14
Operation-Based Notation for Archimedean Graph Hidetoshi Nonaka Research Group of Mathematical Information Science Division of Computer Science, Hokkaido University N14W9, Sapporo, 060 0814, Japan ABSTRACT We introduce three graph operations corresponding to polyhedral operations. By applying these operations, thirteen Archimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron notation, Graph operation. 1. INTRODUCTION Archimedean graph is a simple planar graph isomorphic to the skeleton or wire-frame of the Archimedean solid. There are thirteen Archimedean solids, which are semi-regular polyhedra and the subset of uniform polyhedra. Seven of them can be formed by truncation of Platonic solids, and all of them can be formed by polyhedral operations defined as Conway polyhedron notation [1-2]. The author has recently developed an interactive modeling system of uniform polyhedra including Platonic solids, Archimedean solids and Kepler-Poinsot solids, based on graph drawing and simulated elasticity, mainly for educational purpose [3-5]. Obviously, it is possible to draw a polyhedral graph only with two graph operations: vertex addition and edge addition. However there is an individual difference, it might be time-consuming to input a graph with steady steps, especially in the case of Archimedean graph. In this paper, three graph operations corresponding to polyhedral operations are introduced, and it is shown that every Archimedean graph can be generated using these operations and a Platonic graph as the seed graph. 2. ARCHIMEDEAN SOLIDS Thirteen Archimedean solids are listed in Table 1, and illustrated in Figures 1-2. The symbols in the table stand for the vertex configurations. For example, 2 (3 4) A โ‹… indicates that two regular triangles and two squares are gathered alternately on each vertex. Archimedean solids are surrounded by several sorts of congruent regular polygons, and their vertex figures are not regular but congruent polygons. The term vertex figure was introduced by H. Coxeter as the segment joining the mid-point of the two sides through a vertex [6]. Table 1. The list of Archimedean solids, where p, q, r are the number of vertices, edges, and faces, respectively. Symbol Name of polyhedron p q r 2 (3 4) A โ‹… Cuboctahedron 12 24 14 4 6 10 A โ‹…โ‹… Great Rhombicosidodecahedron 120 180 62 468 A โ‹…โ‹… Great Rhombicuboctahedron 48 72 26 2 (3 5) A โ‹… Icosidodecahedron 30 60 32 3454 A โ‹…โ‹…โ‹… Small Rhombicosidodecahedron 60 120 62 3 3 4 A โ‹… Small Rhombicuboctahedron 24 48 26 4 3 4 A โ‹… Snub Cube 24 60 38 4 3 5 A โ‹… Snub Dodecahedron 60 150 92 2 38 A โ‹… Truncated Cube 24 36 14 2 3 10 A โ‹… Truncated Dodecahedron 60 90 32 2 56 A โ‹… Truncated Icosahedron 60 90 32 2 4 6 A โ‹… Truncated Octahedron 24 36 14 2 36 A โ‹… Truncated Tetrahedron 12 18 8 2 (3 4) A โ‹… 4 6 10 A โ‹…โ‹… 468 A โ‹…โ‹… 2 (3 5) A โ‹… 3454 A โ‹…โ‹…โ‹… 3 34 A โ‹… 4 3 4 A โ‹… 4 3 5 A โ‹… Figure 1. Appearance of thirteen Archimedean solids (1/2).

Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

Operation-Based Notation for Archimedean Graph

Hidetoshi Nonaka Research Group of Mathematical Information Science

Division of Computer Science, Hokkaido University N14W9, Sapporo, 060 0814, Japan

ABSTRACT

We introduce three graph operations corresponding to polyhedral operations. By applying these operations, thirteen Archimedean graphs can be generated from Platonic graphs that are used as seed graphs.

Keyword: Archimedean graph, Polyhedral graph, Polyhedron notation, Graph operation.

1. INTRODUCTION

Archimedean graph is a simple planar graph isomorphic to the skeleton or wire-frame of the Archimedean solid. There are thirteen Archimedean solids, which are semi-regular polyhedra and the subset of uniform polyhedra. Seven of them can be formed by truncation of Platonic solids, and all of them can be formed by polyhedral operations defined as Conway polyhedron notation [1-2].

The author has recently developed an interactive modeling system of uniform polyhedra including Platonic solids, Archimedean solids and Kepler-Poinsot solids, based on graph drawing and simulated elasticity, mainly for educational purpose [3-5]. Obviously, it is possible to draw a polyhedral graph only with two graph operations: vertex addition and edge addition. However there is an individual difference, it might be time-consuming to input a graph with steady steps, especially in the case of Archimedean graph.

