76 94 Yb ICP-AES mgkg na lt2 na lt2 2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 lt2 3 lt2 2 lt2 2 3 lt2 3 lt2 2 lt2 lt2 Yb ICP-MS mgkg na 02 na 012 na 089 12 12 14 12 12 098 1 na 12 na 15 16 096 14 na 01 na 062 075 Zn ICP-AES mgkg na 1300 na 1000 5740 5400 1800 1800 4500 5700 5700 8100 8200 5560 5500 4670 4600 2200 780 4700 1500 1600 13920 7700 16000 Zn ICP-MS mgkg 1800 1670 1200 1260 na 7650 2310 2350 6160 7640 7390 9870 10200 na 7500 na 6160 2580 744 6070 na 1990 na 9020 19700 a data from Hammarstrom and others (1999) b samples were analyzed by ICP-AES in 2001 and reanalyzed by ICP-AES and ICP-MS in 2002 Discussion in text is based on 2002 analyses c WD-WRF results are a minimum for 53JH00 due to analytical interference caused by the high Pb and Zn concentrations d not analyzed or not available e Total Fe reported as Fe2O3 and was recalulated as FeO for slag samples based on mineralogical observations

14

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 15: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Elizabeth slag bulk glass Elizabeth slag interstitial glass Elizabeth slag whole rock Elizabeth waste rock whole rock Ely slag bulk glass Ely slag interstitial glass Ely slag whole rock Ely waste rock whole rock Ducktown slag bulk glass Ducktown slag whole rock Ducktown calcine whole rock Clayton slag interstitial glass

FeO

(A) SiO2

Al2O3

SiO2

FeO

(B)

CaO

Figure 5 Glass compositions and bulk chemical compositions on A FeO-Al2O3-SiO2 and B CaO-FeO-SiO2 ternary diagrams Bulk glass analyses for slag are shown with small filled symbols interstitial glass analyses for slag with small open symbols whole rock analyses for slag with large open symbols and whole rock analyses for waste rock with miscellaneous symbols

15

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 16: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

C

sulfide

glass spinel

olivine

spinel

sulfide

glass

olivine

sulfide

spinel

olivine

glass

A B

C D

E

glass

sulfide

olivine

quartz

F

200 microm 200 microm

100 microm 25 microm

Figure 6 Photomicrographs of slag samples from the Elizabeth and Ely mines A Transmitted light photomicrograph of 01JH37rind showing glassy chilled margin and an increase in olivine laths away from rind B Transmitted light photomicrograph in crossed polars of 01JH34a illustrating high birefringence of radially-oriented skeletal olivines C Backscattered scanning electron (BSE) photomicrograph of 01JH28core D BSE photomicrograph of 01JH34a E BSE photomicrograph of 00JH38 F BSE photomicrograph of 01JH28

16

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 17: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

sample from the Elizabeth and Ely mines are given in Table 3 As shown in Figure 7 the compositions of olivine-group minerals lie along the forsterite-fayalite join The olivine from the Elizabeth mine is more Mg-rich than that from the Ely mine Also the olivines from the Vermont copper belt contain up to 117 wt ZnO

CaMgSiO4 CaFeSiO4

Mg2SiO4 Fe2SiO4 + Mn2SiO4 forsterite fayalite+tephroite

Figure 7 Olivine compositions in the forsterite-(fayalite+tephroite)-kirschsteiniteshymonticellite quadrilateral diagram

The glass phase in the slag samples was categorized as either interstitial or bulk glass The interstitial glass is the matrix material (Figure 6B-E) and the bulk glass refers to either surface glass such as the rind for a pot-slag cast (Figure 6A) chilled margins (Figure 6F) or areas that consist of only glass such as those exhibiting flow textures without crystalline phases The bulk glass contains higher concentrations of Fe and lower concentrations of Si and Al when compared to the interstitial glass (Figure 5 and Table 4) In general bulk glass has higher concentrations of Mg S and Zn and lower concentrations of Na K and Ca relative to interstitial glass (Figure 5 and Table 4)

One slag sample from the Elizabeth mine contains quartz inclusions up to 1 mm in diameter (Figure 6F) The grain size of the olivine laths decreases towards the quartz grain The quartz grain is thus interpreted as a small inclusion from the silica-brick used to line the smelting furnace

Spinel in slag is euhedral to subhedral and ranges from a micrometer to approximately a hundred micrometers in diameter (Figure 6C-E) Individual microprobe analyses and averages for spinel in each slag sample are given in Table 5 The divalent site is dominated by over 90 ferrous iron and up to 53 Zn with the rest of the site containing Mg with very minor Ca and Mn (Figure 8A) The trivalent site includes cations with a +3 valence and +4 valence occurring in coupled substitution This site is predominantly Fe and Al with minor Ti Si and Cr (Figure 8B) The composition of the spinel in Vermont samples lies between magnetite and hercynite In several samples the spinels exhibit zoning For example the cores of a few spinel grains in sample 00JH05 contain higher concentrations of Cr than the rims which are enriched in Al and Fe In contrast the core of the spinel in sample 01JH37 is enriched in Fe and Ti and depleted in Al relative to the rim

Disseminated sulfides in slag are dominated by Fe and Cu and range from less than 1 microm to 500 microm in diameter (Figure 6C-F and Figure 9A) Sulfides occur as discrete grains or as admixtures of sulfides of various compositions and native metals

kirschsteinite monticellite

Elizabeth Ely Clayton

17

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 18: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 3 Electron-microprobe analyses of olivine and pyroxene in slag samples Concentrations reported as weight percent OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 00JH05

grain 1 029 007 573 001 nd a 000 066 3101 6244 020 007 10047 grain 2 013 008 598 000 nd 000 060 3152 6260 019 000 10109 grain 3 021 007 963 001 nd 000 055 3216 5779 012 006 10058 grain 4 019 008 716 000 nd 000 060 3177 6107 014 001 10100 grain 5 017 009 351 001 nd 000 066 3097 6544 023 005 10113

average (n=5) 020 008 640 001 -- 000 061 3148 6187 017 004 10086 01JH28core

grain 1 014 018 821 000 003 nd 067 3166 5920 024 001 10078 grain 2 022 016 836 001 004 nd 074 3172 5941 023 002 10165 grain 3 008 018 775 000 002 nd 078 3165 6061 026 002 10111 grain 4 009 019 817 000 000 nd 075 3154 6032 022 000 10187 grain 5 017 022 326 000 004 nd 094 3056 6615 039 006 10134 grain 6 014 019 284 001 001 nd 105 3029 6116 047 005 10151 grain 7 012 020 233 000 000 nd 100 3051 6114 052 008 10221 grain 8 012 018 824 002 nd 000 071 3153 6053 024 003 10159 grain 9 012 021 681 003 nd 000 077 3155 6178 025 001 10151

grain 10 010 021 685 000 nd 000 075 3188 6216 025 001 10221 grain 11 009 021 744 001 nd 000 074 3158 6173 028 000 10207

average (n=11) 012 019 639 001 002 000 081 3132 6129 030 003 10162 01JH28rind

grain 1 012 017 496 000 nd 000 084 3123 6394 035 005 10165 grain 2 009 019 451 000 nd 000 089 3102 6401 035 004 10111 grain 3 010 015 683 004 nd 000 085 3146 6216 024 003 10187 grain 4 015 016 723 000 nd 000 080 3140 6131 027 003 10134

average (n=4) 012 017 588 001 -- 000 085 3128 6286 030 003 10149 01JH28

grain 1 212 027 1263 004 nd 064 067 3463 4895 048 011 10053 grain 2 194 029 888 005 nd 015 102 2947 5867 052 105 10204 grain 3 012 031 961 003 nd 000 086 3206 5785 040 008 10130 grain 4 034 028 1142 000 nd 007 090 3279 5503 033 005 10120

average (n=4) 113 018 642 001 -- 005 078 2883 5585 031 008 10148

18

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 19: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 3 (cont) OLIVINE Elizabeth Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH27

grain 1 005 008 1151 001 nd 000 025 3284 5706 019 004 10202 grain 2 014 011 852 004 nd 000 033 3185 6019 017 007 10142 grain 3 010 008 1212 003 nd 000 031 3272 5678 017 002 10233 grain 4 010 010 906 001 nd 000 029 3206 5965 021 007 10155 grain 5 021 009 757 004 nd 000 038 3163 6137 023 009 10160 grain 6 007 010 839 003 nd 000 033 3183 6027 020 006 10126

average (n=6) 011 009 953 003 -- 000 031 3215 5922 019 006 10170 01JH37rind

grain 1 024 010 833 002 nd 000 098 3155 5924 014 004 10063 grain 2 027 010 866 004 nd 000 097 3151 5973 014 008 10150 grain 3 037 011 496 003 nd 002 117 3115 6371 015 006 10171 grain 4 027 011 773 004 nd 000 092 3130 5968 014 007 10024

average (n=4) 029 010 742 003 -- 000 101 3138 6059 014 006 10102 01JH37core

grain 1 013 011 382 002 nd 000 111 3078 6536 018 002 10153 grain 2 013 014 448 001 nd 000 110 3116 6417 016 005 10138 grain 3 012 011 622 002 nd 000 103 3128 6184 016 003 10081 grain 4 015 010 480 002 nd 000 101 3083 6323 019 007 10040

average (n=4) 013 012 483 002 -- 000 106 3101 6365 017 004 10103 Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 00JH34

grain 1 014 033 362 004 nd 000 059 3094 6485 017 011 10077 grain 2 012 034 213 001 nd 000 064 3079 6615 018 005 10042 grain 3 016 036 230 002 nd 000 070 3085 6591 021 006 10058 grain 4 061 030 329 001 nd 008 061 3192 6427 023 006 10137

average (n=4) 026 033 284 002 -- 002 063 3112 6530 020 007 10078 00JH38

grain 1 017 023 259 003 nd 001 063 3011 6601 018 000 9994 grain 2 124 024 033 001 nd 027 082 3118 6496 068 004 9977 grain 3 018 024 216 003 nd 000 064 3015 6619 019 005 9983 grain 4 015 023 344 002 nd 000 062 3045 6642 016 002 10151 grain 5 010 021 457 002 nd 000 056 3069 6395 013 000 10023 grain 6 012 025 336 002 nd 000 062 3052 6663 014 003 10169

average (n=6) 033 023 274 002 -- 005 064 3052 6569 025 002 10049

19

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 20: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 3 (cont) OLIVINE Ely Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 01JH34a

grain 1 014 021 339 000 nd 000 062 3081 6578 014 000 10108 grain 2 014 023 210 000 nd 000 066 3037 6703 016 002 10073 grain 3 011 019 321 000 nd 000 054 3071 6503 013 002 9995 grain 4 011 024 331 001 nd 000 053 3049 6551 016 003 10038

average (n=4) 013 022 300 000 -- 000 059 3060 6584 015 002 10053 01JH34b

grain 1 046 011 134 000 nd 000 029 3004 6741 035 006 10005 grain 2 036 012 149 000 nd 000 035 3015 6750 037 006 10040 grain 3 314 011 147 000 nd 000 037 2727 6656 076 020 9986 grain 4 009 027 398 002 nd 000 067 3120 6452 017 007 10097 grain 5 056 025 181 003 nd 013 082 3174 6521 037 008 10099 grain 6 003 027 252 000 nd 000 073 3080 6547 022 002 10007

average (n=6) 077 019 235 001 -- 001 052 2786 6056 025 005 10046 Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total 53JH00

grain 1 core 001 310 222 000 nd 000 100 3140 4576 1622 000 9971 grain 1 edge 004 331 264 000 nd 000 122 3101 5332 822 001 9978 grain 2 core 001 298 223 001 nd 000 084 3178 4360 1914 002 10061 grain 2 edge 005 287 206 002 nd 000 103 3161 4766 1485 003 10017 grain 3 core 003 322 272 000 nd 000 091 3138 4786 1425 000 10037 grain 3 edge 003 314 252 002 nd 000 107 3154 5188 1037 001 10057 grain 4 core 003 268 125 001 nd 000 110 3162 4560 1799 000 10029 grain 4 edge 001 264 108 001 nd 000 125 3121 4755 1532 000 9907

average (n=8) 003 299 209 001 -- 000 105 3145 4790 1454 001 10007 PYROXENE Clayton Al2O3 MnO MgO Cr2O3 NiO K2O ZnO SiO2 FeO CaO TiO2 Total

sampleanalysis 53JH00

grain 1 grain 2 grain 3 grain 4 grain 5

average (n=5)

