36
Open issues in Hadron Structure C. Alexandrou University of Cyprus and Cyprus Institute with A. Abdel-Rehim, M. Constantinou, S. Dinter, V. Drach, K. Hatziyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, A. Strelchenko, A. Vaquero Workshop on New Frontiers in Lattice Gauge Theory Galileo Galilei Institute for Theoretical Physics, Florence C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 1 / 30

Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Open issues in Hadron Structure

C. AlexandrouUniversity of Cyprus and Cyprus Institute

withA. Abdel-Rehim, M. Constantinou, S. Dinter, V. Drach, K. Hatziyiannakou,

K. Jansen, Ch. Kallidonis, G. Koutsou, A. Strelchenko, A. Vaquero

Workshop on New Frontiers in Lattice Gauge TheoryGalileo Galilei Institute for Theoretical Physics, Florence

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 1 / 30

Page 2: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Outline

1 Nucleon structureAxial chargeExcited state contributionsNucleon spinForm factorsσ-termsIsoscalar axial charge including disconnected contributions

2 Hyperons and Charmed baryonsMassesAxial chargeσ-terms

3 Nγ∗ → ∆

4 Conclusions

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 2 / 30

Page 3: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon Structure: axial chargeMany lattice studies down to lowest pion mass of mπ ∼ 300 MeV=⇒ Lattice data in general agreement

Axial-vector FFs: Aaµ = ψγµγ5

τa2 ψ(x)

=⇒ 12

[γµγ5GA(q2) +

qµγ52m Gp(q2)

]Axial charge is well known experimentally, straight forward to compute in lattice QCD

Agreement among recent lattice results -all use non-perturbative ZA

Weak light quark mass dependence

• NF = 2 + 1 Clover: J. R. Green et al., Lattice2012

• NF = 2 and NF = 2 + 1 + 1 TMF: C. A. et al. (ETMC), PRD 83 (2011) 045010, and in preparation

• DWF: T. Yamazaki et al., (RBC-UKQCD), PRD 79 (2009) 14505; S. Ohta, arXiv:1011.1388

• Hybrid: J. D. Bratt et al. (LHPC),PRD 82 (2010) 094502

• NF = 2 Clover:D. Pleiter et al. (QCDSF), arXiv:1101.2326

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 3 / 30

Page 4: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Results on the Nucleon 〈x〉u−d and 〈x〉∆u−∆d

Moments of parton distributions:

〈x〉q =

∫ 1

0dxx [q(x) + q(x)] , 〈x〉∆q =

∫ 1

0dxx

[∆q(x)− ∆q(x)

]q = q↓ + q↑,∆q = q↓ − q↑

Extracted from nucleon matrix elements of Oµ1µ2q = ψγµ1 i

↔D µ2ψ and Oµ1µ2

∆q = ψγµ1γ5 i↔D µ2ψ

Summary of NF = 2 and NF = 2 + 1 + 1 results in the MS scheme at µ = 2 GeV.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 4 / 30

Page 5: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Study of excited state contributions

NF = 2 + 1 + 1 with mπ ∼ 390 MeV and a = 0.08 fm

Vary source- sink separation:

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

11 12 13 14 15 16 17 18 19

g A

tsink/a

fixed sink method,tsink = 12aPDG

open sink method0

0.05

0.1

0.15

0.2

0.25

0.3

14 16 18 20 22 24

<x>

u−d

tsink/a

fixed sink method,tsink = 12aABMK

fitopen sink method

gA unaffected, 〈x〉u−d 10% lower

=⇒ Excited contributions are operator dependent

S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 5 / 30

Page 6: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

gA with the summation methodContamination due to excited states ∼ e−∆Ets instead of ∼ e−∆Etins . However need to extract the slope.One twisted mass ensemble, a = 0.08 fm, mπ = 390 MeV,iso-scalar (only connected) and iso-vector gA

6 4 2 0 2 4 6(tins ts /2)/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g A

isov, ts = 4aisov, ts = 8aisov, ts =12a

isos, ts = 4aisos, ts = 8aisos, ts =12a

isov, ts = 4aisov, ts = 8aisov, ts =12a

isos, ts = 4aisos, ts = 8aisos, ts =12a

From plateau,ts =12aFrom sum. method,tfit =[5,13]

4 6 8 10 12 14tsink/a

2

4

6

8

10

12

14

16

Sum

med

rat

io

isovisos

Use of incremental eigCG algorithm, A.

