31
Open issues in hydro and transport Denes Molnar RIKEN/BNL Research Center & Purdue University TIFR Program on “Initial conditions in heavy ion collisions” September 16, 2008, International Centre, Dona Paula, Goa, India

Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Open issues in hydro and transport

Denes MolnarRIKEN/BNL Research Center & Purdue University

TIFR Program on “Initial conditions in heavy ion collisions”

September 16, 2008, International Centre, Dona Paula, Goa, India

Page 2: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Outline

• Region of validity of second-order schemes

• Properties of hot QCD matter

• Initial conditions / thermalization

• Decoupling (freezeout)

• Perturbative or s-QGP?

D. Molnar @ Goa, Sep 16, 2008 1

Page 3: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Hydrodynamics

• describes a system near local equilibrium

• long-wavelength, long-timescale dynamics, driven by conservation laws

• in heavy-ion physics: mainly used for the plasma stage of the collision

initial nuclei parton plasma hadronization hadron gas

<—— ∼ 10−23 sec = 10 yochto(!)-secs ——>

↑∼ 10−14 m

= 10 fermis

nontrivial how hydrodynamics can be applicable at such microscopic scales

D. Molnar @ Goa, Sep 16, 2008 2

Page 4: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

In heavy-ion collisions, timescales are short, gradients are large -corrections to ideal (Euler) hydrodynamics are relevant.

Two ways to study dissipative effects in heavy-ion collisions

- causal dissipative hydrodynamics

Israel, Stewart; ... Muronga, Rischke; Teaney et al; Romatschke et al; Heinz et al, DM & Huovinen

flexible in macroscopic properties

numerically cheaper

- covariant transport

Israel, de Groot,... Zhang, Gyulassy, DM, Pratt, Xu, Greiner...

completely causal and stable

fully nonequilibrium → interpolation to break-up stage

D. Molnar @ Goa, Sep 16, 2008 3

Page 5: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Dissipative hydrodynamics

relativistic Navier-Stokes hydro: small corrections linear in gradients [Landau]

TµνNS = Tµν

ideal + η(∇µuν + ∇νuµ −2

3∆µν∂αuα) + ζ∆µν∂αuα

NνNS = Nν

ideal + κ

(

n

ε + p

)2

∇ν(µ

T

)

where ∆µν ≡ uµuν − gµν, ∇µ = ∆µν∂ν

η, ζ shear and bulk viscosities, κ heat conductivity

Equation of motion: ∂µTµν = 0, ∂µNµ = 0

two problems:

parabolic equations → acausal Muller (’76), Israel & Stewart (’79) ...

instabilities Hiscock & Lindblom, PRD31, 725 (1985) ...

D. Molnar @ Goa, Sep 16, 2008 4

Page 6: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

As an illustration, consider heat flow in a static, incompressible fluid (Fourier)

∂tT = κ∆T

parabolic eqns.

Greens function is acausal (allows ∆x > ∆t)

G(~x, t; ~x0, t0) =1

[4πκ(t − t0)]3/2exp

[

−(~x − ~x0)

2

4κ(t − t0)

]

—–

Adding a second-order time derivative makes it hyperbolic

τ∂2t T + ∂tT = κ∆T

Note, this is equivalent to a relaxing heat current

∂τT = ~∇~j , ∂t~j = −

~j − κ~∇T

τThe wave dispersion relation is ω2+ iω/τ = κk2/τ , i.e., now signals propagateat speeds cs =

κ/τ (at low frequencies), causal for not too small τ .

D. Molnar @ Goa, Sep 16, 2008 5

Page 7: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Causal dissipative hydroBulk pressure Π, shear stress πµν, heat flow qµ are dynamical quantities

Tµν ≡ Tµνideal + πµν − Π∆µν , Nµ ≡ Nµ

ideal −n

e + pqµ

Israel-Stewart: truncate entropy current at quadratic order [Ann.Phys 100 & 118]

Sµ = uµ

[

s −1

2T

(

β0Π2 − β1qνq

ν + β2πνλπνλ)

]

+qµ

T

(

µn

ε + p+ α0Π

)

−α1

Tπµνqν

(Landau frame). Imposing ∂µSµ ≥ 0 via a quadratic ansatz

T∂µSµ =Π2

ζ−

qµqµ

κqT+

πµνπµν

2ηs≥ 0

gives equations of motion for Π, qµ, πµν.