757 673 646 655 588 664

071 083 084 082 095 083

007 030 039 055 083 043

001 000 004 000 000 001 --

nd nd nd nd nd

001 000 000 000 001 000

090 073 067 060 060 070

4192 4151 4173 4128 4262 4181

2615 2731 2726 2744 2649 2693

2161 2168 2194 2167 2211 2180

032 025 028 027 023 027

9927 9933 9961 9918 9972 9942

20

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 21: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 4 Electron-microprobe analyses of bulk and interstitial glass in slag samples Concentrations reported as weight percent GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total

sampleanalysis 00JH05

area 1-Ba 1202 125 215 051 3713 3932 155 042 429 005 000 020 nd b 011 9898 area 2-B 238 309 031 089 2939 6357 081 017 024 013 006 035 nd 019 10160 area 3-B 239 308 026 086 2804 6352 083 018 038 016 004 143 nd 015 10131

average (n=3) 560 247 091 076 3152 5547 106 026 164 011 003 066 -- 015 10063 area 1-Ia 1944 000 421 104 4473 1849 535 047 461 009 000 028 nd 004 9875 area 2-I 2108 000 468 056 4753 1369 513 029 553 007 000 021 nd 006 9882 area 3-I 1973 000 491 033 4908 1332 446 016 528 012 000 025 nd 000 9765 area 4-I 1900 000 425 050 4684 1660 562 023 479 011 000 020 nd 002 9817 area 5-I 1977 000 383 057 4524 2215 477 032 490 021 000 027 nd 000 10202 area 6-I 2122 000 479 090 4692 1334 480 033 500 009 000 032 nd 004 9772

average (n=6) 2004 000 444 065 4672 1626 502 030 502 012 000 026 -- 003 9886 01JH27a

area 1-B 1004 295 168 036 3820 4235 238 040 177 005 000 100 nd 006 10125 area 2-B 965 260 173 044 3822 4240 234 043 174 013 007 089 nd 006 10070 area 3-B 966 239 160 035 3755 4445 225 044 188 003 010 094 nd 007 10171

average (n=3) 978 265 167 038 3799 4307 232 042 180 007 006 094 -- 006 10122 area 1-I 1999 015 225 032 4856 1670 565 086 429 004 006 020 nd 001 9906 area 2-I 2035 014 396 039 4859 1621 432 072 341 012 000 019 nd 003 9842 area 3-I 2003 014 377 018 5180 1196 599 070 372 010 000 014 nd 002 9854 area 4-I 1918 004 382 023 5314 1154 616 049 329 002 008 019 nd 000 9818 area 5-I 1733 008 181 026 4374 2301 542 062 433 054 000 411 nd 006 10132

average (n=5) 1937 011 312 027 4917 1588 551 068 381 016 003 097 -- 002 9911 01JH28

area 1-B 1305 278 188 049 4562 2465 357 051 271 039 000 061 nd 003 9628 area 2-B 1064 381 138 078 4192 3422 277 051 214 026 000 051 nd 008 9901

average (n=2) 1184 329 163 064 4377 2943 317 051 242 032 000 056 -- 006 9765 area 1-I 1041 422 150 069 4372 3377 282 041 194 016 000 037 nd 005 10005 area 2-I 1068 395 123 067 4277 3176 277 039 316 022 000 038 nd 008 9804 area 3-I 1716 031 171 089 4450 2480 448 288 473 000 002 013 nd 002 10162 area 4-I 1771 035 394 042 5479 1171 404 057 462 011 007 018 nd 000 9850 area 5-I 2010 023 321 035 5418 858 552 036 510 070 004 105 nd 004 9944 area 6-I 1952 029 111 029 5348 899 679 035 606 083 000 127 nd 003 9902 area 7-I 1997 018 186 046 5278 1115 618 076 503 022 000 025 nd 002 9887

average (n=7) 1651 136 208 054 4946 1868 466 082 438 032 002 052 -- 003 9936

21

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 22: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH28core

area 1-I 1711 007 293 074 5054 1427 789 023 345 008 000 024 nd 002 9756 area 2-I 1823 009 333 056 5270 1244 613 022 401 012 005 020 nd 004 9812 area 3-I 1652 013 282 079 4794 1961 674 038 341 011 000 016 nd 000 9861

average (n=3) 1729 010 303 070 5039 1544 692 028 362 010 002 020 -- 002 9810 01JH28rind

area 1-B 872 224 114 090 3643 4537 270 042 145 054 000 089 nd nd 10080 area 2-B 863 216 126 093 3706 4400 287 046 155 058 000 103 nd nd 10052 area 3-B 870 230 123 100 3680 4459 251 039 156 050 007 089 nd nd 10053 area 4-B 872 224 114 090 3643 4537 270 042 145 054 000 089 000 nd 10080 area 5-B 863 216 126 093 3706 4400 287 046 155 058 000 103 000 nd 10052

average (n=5) 868 222 121 093 3675 4467 273 043 151 055 002 094 000 nd 10063 area 1-I 1873 010 287 059 5352 1169 761 025 360 009 001 072 nd nd 9978 area 2-I 1857 006 250 071 5340 1189 878 024 351 014 003 078 nd nd 10062 area 3-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 nd nd 10044 area 4-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 nd nd 10095 area 5-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 nd nd 10043 area 6-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 nd nd 10108 area 7-I 1919 012 264 068 5182 1356 771 034 367 008 005 049 010 nd 10043 area 8-I 1868 008 322 057 5141 1588 667 038 376 017 000 045 012 nd 10140 area 9-I 1965 018 284 049 5222 1281 674 036 416 019 000 080 000 nd 10044

area 10-I 2013 007 292 053 5253 1165 750 047 425 013 000 078 000 nd 10095 area 11-I 1893 006 285 068 5293 1182 830 031 391 012 001 052 000 nd 10043 area 12-I 2026 009 284 058 5239 1227 722 048 413 018 000 064 000 nd 10108

average (n=12) 1943 010 284 059 5252 1251 752 037 395 014 001 066 004 -- 10067 01JH37core

area 1-I 1832 007 370 058 5162 1539 486 040 451 011 000 036 nd 005 9996 area 2-I 1866 004 383 059 5326 1262 472 030 461 009 000 016 nd 004 9892 area 3-I 1927 004 385 057 5332 1294 476 032 473 006 000 010 nd 005 10001 area 4-I 1857 003 399 051 5341 1230 436 034 483 008 001 014 nd 000 9857 area 5-I 1975 006 405 049 5379 951 458 039 527 008 000 010 nd 003 9810 area 6-I 2014 003 326 073 5006 1151 496 036 451 124 000 245 nd 002 9928

average (n=6) 1912 005 378 058 5258 1238 471 035 474 028 000 055 -- 003 9914

22

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 23: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 4 (cont) GLASS Elizabeth Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH37rind

area 1-I 1885 004 301 114 4952 1671 478 040 399 021 000 071 nd 002 9937 area 2-I 1936 000 354 067 5160 1349 506 037 434 007 000 030 nd 003 9883 area 3-I 1961 003 328 085 4941 1605 466 061 426 025 004 024 nd 003 9932 area 4-I 1816 006 367 053 5489 1247 429 016 447 009 000 015 nd 003 9897 area 5-I 2029 001 376 060 5411 965 463 034 479 005 001 019 nd 001 9842 area 6-I 1939 003 350 070 4946 1557 439 056 427 018 001 037 nd 002 9846

average (n=6) 1928 003 346 075 5150 1399 463 041 435 014 001 033 -- 002 9889 Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 00JH34

area 1-I 1643 013 318 056 4833 2388 245 112 195 025 002 057 nd 005 9891 area 2-I 1663 008 269 075 4886 2380 322 107 184 007 000 039 nd 004 9944 area 3-I 1551 017 286 066 4915 2351 292 080 179 032 000 036 nd 002 9807 area 4-I 1861 015 309 084 4861 2147 271 110 178 019 008 027 nd 006 9895 area 5-I 1847 009 309 075 4694 2334 238 161 182 016 000 033 nd 005 9904

average (n=5) 1713 012 298 071 4838 2320 274 114 184 020 002 038 -- 005 9888 00JH38

area 1-I 1656 002 382 032 4798 1982 674 040 244 009 000 018 nd 005 9841 area 2-I 1812 000 443 044 5127 1375 592 030 299 019 000 033 nd 000 9773 area 3-I 1856 002 370 047 4627 1797 719 057 269 013 000 018 nd 002 9777 area 4-I 1866 001 388 061 5149 1343 652 029 271 007 000 037 nd 002 9805 area 5-I 1807 001 490 031 5247 1352 503 024 314 012 000 018 nd 005 9802 area 6-I 1606 000 444 040 5374 1444 547 014 261 004 002 020 nd 003 9758 area 7-I 1842 000 454 045 5043 1469 562 027 300 017 000 019 nd 005 9783 area 8-I 1486 001 412 041 5179 1815 621 011 243 014 000 000 nd 004 9827

average (n=8) 1741 001 423 043 5068 1572 609 029 275 012 000 020 -- 003 9796 01JH34a

area 1-I 1868 001 456 048 5284 1319 570 013 337 008 000 009 nd 003 9914 area 2-I 1782 001 431 045 5251 1515 510 019 297 009 000 015 nd 006 9881 area 3-I 1747 000 388 048 5389 1299 639 014 251 018 000 029 nd 001 9822 area 4-I 1939 001 459 075 5283 1227 535 024 321 003 003 011 nd 001 9882 area 5-I 2024 003 524 063 5228 1371 326 019 314 006 002 006 nd 006 9890 area 6-I 1675 004 469 040 5368 1403 479 015 304 008 001 013 nd 002 9782

average (n=6) 1839 002 454 053 5301 1355 510 017 304 009 001 014 -- 003 9862

23

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 24: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 4 (cont) GLASS Ely Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01JH34b

area 1-B 729 156 118 052 4195 4429 201 039 086 012 001 070 nd 010 10098 area 2-B 794 135 127 049 4275 4214 211 043 095 026 004 085 nd 013 10070 area 3-B 742 142 126 062 4243 4347 187 037 087 019 005 072 nd 010 10080

average (n=3) 755 144 124 055 4238 4330 199 040 089 019 003 076 -- 011 10083 area 1-I 1287 041 246 041 5327 2499 277 047 176 008 006 016 nd 002 9972 area 2-I 1260 058 232 046 5375 2608 257 035 201 024 003 065 nd 006 10170 area 3-I 1623 015 241 052 5616 1419 466 075 153 020 000 067 nd 002 9749

average (n=3) 1390 038 240 046 5439 2175 333 052 177 018 003 049 -- 004 9963 Ducktown Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 01CB25

area 1 310 162 037 212 3256 5325 433 013 040 063 005 390 nd nd 10246 area 2 200 097 027 153 3432 5571 230 009 029 068 000 330 nd nd 10145 area 3 349 184 054 187 3513 4969 444 014 048 035 000 375 nd nd 10172 area 4 353 171 054 190 3522 4957 430 017 046 037 000 389 nd nd 10166 area 5 308 148 042 189 3274 5406 429 010 048 064 000 560 nd nd 10478 area 6 292 147 041 198 3175 5386 415 009 043 074 000 543 nd nd 10321 area 7 334 176 046 172 3518 5033 426 016 057 051 004 498 nd nd 10330 area 8 411 216 060 201 3523 4854 482 018 063 031 004 406 nd nd 10271 area 9 307 160 044 217 3194 5464 417 014 043 065 008 435 nd nd 10368

area 10 385 192 053 186 3836 4553 503 012 064 021 000 369 nd nd 10174 area 11 329 171 045 158 3538 5005 425 014 047 052 000 363 nd nd 10147 area 12 375 180 051 185 3764 4849 473 019 058 031 000 346 nd nd 10330 area 13 203 092 027 170 3463 5642 240 011 026 075 014 253 nd nd 10216 area 14 297 152 038 195 3698 4710 593 008 033 027 000 549 nd nd 10301 area 15 220 097 028 154 3412 5500 257 006 031 143 000 353 nd nd 10201 area 16 307 161 049 197 3451 5414 393 011 040 042 008 382 nd nd 10455 area 17 316 161 044 198 3439 5380 414 015 044 041 000 386 nd nd 10439 area 18 344 170 048 185 3684 5074 461 014 049 030 007 379 nd nd 10446 area 19 200 090 029 171 3483 5793 238 008 029 067 000 253 nd nd 10360

average (n=19) 307 154 043 185 3483 5205 405 013 044 053 003 398 -- -- 10293

24

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 25: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 4 (cont) GLASS Clayton Al2O3 MgO K2O ZnO SiO2 FeO CaO TiO2 Na2O CuO PbO SO3 P2O5 CoO Total 53JH00

area 1-I 874 001 325 328 4082 2243 1589 018 111 001 300 039 000 nd 9911 area 2-I 1118 001 343 409 4285 1490 1551 036 130 002 446 066 137 nd 10013 area 3-I 1169 000 358 334 4400 1431 1382 030 144 003 511 046 000 nd 9808 area 4-I 1294 009 387 212 4546 1512 1501 049 121 002 335 050 020 nd 10037 area 5-I 1057 005 147 232 4355 1786 1713 037 100 001 484 071 049 nd 10037 area 6-I 1051 003 354 300 4226 1960 1563 030 141 002 320 049 048 nd 10047 area 7-I 947 001 230 416 4195 1618 1661 039 082 001 585 058 068 nd 9901

average (n=7) 1073 003 306 319 4299 1720 1566 034 118 002 426 054 046 -- 9965 a Bbulksurface Iinterstitial b not determined