Stathopoulos and K. Orginos, arXiv:0707.0131

I One sequential inversion for each tsinkI ∼3× cheaper

Comparable error betweensummation and standard method

See also S. Capitani et al., arXiv:1205.0180

No detectable excited states contamination,

agrees with high precision study S. Dinter et al.,

arXiv:1108.1076 and C. Alexandrou et al., arXiv:1112.2931

I Same plateau for multiple tsink sI No curvature in summed ratio,

consistent results for various fit-ranges

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 6 / 30

Page 7: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

〈x〉u−d with the summation method

One twisted mass ensemble, a = 0.08 fm, mπ = 390 MeV,iso-scalar (only connected) and iso-vector 〈x〉

4 2 0 2 4(tins ts /2)/a

0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

isov, ts = 5aisov, ts = 8aisov, ts =12aisov, ts =13a

isos, ts = 5aisos, ts = 8aisos, ts =12aisos, ts =13a

isov, ts = 5aisov, ts = 8aisov, ts =12aisov, ts =13a

isos, ts = 5aisos, ts = 8aisos, ts =12aisos, ts =13a

From plateau,ts =13aFrom sum. method,tfit =[6,13]

4 6 8 10 12 14tsink/a

0

1

2

3

4

5

6

7

Sum

med

rat

io

isovisos

Noticeable contamination, especially for the iso-scalar

Summation method uses 7 sink-source time separations

For the plateau method one needs to show convergence by varying the sink-source time separation→also requires a number of sequential inversions

=⇒ Plateau and summation method give consistent results.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 7 / 30

Page 8: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Results at almost physical pion mass

Very recent results claim correct value of 〈x〉u−d :

NF = 2 Clover at mπ = 157(6) MeV, a = 0.07 fm and mπL = 2.74 using time separation ∼ 1 fm, G. Bali

et al. arXiv:1207.1110

NF = 2 + 1 BMW configurations at mπ = 149 MeV, a = 0.116 fm and mπL = 4.2 using 3 timeseparations up to 1.4 fm in combination with summation method, J. R. Green et al. arXiv:1209.1687

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 8 / 30

Page 9: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Results at almost physical pion mass

Very recent results claim correct value of 〈x〉u−d :

NF = 2 Clover at mπ = 157(6) MeV, a = 0.07 fm and mπL = 2.74 using time separation ∼ 1 fm, G. Bali

et al. arXiv:1207.1110

NF = 2 + 1 BMW configurations at mπ = 149 MeV, a = 0.116 fm and mπL = 4.2 using 3 timeseparations up to 1.4 fm in combination with summation method, J. R. Green et al. arXiv:1209.1687

But not gA, J. R. Green et al. arXiv:1209.1687

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 8 / 30

Page 10: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon spin

Contributions to the spin of the nucleonSpin sum: 1

2 = 12 ∆Σ + Lq + JG

Non-relativistic quark model:

If ∆Σu,d = ∆u + ∆d = 1⇒ Lq = 0 and JG = 0, as well as ∆s = 0, where ∆q contains both the spin of qand q.Lattice QCD: Need both connected and disconnected contributions to evaluate contributions to spin

Bali et al. (QCDSF), Phys.Rev.Lett. 108 (2012) 222001 : ∆u + ∆d + ∆s = 0.45 (4)(9) with∆s = −0.020(10)(4) at µ =

√7.4 GeV

=⇒ Small strangeness (disconnected) contribution to the nucleon spin

q = p′ − p

(xins, tins)

(x0, t0)(xs, t

s)

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~xs, t

s)

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 9 / 30

Page 11: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Lattice results on the nucleon spin

Jq = 12 [A20(0) + B20(0)] = 1

2 ∆Σ + Lq

∆Σ = A10

Only connected contribution

Results using NF = 2 TMF for 270 MeV < mπ < 500 MeV, C. Alexandrou et al. (ETMC), arXiv:1104.1600 andNF = 2 + 1 + 1 at mπ ∼ 230 MeV and 390 MeVIn agreement with A. Sternbeck et al. (QCDSF) arXiv:1203.6579

In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25

Con

trib

utio

ns to

nuc

leon

spi

n

mπ2 (GeV2)

Ju

Jd

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 10 / 30

Page 12: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Lattice results on the nucleon spin