In this paper, three graph operations corresponding to polyhedral operations are introduced, and it is shown that every Archimedean graph can be generated using these operations and a Platonic graph as the seed graph.

2. ARCHIMEDEAN SOLIDS

Thirteen Archimedean solids are listed in Table 1, and illustrated in Figures 1-2. The symbols in the table stand for the vertex configurations. For example, 2(3 4)A โ‹… indicates that two regular triangles and two squares are gathered alternately on each vertex. Archimedean solids are surrounded by several sorts of congruent regular polygons, and their vertex figures are not regular but congruent polygons. The term vertex figure was introduced by H. Coxeter as the segment joining the mid-point of the two sides through a vertex [6].

Table 1. The list of Archimedean solids, where p, q, r are the number of vertices, edges, and faces, respectively.

Symbol Name of polyhedron p q r

2(3 4)A โ‹… Cuboctahedron 12 24 14

4 6 10A โ‹… โ‹… Great Rhombicosidodecahedron 120 180 62

4 6 8A โ‹… โ‹… Great Rhombicuboctahedron 48 72 262(3 5)A โ‹… Icosidodecahedron 30 60 32

3 4 5 4A โ‹… โ‹… โ‹… Small Rhombicosidodecahedron 60 120 6233 4A โ‹… Small Rhombicuboctahedron 24 48 26

43 4A โ‹… Snub Cube 24 60 3843 5A โ‹… Snub Dodecahedron 60 150 9223 8A โ‹… Truncated Cube 24 36 1423 10A โ‹… Truncated Dodecahedron 60 90 3225 6A โ‹… Truncated Icosahedron 60 90 3224 6A โ‹… Truncated Octahedron 24 36 1423 6A โ‹… Truncated Tetrahedron 12 18 8

2(3 4)A โ‹… 4 6 10A โ‹… โ‹… 4 6 8A โ‹… โ‹…

2(3 5)A โ‹… 3 4 5 4A โ‹… โ‹… โ‹… 33 4A โ‹…

43 4A โ‹… 43 5A โ‹…

Figure 1. Appearance of thirteen Archimedean solids (1/2).

Page 2: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

23 8A โ‹… 23 10A โ‹… 25 6A โ‹…

24 6A โ‹… 23 6A โ‹…

Figure 2. Appearance of thirteen Archimedean solids (2/2).

2(3 4)A โ‹… 4 6 10A โ‹… โ‹… 4 6 8A โ‹… โ‹…

2(3 5)A โ‹… 3 4 5 4A โ‹… โ‹… โ‹… 33 4A โ‹…

43 4A โ‹… 43 5A โ‹… 23 8A โ‹…

23 10A โ‹… 25 6A โ‹… 24 6A โ‹… 23 6A โ‹…

Figure 3. Thirteen Archimedean graphs drawn as plane graphs.

3. GRAPH OPERATIONS

Thirteen Archimedean graphs isomorphic to the skeletons of Archimedean solids are depicted in Figure 3. A graph

( , )G V E= is defined by the set of vertices 0 1{ , , }pV v v โˆ’= and edges 0 1{ , , }qE e e โˆ’= . All graphs

considered in this paper are 3-, 4-, or 5-regular polyhedral graphs, which are simple, planar and 3-connected graphs [7]. Detection of faces with n sides is equivalent to finding n-cycles. After selecting faces 0 1{ , , }rF f f โˆ’= , a polyhedral graph is redefined as { , , }G V E F= [3]. The set of faces is subdivided as follows,

3 4 5 6 8 10, : i jF F F F F F F i j F F ฯ†= โˆช โˆช โˆช โˆช โˆช โˆ€ โ‰  โˆฉ = ,

where nF denotes the set of faces with n sides.

We define three graph operations for { , , }G V E F= : diagonal addition, edge contraction, and vertex splitting. Examples are shown in Figures 4-6. A diagonal addition to a face in 4F is an edge addition between a pair of non-adjacent vertices in a quadrangular face. An edge contraction is a graph contraction of an edge. A vertex splitting is defined conventionally as the reverse of edge contraction, but in this paper, we define a vertex splitting of v as the composition of the operations of subdivision of incident edges on v , connecting the new vertices in a proper order, and deleting the vertex v . Conventional vertex splitting is equivalent to the present vertex splitting followed by several edge contractions.

Figure 4. An example of diagonal addition operations.

Figure 5. An example of edge contraction operations.