25

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 26: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 5 Electron-microprobe analyses of spinel and hematite in slag samples Concentrations reported as weight percent SPINEL

Elizabeth Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeOa Fe2O3 a CaO TiO2 CuO SO3 CoO Total

sampleanalysis 00JH05

grain 1 1828 000 097 007 000 095 094 3224 4480 000 256 nd b nd nd 10081 grain 2 2367 003 106 006 000 112 058 3292 3974 004 204 nd nd nd 10125 grain 3 2389 001 050 005 000 131 067 3361 3858 000 231 nd nd nd 10093 grain 4 1409 002 054 005 000 098 125 3221 4953 002 234 nd nd nd 10102 grain 5 1388 001 082 036 000 078 091 3151 4954 003 197 nd nd nd 9980

average (n=5) 1876 001 078 012 000 103 087 3250 4444 002 224 -- -- -- 10076 01JH28core

grain 1 1018 004 091 107 001 079 042 3128 5477 002 236 nd nd nd 10184 grain 2 1022 004 081 026 000 076 047 3054 5319 002 259 nd nd nd 9890 grain 3 997 003 084 012 000 073 048 3092 5460 000 254 nd nd nd 10025 grain 4 984 004 092 051 000 076 046 3107 5527 001 239 nd nd nd 10127 grain 5 938 003 059 005 000 092 054 3130 5578 003 253 nd nd nd 10115 grain 6 964 002 089 064 000 073 047 3101 5520 003 234 nd nd nd 10096 grain 7 898 003 093 103 000 077 049 3091 5587 001 226 nd nd nd 10127

average (n=7) 974 004 084 053 000 078 048 3100 5495 002 243 -- -- -- 10081 01JH28rind

grain 1 894 006 076 139 010 081 298 3060 5292 034 167 nd nd nd 10057 grain 2 875 004 069 020 002 080 131 3072 5507 009 222 nd nd nd 9990 grain 3 871 002 090 023 000 076 051 3098 5699 002 236 nd nd nd 10147 grain 4 865 002 095 040 000 075 052 3106 5745 002 217 nd nd nd 10199 grain 5 888 003 082 043 000 075 046 3117 5683 000 218 nd nd nd 10154

average (n=5) 878 003 082 053 002 077 116 3091 5585 009 212 -- -- -- 10109 01JH37rind

grain 1 1357 005 047 024 001 145 073 3184 4919 000 388 nd nd nd 10142 01JH37core

grain 1 1993 004 035 033 007 207 194 3214 3909 010 423 nd nd nd 10030 grain 2 1997 005 038 036 005 199 184 3281 4047 009 425 nd nd nd 10226 grain 3 1642 001 032 035 000 186 074 3210 4531 006 400 nd nd nd 10116

average (n=3) 1877 004 035 035 004 197 151 3235 4162 008 416 -- -- -- 10124

26

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 27: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 5 (cont) SPINEL

Ely Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 00JH38

grain 1 1899 006 008 004 004 126 110 3331 4199 007 401 nd nd nd 10096

01JH34 grain 1 987 004 033 002 000 056 062 3169 5451 003 215 nd nd nd 9981 grain 2 985 003 040 000 000 052 065 3149 5418 001 217 nd nd nd 9932 grain 3 948 005 039 109 000 055 053 3161 5445 000 179 nd nd nd 9996 grain 4 945 003 040 001 000 052 064 3156 5488 000 221 nd nd nd 9969

average (n=4) 966 004 038 028 000 054 061 3159 5451 001 208 -- -- -- 9970 Clayton Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 53JH00

grain 1 303 064 012 006 000 141 099 2860 6223 039 092 nd nd nd 9839 grain 2 327 060 018 005 000 121 098 2950 6333 035 113 nd nd nd 10059

average (n=2) 315 062 015 005 000 131 099 2905 6278 037 102 -- -- -- 9949

HEMATITE

Ducktown Al2O3 MnO MgO Cr2O3 K2O ZnO SiO2 FeO Fe2O3 CaO TiO2 CuO SO3 CoO Total 01CB25

grain 1 nd 007 nd nd nd 089 070 nd 9809 nd nd 005 002 002 9983 grain 2 nd 006 nd nd nd 086 070 nd 9826 nd nd 000 001 002 9992 grain 3 nd 007 nd nd nd 085 068 nd 9912 nd nd 001 000 002 10075

average (n=3) -- 007 -- -- -- 087 069 -- 9849 -- -- 002 001 002 10017 a Fe2+Fe3+ ratio was estimated using site-occupancy constraints b not determined

27

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 28: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Fe3+

tota

l3+

Fe 2+

tota

l2+

100

098

096

094

092

090

( 2+ ) A Elizabeth Ely Clayton

+2 site Fe Zn Mg Ca Mn

000 002 004 006 008 010

Zn2+total2+

100

080

060

040

020

000 000 020 040 060 080 100

(+3 site 3+ 3+ Ti 4+ 4+ 3+) B Elizabeth Ely Clayton

Fe Al Si Cr

Al3+total3+

Figure 8 Composition of A divalent and B trivalent sites in spinel in slag samples Appropriate valence distributions are calculated from electron-microprobe analyses assuming ideal stoichiometry Diagonal line indicates full occupancy

The compositions of many apparently single-phase grains (Table 6) are intermediate between discrete phases in the Cu-Fe-S system such as pyrrhotite intermediate solid solution and bornite-digenite suggesting quenching at high temperatures (Cabri 1973) Compositions tend to cluster around bornite and pyrrhotite Many grains display small-scale exsolution as illustrated in Figure 9A and Figure 10 The concentrations of Cu Fe and S vary widely in a grain only 60 microm in diameter (Figure 10)

28

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 29: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 6 Electron-microprobe analyses for sulfide metallic phases and miscellaneous compounds in slag Concentrations as weight percent SULFIDES AND METALLIC PHASES

Elizabeth Fe Mn As Pb S Cu Coa Se Ag Cd Zn Sb Sn Ni Si O Total samplephase

00JH05 Cu-Fe-S 2512 000 002 000 3084 4375 003 001 002 000 018 000 000 000 000 nd b 10000 Cu-Fe-S 1509 001 000 000 2642 5906 002 001 003 000 006 000 000 000 000 nd 10072 Cu-Fe-S 2295 000 000 000 2635 4856 002 002 000 000 003 000 000 000 000 nd 9796 Cu-Fe-S 1680 000 000 000 2724 5534 001 001 005 000 008 000 000 000 000 nd 9955

FeS pyrrhotite 6287 000 000 000 3523 069 012 000 002 000 002 000 000 000 000 nd 9906 Cu-Fe-S 5553 000 000 000 3272 978 010 002 003 000 007 000 000 000 000 nd 9836

FeS pyrrhotite 6123 002 000 000 3534 313 023 002 000 000 000 000 000 011 000 nd 10020 FeS pyrrhotite 6063 000 000 000 3547 256 012 000 000 000 006 000 000 001 000 nd 9896

01JH27 Cu-Fe-S 3600 000 001 000 2807 3418 003 004 001 000 010 000 nd nd nd nd 9851 Fe-S 7325 000 000 000 2441 074 131 001 000 000 000 000 nd nd nd nd 9987

FeS pyrrhotite 6133 000 000 000 3517 103 005 000 000 000 002 000 nd nd nd nd 9772 FeS pyrrhotite 6095 000 000 000 3589 079 013 000 000 000 002 000 nd nd nd nd 9788 FeS pyrrhotite 6356 000 000 007 3698 042 016 000 000 000 002 000 001 002 000 nd 10135

01JH28rind bornite-digenite 1063 000 001 000 2438 6487 004 000 000 000 009 000 nd nd nd nd 10003

Cu 102 000 000 000 004 9830 002 004 001 000 005 000 nd nd nd nd 9947 bornite-digenite 543 000 002 000 2208 7355 003 002 001 000 008 000 nd nd nd nd 10120 bornite-digenite 878 001 002 000 2409 6791 003 003 001 000 006 000 nd nd nd nd 10094 bornite-digenite 1169 000 004 000 2424 6367 000 000 002 000 006 000 nd nd nd nd 9972 bornite-digenite 816 000 002 000 2366 6836 005 003 001 000 008 000 nd nd nd nd 10038 bornite-digenite 733 000 000 000 2354 6916 002 004 000 000 002 002 nd nd nd nd 10013

Cu-Fe-S 1659 001 002 000 2598 5537 003 003 002 000 007 000 nd nd nd nd 9812 bornite-digenite 1212 000 001 000 2519 6268 002 001 003 nd 007 nd nd 000 nd nd 10014 bornite-digenite 1364 000 000 000 2538 6024 001 002 001 nd 011 nd nd 002 nd nd 9944

Cu-Fe-S 1762 000 000 000 2741 5464 000 002 000 nd 006 nd nd 000 nd nd 9978 Cu-Fe-S 2961 002 000 000 3209 3539 017 000 000 nd 207 nd nd 000 nd nd 9940

bornite-digenite 1224 000 000 000 2459 6381 001 003 002 nd 006 nd nd 000 nd nd 10078 bornite-digenite 967 000 000 000 2418 6642 003 003 005 nd 006 nd nd 000 nd nd 10045 bornite-digenite 931 000 000 000 2323 6888 002 004 000 nd 008 nd nd 000 nd nd 10156

Cu-Fe-S 2095 000 002 000 2990 4871 004 003 004 nd 003 nd nd 003 nd nd 9977

29

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 30: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 6 (cont) SULFIDES AND METALLIC PHASES Elizabeth Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH37core

Cu-Fe-S 1571 000 000 000 2717 5621 002 000 000 000 007 001 nd nd nd nd 9921 FeS pyrrhotite 6191 000 000 000 3542 031 046 002 001 000 002 000 nd nd nd nd 9827

Cu-Fe-S 1597 000 000 000 2736 5674 003 002 000 000 007 000 nd nd nd nd 10021 FeS pyrrhotite 6205 000 001 000 3568 028 038 002 000 000 000 002 nd nd nd nd 9854

bornite-digenite 497 000 001 000 2310 7321 001 000 003 000 006 000 nd nd nd nd 10137 bornite-digenite 467 000 003 000 2276 7394 001 003 003 000 006 000 nd nd nd nd 10152

Cu-Fe-S 1712 000 001 000 2822 5539 002 000 000 000 003 000 nd nd nd nd 10081 bornite-digenite 882 000 000 000 2448 6836 001 001 001 000 005 000 nd nd nd nd 10174

Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 00JH34

FeS pyrrhotite 6274 002 002 000 3700 096 031 000 002 000 000 000 001 010 001 nd 10128 Cu-Fe-S 1705 000 000 000 3153 5214 003 004 003 000 005 000 000 005 000 nd 10094 Cu-Fe-S 1825 000 000 000 3314 4986 003 002 006 000 007 000 000 000 003 nd 10148