Also follows from covariant transport using Grad’s 14-moment approximation

f(x, p) ≈ [1 + Cαpα + Cαβpαpβ]feq(x, p)

and taking the “1”, pν, and pνpα moments of the Boltzmann equation.

D. Molnar @ Goa, Sep 16, 2008 6

Page 8: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Complete set of Israel-Stewart equations of motion

DΠ = −1

τΠ(Π + ζ∇µuµ) (1)

−1

(

∇µuµ + D lnβ0

T

)

+α0

β0∂µqµ −

a′0

β0qµDuµ

Dqµ = −1

τq

[

qµ + κqT 2n

ε + p∇µ

T

)

]

− uµqνDuν (2)

−1

2qµ

(

∇λuλ + D lnβ1

T

)

− ωµλqλ

−α0

β1∇µΠ +

α1

β1(∂λπλµ + uµπλν∂λuν) +

a0

β1ΠDuµ −

a1

β1πλµDuλ

Dπµν = −1

τπ

(

πµν − 2η∇〈µuν〉)

− (πλµuν + πλνuµ)Duλ (3)

−1

2πµν

(

∇λuλ + D lnβ2

T

)

− 2π〈µ

λ ων〉λ

−α1

β2∇〈µqν〉 +

a′1

β2q〈µDuν〉 .

where A〈µν〉 ≡ 12∆

µα∆νβ(Aαβ+Aβα)−13∆

µν∆αβAαβ, ωµν ≡ 12∆

µα∆νβ(∂βuα−∂αuβ)

D. Molnar @ Goa, Sep 16, 2008 7

Page 9: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

We can solve these in 2+1D at present, 3+1D should also be doable.

There may be more terms - e.g., imposing ONLY conformal invariance Baier,

Romatschke, Son, JHEP04, 100 (’08)

πµν = · · · +λ1

η2πα〈µπ ν〉

α + λ3ωα〈µω ν〉

α (4)

No problem, we can solve with these too.

D. Molnar @ Goa, Sep 16, 2008 8

Page 10: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

e.g.

Romatschke & Romatschke, arxiv:0706.1522

0 1 2 3 4p

T [GeV]

0

5

10

15

20

25

v 2 (p

erce

nt)

idealη/s=0.03η/s=0.08η/s=0.16STAR

Dusling & Teaney, PRC77

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

v 2

pT (GeV)

χ=4.5Ideal

η/s=0.05η/s=0.13

η/s=0.2

Huovinen & DM, arXiv:0806.1367

D. Molnar @ Goa, Sep 16, 2008 9

Page 11: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Fries et al, arxiv:0807.4333 in 0+1D

0.1

0.2

0.3

0.4

0.5

0.6

/s,

/s

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (GeV)

/s/s scaled/s

(a)

0123456789

(-3

P)/

T4

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (GeV)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Rel

.Pre

ssu

re

5 1 2 5 10 2 5

(fm/c)

(a) Pz/P

0.0

0.05

0.1

0.15

0.2

0.25

0.3

Rel

.En

tro

py

c = 0c = 1, a = 1c = 2, a = 1

(b) S /Sf

c = 1, a = 2c = 2, a = 2

D. Molnar @ Goa, Sep 16, 2008 10

Page 12: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Applicability of IS hydro

In heavy ion physics applications, gradients ∂µuν/T , |∂µe|/(Te), |∂µn|/(Tn)at early times τ ∼ 1 fm are large ∼ O(1), and therefore cannot be ignored.