Figure 6. An example of vertex splitting operations by the present definition in this paper.

Page 3: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

4. OPERATION-BASED NOTATION OF ARCHIMEDEAN GRAPH

The symbol ฮด stands for applying diagonal addition to each quadrangular face of 4F which is adjacent to two triangular faces of 3F . The operator , ( , )m n n m= stands for applying edge contraction to each edge incident on two faces of mF and

nF . The operator ฯƒ stands for applying vertex splitting to every vertex.

The operator โ€œtruncateโ€ in the Conway polyhedron notation [1-2] corresponds to the graph operation ฯƒ . The operator โ€œamboโ€, โ€œexpandโ€ and โ€œsnubโ€ are expressed by ,m n ฯƒ , , ,k l m nฯƒ ฯƒ , and , ,k l m nฮด ฯƒ ฯƒ , respectively. In the

case of Archimedean graph, equalities l m n= = hold. We use following notations for Platonic graphs and Platonic solids: cube 34P , dodecahedron 35P , icosahedron 53P , octahedron 43P , and tetrahedron 33P .

As a consequence, every Archimedean graph can be expressed using one Platonic graph and graph operations as follows.

2 33 6 3A Pฯƒโ‹… = , 2 4 34 6 3 44,8 8,8A P Pฯƒ ฯƒ ฯƒโ‹… = = , 2 3 43 8 4 34,6 6,6A P Pฯƒ ฯƒ ฯƒโ‹… = = , 2 4 3(3 4) 3 46,6 8,8A P Pฯƒ ฯƒโ‹… = = ,

2 4 34 6 8 (3 4) 3 46,6 8,8A A P Pฯƒ ฯƒ ฯƒ ฯƒ ฯƒโ‹… โ‹… โ‹…= = = , 3 4 34 6 83 4 3 46,8 8,6 6,6 6,8 8,8A A P Pฯƒ ฯƒ ฯƒ ฯƒโ‹… โ‹…โ‹… = = = ,

4 3 4 33 4 3 4 3 48,6 6,6 6,8 8,8A A P Pฮด ฮด ฯƒ ฯƒ ฮด ฯƒ ฯƒโ‹… โ‹…= = = , 52 335 6 54,10 10,10A P Pฯƒ ฯƒ ฯƒโ‹… = = ,

52 3 33 8 5 4,6 6,6A P Pฯƒ ฯƒ ฯƒโ‹… = = ,

52 33(3 5) 56,6 10,10A P Pฯƒ ฯƒโ‹… = = , 52 34 6 10 3(3 5) 56,6 10,10A A P Pฯƒ ฯƒ ฯƒ ฯƒ ฯƒโ‹… โ‹… โ‹…= = = ,

53 4 5 4 4 6 10 36,10 10,6 6,6A A Pฯƒ ฯƒโ‹… โ‹… โ‹… โ‹… โ‹…= = 356,10 10,10 Pฯƒ ฯƒ= ,

54 33 4 5 4 33 5 510,6 6,6 6,10 10,10A A P Pฮด ฮด ฯƒ ฯƒ ฮด ฯƒ ฯƒโ‹… โ‹… โ‹…โ‹… = = = ,

2 33 6 33,6 A Pโ‹… = , 2 43 6 36,6 A Pโ‹… = , 2 33 8 43,8 A Pโ‹… = , 2 33 10 53,10 A Pโ‹… = , 3 33 4 43,4 A Pโ‹… = , 3 4 43 4 3 4 34,4 3,4A A Pโ‹… โ‹…= = ,

52 35 65,6 A Pโ‹… = , 2 33 8 54,6 A Pโ‹… = , 33 4 5 4 53,4 A Pโ‹… โ‹… โ‹… = , 543 4 5 4 33 54,5 3,5A A Pโ‹… โ‹… โ‹… โ‹…= = ,

4 43 4 33,4 A Pโ‹… = , 54 33 53,5 A Pโ‹… = , 52 3(3 4)A Pฮด โ‹… =

Figure 7 shows the relations of 5 Platonic graphs and 13 Archimedean graphs. There are five more possibilities of edge contraction operations to Archimedean graphs: 2(3 4)3,4 A โ‹… ,

2(3 5)3,5 A โ‹… , 33 44,4 A โ‹… , 44 33,3 A โ‹… , and 45 33,3 A โ‹… , which lead to trivial graph with one isolated vertex.