FeS pyrrhotite 6246 001 000 000 3727 077 027 001 000 000 001 001 000 017 000 nd 10108 FeS pyrrhotite 6324 003 004 007 3705 079 014 000 000 000 001 000 002 001 000 nd 10151 FeS pyrrhotite 6242 001 000 000 3703 067 030 002 000 000 002 000 001 003 000 nd 10061

Cu-Fe-S 1816 000 001 000 3093 5132 002 004 004 000 002 000 000 000 000 nd 10056 Cu-Fe-S 1884 002 000 000 3132 5077 002 003 000 000 004 001 000 000 000 nd 10108

FeS pyrrhotite 6222 001 002 000 3713 056 032 000 002 000 001 000 001 008 000 nd 10049 Cu-Fe-S 1423 000 002 000 2845 5712 001 001 006 000 002 000 000 000 000 nd 9993

00JH38 FeS pyrrhotite 6305 000 000 000 3690 111 023 000 002 000 005 000 000 001 001 nd 10150

Cu-Fe-S 1676 001 000 000 2944 5502 001 003 001 000 010 000 000 000 018 nd 10156 FeS pyrrhotite 6205 000 003 000 3552 117 018 002 000 000 006 002 000 000 006 nd 9921 FeS pyrrhotite 6087 001 000 002 3745 283 033 004 001 000 003 000 000 007 000 nd 10176

Cu-Fe-S 2022 000 000 000 2986 4985 002 001 001 000 005 000 000 000 015 nd 10020 Cu-Fe-S 1352 000 000 000 2753 5953 063 003 000 000 010 000 000 000 006 nd 10141 Cu-Fe-S 1727 000 000 000 2909 5487 004 003 004 000 008 000 000 000 001 nd 10146

FeS pyrrhotite 6307 000 000 000 3713 101 025 004 000 000 014 000 001 007 000 nd 10183 01JH34a

Cu-Fe-S 2388 001 000 000 3197 4308 004 002 000 000 008 000 nd nd nd nd 9911 Cu-Fe-S 2836 001 001 000 3240 3667 005 006 003 000 151 000 nd nd nd nd 9913 Cu-Fe-S 1957 001 000 000 2858 5182 004 006 000 000 006 000 nd nd nd nd 10017 Cu-Fe-S 1483 000 000 000 2796 5533 004 000 000 000 007 001 nd nd nd nd 9824 Cu-Fe-S 1483 000 000 nd 2833 5856 000 002 000 nd 015 nd nd 000 000 033 10223 Cu-Fe-S 1443 000 000 nd 2786 5865 001 002 000 nd 010 nd nd 000 000 069 10178

30

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 31: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 6 (cont) SULFIDES AND METALLIC PHASES Ely Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01JH34a (cont)

FeS pyrrhotite 6145 001 001 000 3525 202 046 002 004 nd 005 nd nd 013 nd nd 9953 FeS pyrrhotite 6329 000 001 000 3552 075 047 001 001 nd 004 nd nd 010 nd nd 10030

bornite-digenite 1491 000 000 000 2450 6061 003 001 003 nd 005 nd nd 000 nd nd 10016 bornite-digenite 1476 000 000 000 2409 6084 003 000 000 nd 009 nd nd 000 nd nd 9983

Cu-Fe-S 3964 002 001 000 3389 2447 012 007 000 nd 036 nd nd 003 nd nd 9867 FeS pyrrhotite 6258 002 002 000 3568 141 031 000 000 nd 000 nd nd 007 nd nd 10021

Cu-Fe-S 3695 000 002 000 3399 2745 009 003 002 nd 025 nd nd 003 nd nd 9888 FeS pyrrhotite 6021 000 001 000 3512 362 023 000 000 nd 002 nd nd 000 nd nd 9932

Cu-Fe-S 2023 001 000 000 2774 5122 003 000 004 nd 005 nd nd 002 nd nd 9936 Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25

bornite-digenite 870 003 000 000 1633 6056 003 004 000 000 016 001 000 000 000 nd 8585 Cu-Fe-S 3041 009 000 nd 2059 2329 005 002 000 nd 056 nd nd 000 nd nd 7506 Cu-Fe-S 4020 011 000 nd 2589 2015 005 002 001 nd 090 nd nd 002 nd nd 8740 Cu-Fe-S 3936 008 000 nd 2507 2205 005 000 001 nd 092 nd nd 002 nd nd 8763 Cu-Fe-S 3534 010 000 nd 2639 2403 005 000 008 nd 089 nd nd 000 nd nd 8694 Cu-Fe-S 4360 010 000 nd 2514 1654 003 001 000 nd 099 nd nd 000 037 646 9331 Cu-Fe-S 5230 019 000 nd 2595 941 003 000 000 nd 113 nd nd 000 022 700 9632

FeS pyrrhotite 5312 021 000 nd 2562 503 005 000 000 nd 146 nd nd 000 060 765 9383 Cu-Fe-S 4212 013 001 nd 2498 1864 005 002 000 nd 106 nd nd 000 031 597 9336 Cu-Fe-S 4309 011 000 nd 2609 1933 003 001 000 nd 112 nd nd 000 016 600 9602 Cu-Fe-S 4954 021 001 nd 2473 1143 005 001 000 nd 128 nd nd 002 039 698 9472 Cu-Fe-S 3814 013 000 nd 2573 1939 006 001 000 nd 129 nd nd 000 026 625 9133 Cu-Fe-S 5016 015 000 nd 2873 1239 003 000 000 nd 125 nd nd 003 022 543 9848 Cu-Fe-S 5248 018 001 nd 2801 1080 006 002 000 nd 138 nd nd 000 028 653 9983 Cu-Fe-S 2828 009 000 nd 1374 4454 002 000 000 nd 067 nd nd 001 018 653 9410

FeS pyrrhotite 6100 016 000 nd 2389 337 004 000 000 nd 076 nd nd 000 047 970 9950 Cu-Fe-S 4476 016 000 nd 2910 1879 004 001 000 nd 119 nd nd 004 024 581 10022 Cu-Fe-S 4562 015 001 nd 2893 1759 003 002 000 nd 115 nd nd 001 017 554 9929 Cu-Fe-S 4613 015 000 nd 2587 1837 006 000 000 nd 124 nd nd 000 025 642 9857 Cu-Fe-S 5272 018 000 nd 2422 1022 007 002 000 nd 149 nd nd 000 061 870 9831 Cu-Fe-S 5129 016 000 nd 2517 1379 005 000 000 nd 117 nd nd 003 038 758 9972 Cu-Fe-S 5121 016 000 nd 2522 1306 003 000 000 nd 128 nd nd 000 045 735 9885 Cu-Fe-S 5175 016 001 nd 2520 1317 002 000 000 nd 131 nd nd 000 054 766 9990 Cu-Fe-S 5082 017 000 nd 2786 1189 005 000 000 nd 145 nd nd 001 030 662 9927 Cu-Fe-S 5597 021 000 nd 2339 724 005 000 000 nd 140 nd nd 001 088 925 9849

31

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 32: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 6 (cont) SULFIDES AND METALLIC PHASES Ducktown Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 01CB25 (cont)

Cu-Fe-S 4757 017 000 nd 2277 1330 005 001 000 nd 158 nd nd 001 081 989 9623 Cu-Fe-S 4931 015 000 000 2784 1313 004 001 001 nd 110 nd nd 000 028 nd 9195 Cu-Fe-S 4038 013 000 001 2691 2264 005 000 001 nd 114 nd nd 000 034 nd 9167 Cu-Fe-S 4200 011 000 000 2756 2168 005 000 002 nd 112 nd nd 002 018 nd 9283 Cu-Fe-S 3911 007 000 000 3056 2500 007 001 001 nd 093 nd nd 008 008 nd 9598 Cu-Fe-S 4648 015 000 000 2506 1888 007 000 002 nd 114 nd nd 006 035 nd 9228 Cu-Fe-S 4133 013 000 003 2277 2838 005 003 000 nd 102 nd nd 000 027 nd 9409 Cu-Fe-S 4113 014 000 001 2283 2821 006 001 005 nd 105 nd nd 001 028 nd 9383

Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00

Sb (AsPb) 000 001 548 484 000 005 002 012 000 nd 005 8822 000 000 000 nd 9878 Sb (AsPb) 000 000 373 1858 067 056 001 010 000 nd 000 7410 078 000 000 nd 9852

Cu 049 000 001 006 076 10053 000 000 006 000 008 003 nd nd nd nd 10202 Pb (Sb) 006 001 000 9261 000 000 000 002 000 nd 000 237 001 001 000 nd 9508 Pb (Sb) 009 000 000 9182 000 002 000 000 000 nd 001 237 000 000 000 nd 9430 Pb (Sb) 009 000 000 9032 000 032 001 000 000 nd 000 268 000 002 000 nd 9343 Pb (Sb) 000 000 000 9029 000 012 003 000 000 nd 002 268 000 002 000 nd 9316

Pb 000 000 001 9106 000 000 001 000 000 000 001 063 000 000 000 nd 9171 PbS 022 000 002 8351 1304 047 000 000 000 000 003 001 nd nd nd nd 9730 PbS 008 001 000 8351 1327 499 000 001 000 nd 001 007 000 001 000 nd 10195 PbS 000 000 006 8279 1319 116 000 000 000 000 000 000 001 002 000 nd 9722 PbS 004 001 000 8233 1156 403 000 004 000 nd 002 072 000 000 000 nd 9875 PbS 008 000 000 8206 1321 428 000 000 000 nd 004 007 005 000 000 nd 9978 PbS 058 001 002 8171 1385 671 000 000 000 000 002 000 019 000 000 nd 10308 PbS 020 001 000 8046 1351 778 001 001 000 000 003 000 nd nd nd nd 10200 PbS 187 006 000 7511 1275 585 000 000 022 000 037 005 nd nd nd nd 9628

PbCuS 161 000 000 7609 1478 1075 000 000 000 nd 029 000 000 004 000 nd 10358 PbCuS 203 002 000 7256 1495 1260 000 001 000 nd 006 000 002 004 000 nd 10229 PbCuS 048 001 020 6118 1413 2431 000 000 001 nd 006 304 009 000 000 nd 10350 PbCuS 149 000 000 4904 1691 3678 000 001 000 nd 007 000 004 000 000 nd 10433

(Cu Ag)6PbS4 furutobeite 196 000 006 2747 1859 5442 001 000 000 nd 009 000 005 000 000 nd 10264 FeAs(Cu) 4341 000 5150 014 033 146 010 010 002 nd 004 043 000 025 000 nd 9786 FeAs(Cu) 4266 000 5330 005 018 244 025 008 001 nd 000 056 000 071 000 nd 10031 FeAs(Cu) 4258 000 5169 013 013 257 001 005 009 nd 011 166 000 075 000 nd 9984 FeAs(Cu) 4222 000 5210 042 018 070 001 010 001 nd 007 066 000 073 000 nd 9728

32

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 33: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 6 (cont) SULFIDES AND METALLIC PHASES Clayton Fe Mn As Pb S Cu Co Se Ag Cd Zn Sb Sn Ni Si O Total 53JH00 (cont)

FeAs(Cu) 4221 000 5227 212 027 097 021 002 001 nd 004 046 000 042 000 nd 9906 AsFe(CuSb) 3825 000 5179 010 008 700 021 004 010 nd 002 420 000 060 000 nd 10246 AsFe(CuSb) 3788 000 5135 024 020 699 024 003 020 nd 001 540 000 068 000 nd 10326 AsFe(PbSb) 3857 000 4793 933 015 073 023 004 001 nd 001 170 000 059 000 nd 9937 AsFe(PbSb) 2933 000 6074 182 025 116 006 008 049 nd 047 316 000 172 000 nd 9934