Hydrodynamics may still apply, if viscosities are unusually small η/s ∼ 0.1,ζ/s ∼ 0.1, where s is the entropy density in local equilibrium. In that case,pressure corrections from Navier-Stokes theory still moderate

δTµνNS

p≈

(

2ηs

s

∇〈µuν〉

T+

ζ

s

∇αuα

T

)

ε + p

p∼ O

(

8ηs

s,4ζ

s

)

. (5)

Heat flow effects can also be estimated based on

δNµNS

n≈

κqT

s

n

s

∇µ(µ/T )

T(6)

and should be very small at RHIC because µ/T ∼ 0.2, nB/s ∼ O(10−3)

D. Molnar @ Goa, Sep 16, 2008 11

Page 13: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Whereas Navier-Stokes comes from a rigorous expansion in small deviationsnear local equilibrium retaining all powers of momentum

f(x, ~p) = feq(x, ~p)[1 + φ(x, ~p)] (|φ| � 1 , |pµ∂µφ| � |pµ∂µfeq|/feq)

the quadratic truncation in Grad’s approach has no small control parameter.

In general, Navier-Stokes and Israel-Stewart are different

⇒ control against a nonequilibrium theory is crucial

D. Molnar @ Goa, Sep 16, 2008 12

Page 14: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

IS hydro vs transport [Huovinen & DM, arXiv:0808.0953]

0+1D Bjorken scenario with massless e = 3p EOS, 2 → 2 interactions

πµνLR = diag(0,−πL

2 ,−πL2 , πL), Π ≡ 0, qµ ≡ 0 (reflection symmetry)

p +4p

3τ= −

πL

3τ(7)

πL +πL

τ

(

2K(τ)

3C+

4

3+

πL

3p

)

= −8p

9τ, (8)

where

K(τ) ≡τ

λtr(τ), C ≈

4

5. (9)

For σ = const: λtr = 1/nσtr ∝ τ ⇒ K = K0 = const, η/s ∼ Tλtr ∼ τ2/3

for η/s ≈ const: K = K0(τ/τ0)∼2/3 ∝ τ∼2/3

we kept the COMPLETE Israel-Stewart equations (every term)

D. Molnar @ Goa, Sep 16, 2008 13

Page 15: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Huovinen & DM, arXiv:0808.0953 pressure anisotropy Tzz/Txx for e = 3p EOS

σ = const η/s ≈ const

0

0.2

0.4

0.6

0.8

1

10 9 8 7 6 5 4 3 2 1

p_L

/p_T

tau/tau0

K0=20

K0=20/3

K0=3

K0=2

K0=1idealIS hydrotransportfree streaming

0

0.2

0.4

0.6

0.8

1

10 9 8 7 6 5 4 3 2 1

p_L/p

_T

tau/tau0

K0=20

K0=6.67K0=3

K0=2

K0=1

idealIS hydrosigma ~ tau^(2/3)

IS hydro applicable when K0 >∼ 2 − 3, i.e., λtr <

∼ 0.3 − 0.5 τ0

D. Molnar @ Goa, Sep 16, 2008 14

Page 16: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

pressure evolution relative to ideal hydro

Navier-StokestransportIS hydro

21

σ = const

ideal hydro

1 2

3

6.67

K0 = 20

τ/τ0

p/

pid

eal

1 2 3 4 5 6 7 8 910 20

1.6

1.4

1.2

1

Navier-StokestransportIS hydro

2

1

η/s ≈ const

ideal hydro

1

2

3

K0 = 6.67

τ/τ0

p/

pid

eal

1 2 3 4 5 6 7 8 910 20

1.6

1.4

1.2

1

D. Molnar @ Goa, Sep 16, 2008 15

Page 17: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Connection to viscosity

K0 ≈T0τ0

5

s0

ηs,0≈ 12.8 ×

(

T0

1 GeV

)

( τ0

1 fm

)

(

1/(4π)

ηs0/s0

)

(10)

For typical RHIC hydro initconds T0τ0 ∼ 1, therefore

K0 >∼ 2 − 3 ⇒

η

s<∼

1 − 2

4π(11)

I.e., if the conjectured bound is accurate, hydro is marginally applicable.

Q1: is this true for a nonequilibrium theory other than covariant transport?

Q2: what is the viscosity of QCD matter at T ∼ 150 − 400 MeV?