5. ADDITION OF THE GRAPH OPERATIONS TO AN INTERACTIVE MODELING SYSTEM

An interactive modeling system has been developed by the author [3-5]. The coordinate of vertices are computed without the knowledge of metric information, but only with the structure of the isomorphic polyhedral graph. The system consists of three subsystems: graph input subsystem, wire-frame subsystem, and polygon subsystem. The overviews of the subsystems are described in the continuing subsections.

Figure 7. Relations of 5 Platonic graphs and 13 Archimedean graphs induced by diagonal addition, edge contraction and vertex splitting.

Page 4: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

5.1 Graph Input Subsystem Figure 8(a) shows a screen shot of GUI of graph input subsystem. Drawing a planar graph isomorphic to polyhedron is the first step of polyhedron modeling. In the subsystem, vertex addition, vertex deletion, edge addition, and edge deletion are implemented as fundamental operations. Vertices can be moved attended with the incident edges. In addition, edge contraction and vertex splitting are introduced.

5.2 Wire-Frame Subsystem Figure 8(b) shows a screen shot of GUI of wire-frame subsystem. After constructing a polyhedral graph, the next step is arranging vertices in 3-dimesional space. We define three binary relations between two vertices: adjacent, neighbor, and diameter. The relation adjacent corresponds to the length of an edge in a 3-dimensional space. The relation neighbor means that the length of path between two vertices is 2, and two vertices are neighborhood of another vertex. It corresponds to the shape of vertex figure in a 3-dimentional space. The relation diameter means that the length of path between two vertices is the diameter of the graph. It corresponds to the circum-sphere of polyhedron. Virtual elastic forces are assumed between vertices according to these three relations and Hookeโ€™s law. Wire-frame polyhedron can be formed semi-automatically by controlling the natural length of virtual springs corresponding to the three types of binary relations.

5.3 Polygon Subsystem Figure 8(c) shows a screen shot of GUI of polygon subsystem. After arranging vertices in 3-dimensional space, the last step is detecting faces, selecting faces, and rendering the solid [3]. In the case of Platonic solids, Archimedean solids, prisms, and anti-prisms, common routine is used. The faces of Kepler-Poinsot solids are detected by separate routine.

5.4 Addition of the graph operations The graph operations of vertex splitting and edge contraction have been already implemented in the previous version of the graph input subsystem, but they are applied to individual vertex and edge respectively. In the present version, simultaneous vertex splitting of all the vertices is realized, and simultaneous edge contraction of all the edges between specified faces are also implemented. Such operations require 3-dimensional coordinate of each vertex and configuration of each face, therefore, they are available in the wire-frame subsystem and polygon subsystem. In these subsystems, vertex splitting and edge contraction are displayed as animation.

6. REFERENCES

[1] G. W. Hart, โ€œConway Notation for Polyhedraโ€, URL: http:/ /www.georgehart.co/virtual-polyhedra/ conway_notation.html.

[2] E.W.Weisstein,โ€œConway Polyhedron Notationโ€, MathWorld. [3] H. Nonaka, โ€œDetection of Faces in Wire-Frame Polyhedraโ€,

Proceedings of Int. Conf. on Computer Graphics Theory and Applications (GRAPP 2008), 134-137, Madeira, Jan. 2008.

[4] H. Nonaka, โ€œModeling of Kepler-Poinsot Solid Using Isomorphic Polyhedral Graphโ€, International Journal of Computer Science, 3, 1, 64-67, 2008. URL: http:/www.waset.org/ijcs/former.html

[5] H. Nonaka, โ€œInteractive Modeling of Uniform Polyhedra by Means of Graph Drawingโ€, Proceedings of Int. Conf. on Information Technology and Applications (ICITA 2008), 822-827, Cairns, June 2008.

[6] H. S. M. Coxeter, โ€œRegular Polytopesโ€, Dover Pub., 1973. [7] Branko Grรผnbaum, โ€œGraphs of polyhedra; polyhedra as

graphsโ€, Discrete Mathematics, 307, 445-463, 2007.

(a) Graph input subsistem (b) Wire-frame subsystem (c) Polygon subsystem

Figure 8. Screen shot of GUI of the interactive modeling system.

Page 5: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์˜ dual ๋‹ค๋ฉด์ฒด์ธ ์นดํƒˆ๋ž€ ๋‹ค๋ฉด์ฒด ๋งŒ๋“ค๊ธฐ

Page 6: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron
Page 7: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

์นดํƒˆ๋ž€ ๋‹ค๋ฉด์ฒด์™€ ์นดํƒˆ๋ž€ ๊ทธ๋ž˜ํ”„

์นดํƒˆ๋ž€ ๊ทธ๋ž˜ํ”„ ์ค‘ 7๊ฐœ๋งŒ ํ•ด๋ฐ€ํ„ด cycle์„ ๊ฐ–๋Š”๋‹ค. ์–ด๋–ค ๊ฒƒ์ธ๊ฐ€ ?