Cu2(SbTl) cuprostibite 033 001 019 023 004 5159 001 007 090 nd 006 4923 027 009 000 nd 10299 Cu2(SbTl) cuprostibite 039 000 020 180 010 5000 001 002 056 nd 004 4848 028 000 000 nd 10187 Cu2(SbTl) cuprostibite 011 000 131 042 005 5025 000 003 099 nd 004 4732 022 013 000 nd 10087 Cu2(SbTl) cuprostibite 020 000 150 015 003 5083 000 006 097 nd 006 4732 000 000 000 nd 10112 Cu2(SbTl) cuprostibite 015 001 270 011 003 5225 000 003 112 nd 009 4574 021 001 000 nd 10243 Cu2(SbTl) cuprostibite 004 000 240 021 004 5176 000 009 103 nd 008 4552 000 005 000 nd 10122 Cu2(SbTl) cuprostibite 001 000 239 013 000 5251 001 005 093 000 004 4346 nd nd nd nd 9954

CuAsSb 003 001 511 432 002 1575 000 011 002 nd 001 7500 069 000 000 nd 10107 Cu3As domeykite 000 000 2365 090 009 6986 000 000 009 nd 009 549 001 000 000 nd 10018 Cu3As domeykite 000 001 2479 017 004 6953 000 009 004 nd 007 344 000 000 000 nd 9816 Cu3As domeykite 005 001 2540 007 000 7274 000 011 007 nd 007 324 003 002 000 nd 10182 Ag3Sb dyscrasite 000 001 003 011 001 022 000 003 7246 nd 000 2610 011 000 000 nd 9909

ZnCuFeS 1581 018 642 090 2801 1024 002 000 002 nd 3368 021 000 009 000 nd 9559 ZnCuFeS 1452 016 031 000 3091 1957 002 000 000 nd 3118 000 000 000 001 nd 9668

CuFeS 1483 002 017 000 2740 5595 001 002 046 000 007 000 nd nd nd nd 9894 CuFeS 1151 003 017 013 2523 6274 001 003 002 nd 006 002 000 000 000 nd 9996 CuFeS 1126 003 026 016 2547 6313 001 000 001 nd 008 003 000 000 001 nd 10045 CuFeS 1096 003 023 010 2491 6236 000 000 001 nd 007 002 000 002 000 nd 9871 CuFeS 1004 001 010 004 2461 6697 002 000 001 000 007 001 000 000 000 nd 10187 CuFeS 994 000 022 000 2431 6677 001 004 000 000 009 002 nd nd nd nd 10140 CuFeS 878 000 009 1342 2336 5473 002 003 002 nd 010 000 005 000 000 nd 10059 CuFeS 726 002 003 1003 2100 6030 001 004 000 nd 023 035 000 002 000 nd 9929

a If Fe is 67 wt or greater the concentration of Co was corrected for Fe-Co overlap using equation Co(corrected)=Co(original)-(0002Fe-00133) (Harvey Belkin personal communication 2003)

b not determined

33

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 34: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

A

glass

sulfide

epoxy

C

sulfide spinel hematite

quartz

D

olivine

pyroxene

matrix

spinel

E

pyroxene

olivine

sulfide

F

B

50 microm

1000 microm

50 microm

Figure 9 Photomicrographs of slag and sintered waste rock A Backscattered scanning electron (BSE) photomicrograph of 01JH28 (Elizabeth) illustrating small-scale exsolution in sulfide blebs B Reflected light and C transmitted light photomicrographs of 01JH31A (Ely) D BSE photomicrograph of granulated slag 01CB25 (Ducktown) in epoxy (black background) E Transmitted light and F BSE photomicrographs of 53JH00 (Clayton)

34

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 35: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Figure 10 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in sample 01JH34b slag from the Ely mine Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Sintered waste rock

Two samples of sintered waste rock collected from the Elizabeth mine are oxidized red sinter (98JHNP-B-RS) composed of hematite jarosite spinel quartz plagioclase and minor mica and black sintered roasted ore (98JHNPB-s) composed of hematite jarosite quartz and minor mica One sample of sintered waste rock was collected from the Ely mine This sample was divided into two splits based on textural variations 01JH31A being vesicular Both 01JH31A and 01JH31B contain hematite spinel sulfide plagioclase and quartz However the amount of quartz in sample 01JH31B is especially high as reflected by the high concentration of SiO2 (5597 wt ) in the bulk chemical analysis Photomicrographs of sample 01JH31A (Figure 9B and C) in reflected and transmitted light illustrate hematite sulfide spinel and quartz

Ducktown mining district

Granulated slag

The granulated slag consists of conchoidally fractured bits of material less than a centimeter in diameter (Figure 9D) The sample contains glass Fe-Cu sulfides metallic

35

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 36: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

phases and rare hematite The composition of the glass is dominated by Fe and Si with minor Al (up to 411 wt Al2O3) Ca (up to 593 wt CaO) and S (up to 560 wt SO3) (Figure 5 and Table 4) The compositions of the sulfides (Table 6) are intermediate between discrete phases in the Cu-Fe-S system and generally contain FegtCu The sulfides contain an average of 111 wt Zn and are up to 300 microm in diameter Sulfide blebs locally contain micrometer-size inclusions and veinlets of native metals such as Ni and inclusions of glass or quartz (Figure 11) The low analytical totals from electronshymicroprobe analyses may be partially due to the tiny inclusions of glass or quartz Many sulfides were analyzed for oxygen using the electron microprobe The sulfides contained up to 989 wt O suggesting the low totals may also be related to the presence of oxides The sulfides display small-scale exsolution which is similar to the Vermont samples (Figure 12)

Figure 11 Electron-microprobe map illustrating the distribution of Cu Fe S and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

36

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 37: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Figure 12 Electron-microprobe map illustrating the distribution of Fe S Cu and Si in a sulfide bleb in granulated slag sample 01CB25 from Ducktown Warmer colors indicate higher concentrations cooler colors indicate lower concentrations

Calcine

The calcine sample from the Ducktown mining district is dark red and composed of silt-sized grains (Figure 2D) The sample is mainly hematite with lesser quartz spinel sulfides gypsum and minor chlorite and biotite The hematite is highly porous and occurs as rounded to sub-angular fragments ranging from a few micrometers to 100 microm in diameter

Clayton smelter site

The air-cooled slag from the Clayton smelter site is texturally similar to the Vermont copper belt slag Both display flow textures and have glassy chilled margins containing vesicles and coarse-grained crystalline interiors The phases present are olivine pyroxene glass spinel sulfides alloys and native metals The olivine crystals are commonly randomly oriented laths up to several centimeters long (Figure 9E and F) The composition of the olivines (Figure 7) falls between fayalite and kirschsteinite based on electron-microprobe analyses (Table 3) The olivine-group minerals also contain minor Mn (up to 332 wt MnO) Mg (up to 272 wt MgO) and Zn (up to 125 wt

37

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 38: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

ZnO) Several of the laths are zoned with the interior being slightly enriched in Ca and Mg (Table 3) The subhedral pyroxenes are shown in Figure 9E and F Pyroxene is hedenbergitic in composition and contains an average of 664 wt Al2O3 083 wt MnO and 070 wt ZnO (Figure 13 and Table 3)

CaSiO3

3 e

3

2O6 2O6

FeSiO Ferrosilit

MgSiO Enstatite

Clayton

CaMgSi Diopside

CaFeSi Hedenbergite

Figure 13 Composition of pyroxene in Clayton smelter slag on a MgSiO3-FeSiO3shyCaSiO3 ternary diagram

The glass phase in the Clayton smelter slag is interstitial and the composition can be characterized as SiO2 gt FeO CaO gt Al2O3 (Figure 5 and Table 4) The composition of interstitial glass in the Clayton smelter slag is similar to the composition of interstitial glass in the slag from the Vermont copper belt samples although it contains higher concentrations of Ca and lower concentrations of Al (Figure 5) The interstitial glass also contains minor Pb (average 426 wt PbO) and Zn (average 319 wt ZnO)

Subhedral to euhedral spinel up to 50 microm in diameter is found in the Clayton smelter slag (Figure 9E) The composition of spinel (Table 5 and Figure 8) is magnetite with up to 327 wt Al2O3 The spinels also contain ZnO (average 131 wt ) and TiO2 (average 102 wt )

The sulfide minerals bornite-digenite galena and sphaleritewurtzite [(Fe Zn)S] occur either as discrete grains or as admixtures with metallic phases such as Sb Cu Pb and alloys of various metals including Pb Sb Cu Fe As and Ag (Table 6) Metallic Pb and sphaleritewurtzite were identified qualitatively using SEM These admixtures are up to several hundred micrometers in diameter and display myrmekitic textures and micrometer-scale exsolution features (Figure 9F and Figure 14) Figure 14 illustrates the composition of a detailed section of one of these complex polymineralic blebs Because of the fine-grained exsolved nature of the material analyses may represent admixtures of phases

38

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 39: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C 500 microm

A areas

A x x

Ax E S

E D

x xCu D

C x x

Cu Fe Fe Cu

2 4 6 8 10 25 microm keV A x

Bx

Fe

Cu

Sb

Cu CuFe

Cu

S

Cu Fe Zn

D areasB area

x

0

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

0 2 4 6 8 10 0 2 4 6 8 10 keV keV

Figure 14 Backscatter scanning electron photomicrographs of a large polymineralic particle in the Clayton smelter slag (sample 53JH00) The energy-dispersive spectra shown are for areas outlined in the close-up view of larger blebs

FeAs C areas

Fe Fe

Pb E areas

39

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 40: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Secondary Mineralogy

The slag and other waste rock historically have been and currently are subjected to weathering The reactivity of this material is evident in the formation of secondary minerals on these samples Samples from a slag pile at the Ely mine contain crystalline and amorphous secondary mineral and include chalcanthite (Figure 15A and B) rozenite siderotil jarosite brochantite gypsum and amorphous Fe and Al hydroxides Minerals such as jarosite gypsum and amorphous Al and Fe coatings are shown on this same slag pile at the Ely mine in Figure 15C Secondary mineral growths were also seen on the granulated slag pile at Ducktown and the weathered surface consists of jarosite and gypsum as shown in Figure 15D

A B

C

40 microm

D

Figure 15 Photographs and a photomicrograph illustrating secondary mineral growths on pot slag at the Ely mine and granulated slag at Ducktown A Outcrop of pot slag at the Ely mine showing surficial growths of chalcanthite (blue salt) B Backscatter scanning electron photomicrograph of chalcanthite crystals C Weathered surface of Ely slag showing jarosite gypsum Fe-oxides and Al-coatings Note pot casts D Weathered surface of granulated slag at Ducktown showing jarosite and gypsum

LEACHATE DATA

Leaching tests conducted on crushed splits (lt2 mm in diameter) with deionized water (DIW) and eastern synthetic precipitation (ESP) indicate that significant concentrations of metals can be released from the slag and waste rock The

40

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 41: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

concentrations of most major elements in the DIW leachate and ESP leachate are similar except for Al which is leached more readily by ESP than by DIW for most samples In general the concentration of trace elements in leachate produced by ESP (pH=41) is equal to or higher than those in leachate produced by deionized water (pH=50) (Table 7) For example the concentration of Cu in DIW leachate is the same as in the ESP leachate for the calcine sample from Ducktown (01CB23) using the ICP-MS data Whereas the concentration of Cu in DIW leachate is less than half of that in the ESP leachate for the slag sample 01JH28rind from the Elizabeth mine The final pH of the DIW leachate is higher than that of the ESP leachate for all samples except for 98JHNPB-s 01JH28core and 53JH00 Also the specific conductance of all samples (except 01JH27) is lower in leachate produced by DIW than in leachate produced by ESP