Jq = 12 [A20(0) + B20(0)] = 1

2 ∆Σ + Lq

∆Σ = A10

Only connected contribution

Results using NF = 2 TMF for 270 MeV < mπ < 500 MeV, C. Alexandrou et al. (ETMC), arXiv:1104.1600 andNF = 2 + 1 + 1 at mπ ∼ 230 MeV and 390 MeVIn agreement with A. Sternbeck et al. (QCDSF) arXiv:1203.6579

In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25

Con

trib

utio

ns to

nuc

leon

spi

n

mπ2 (GeV2)

Ju

Jd

59

Ju

Jd

0.0 0.1 0.2 0.3 0.4 0.5 0.6-0.1

0.0

0.1

0.2

0.3

0.4

mΠ2@GeV2D

co

ntr

ibu

tio

ns

ton

ucle

on

sp

in

FIG. 42: Chiral extrapolations of Ju,d usingBChPT. Note that the displayed lattice datapoints were not directly employed in the chiral fits.Details are given in the text.

0.0 0.1 0.2 0.3 0.4 0.5 0.60.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

mΠ2 @GeV2D

Ju+d

FIG. 43: Chiral extrapolation of Ju+d usingHBChPT including the ∆ resonance, Eq. (74).The fit and error bands are explained in the text.

Since the GFF B20(t) cannot be extracted directly at t = 0, we have first performed separate dipole extrapolations

of Bu20(t) and Bd20(t) to t = 0, and combined this with our values for 〈x〉u+d = Au+d20 (0) to obtain Ju+d = (Au+d

20 (0) +

Bu+d20 (0))/2. The resulting lattice data points, including the full jackknife errors from the extrapolations of the

B20(t) to the forward limit, are displayed in Fig. 43. Chiral fits based on Eq. (74), with the three free parameters

bqN ≡ (A + B)0,u+d20 , bq∆ and Jmπ,u+d, to the data with mπ ≤ 600MeV and mπ ≤ 700MeV are represented by the

shaded error band and the curves (representing the upper and lower bounds of an error band) respectively. In bothcases, we have fixed ∆ = 0.3GeV and used the large-Nc relation gπN∆ = 3/(23/2)gA as given in Tab. VIII.

The fit to our lattice results with mπ ≤ 600 MeV gives (A + B)0,u+d20 = bqN = 0.514(41), bq∆ = 0.486(55) and

Ju+dHBChPT+∆(mphys

π ) = 0.245(30) at the physical pion mass. Including the data point at mπ = 687MeV in the fit,

we find consistent values with somewhat smaller errors, (A + B)0,u+d20 = bqN = 0.546(24) and bq∆ = 0.449(39) and

Ju+dHBChPT+∆(mphys

π ) = 0.226(22). It is encouraging to see that these values fully agree within statistical errors with theresults from the global simultaneous BChPT extrapolations of the GFFs A20(t), B20(t) and C20(t) discussed above.

2. Quark spin and orbital angular momentum contributions

For a consistent decomposition of the quark angular momentum, Jq, into quark spin, ∆Σq, and orbital angular

momentum, Lq, contributions, we need in addition lattice results for Au+d10 (t = 0) = ∆Σu+d and Au−d10 (t = 0) =

∆Σu−d.Our lattice data for ∆Σu+d/2 is displayed in Fig. 44, together with a 2-parameter HBChPT-fit represented by the

upper shaded error band. The chiral extrapolation leads to a value of Au+d10 /2(t = 0) = ∆Σu+d/2 = 0.208(10) at the

physical pion mass, perfectly matching the recent results from HERMES [92] indicated by the cross. However, sincethis is a leading 1-loop HBChPT fit at comparatively large pion masses, the agreement with the experimental valueshould be considered with great caution and seen as indicative. Combining this with the results from the previoussection for Ju+d and the corresponding BChPT extrapolation, we find a remarkably small quark orbital angularmomentum Lu+d = Ju+d −∆Σu+d/2 contribution to the nucleon spin for a wide range of pion masses, as indicatedby the filled diamonds and the lower error band in Fig. 44. From the combined covariant and heavy baryon chiralextrapolations, we obtain a value of Lu+d = 0.030(12) at the physical pion mass.