Page 8: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์™€ ๊ทธ๋ž˜ํ”„

์นดํƒˆ๋ž€ ๋‹ค๋ฉด์ฒด์™€ ๊ทธ๋ž˜ํ”„

ํ”Œ๋ผํ†ค ๋ฐ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด๋Š” ๋ชจ๋‘ ํ•ด๋ฐ€ํ„ด cycle์„ ๊ฐ–๋Š” ์ด์œ ๋Š” ?

๋‹ค๋ฉด์ฒด์˜ ๋ฉด์„ ์ƒ‰์น ํ•˜๋˜, ์ด์›ƒํ•œ ๋ฉด์—๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ƒ‰์„ ์น ํ•œ๋‹ค๋ฉด

์ตœ์†Œ ๋ช‡ ๊ฐ€์ง€ ์ƒ‰์ด ํ•„์š”ํ•œ๊ฐ€?

javamath.snu.ac.kr ๋˜๋Š” www.javamath.com ์—์„œ ์ž๋ฐ”๋ง์„ ํ†ตํ•ด

๋งŒ๋“ค์–ด์ง„ ์—ฌ๋Ÿฌ ๋‹ค๋ฉด์ฒด์˜ ์ „๊ฐœ๋„๋ฅผ ์ ‘์–ด๋ณด๋ฉฐ ํƒ๊ตฌํ•ด ๋ณธ๋‹ค.

Page 9: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

๋‹ค๋ฉด์ฒด์™€ ์ „๊ฐœ๋„์— ๊ด€ํ•œ ์กฐํ•ฉ๋ก ์  ์—ฐ๊ตฌ

๋งŽ์€ ์˜์žฌ ๊ต์œก๊ธฐ๊ด€์—์„œ ๋‹ค๋ฃจ๋Š” ๊ฐ€์žฅ ์ธ๊ธฐ ์žˆ๋Š” ๋‚ด์šฉ ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋‹ค๋ฉด์ฒด ์ˆ˜ํ•™์˜ ๋‚ด

์šฉ์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ์ค‘ํ•™๊ต ๊ต์œก๊ณผ์ •์— ๋‚˜์˜ค๋Š” ์ •๋‹ค๋ฉด์ฒด์˜ ์ •์˜๋ฅผ ์‹œ๋ฐœ์ ์œผ๋กœ ํ•˜์—ฌ ์•Œ

ํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด ๋“ฑ์œผ๋กœ ํ™•์žฅํ•˜๋Š” ํƒ๊ตฌ ๊ณผ์ •์—๋Š” ๋ฌธ์ œ์ ์ด ์ˆจ์–ด์žˆ๋‹ค. 3์ฐจ์› ๋Œ€์ƒ์ธ

๋‹ค๋ฉด์ฒด๋ฅผ ์กฐ์ž‘ํ•˜์ง€ ์•Š์œผ๋ฉฐ ํ•™๊ต์—์„œ๋Š” ์ง๊ด€์„ ํ†ตํ•œ ์„ค๋ช…์  ์ •์˜ (descriptive

definition) ๋กœ ์‹œ์ž‘ํ•˜๋Š”๋ฐ ์—ฌ๊ธฐ์— ๋…ผ๋ฆฌ์ ์ธ ๊ฒฐํ•จ์ด ์ˆจ์–ด์žˆ๋‹ค. Grunbaum (1994) ์€

์ด๋Ÿฌํ•œ ํ˜„์ƒ์˜ ์›์ฃ„๋Š” ์œ ํด๋ฆฌ๋“œ์˜ ์›๋ก  11๊ถŒ์—์„œ ๋‹ค๋ฃฌ ๋‹ค๋ฉด์ฒด์— ๋Œ€ํ•œ ์ •์˜๋ผ๊ณ  ๋ง

ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ํ•™๊ต ์ˆ˜ํ•™์—์„œ ์ •๋‹ค๋ฉด์ฒด์™€ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์˜ ์ •์˜์—๋Š” โ€œ๊ฐ

๊ผญ์ง€์ ์— ์ธ์ ‘ํ•˜๋Š” ๋‹ค๊ฐํ˜•์˜ ๋ฐฐ์—ด ํŒจํ„ด์ด ๋ชจ๋‘ ๊ฐ™๋‹คโ€๋Š” ๋ถ€๋ถ„์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ,