The major anion in the leachate for all samples is sulfate The cations are dominated by Si Ca K Na and Mg Al Fe and Cu are significant in a few samples The highest concentration of Ca (180 mgL) is found in leachate from the Ducktown calcine whereas the highest concentration of Fe (60 mgL) is found in leachate from the Ely sintered waste rock (Table 7) The concentrations of trace elements in the leachates vary from sample to sample as illustrated in Figure 16 For example the concentrations of Cu range from 19 to 21000 microgL All of the concentrations of Cu in leachate are greater than the chronic and acute water-quality guidelines for the protection of aquatic life (assuming a hardness of 100 mgL CaCO3) as shown in Figure 16A (US EPA 1993) The highest concentration of Cu is found in leachate from waste rock (sample 01JH31B from the Ely mine) This sample also contains the second highest concentration of Cu (11500 mgkg) in the bulk chemical analysis The concentration of Zn in the leachate (Figure 16B) in most samples is higher than the acute and chronic toxicity guidelines for the protection of aquatic life The highest concentration of Zn (3900 mgL) in leachate from the Ducktown calcine (01CB23) is nearly an order of magnitude greater than the concentration of Zn in the other leachates There is no US EPA toxicity guideline established for Co but the concentration of Co in many leachates exceeds the New York water criterion (Figure 16C) Also the concentrations of Cd and Fe in many leachates are higher than the chronic toxicity guidelines for aquatic life (Figure 16D and E) In contrast the concentrations of Pb and Ni are not significant for most samples (Figure 16F and G) However the concentration of Pb in the leachate from the Clayton smelter slag exceeds water-quality guidelines for the protection of aquatic life by several orders of magnitude The leachate from this slag also contains the highest concentrations of As (52 microgL) Ba (58 microgL) Mn (140 microgL) and Sb (290 microgL)

41

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 42: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 Analytical results of leaching tests See Crock and others (1999) for explanation of methods

parameterelement leachate

solution a spec cond pH alkalinity Ag Ag Al Al As As Au B

method Gran titration ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES units

site Elizabeth

sample 98JHNP-B-RS DIW

microScm

634 419

mgL CaCO3

nd b

microgL

lt1

microgL

lt001

mgL

018

microgL

150

microgL

lt100

microgL

04

microgL

lt 001

microgL

66 98JHNP-B-RS ESP 823 405 nd lt1 lt001 03 240 lt100 03 lt 001 60 98JHNB-s DIW 1443 356 nd lt1 lt001 059 460 lt100 03 lt 001 43 98JHNB-s ESP 1642 356 nd lt1 lt001 066 540 lt100 lt02 lt 001 31 00JH05 DIW 306 483 nd lt1 lt001 0051 50 lt100 02 lt 001 72 00JH05 ESP 356 456 nd lt1 lt001 01 88 lt100 lt02 lt 001 56 01JH27 DIW 885 460 019 lt1 lt001 0056 53 lt100 03 lt 001 60 01JH27 ESP 730 416 030 lt1 lt001 012 99 lt100 03 lt 001 55 01JH27Dup 01JH27Dup 01JH28

DIW ESP DIW

788 830 217

471 430 516

nd nd 272

lt1 lt1 lt1

lt001 lt001 lt001

0042 011

lt001

44 95 69

lt100 lt100 lt100

03 lt02 03

lt 001 lt 001 lt 001

56 54 58

01JH28 ESP 272 495 222 lt1 lt001 002 27 lt100 02 lt 001 43 01JH28core DIW 66 523 282 lt1 001 lt001 44 lt100 lt02 lt 001 66 01JH28core ESP 79 545 187 lt1 lt001 lt001 31 lt100 lt02 lt 001 61 01JH28rind DIW 74 550 405 lt1 001 lt001 32 lt100 lt02 lt 001 73 01JH28rind ESP 121 527 313 lt1 lt001 lt001 95 lt100 lt02 lt 001 59 01JH37core DIW 82 550 193 lt1 lt001 lt001 25 lt100 02 lt 001 53 01JH37core ESP 125 519 108 lt1 lt001 lt001 58 lt100 lt02 lt 001 43 01JH37rind DIW 107 550 233 lt1 lt001 lt001 32 lt100 lt02 lt 001 52 01JH37rind ESP 121 541 121 lt1 lt001 lt001 26 lt100 lt02 lt 001 42

Ely 00JH34 00JH34

DIW ESP

262 274

479 467

197 129

lt1 lt1

lt001 lt001

lt001 0015

12 22

lt100 lt100

03 lt02

lt 001 lt 001

66 58

00JH38 DIW 282 486 029 lt1 lt001 0026 31 lt100 02 lt 001 43 00JH38 ESP 327 428 nd lt1 lt001 0046 44 lt100 03 lt 001 34 01JH31A DIW 259 386 nd lt1 lt001 11 880 lt100 05 lt 001 50 01JH31A ESP 294 369 nd lt1 lt001 13 1100 lt100 02 lt 001 41 01JH31B DIW 504 362 nd lt1 lt001 42 3200 lt100 04 lt 001 55 01JH31B ESP 557 355 nd lt1 lt001 48 3800 lt100 02 lt 001 51 01JH34 DIW 186 507 122 lt1 lt001 lt001 97 lt100 lt02 lt 001 44 01JH34 ESP 237 473 028 lt1 lt001 0025 29 lt100 lt02 lt 001 32

Ducktown 01CB23 DIW 895 417 nd 66 58 54 4200 lt100 04 lt 001 38 01CB23 ESP 926 408 nd 53 64 54 4200 lt100 03 lt 001 28 01CB25 DIW 353 550 314 lt1 lt001 lt001 16 lt100 02 lt 001 41 01CB25 ESP 417 516 248 lt1 lt001 lt001 24 lt100 lt02 lt 001 27

Clayton 53JH00 53JH00

DIW ESP

204 256

565 573

319 173

lt1 lt1

lt001 lt001

lt001 lt001

71 92

lt100 lt100

52 52

lt 001 lt 001

50 40

a samples were leached with deionized water (DIW) and eastern synthetic precipitation (ESP) b not determined

42

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 43: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 (cont)

Ba Ba Be Be Bi Ca Ca Cd Cd Ce chloride Co Co Cr Cr

ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS IC ICP-AES ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL mgL mgL microgL microgL microgL mgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 15 1 lt10 lt005 lt 003 13 1 lt5 15 27 01 11 95 lt10 lt1 98JHNP-B-RS ESP 17 2 lt10 lt005 lt 003 15 12 lt5 17 38 01 12 11 lt10 lt1 98JHNB-s DIW 12 12 lt10 006 lt 003 36 3 lt5 075 13 01 19 17 lt10 1 98JHNB-s ESP 14 14 lt10 lt005 lt 003 41 36 lt5 083 14 01 18 20 lt10 1 00JH05 DIW 21 2 lt10 lt005 lt 003 064 052 lt5 25 26 02 57 55 lt10 lt1 00JH05 ESP 27 2 lt10 lt005 lt 003 059 05 lt5 26 31 01 54 55 lt10 lt1 01JH27 DIW lt1 08 lt10 lt005 lt 003 36 3 lt5 02 45 02 21 20 lt10 lt1 01JH27 ESP 43 4 lt10 008 lt 003 28 23 lt5 02 51 02 19 18 lt10 lt1 01JH27Dup DIW lt1 08 lt10 lt005 lt 003 28 24 lt5 02 38 01 18 17 lt10 lt1 01JH27Dup ESP lt1 1 lt10 lt005 lt 003 35 29 lt5 02 58 02 21 22 lt10 lt1 01JH28 DIW lt1 08 lt10 lt005 lt 003 088 074 lt5 09 038 01 29 28 lt10 lt1 01JH28 ESP 12 1 lt10 lt005 lt 003 084 069 lt5 1 097 01 30 29 lt10 lt1 01JH28core DIW 12 1 lt10 lt005 lt 003 045 04 lt5 071 003 01 lt10 48 lt10 lt1 01JH28core ESP 18 2 lt10 lt005 lt 003 048 04 lt5 071 lt 002 01 lt10 48 lt10 lt1 01JH28rind DIW 1 09 lt10 lt005 lt 003 048 04 lt5 05 lt 002 01 lt10 39 lt10 lt1 01JH28rind ESP 15 2 lt10 lt005 lt 003 062 053 lt5 081 011 01 lt10 57 lt10 lt1 01JH37core DIW 11 1 lt10 lt005 lt 003 021 02 lt5 16 002 01 18 16 lt10 lt1 01JH37core ESP 16 2 lt10 lt005 lt 003 024 02 lt5 18 0084 01 20 18 lt10 lt1 01JH37rind DIW lt1 08 lt10 lt005 lt 003 032 03 lt5 1 003 01 16 17 lt10 lt1 01JH37rind ESP 17 2 lt10 lt005 lt 003 034 03 lt5 1 004 01 16 17 lt10 lt1 00JH34 DIW 57 53 lt10 lt005 lt 003 13 11 lt5 18 12 01 31 29 lt10 lt1 00JH34 ESP 71 69 lt10 006 lt 003 13 11 lt5 18 18 01 27 29 lt10 lt1 00JH38 DIW 2 2 lt10 lt005 lt 003 021 02 lt5 1 16 01 46 46 lt10 lt1 00JH38 ESP 31 3 lt10 lt005 lt 003 021 02 lt5 11 2 01 51 47 lt10 lt1 01JH31A DIW 63 63 lt10 008 lt 003 17 15 lt5 32 69 02 320 340 lt10 lt1 01JH31A ESP 64 64 lt10 02 lt 003 19 17 lt5 38 87 01 370 370 lt10 lt1 01JH31B DIW lt1 01 lt10 007 lt 003 16 14 10 7 34 03 640 630 12 12 01JH31B ESP lt1 02 lt10 005 lt 003 18 17 12 78 40 04 680 700 15 15 01JH34 DIW 37 4 lt10 lt005 lt 003 045 04 lt5 086 14 02 38 35 lt10 lt1 01JH34 ESP 46 4 lt10 lt005 lt 003 043 03 lt5 082 26 01 35 33 lt10 lt1 01CB23 DIW lt1 008 lt10 02 lt 003 170 160 8 88 300 02 35 32 lt10 lt1 01CB23 ESP lt1 01 lt10 02 lt 003 180 170 84 86 310 02 30 30 lt10 lt1 01CB25 DIW 36 4 lt10 lt005 lt 003 49 42 lt5 007 002 02 lt10 2 lt10 lt1 01CB25 ESP 44 4 lt10 lt005 lt 003 52 45 lt5 01 006 02 lt10 23 lt10 lt1 53JH00 DIW 51 5 lt10 lt005 lt 003 082 067 lt5 03 14 02 lt10 02 lt10 lt1 53JH00 ESP 65 58 lt10 lt005 lt 003 1 083 lt5 04 2 01 lt10 02 lt10 lt1

43

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 44: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 (cont)

Cs Cu Cu Dy Er Eu Fe Fe Ga Gd Ge Ho In

ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS

microgL microgL microgL microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 033 510 490 061 034 0078 048 400 lt 002 063 045 011 lt 001 98JHNP-B-RS ESP 042 700 680 081 04 0098 071 540 lt 002 063 042 017 lt 001 98JHNB-s DIW 02 230 240 057 04 0049 28 2200 003 038 062 012 lt 001 98JHNB-s ESP 03 280 290 071 038 0072 28 2400 lt 002 05 065 014 lt 001 00JH05 DIW 008 1200 1100 053 023 003 16 1300 lt 002 042 03 0088 lt 001 00JH05 ESP 009 1900 1800 05 031 0069 18 1500 lt 002 046 03 011 lt 001 01JH27 DIW 01 19 19 054 025 0054 11 9100 lt 002 047 05 012 lt 001 01JH27 ESP 01 56 55 06 036 0054 89 7100 lt 002 065 054 013 lt 001 01JH27Dup DIW 009 18 19 034 025 004 10 8300 lt 002 047 065 0096 lt 001 01JH27Dup ESP 01 56 54 076 036 006 97 8000 lt 002 078 065 015 lt 001 01JH28 DIW 01 500 470 0067 005 lt 001 028 220 lt 002 004 064 002 lt 001 01JH28 ESP 02 920 870 014 0095 lt 001 05 400 lt 002 016 03 002 lt 001 01JH28core DIW 002 210 200 001 lt 002 lt 001 0077 59 lt 002 lt 003 05 lt 0005 lt 001 01JH28core ESP 002 220 210 001 lt 002 lt 001 0062 51 lt 002 lt 003 067 lt 0005 lt 001 01JH28rind DIW 002 260 240 lt 001 lt 002 lt 001 0077 58 lt 002 lt 003 054 lt 0005 lt 001 01JH28rind ESP 003 530 520 002 lt 002 lt 001 02 170 lt 002 lt 003 03 0007 lt 001 01JH37core DIW 003 620 580 lt 001 lt 002 lt 001 0099 79 lt 002 lt 003 074 lt 0005 lt 001 01JH37core ESP 004 950 920 002 lt 002 lt 001 018 150 lt 002 lt 003 04 0005 lt 001 01JH37rind DIW 003 750 720 002 lt 002 lt 001 01 85 lt 002 lt 003 03 lt 0005 lt 001 01JH37rind ESP 004 890 860 002 lt 002 lt 001 013 110 lt 002 lt 003 04 lt 0005 lt 001 00JH34 DIW 005 310 300 0098 0059 003 18 1400 lt 002 008 04 002 lt 001 00JH34 ESP 005 550 540 014 005 001 17 1400 lt 002 016 03 003 lt 001 00JH38 DIW 002 1600 1600 019 012 004 19 1500 lt 002 022 04 004 lt 001 00JH38 ESP 002 2000 1900 023 011 002 22 1800 lt 002 022 042 004 lt 001 01JH31A DIW 006 3100 3100 67 36 2 18 15000 lt 002 8 058 13 lt 001 01JH31A ESP 007 3800 3900 82 4 22 19 16000 lt 002 97 082 15 lt 001 01JH31B DIW 02 20000 18000 29 13 57 55 45000 01 31 094 5 003 01JH31B ESP 02 22000 21000 33 15 66 60 52000 01 36 091 56 003 01JH34 DIW 002 1100 1100 011 0065 001 11 880 lt 002 009 04 002 lt 001 01JH34 ESP 003 1800 1700 018 013 003 13 1000 lt 002 023 03 005 lt 001 01CB23 DIW 034 1100 1000 15 67 10 041 190 lt 002 21 041 25 lt 001 01CB23 ESP 038 1000 1000 16 68 11 026 220 lt 002 21 03 27 lt 001 01CB25 DIW 002 110 99 lt 001 lt 002 lt 001 0037 19 lt 002 lt 003 058 lt 0005 lt 001 01CB25 ESP 002 270 260 001 lt 002 lt 001 lt002 13 lt 002 lt 003 055 lt 0005 lt 001 53JH00 DIW 003 690 650 0084 lt 002 0041 lt002 12 lt 002 006 08 001 lt 001 53JH00 ESP 004 920 840 0065 004 003 lt002 22 lt 002 011 046 002 lt 001