D. Molnar @ Goa, Sep 16, 2008 16

Page 18: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Viscous hydro vs transport in 2+1DHuovinen & DM, arXiv:0806.1367

• excellent agreement when σ = const ∼ 47mb• good agreement for η/s ≈ 1/(4π), i.e., σ ∝ τ 2/3

D. Molnar @ Goa, Sep 16, 2008 17

Page 19: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Shear viscosity

1687 - I. Newton (Principia)

Txy = −η∂ux

∂y

acts to reduce velocity gradients

1985 - quantum mechanics: ∆E · ∆t ≥ h/2

+ kinetic theory: T · λMFP ≥ h/3 Gyulassy & Danielewicz, PRD 31 (’85)

η ≈ 4/5 · T/σtr , entropy s ≈ 4n

gives minimal viscosity: η/s = λtrT5 ≥ h/15

2004 - string theory AdS/CFT: η/s ≥ h/4πPolicastro, Son, Starinets, PRL87 (’02)

Kovtun, Son, Starinets, PRL94 (’05)

revised to 4h/(25π) Brigante et al, arXiv:0802.3318

D. Molnar @ Goa, Sep 16, 2008 18

Page 20: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Shear viscosity in QCDη = lim

ω→0

12ω

dt d3x eiωt〈[Txy(x), Txy(0)]〉

perturbative QCD: η/s ∼ 1, lattice QCD: correlator very noisy

Nakamura & Sakai, NPA774, 775 (’06): Meyer, PRD76, 101701 (’07)

-0.5

0.0

0.5

1.0

1.5

2.0

1 1.5 2 2.5 3

243

8

163

8

s

KSS bound

PerturbativeTheory

T Tc

η

upper bounds:η/s(T=1.65Tc) < 0.96

η/s(T=1.24Tc) < 1.08

best estimate:η/s(T=1.65Tc) < 0.13±0.03

η/s(T=1.24Tc) < 0.10±0.05

many practitioners regardthese VERY preliminary

D. Molnar @ Goa, Sep 16, 2008 19

Page 21: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Bulk viscosity in QCDζ = lim

ω→0

118ω

dt d3x eiωt 〈[Tµµ (~x, t), T µ

µ (0)]〉

perturbative QCD: ζ/s ∼ 0.02α2s is tiny Arnold, Dogan, Moore, PRD74 (’06)

from ε − 3p > 0: Kharzeev & Tuchin, arXiv:0705.4280v2 on lattice: Meyer, arXiv:0710.3717

1 2 3 4 5T�Tc0.0

0.2

0.4

0.6

0.8

Ζ�s

1.02 1.04 1.06 1.08 1.10 1.12 1.140.0

0.2

0.4

0.6

0.8

best estimates:η/s(T=1.65Tc) ∼ 0 − 0.015

η/s(T=1.24Tc) ∼ 0.06 − 0.1

η/s(T=1.02Tc) ∼ 0.2 − 2.7

many practitioners regardthese as well VERYpreliminary

D. Molnar @ Goa, Sep 16, 2008 20

Page 22: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

TARGET

preequilibrium

QGP

freeze-outPROJE

CTILE

τfo

τ0

τh

hadronization

Time

first impact Position

hydro needs: initial conditionsboundary conditions = expansion to vacuum (ε = p = 0 outside)and a decoupling model (transition to free-streaming gas)

D. Molnar @ Goa, Sep 16, 2008 21

Page 23: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Initial conditionsHydro initial conditions should come from the very early collision dynamics.

Q3: when and how (if at all) does the matter thermalize in the collision?

In the meantime, resort to parameterizations:

- thermalization time τ0

- some shape of initial entropy or energy density profile (e.g. Glauber,binary, saturation model)

- assumptions about pressure anisotropies (need the full πµν, also Π, andin principle qµ too)

- baryon density profiles (e.g., through entropy ratio nB/s)

- Q4: any initial radial and/or elliptic flow? - typically set to zero

Initial condition parameters, and also freezeout parameters Tfo (εfo), are fitto data for central collisions. Noncentral collisions can then be “predicted”.