1930๋…„๊ฒฝ์— Miller ๋Š” ์šฐ์—ฐํžˆ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์ธ ๋‹ค์Œ ์™ผ์ชฝ๊ณผ ๊ฐ™์€ Rhombic

cuboctahedron์„ ๋งŒ๋“ค๋‹ค๊ฐ€ ์‹ค์ˆ˜๋กœ ์˜ค๋ฅธ์ชฝ์˜ ๋‹ค๋ฉด์ฒด๋ฅผ ๋งŒ๋“ค๊ฒŒ ๋˜์—ˆ๋‹ค.

๋ฌธ์ œ๋Š” ์œ„์˜ ์˜ค๋ฅธ์ชฝ์— ์žˆ๋Š” ๋‹ค๋ฉด์ฒด (Miller ๋‹ค๋ฉด์ฒด๋กœ ๋ถˆ๋ฆฐ๋‹ค) ๋„ ์™ผ์ชฝ ๋‹ค๋ฉด์ฒด์™€ ๊ฐ™

์ด ๊ฐ ๊ผญ์ง€์ ์—์„œ ๊ฐ™์€ ๋ฐฐ์—ด ํŒจํ„ด์„ ๊ฐ€์ง„๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ์ด๊ฒƒ๋„ ์•Œํ‚ค๋ฉ”๋ฐ์Šค

๋‹ค๋ฉด์ฒด์— ํฌํ•จ์‹œ์ผœ์•ผ ํ•˜๋Š”๊ฐ€? ๋˜ํ•œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„œ๋กœ ๋ฉด๋Œ€์นญ์ธ ๋‹ค๋ฉด์ฒด๋ฅผ ๋‹ค๋ฅธ ๊ฒƒ์œผ

๋กœ ๋ณธ๋‹ค๋ฉด ๊ณผ์—ฐ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์˜ ๊ฐœ์ˆ˜๋ฅผ ์–ผ๋งˆ๋กœ ํ•˜์—ฌ์•ผ ํ•˜๋Š”๊ฐ€? ๋ผ๋Š” ๊ฒƒ์ด๋‹ค.

๋ณธ R&E ๊ณผ์ œ๋Š” ๋Œ€์นญ๊ตฐ์˜ ์–ธ์–ด๋กœ ๋‹ค๋ฉด์ฒด๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ณ , ์ •์˜ํ•˜๋ฉฐ, ์„ฑ์งˆ์„ ํŒŒ์•…ํ•˜๊ณ  ์ด

๋ฅผ ์ „๊ฐœ๋„๋กœ ๊ตฌํ˜„ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฐฉ๋ฒ•์„ ์“ด๋‹ค. ํŠน๋ณ„ํžˆ, ์œ ํด๋ฆฌ๋“œ์˜ ์ž์™€ ์ปดํผ์Šค

์ž‘๋„์ฒ˜๋Ÿผ ์ „๊ฐœ๋„๋ฅผ ํ†ตํ•ด ๋‹ค๋ฉด์ฒด๋ฅผ ๊ตฌํ˜„ํ•˜๋ฉฐ ์ ‘๊ทผํ•œ๋‹ค.

Page 10: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

1901๋…„ ์ œ1ํšŒ ๋…ธ๋ฒจํ™”ํ•™์ƒ์„ ๋ฐ›์€ ๋ฒคํŠธ ํ˜ธํ”„์˜ ์—…์  ์ค‘ ํ•˜๋‚˜๋Š” ๋ฉ”ํƒ„์˜ ๋ถ„์ž๊ตฌ์กฐ๊ฐ€ 3

์ฐจ์› ๊ตฌ์กฐ์ธ ์ •์‚ฌ๋ฉด์ฒด ๊ตฌ์กฐ๋ผ๋Š” ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ DNA ์ด์ค‘ ๋‚˜์„ ์œผ๋กœ ๋…ธ๋ฒจ์ƒ์„ ๋ฐ›์€ ์™“

์Šจ๊ณผ ํฌ๋ฆญ์€ ๋ฐ”์ด๋Ÿฌ์Šค์˜ ๊ตฌ์กฐ๋ฅผ ์ •๋‹ค๋ฉด์ฒด๋กœ ์˜ˆ์ธกํ•˜์˜€๋Š”๋ฐ, ํ›„์— ์ •๋‹ค๋ฉด์ฒด ๊ตฌ์กฐ๋ฅผ