44

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 45: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 (cont)

K K La Li Li Mg Mg Mn Mn Mo Mo Na Na

ICP-AES ICP-MS ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS

mgL microgL microgL microgL microgL mgL mgL microgL microgL microgL microgL mgL mgL sample

98JHNP-B-RS DIW 083 680 13 lt1 04 084 07 160 140 lt20 0086 11 1 98JHNP-B-RS ESP 1 910 18 lt1 lt 04 096 083 180 180 lt20 12 13 12 98JHNB-s DIW 018 160 058 lt1 lt 04 15 13 380 370 lt20 076 012 087 98JHNB-s ESP 03 280 079 lt1 lt 04 17 15 440 440 lt20 048 016 016 00JH05 DIW 031 250 14 13 15 016 014 22 20 lt20 011 081 07 00JH05 ESP 03 250 18 11 11 015 013 21 19 lt20 012 07 061 01JH27 DIW 031 270 23 17 1 088 074 38 37 lt20 23 059 058 01JH27 ESP 026 210 26 11 1 072 059 32 30 lt20 75 05 041 01JH27Dup DIW 027 230 19 12 09 078 068 34 32 lt20 23 047 093 01JH27Dup ESP 03 250 3 11 1 078 069 36 34 lt20 084 056 053 01JH28 DIW 023 190 02 15 16 086 072 76 68 lt20 025 039 033 01JH28 ESP 021 180 057 17 14 087 074 81 73 lt20 016 034 041 01JH28core DIW 016 140 002 lt1 04 lt01 005 12 97 lt20 074 026 072 01JH28core ESP 019 160 001 lt1 05 lt01 005 12 11 lt20 069 029 026 01JH28rind DIW 023 180 002 lt1 07 lt01 005 10 86 lt20 084 039 032 01JH28rind ESP 022 210 007 lt1 07 lt01 007 15 13 lt20 033 041 036 01JH37core DIW 018 150 002 17 08 lt01 005 lt10 42 lt20 044 04 032 01JH37core ESP 016 160 004 14 09 lt01 006 lt10 54 lt20 022 042 1 01JH37rind DIW 023 180 002 18 12 lt01 008 lt10 67 lt20 033 057 05 01JH37rind ESP 021 180 004 14 12 lt01 008 lt10 68 lt20 028 056 048 00JH34 DIW 039 330 088 16 16 lt01 007 44 39 lt20 017 034 028 00JH34 ESP 041 350 12 12 15 lt01 007 42 38 lt20 013 034 06 00JH38 DIW 017 140 076 lt1 lt 04 014 013 43 39 lt20 014 017 014 00JH38 ESP 018 160 085 lt1 lt 04 015 013 44 40 lt20 01 018 015 01JH31A DIW lt01 85 21 23 19 17 15 280 280 lt20 043 035 035 01JH31A ESP 012 120 27 27 23 2 17 320 310 lt20 038 043 043 01JH31B DIW lt01 16 92 2 17 49 43 100 100 lt20 041 lt01 007 01JH31B ESP lt01 29 12 3 2 53 48 110 120 lt20 036 lt01 02 01JH34 DIW 026 220 071 lt1 08 012 011 38 35 lt20 021 025 021 01JH34 ESP 026 210 12 1 09 012 01 37 33 lt20 014 023 02 01CB23 DIW lt01 21 110 48 41 12 10 400 400 lt20 036 lt01 013 01CB23 ESP lt01 23 120 47 45 11 95 380 390 lt20 029 lt01 006 01CB25 DIW 056 480 002 lt1 lt 04 015 013 73 67 lt20 014 lt01 006 01CB25 ESP 058 500 005 lt1 lt 04 015 012 83 75 lt20 0092 lt01 006 53JH00 DIW 034 270 1 lt1 lt 04 lt01 004 130 120 lt20 039 lt01 041 53JH00 ESP 036 300 17 lt1 lt 04 lt01 004 160 140 lt20 025 011 01

45

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 46: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 (cont)

Nd Ni Ni P P Pb Pb Pr Rb Re Sb Sb Se

ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS ICP-MS

microgL microgL microgL mgL microgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 16 lt10 18 lt01 lt 20 lt50 04 034 49 009 lt50 018 2 98JHNP-B-RS ESP 23 lt10 23 lt01 lt 20 lt50 059 054 6 01 lt50 011 3 98JHNB-s DIW 11 lt10 29 lt01 lt 20 lt50 01 02 13 009 lt50 008 07 98JHNB-s ESP 11 lt10 38 lt01 lt 20 lt50 01 021 18 01 lt50 005 07 00JH05 DIW 14 16 16 lt01 lt 20 lt50 02 034 097 003 lt50 075 lt 02 00JH05 ESP 18 16 16 lt01 lt 20 lt50 03 043 096 003 lt50 037 lt 02 01JH27 DIW 2 22 21 lt01 lt 20 lt50 lt005 055 1 002 lt50 01 lt 02 01JH27 ESP 24 34 30 lt01 lt 20 lt50 lt005 068 088 lt 002 lt50 015 lt 02 01JH27Dup DIW 18 24 23 lt01 lt 20 lt50 lt005 045 089 lt 002 lt50 015 lt 02 01JH27Dup ESP 3 38 34 lt01 lt 20 lt50 lt005 074 11 lt 002 lt50 01 lt 02 01JH28 DIW 013 lt10 88 lt01 lt 20 lt50 062 005 068 002 lt50 82 lt 02 01JH28 ESP 056 12 10 lt01 lt 20 lt50 02 01 076 lt 002 lt50 28 lt 02 01JH28core DIW lt 002 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 004 lt 02 01JH28core ESP 003 lt10 2 lt01 lt 20 lt50 lt005 lt 001 04 lt 002 lt50 003 lt 02 01JH28rind DIW 004 lt10 19 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH28rind ESP 004 lt10 31 lt01 lt 20 lt50 lt005 lt 001 066 lt 002 lt50 lt003 lt 02 01JH37core DIW 003 13 15 lt01 lt 20 lt50 lt005 lt 001 05 lt 002 lt50 lt003 lt 02 01JH37core ESP 0062 18 16 lt01 lt 20 lt50 lt005 lt 001 052 lt 002 lt50 lt003 lt 02 01JH37rind DIW 004 15 16 lt01 lt 20 lt50 lt005 lt 001 055 lt 002 lt50 lt003 lt 02 01JH37rind ESP 003 19 17 lt01 lt 20 lt50 lt005 lt 001 057 lt 002 lt50 lt003 lt 02 00JH34 DIW 048 lt10 8 lt01 lt 20 lt50 1 01 11 lt 002 lt50 94 lt 02 00JH34 ESP 075 lt10 82 lt01 lt 20 lt50 05 02 11 lt 002 lt50 16 lt 02 00JH38 DIW 07 12 13 lt01 lt 20 lt50 11 02 04 003 lt50 14 lt 02 00JH38 ESP 083 13 12 lt01 lt 20 lt50 18 021 05 002 lt50 1 lt 02 01JH31A DIW 47 77 71 lt01 lt 20 lt50 lt005 10 058 023 lt50 006 2 01JH31A ESP 56 90 81 lt01 lt 20 lt50 005 12 078 027 lt50 004 3 01JH31B DIW 73 190 170 019 lt 20 lt50 lt005 11 02 02 lt50 006 1 01JH31B ESP 86 210 190 034 lt 20 lt50 lt005 13 03 02 lt50 004 1 01JH34 DIW 06 lt10 99 lt01 lt 20 lt50 lt005 01 058 lt 002 lt50 lt003 lt 02 01JH34 ESP 088 10 93 lt01 lt 20 lt50 02 024 06 lt 002 lt50 23 lt 02 01CB23 DIW 170 lt10 06 lt01 30 lt50 01 43 068 005 lt50 006 09 01CB23 ESP 170 lt10 06 lt01 lt 20 lt50 02 44 099 007 lt50 005 09 01CB25 DIW lt 002 lt10 02 lt01 lt 20 lt50 008 lt 001 1 lt 002 lt50 045 lt 02 01CB25 ESP lt 002 lt10 03 lt01 lt 20 lt50 lt005 004 11 lt 002 lt50 024 lt 02 53JH00 DIW 052 lt10 3 lt01 lt 20 8200 8400 01 061 lt 002 200 230 lt 02 53JH00 ESP 074 lt10 38 lt01 lt 20 11000 11000 02 069 lt 002 250 290 lt 02

46

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 47: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 (cont)