Superficially seen, such a small OAM contribution from u + d quarks of only ≈ 6% to the nucleon spin is inclear conflict with general expectations from relativistic quark models, which suggest that Lu+d = 30 − 40% of 1/2.Moreover, from quite general arguments, e.g. based on light cone wave function representations of hadrons, substantialquark orbital motion is essential for the Pauli form factor F2 to be non-vanishing in general, and also for the formationof azimuthal single spin asymmetries in semi-inclusive deep inelastic scattering related to, e.g., the Sivers effect [99–101]. As we will see in the following, these apparent inconsistencies may be explained by studying on the one hand therenormalization scale dependence of quark OAM, and on the other the contributions from individual quark flavors.

We begin with the latter by noting that a study of the separate up- and down-quark OAM contributions requires in

=⇒ Total spin for u-quarks Ju ∼ 0.25 and for d-quark Jd ∼ 0

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 10 / 30

Page 13: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Lattice results on the nucleon spinJq = 1

2 [A20(0) + B20(0)] = 12 ∆Σ + Lq

∆Σ = A10

Only connected contribution

Results using NF = 2 TMF for 270 MeV < mπ < 500 MeV, C. Alexandrou et al. (ETMC), arXiv:1104.1600 andNF = 2 + 1 + 1 at mπ ∼ 230 MeV and 390 MeVIn agreement with A. Sternbeck et al. (QCDSF) arXiv:1203.6579

In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25

Con

trib

utio

ns to

nuc

leon

spi

n

mπ2 (GeV2)

Ju

Jd

-0.4

-0.2

0

0.2

0.4

0.6

0 0.05 0.1 0.15 0.2 0.25

Con

trib

utio

ns to

nuc

leon

spi

n

mπ2 (GeV2)

∆Σu/2

∆Σd/2

Lu

Ld

Lattice results for ∆Σu−d and Lu−d in good agreementLu+d ∼ 0 at physical point.How about the disconnected contributions to Lq and contributions from Jg? K.-F. Liu et al. (χQCD),arXiv:1203.6388 claim they are large =⇒ Need to be confirmed using dynamical quarks, larger volumesand lighter quark masses

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 10 / 30

Page 14: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon EM and axial form factors

〈N(p′, s′)|jµ(0)|N(p, s)〉 = uN (p′, s′)[γµF1(q2) + iσµν qν

2m F2(q2)]

uN (p, s)

New results for NF = 2+1+1 twisted mass fermions, 483×96, β = 2.1(a = 0.063 fm from nucleon mass), mπ ∼ 230 MeV, 950 configurations

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 11 / 30

Page 15: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon Dirac and Pauli isovector radii

〈N(p′, s′)|jµ(0)|N(p, s)〉 = uN (p′, s′)[γµF1(q2) + iσµν qν

2m F2(q2)]

uN (p, s)

Dirac and Pauli radii: r21,2 = − 6

F1,2(0)

dF1,2dq2 |q2=0

Use a dipole Ansatz to fit the q2-dependence of F1 and F2.

TMF: C. A. et al. (ETMC), PRD83 (2011) 094502

Clover: S. Collins et al. (QCDSF), Phys.Rev. D84 (2011) 074507

DWF: S. N. Syritsyn et al. (LHPC), PRD 81, 034507 (2010); T. Yamazaki et al. (RBC-UKQCD), PRD 79, 114505 (2009)

Hybrid:J. D. Bratt et al. (LHPC), Phys. Rev. D82, 094502 (2010)

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 12 / 30

Page 16: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon Dirac and Pauli isovector radii

〈N(p′, s′)|jµ(0)|N(p, s)〉 = uN (p′, s′)[γµF1(q2) + iσµν qν

2m F2(q2)]

uN (p, s)

J. R. Green et al. 1209.1687

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 12 / 30

Page 17: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon Dirac and Pauli isovector radii

〈N(p′, s′)|jµ(0)|N(p, s)〉 = uN (p′, s′)[γµF1(q2) + iσµν qν

2m F2(q2)]

uN (p, s)

Anomalous magnetic moment: F2(0)mphys

Nmlat

N

J. R. Green et al. 1209.1687

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 12 / 30

Page 18: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon σ-terms

σl ≡ ml〈N|uu + dd|N〉: measures the explicit breaking of chiral symmetryExtracted from analysis of low-energy pion-proton scattering data

In lattice QCD it can be obtained via the Feynman-Hellman theorem: σl = ml∂mN∂ml

Similarly σs ≡ ms〈N|ss|N〉 >= ms∂mN∂ms

The strange quark content of the nucleon: yN = 2〈N|ss|N〉〈N|uu+dd|N〉

A number of groups have use the spectral method to extract the σ-terms.