๊ฐ–๋Š” ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ๋งŽ์ด ๋ฐœ๊ฒฌํ•˜๊ฒŒ ๋œ๋‹ค (๋”๊ตฌ๋‚˜ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์˜ ๊ฒฝ์šฐ์™€ ๊ฐ™์ด ๋ฉด

๋Œ€์นญ ๊ตฌ์กฐ๋ฅผ ๊ฐ–์ง€ ์•Š๋Š” chiral virus ๋„ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค). ์ตœ๊ทผ์—๋Š” ์•ฝ์„ ์ œ์กฐํ•  ๊ฒฝ์šฐ

์— chiral ์„ฑ์งˆ์„ ์ค‘์š”ํ•˜๊ฒŒ ๋‹ค๋ฃจ๋Š”๋ฐ, ๊ทธ ์ด์œ ๋Š” ์šฐ๋ฆฌ ๋ชธ์˜ receptor ๊ฐ€ 3์ฐจ์› ๋ถ„

์ž๋ฅผ ์ƒ๋Œ€๋กœ ์ธ์ง€๋ฅผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ๋ชฐ๋ž๊ธฐ์— ์•ผ๊ธฐ๋œ 20์„ธ๊ธฐ ์ดˆ๋ฐ˜์˜ ํƒˆ

๋ฆฌ๋„๋งˆ์ด๋“œ (Thalidomide) ์•ฝ๋ฌผ์„ ํ†ตํ•œ ๊ธฐํ˜•์•„ ์ถœ์‚ฐ ์‚ฌ๊ฑด์ด๋‹ค.

1996๋…„์˜ ๋…ธ๋ฒจ ํ™”ํ•™์ƒ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํƒ„์†Œ 60๊ฐœ์งœ๋ฆฌ ๋ถ„์ž ๊ตฌ์กฐ์˜ ์—ฐ๊ตฌ์— ๋Œ์•„๊ฐ”์œผ

๋ฉฐ, ๊ทผ๋ž˜์—๋Š” 3๋ช…์ด ํ•˜๋Š” ์ฒด์Šค ๊ฒŒ์ž„์ด๋‚˜ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด๋ฅผ ์ด์šฉํ•œ ํผ์ฆ๋„ ๋‚˜์˜ค

๊ฒŒ ๋˜์—ˆ๋‹ค.

( ์ˆ˜ํ‰์  ์ˆ˜ํ•™ํ™” Mathematization ๋กœ์˜ ์ ํ•ฉ์„ฑ )

์•ž์—์„œ ์„ค๋ช…ํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ์šฐ๋ฆฌ ์ฃผ๋ณ€์—์„œ ๋‹ค๋ฉด์ฒด์™€ ๊ด€๊ณ„๋œ ์—ฌ๋Ÿฌ ์ˆ˜ํ•™ ํ˜„์ƒ์„ ๋ณด๊ฒŒ

๋˜๋ฉฐ, ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋‹ค๋ฉด์ฒด์™€ ๊ด€๊ณ„๋œ ํ˜„์ƒ์„ ๊ทธ๋ž˜ํ”„ ๋˜๋Š” ์ „๊ฐœ๋„์™€ ๊ด€๋ จ์‹œ์ผœ ์ˆ˜ํ•™

์˜ ์žฅ์œผ๋กœ ๋Œ์–ด์˜ค๋Š” ์ˆ˜ํ‰์  ์ˆ˜ํ•™ํ™”๊ฐ€ ์šฉ์ดํ•˜๋‹ค.

Page 11: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

๋‹ค๋ฉด์ฒด์— ๋Œ€ํ•œ ๊ด€์‹ฌ์€ ๊ณ ๋Œ€ ๊ทธ๋ฆฌ์ด์Šค ์‹œ๋Œ€๋ถ€ํ„ฐ ์žˆ์—ˆ์œผ๋ฉฐ, ์œ ํด๋ฆฌ๋“œ 11๊ถŒ๊ณผ 13๊ถŒ์—

๋‹ค๋ฉด์ฒด์— ๋Œ€ํ•œ ์ •์˜์™€ ์ •๋‹ค๋ฉด์ฒด ์ž‘๋„์— ๋Œ€ํ•œ ์„ค๋ช…์ด ๋‚˜์˜จ๋‹ค. ์ •๋‹ค๋ฉด์ฒด๋Š” ๊ทธ๋ฆฌ์ด์Šค