Si SiO2 Sm sulfate SO4 Sr Sr Tb Th Tl Tm Ti U

ICP-AES ICP-MS ICP-MS IC ICP-MS ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

mgL mgL microgL mgL mgL microgL microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW 56 11 04 17 15 29 26 0098 lt 008 01 0044 lt50 006 98JHNP-B-RS ESP 4 77 06 21 19 35 34 011 lt 008 01 0055 lt50 008 98JHNB-s DIW 19 37 028 35 34 23 21 0068 lt 008 lt005 0047 lt50 009 98JHNB-s ESP 35 7 031 40 43 29 25 0088 lt 008 lt005 0052 lt50 01 00JH05 DIW 46 88 036 10 8 32 31 0063 lt 008 lt005 0026 lt50 009 00JH05 ESP 41 78 04 11 98 32 29 0093 lt 008 lt005 0029 lt50 01 01JH27 DIW 19 37 049 35 34 44 4 0081 lt 008 lt005 0032 lt50 005 01JH27 ESP 15 29 065 27 27 38 34 011 lt 008 lt005 0047 lt50 006 01JH27Dup DIW 62 12 044 30 29 35 34 008 lt 008 lt005 0037 lt50 004 01JH27Dup ESP 15 29 059 32 32 4 41 0099 lt 008 lt005 0063 lt50 006 01JH28 DIW 23 44 lt 002 48 5 11 1 0007 lt 008 lt005 lt 0006 lt50 001 01JH28 ESP 37 7 022 82 59 12 1 003 lt 008 lt005 001 lt50 002 01JH28core DIW 22 44 lt 002 07 lt 03 15 13 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28core ESP 15 30 lt 002 15 lt 03 16 14 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01JH28rind DIW 24 45 lt 002 04 lt 03 15 14 lt 0005 lt 008 lt005 lt 0006 lt50 0005 01JH28rind ESP 41 8 lt 002 2 lt 03 19 2 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37core DIW 23 45 lt 002 14 lt 03 1 09 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37core ESP 56 11 lt 002 29 12 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 001 01JH37rind DIW 69 14 lt 002 19 lt 03 12 11 lt 0005 lt 008 lt005 lt 0006 lt50 0007 01JH37rind ESP 56 11 003 31 13 13 12 lt 0005 lt 008 lt005 lt 0006 lt50 0008 00JH34 DIW 19 37 0098 86 65 77 7 002 lt 008 lt005 lt 0006 lt50 004 00JH34 ESP 6 12 015 93 69 8 73 002 lt 008 lt005 001 lt50 005 00JH38 DIW 55 11 016 88 64 lt1 09 003 lt 008 lt005 002 lt50 003 00JH38 ESP 55 11 026 10 82 1 09 003 lt 008 lt005 002 lt50 003 01JH31A DIW 46 94 10 100 110 5 49 12 lt 008 lt005 052 lt50 063 01JH31A ESP 4 8 12 110 130 62 6 14 lt 008 lt005 062 lt50 072 01JH31B DIW 44 91 29 170 250 lt1 08 51 01 lt005 17 lt50 13 01JH31B ESP 54 12 34 250 290 1 1 57 01 lt005 2 lt50 14 01JH34 DIW 75 15 005 55 42 2 19 003 lt 008 lt005 001 lt50 001 01JH34 ESP 4 76 021 75 5 21 18 003 lt 008 lt005 001 lt50 002 01CB23 DIW 59 12 31 490 600 270 270 28 043 02 085 lt50 48 01CB23 ESP 55 11 32 520 610 280 280 29 053 02 096 lt50 5 01CB25 DIW 19 37 lt 002 11 95 24 23 lt 0005 lt 008 lt005 lt 0006 lt50 lt 0005 01CB25 ESP 39 74 lt 002 13 12 27 25 lt 0005 lt 008 lt005 lt 0006 lt50 0005 53JH00 DIW 20 40 005 47 27 19 17 0008 lt 008 lt005 lt 0006 lt50 0008 53JH00 ESP 55 11 012 75 51 27 23 002 lt 008 lt005 lt 0006 lt50 lt 0005

47

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 48: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

Table 7 (cont)

V V W Y Yb Zn Zn

ICP-AES ICP-MS ICP-MS ICP-MS ICP-MS ICP-AES ICP-MS

microgL microgL microgL microgL microgL microgL microgL sample

98JHNP-B-RS DIW lt10 lt02 lt 03 34 04 80 73 98JHNP-B-RS ESP lt10 lt02 lt 03 44 033 91 88 98JHNB-s DIW lt10 lt02 lt 03 33 027 58 57 98JHNB-s ESP lt10 lt02 lt 03 38 045 69 67 00JH05 DIW lt10 lt02 lt 03 27 015 450 420 00JH05 ESP lt10 lt02 lt 03 32 021 450 420 01JH27 DIW lt10 lt02 lt 03 34 022 73 70 01JH27 ESP lt10 lt02 lt 03 4 029 81 76 01JH27Dup DIW lt10 lt02 lt 03 29 016 69 64 01JH27Dup ESP lt10 lt02 lt 03 43 035 86 78 01JH28 DIW lt10 lt02 lt 03 048 lt 002 290 270 01JH28 ESP lt10 lt02 lt 03 13 008 330 300 01JH28core DIW lt10 lt02 06 0042 lt 002 79 76 01JH28core ESP lt10 lt02 04 002 lt 002 85 79 01JH28rind DIW lt10 lt02 04 003 lt 002 83 74 01JH28rind ESP lt10 lt02 lt 03 011 003 120 110 01JH37core DIW lt10 lt02 04 004 lt 002 180 170 01JH37core ESP lt10 lt02 lt 03 017 lt 002 210 200 01JH37rind DIW lt10 lt02 lt 03 0089 lt 002 190 180 01JH37rind ESP lt10 lt02 lt 03 01 lt 002 200 180 00JH34 DIW lt10 lt02 lt 03 067 004 340 320 00JH34 ESP lt10 lt02 lt 03 094 004 350 330 00JH38 DIW lt10 lt02 lt 03 1 011 190 180 00JH38 ESP lt10 lt02 lt 03 12 011 210 180 01JH31A DIW lt10 lt02 lt 03 31 34 460 440 01JH31A ESP lt10 lt02 lt 03 38 38 530 510 01JH31B DIW 45 40 lt 03 99 10 360 350 01JH31B ESP 35 32 lt 03 120 12 430 420 01JH34 DIW lt10 lt02 lt 03 066 0065 160 150 01JH34 ESP lt10 lt02 lt 03 1 01 160 150 01CB23 DIW lt10 lt02 lt 03 68 58 4200 3900 01CB23 ESP lt10 lt02 lt 03 69 56 4100 3600 01CB25 DIW lt10 lt02 lt 03 002 lt 002 320 290 01CB25 ESP lt10 lt02 lt 03 003 lt 002 500 470 53JH00 DIW lt10 lt02 09 038 003 340 310 53JH00 ESP lt10 lt02 04 058 0052 400 370

48

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 49: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

100

1

10

100

1000

10000

100000

0 2 4 6 8 pH

Cu

microgL

A

1

10

100

1000

10000

Zn

microgL

B

1

10

100

1000

10000

Co

microgL

C

N

Elizabet h wast e rock DIW Elizabet h wast e rock ESP Elizabet h slag DIW Elizabet h slag ESP Ely waste rock DIW Ely waste rock ESP Ely slag DIW Ely slag ESP Duckt own calcine DIW Duckt own calcine ESP Ducktown slag DIW Ducktown slag ESP Clayt on slag DIW Clayt on slag ESP

chronic t oxicit y

acute toxicity

chronic t oxicit y acut e t oxicit y

01

Y water criterion

0 2 6 8 0 2 4 6 84 pH pH

D

1

10

100

1000

Fe micro

gL

E

chronic t oxicit y

acut e t oxicit y

001

01

chronic t oxicit y

det ect ion limit

10

Cd

microgL

01

001

1

0 2 4 6 8 0 2 6 8pH 4 pH

10000100000 10000 G

chronic t oxicit y

acut e t oxicit y F

chronic t oxicit y

acut e t oxicit y

det ect ion limit

1000

Ni micro

gL100

10

1

1000 100

10 1

Pb micro

gL

01 01 001

0 2 4 pH 6 8 0 2 4 pH 6 8

Figure 16 Concentration of A Cu B Zn C Co D Cd E Fe F Pb and G Ni in leachates Leaching tests were performed using deionized water (DIW) and eastern synthetic precipitation (ESP) Water-quality guidelines for the protection of aquatic life (US EPA 1993) based on an assumed hardness of 100 mgL CaCO3 are labeled for all elements except Co for which the NY water criterion is labeled

49

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 50: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

ACKNOWLEDGMENTS

The authors would like to thank Ed Hathaway and Bill Lovely of the US

Environmental Protection Agency and Scott Acone of the US Army Corps of Engineers

for their assistance and cooperation The manuscript benefited from discussions with

Matthew Kierstead PAL Inc and Carter Hearn US Geological Survey Harvey Belkin

provided guidance on SEM and electron-microprobe operations We also thank Tom

Moyer Science Applications International Corporation and David Williams US

Environmental Protection Agency Carter Hearn and John Mars of US Geological

Survey provided thoughtful reviews of the manuscript

50

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 51: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

REFERENCES

Anonymous Sulfuric Acid Production From ore to acid Polk County Publishing Benton TN

Cabri LJ 1973 New data on phase relations in the Cu-Fe-S system Economic Geology v 68 p 443-454

Crock JG Arbogast BF and Lamothe PJ 1999 Laboratory methods for the analysis of environmental samples in Plumlee GS and Logsdon MJ eds The Environmental Geochemistry of Mineral Deposits Part A Processes Techniques and Health Issues Reviews in Economic Geology v 6A p 265-287

Crowley JK Mars JC and Hammarstrom JM 2001 Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine Vermont Society of Economic Geologists Guidebook Series v 35 p 249-253

Hageman PL and Briggs PH 2000 A simple field leach test for rapid screening and qualitative characterization of mine waste dump material on abandoned mine lands ICARD 2000 Proceedings from the Fifth International Conference on Acid Rock Drainage II p 1463-1475

Hammarstrom JM Meier AL Jackson JC Barden R Wormington PJ Wormington JD and Seal RR II 1999 Characterization of mine waste at the Elizabeth copper mine Orange County Vermont US Geological Survey Open-File Rep 99-564 74 p

Hammarstrom JM Seal RR II Slack JF Kierstead MA and Hathaway EM 2001a Field trip days 1 and 2 road log for the Elizabeth and Ely mines and vicinity Society of Economic Geologists Guidebook Series v 35 p 119-163

Hammarstrom JM Seal RR II Ouimetter AP and Foster SA 2001b Sources of metals and acidity at the Elizabeth and Ely mines Society of Economic Geologists guidebook Series v 35 p 213-248

Hammarstrom JM Eppinger RG Van Gosen BS Briggs PH and Meier AL 2002 Case study of the environmental signature of a recently abandoned carbonate-hosted replacement deposit The Clayton Mine Idaho US Geological Survey Open-File Rep 02-10 44 p

Hathaway EM Lovely WP Acone SE and Foster SA 2001 The other side of mining environmental assessment and the process for developing a cleanup approach for the Elizabeth mine Society of Economic Geologists Guidebook Series v 35 p 277-293

51

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 52: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

International Centre for Diffraction Data 1997 Powder Diffraction File Sets 1-47 Kierstead MA 2001 History and historical resources of the Vermont copper belt

Society of Economic Geologists Guidebook Series v 35 p 165-191

Magee M 1968 Geology and ore deposits of the Ducktown district Tennessee in Ridge JD ed Ore Deposits of the United States 1933-1967 American Institute of Mining Metallurgical and Petroleum Engineers Inc New York NY v 1 p 207-241

Moyer TC Jourdan R Taylor M and Mozingo JT Jr 2000 Challenges of restoring an environment impacted by a century of copper mining the Copper basin mining district Tennessee Geological Society of America Abstracts with Programs v 32 no 7 p 476-477

Moyer TC Dube TE and Johnsen MG 2002 The impacts of hardrock mining in eastern Tennessee Integrated studies of Davis Mill Creek and the Copper Basin mine site Geological Society of America Abstracts with Programs v 34 no 6 p 143-144

Offield TW and Slack JF 1993 Structure and origin of the Ely copper deposit east- central Vermont US Geological Survey Bulletin 2039 p 59-68

Piatak NM Seal RR II and Hammarstrom JM 2004 Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious metal smelting at abandoned mine sites Applied Geochemistry (in press)

Ross CP 1937 Geology and ore deposits of the Bayhorse region Custer County Idaho US Geological Survey Bulletin 877 161 p

Seal RR II Hammarstrom JM Slack JF Hathaway EM Lovely WP and Kierstead MA 2001a Introduction environmental geochemistry and mining history of massive sulfide deposits in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 115-117

Seal RR II Kornfeld JM Meier AL and Hammarstrom JM 2001b Geochemical setting of mine drainage in the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 255-276

Slack JF Offield TW Woodruff LG and Shanks WC III 2001 Geology and geochemistry of Besshi-type massive sulfide deposits of the Vermont copper belt Society of Economic Geologists Guidebook Series v 35 p 193-211

US Environmental Protection Agency 1993 EPA Region VIII Clean Water Act Section 304(a) criteria chart July 1 1993 US Environmental Protection Agency 12p

52

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840
Page 53: Open-File Report 03-260determined using transmitted- and reflected-light microscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and electron-microprobe analysis

US Environmental Protection Agency 1994 Test methods for evaluating solid waste physicalchemical methods (SW-846) 3rd Edition update 2B Environmental Protection Agency National Center for Environmental Publications Cincinnati Ohio

Wells MW 1983 Gold camps and silver cities - nineteenth century mining in central and southern Idaho Idaho Bureau of Mines and Geology Bulletin 22 2nd Edition 165p

53

  1. barcodetext SDMS DocID 473840
  2. barcode 473840