D. Molnar @ Goa, Sep 16, 2008 22

Page 24: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

The main difference between the various profiles is in the centralitydependence (mainly affects dN(b)/dy) and the spatial eccentricity (mainlyaffects v2(b))

0 2 4 6 8 10 120

4

8

12

16

20

b (fm)

n WN a

nd n

BC

at (

x,y)

=(0

,0)

(in fm

−2 )

nBC

(0,0)

nWN

(0,0)

b (fm)0 2 4 6 8 10 12 14

ε0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8CGC

=0.85)αBGK (=1.0)α (partn=0.0)α (binaryn

Note that naive CGC results are shown - more realistic calculations giveeccentricities close to binary but results sensitive to how the edges arehandled (theory breaks down because Qs too low)

D. Molnar @ Goa, Sep 16, 2008 23

Page 25: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Thermalization and 2 → 2 transportDM & Gyulassy, NPA 697 (’02): v2(pT , χ) in Au+Au @ 130 GeV, b = 8 fm

�� � � ��� �� � �� � �� �� ��� �� � �� ���� � � �� � �� �� ��

�� � � � � ! " � � # � � $ � % �& ' � (

)* +, ) -./ 01 2 � � � �

3/ 465 7 8 9

3/ 4 5 : � 9

3/ 4 5 ; 9

3/ 4 2 �< = 9

>? @ ' � ( A

BDCFEHGJ

ILKMEHGJ

NOGJCQPRKOPS

NTGVUWPSNX

GZYZP\[^]`

_badc6efch

gjiWk

=87%:���� :

�� � 8�� �

�� � 8�

� �� � 8

——————————perturbative value

perturbative 2 → 2 transport is lousy at maintaining local equilibrium

large v2 needs 15× perturbative opacities - σel × dNg/dη ≈ 45 mb ×1000

D. Molnar @ Goa, Sep 16, 2008 24

Page 26: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

DM & Huovinen, PRL94

� � �� � � �

� � � �� �� �

� �� ��� � � ����� � � �

���� �

!"#$&

%

'�( )�� ( )�� ( )�� ( '

� ( �� (�

even 50 mb does not give an ideal fluid

D. Molnar @ Goa, Sep 16, 2008 25

Page 27: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Radiative 3 ↔ 2 transporthigher-order processes also contribute to thermalization

+ ...

Greiner & Xu ’04: find thermalization time-scale τ ∼ 2 − 3 fm/c

2 → 2, 2 → 3 transport cross sections spectra vs. time

D. Molnar @ Goa, Sep 16, 2008 26

Page 28: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

elliptic flow with ggg ↔ gg (minijet initconds, p0 = 1.4 GeV)

Q5: is this a perturbative alternative to the sQGP paradigm?

Q6: if yes, how do you hadronize out of equilibrium?

D. Molnar @ Goa, Sep 16, 2008 27

Page 29: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

DecouplingBest state of the art: conversion to a gas of hadrons, which are then evolvedin a hadron transport model.

• Cooper-Frye formula: sudden transition from fluid to a gas on a 3Dhypersurface (typically T = const or ε = const)

E dN = pµdσµ(x) d3p fgas(x, ~p)

where dσµ is the hypersurfacenormal at x

Dissipative case - must include dissipative corrections to f

f → feq + δf , δfGradmassless = feq

πµνpµpν

8nT 3

D. Molnar @ Goa, Sep 16, 2008 28

Page 30: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

DM & Huovinen, arXiv:0806.1367

RHIC Au+Au, b = 8 fm, η/s ≈ 1/(4π) (σ ∝ τ 2/3)

D. Molnar @ Goa, Sep 16, 2008 29

Page 31: Open issues in hydro and transporttheory.tifr.res.in/~qcdinit/talks/molnar.pdfGreens function is acausal (allows x > t) G(~x; t;~x0;t0) = 1 [4ˇ (t t0)]3=2 exp (~x ~x0)2 4 (t t0) |{Adding

Thermodynamic consistency requires that matter properties - equation ofstate, transport coefficients - are the SAME for the fluid and the hadron gasat the switching point.

Q7: are hadron cascades, such as UrQMD and JAM, thermodynamicallyconsistent with QCD (e.g., the latest lattice EOS with Tc ≈ 190 MeV)?

Also conceptual problems:

a) for spacelike normal, pµdσµ < 0 possible, which gives NEGATIVE yields

ignored in practice because such contributions are small (less than a fewpercent) - slight violation of energy-momentum and charge conservation

b) hypersurface (T = const or ε = const) determined running hydro until thevery end, disregarding that parts of the system have frozen out already

Q8: how to dynamical interface hydro and transport?

D. Molnar @ Goa, Sep 16, 2008 30