Can also be calculated directly.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 13 / 30

Page 19: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon σ-termsAdvantages for twisted mass fermions:

In the twisted basis the scalar uu + dd becomes: i(uγ5u − dγ5d)From the TM action: Du − Dd = 2iµγ5

→ D−1u − D−1

d = −2iµD−1d γ5D−1

u with noise suppression due tosmall value of µ

The light quark loops can be computed by calculatingstochastically D−1

u (2iµγ5) D−1d using the one-end-trick to further

improve the signal, S. Dinter et al. 1202.1480

Renormalization straight forward

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~xs, t

s)

6 4 2 0 2 4 6(tins ts /2)/a

0.00

0.05

0.10

0.15

l [G

eV]

ts = 8ats =12a

ts =13ats =15a

ts = 8ats =12a

ts =13ats =15a

From plateau,ts =15aFrom sum. method,tfit =[7,15]

Connected

8 6 4 2 0 2 4 6 8(tins ts /2)/a

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

l [G

eV]

ts =10ats =12a

ts =14ats =16a

ts =10ats =12a

ts =14ats =16a

From plateau,ts =16aFrom sum. method,tfit =[10a,17a]

DisconnectedC. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 14 / 30

Page 20: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon σ-termsAdvantages for twisted mass fermions:

In the twisted basis the scalar uu + dd becomes: i(uγ5u − dγ5d)From the TM action: Du − Dd = 2iµγ5

→ D−1u − D−1

d = −2iµD−1d γ5D−1

u with noise suppression due tosmall value of µ

The light quark loops can be computed by calculatingstochastically D−1

u (2iµγ5) D−1d using the one-end-trick to further

improve the signal, S. Dinter et al. 1202.1480

Renormalization straight forward

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~xs, t

s)

4 6 8 10 12 14 16tsink/a

0.0

0.5

1.0

1.5

2.0

2.5

Sum

med

rat

io

Connected

4 6 8 10 12 14 16 18tsink/a

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sum

med

rat

io

DisconnectedC. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 14 / 30

Page 21: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon σ-termsAdvantages for twisted mass fermions:

In the twisted basis the scalar uu + dd becomes: i(uγ5u − dγ5d)From the TM action: Du − Dd = 2iµγ5

→ D−1u − D−1

d = −2iµD−1d γ5D−1

u with noise suppression due tosmall value of µ

The light quark loops can be computed by calculatingstochastically D−1

u (2iµγ5) D−1d using the one-end-trick to further

improve the signal, S. Dinter et al. 1202.1480

Renormalization straight forward

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~xs, t

s)

3 4 5 6 7 8 9tfitini/a

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

l [G

eV]

tfitfin/a

8911

1315

Connected

6 8 10 12 14tfitini/a

0.00

0.01

0.02

0.03

0.04

l [G

eV]

tfitfin/a

1516

17

DisconnectedC. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 14 / 30

Page 22: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon σ-terms

Advantages for twisted mass fermions:

In the twisted basis the scalar uu + dd becomes: i(uγ5u − dγ5d)From the TM action: Du − Dd = 2iµγ5

→ D−1u − D−1

d = −2iµD−1d γ5D−1

u with noise suppression due tosmall value of µ

The light quark loops can be computed by calculatingstochastically D−1

u (2iµγ5) D−1d using the one-end-trick to further

improve the signal, S. Dinter et al. 1202.1480

Renormalization straight forward

~q = ~p′ − ~p

(~xins, tins)

(~x0, t0)(~xs, t

s)

10 5 0 5 10(tins ts /2)/a

0.00

0.01

0.02

0.03

0.04

0.05

0.06

s [G

eV]

ts = 8ats =12ats =16a

ts =18ats =20a

ts = 8ats =12ats =16a

ts =18ats =20a

From plateau,ts =18aFrom sum. method,tfit =[10a,20a]

We use Osterwalder-Seiler s-quarksand compute 1

2 (s+s+ + s−s−)

5 10 15 20tsink/a

0

2

4

6

8

10

12

14Su

mm

ed r

atio

6 8 10 12 14 16 18tfitini/a

0.00

0.01

0.02

0.03

0.04

0.05

0.06

s [G

eV]

tfitfin/a

101214

161820

At mπ = 390 MeV:

yN = 2〈N|ss|N〉〈N|uu+dd|N〉 =

0.098(23) (sum)0.097(17) (plat)

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 14 / 30

Page 23: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon isoscalar axial charge

If one has the combination uu + dd then one can use: Du + Dd = 2DW and the loop is given by2D−1

u DW D−1d . One applies the one-end-trick to this combination→ generalized one-end-trick

Stochastic noise larger→ combine with truncated solver method (TSM), G. Bali, S. Collins and A. Schäffer,

PoSLat2007, 141

Need to tune in addition to the high precision noise vectors NHP and number of low precision vectors NLP

Results for 〈x〉u+d

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 15 / 30

Page 24: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon isoscalar axial chargeIf one has the combination uu + dd then one can use: Du + Dd = 2DW and the loop is given by2D−1

u DW D−1d . One applies the one-end-trick to this combination→ generalized one-end-trick

Stochastic noise larger→ combine with truncated solver method (TSM), G. Bali, S. Collins and A. Schäffer,

PoSLat2007, 141

Need to tune in addition to the high precision noise vectors NHP and number of low precision vectors NLP

Use to compute isoscalar gA using NHP = 24 and NLP = 300Since the LP sources don’t require an accurate inversion, we can take advantage of the half precisionalgorithms for GPUs - use the QUDA library

6 4 2 0 2 4 6(tins ts /2)/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g A

isov, ts = 4aisov, ts = 8aisov, ts =12a

isos, ts = 4aisos, ts = 8aisos, ts =12a

isov, ts = 4aisov, ts = 8aisov, ts =12a

isos, ts = 4aisos, ts = 8aisos, ts =12a

From plateau,ts =12aFrom sum. method,tfit =[5,13]

Connected

4 2 0 2 4(tins ts /2)/a

0.25

0.20

0.15

0.10

0.05

0.00

g A(d

isc)

ts = 4ats = 6a

ts = 8ats =10a

ts = 4ats = 6a

ts = 8ats =10a

From plateau,ts =8aFrom sum. method,tfit =[4a,10a]

DisconnectedC. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 15 / 30

Page 25: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nucleon isoscalar axial charge

If one has the combination uu + dd then one can use: Du + Dd = 2DW and the loop is given by2D−1

u DW D−1d . One applies the one-end-trick to this combination→ generalized one-end-trick

Stochastic noise larger→ combine with truncated solver method (TSM), G. Bali, S. Collins and A. Schäffer,

PoSLat2007, 141

Need to tune in addition to the high precision noise vectors NHP and number of low precision vectors NLP

4 6 8 10 12 14tsink/a

2

4

6

8

10

12

14

16

Sum

med

rat

io

isovisos

Connected

3 4 5 6 7 8 9 10 11tsink/a

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Sum

med

rat

io

Disconnected, in qualitative agreement with Baliet al. (QCDSF), Phys.Rev.Lett. 108 (2012) 222001

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 15 / 30

Page 26: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Hyperons and Charmed baryonsSU(4) representations:

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2 2.1

M (

GeV

)

Λ Σ Ξ Σ∗ Ξ∗ Ω

ETMCBMW

PACSLHPC

QCDSF

NF = 2 + 1 clover, hybrid and NF = 2 twisted massfermions.C. A., J. Carbonell, D. Christaras, V. Drach, M. Gravina, M. Papinutto,

arXiv:1205.6856

0.4

0.5

0.6

0.7

0.8

0.9

1

am

eff

Σ*+ (uus)

Σ*0 (uds)

Σ*- (dds)

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16 18 20 22

am

eff

t/a

Ξ*0 (uss)

Ξ*- (dss)

New results using NF = 2 + 1 + 1 are in the pipeline.The ∆, Σ∗ and Ξ∗ show no isospin breaking ata ∼ 0.078 fm

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 16 / 30

Page 27: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Mass of charmed baryons

All use a mixed action approach:

ETMC: TM NF = 2 fermions gauge configurations

Other collaborations use staggered NF = 2 + 1 quarks, and a relativistic heavy quark or clover action forthe charm quark

NF = 2 + 1 Clover quarks, G. Bali et al. at CIPANP2012.

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

M (

GeV

)

Λc Σc Ξc Ξ’c Ωc Ξcc Ωcc

ETMCLiu et al.Na et al.

Briceno et al.

2.5

3

3.5

4

4.5

5

M (

GeV

)

Σ∗c Ξ∗

c Ω∗c Ξ∗

cc Ω∗cc Ωccc

ETMCNa et al.

Briceno et al.

C. A., J. Carbonell, D. Christaras, V. Drach, M. Gravina, M. Papinutto, arXiv:1205.6856

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 17 / 30

Page 28: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Mass of charmed baryons

All use a mixed action approach:

ETMC: TM NF = 2 fermions gauge configurations

Other collaborations use staggered NF = 2 + 1 quarks, and a relativistic heavy quark or clover action forthe charm quark

NF = 2 + 1 Clover quarks, G. Bali et al. at CIPANP2012.

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

M (

GeV

)

Λc Σc Ξc Ξ’c Ωc Ξcc Ωcc

ETMCLiu et al.Na et al.

Briceno et al.

1.6

1.7

1.8

1.9

2 4 6 8 10 12 14 16 18 20 22 24 26 28

am

eff

t/a

Ξcc++ (ucc)

Ξcc+ (dcc)

NF = 2 + 1 + 1 at mπ ∼ 390 MeV and a = 0.078 fm

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 17 / 30

Page 29: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Axial charge for hyperons

Given by the hadron matrix element at zero momentumtransfer:〈h|ψγµγ5ψ|h〉|q2=0

Efficient to calculate (connected contribution with fixed currentmethod) - computational cost for all hadrons about twice thatrequired for one hadron (cost of additional contractions)

q = p′ − p

(xins, tins)

(x0, t0)(xs, t

s)

If exact SU(3) flavor symmetry:

gNA = F + D, gΣ

A = 2F , gΞA = −D + F =⇒ gN

A − gΣA + gΞ

A = 0

Probe deviation: δSU(3) = gNA − gΣ

A + gΞA versus x = (m2

K − m2π)/4π2f 2

π , H.- W. Lin and K. Orginos, PRD 79, 034507 (2009)

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

b SU(

3)

x

Physical Point

Fit to TMFFit to all

TMFHybrid

Breaking∼ x2 leads to about 15% at the physical pointxphy = 0.33

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 18 / 30

Page 30: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Axial charge for hyperons

Given by the hadron matrix element at zero momentumtransfer:〈h|ψγµγ5ψ|h〉|q2=0

Efficient to calculate (connected contribution with fixed currentmethod) - computational cost for all hadrons about twice thatrequired for one hadron (cost of additional contractions)

q = p′ − p

(xins, tins)

(x0, t0)(xs, t

s)

If exact SU(3) flavor symmetry:

gNA = F + D, gΣ

A = 2F , gΞA = −D + F =⇒ gN

A − gΣA + gΞ

A = 0

Probe deviation: δSU(3) = gNA − gΣ

A + gΞA versus x = (m2

K − m2π)/4π2f 2

π , H.- W. Lin and K. Orginos, PRD 79, 034507 (2009)

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

b SU(

3)

x

Physical Point

Fit to TMFFit to all

TMFHybrid

Breaking∼ x2 leads to about 15% at the physical pointxphy = 0.33

1.85

1.9

1.95

2

2.05

2.1

gA1-

JAsPhysical Point

TMF

0.8

0.85

0.9

0 0.05 0.1 0.15

gA1c0

m/2 (GeV2)

JAsPhysical Point

TMF

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 18 / 30

Page 31: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

σ-terms for hyperons and charmed baryonsNeed both connected and disconnected piecesFirst results using NF = 2 + 1 + 1 TMF at mπ = 390 MeV

0.01

0.03

σ lΛ

[GeV

]

Disconnected Part

Summ. [6-12]Plateau

ts=8

ts=12ts=14ts=16

0.06

0.08

0.1

0.12

σ lΛ

[GeV

]

Connected Part

tins=5 tins=7 tins=9

0.01

0.03

0.05

σ sΛ

[GeV

]

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12σ s

Λ[G

eV]

ts-tins

-1

-0.5

0

0.5

1

-10 -5 0 5 10

σ cΛ

[GeV

]

(tins -ts/2)/a

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 19 / 30

Page 32: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

σ-terms for hyperons and charmed baryonsNeed both connected and disconnected piecesFirst results using NF = 2 + 1 + 1 TMF at mπ = 390 MeV

0.01

0.03

0.05

σ l∆+

+

Disconnected Part In [GeV]

Summ. [6-12]Plateau

ts=8

ts=12ts=14ts=16

0.01

0.03

0.05

0.07

σ s∆+

+

0.01

0.03

0.05

σ lΣ*+

0.01

0.03

0.05

σ sΣ*+

0.01

0.03

0.05

-10 -5 0 5 10

σ lΞ*0

(tins -ts/2)/a

0.01

0.03

0.05

-10 -5 0 5 10

σ sΞ*0

(tins -ts/2)/a

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 19 / 30

Page 33: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

σ-terms for hyperons and charmed baryonsNeed both connected and disconnected piecesFirst results using NF = 2 + 1 + 1 TMF at mπ = 390 MeV

0.01

0.02

0.03

σ lΞ0 c [

GeV

]

Disconnected Part

Summ. [6-12]Plateau

ts=8

ts=12ts=14ts=16

0.02

0.04

0.06

σ lΞ0 c [

GeV

]

Connected Part

tins=5 tins=7 tins=9

0.01

0.03

σ sΞ0 c [

GeV

]

0.09

0.11

0.13

0.15

σ sΞ0 c [

GeV

]

-1

-0.5

0

0.5

1

-10 -5 0 5 10

σ cΞ0 c [

GeV

]

(tins -ts/2)/a

1.1

1.12

1.14

1.16

0 2 4 6 8 10 12

σ cΞ0 c [

GeV

]

ts-tins

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 19 / 30

Page 34: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nγ∗ → ∆ form factorsA dominant magnetic dipole, M1

An electric quadrupole, E2 and a Coulomb, C2signal a deformation in the nucleon/∆

REM (EMR) = − GE2(Q2)

GM1(Q2),

RSM (CMR) = − |~q|2m∆

GC2(Q2)

GM1(Q2),

in lab frame of the ∆.

Used for probing nucleon shape since 1/2-spinparticles have vanishing quadrupole moment inthe lab-frame

Difficult to measure/calculate since quadrupoleamplitudes are sub-dominant

Μ1 , Ε2 , C2

Μ1+ , Ε1+ , S1+

γ*

πo

p(938) Δ+(1232) I = 12, J = 1

2 I= 3

2, J= 3

2

u d

u u

u d

C. N. Papanicolas, Eur. Phys. J. A18 (2003); N. Sparveris et al., PRL 94,

022003 (2005)C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 20 / 30

Page 35: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Nγ∗ → ∆ form factorsA dominant magnetic dipole, M1

An electric quadrupole, E2 and a Coulomb, C2signal a deformation in the nucleon/∆

REM (EMR) = − GE2(Q2)

GM1(Q2),

RSM (CMR) = − |~q|2m∆

GC2(Q2)

GM1(Q2),

in lab frame of the ∆.

Used for probing nucleon shape since 1/2-spinparticles have vanishing quadrupole moment inthe lab-frame

Difficult to measure/calculate since quadrupoleamplitudes are sub-dominant

Μ1 , Ε2 , C2

Μ1+ , Ε1+ , S1+

γ*

πo

p(938) Δ+(1232) I = 12, J = 1

2 I= 3

2, J= 3

2

u d

u u

u d

0 0.5 1.0 1.5 2.0 2.5Q2 [GeV2]

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GM

1(Q

2 )

M =180 MeV, Ntr = 197 ×4M =297 MeV, Ntr = 175 ×4[arXiv:1011.3233]Experiment NF = 2 + 1 with DWF, slope at

mπ ∼ 300 MeV smaller than experiment,underestimate GM1 i.e. like for nucleonform factors

New results with NF = 2 + 1 DWF atmπ ∼ 180 MeV require more statistics

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 20 / 30

Page 36: Open issues in Hadron Structure2 Hyperons and Charmed baryons Masses Axial charge ˙-terms 3 N! 4 Conclusions C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence,

Conclusions

Nucleon structure is a benchmark for the LQCD approachSome puzzles remain like gA. Others need to be confrim by other groups like 〈x〉u−d=⇒ simulations of the full theory at near physical parameters will eliminate umbiguities due chiralextrapolations

Evaluation of quark loop diagrams has become feasible

Predictions for other hadron observables are beginning to emerge e.g. axial charge of hyperons andcharmed baryons

Studying baryon resonances is also beginning→ provide insight into the structure of hadrons providinginformation that is difficult to extract experimentally.

As simulations at the physical pion mass and more computer are becoming available we expect many physicalresults on these key hadron observables

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Hadron Structure Florence, 10 - 14 September 2012 21 / 30