์ฒ ํ•™์—์„œ ์šฐ์ฃผ๋ฅผ ์ด๋ฃจ๋Š” ๊ธฐ๋ณธ์œผ๋กœ ์ด์šฉ๋˜์—ˆ๋Š”๋ฐ, ๋‹ค์Œ ์™ผ์ชฝ๊ณผ ๊ฐ™์ด radiolaria ๋ผ

๋Š” ๋ฏธ์ƒ๋ฌผ์˜ ๊ตฌ์กฐ์—์„œ๋„ ์ •๋‹ค๋ฉด์ฒด์˜ ๊ตฌ์กฐ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์•Œํ‚ค๋ฉ”๋ฐ์Šค์— ์˜ํ•ด ๋„์ž…๋œ

์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด๋Š” ํŒŒํ‘ธ์Šค์™€ ์ผ€ํ”Œ๋Ÿฌ์— ์˜ํ•ด ๋‹ค์‹œ ์„ค๋ช…๋˜์—ˆ๊ณ , 1500๋…„๋„ ์ดˆ์— ๋“€

๋Ÿฌ (Durer) ์— ์˜ํ•ด ๋‹ค์Œ ์˜ค๋ฅธ์ชฝ๊ณผ ๊ฐ™์€ ๋‹ค๋ฉด์ฒด์˜ ์ „๊ฐœ๋„ ๋ชจ์–‘์ด ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ๋‹ค.

์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ดˆ๋“ฑ ์ˆ˜ํ•™๊ต์œก ๊ณผ์ •์—๋Š” 3, 4 ํ•™๋…„์— ๋ฐฐ์šด ๋‹ค๊ฐํ˜•์„ ๋ฐ”ํƒ•์œผ๋กœ ์ดˆ๋“ฑํ•™๊ต

5ํ•™๋…„์— ์ „๊ฐœ๋„๊ฐ€ ๋“ฑ์žฅํ•˜๋ฉฐ, 6ํ•™๋…„์— ํˆฌ์˜๋„๊ฐ€, ๊ทธ๋ฆฌ๊ณ  ์ค‘ํ•™๊ต 1ํ•™๋…„์— ์ •๋‹ค๋ฉด์ฒด์˜

์ „๊ฐœ๋„๊ฐ€ ๋“ฑ์žฅํ•œ๋‹ค. ๋‹ค๋ฉด์ฒด๋ฅผ ํ‰๋ฉด์— ํŽผ์นœ ๊ฒƒ์„ ๋‹ค๋ฉด์ฒด ๊ทธ๋ž˜ํ”„๋ผ๊ณ  ํ•˜๋Š”๋ฐ, ๋‹ค๋ฉด์ฒด

๋Š” ์ „๊ฐœ๋„์™€ ๋‹ค๋ฉด์ฒด ๊ทธ๋ž˜ํ”„๋ฅผ ํ†ตํ•ด ํ‘œํ˜„๋˜๋ฉฐ, ๋˜ํ•œ ์—ฐ๊ตฌ๋  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ฃผ๋ณ€

์˜ ์—ฌ๋Ÿฌ ๋‹ค๋ฉด์ฒด ๋ชจ์–‘์˜ ๋Œ€์ƒ๋“ค๋„ ์ „๊ฐœ๋„์™€ ๊ทธ๋ž˜ํ”„๋ฅผ ํ†ตํ•ด ํ‘œํ˜„๋˜๊ณ  ํƒ๊ตฌ๋  ์ˆ˜ ์žˆ๋Š”

๋ฐ, ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ๋‹ค๋ฉด์ฒด์™€ ์ „๊ฐœ๋„๋Š” ์ˆ˜ํ‰์  ์ˆ˜ํ•™ํ™”๊ฐ€ ์šฉ์ดํ•œ ํ›Œ๋ฅญํ•œ ์ˆ˜ํ•™์  ํƒ๊ตฌ

๋Œ€์ƒ์ด๋‹ค.

( ์ˆ˜์ง์  ์ˆ˜ํ•™ํ™” Mathematization ๋กœ์˜ ์ ํ•ฉ์„ฑ )

๋ˆ„๊ตฌ๋‚˜ ์‰ฝ๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ฉด์ฒด์™€ ์ „๊ฐœ๋„๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๋ถ„๋ฅ˜ํ•˜๊ณ ,

๊ฐœ๋…ํ™”ํ•˜๊ณ , ์ถ”์ƒํ™”ํ•˜๋Š” ๊ณผ์ •๋“ค์„ ํ†ตํ•ด ์ง๊ด€์ ์ด๊ณ  ์„ค๋ช…์ ์ธ ๋‹ค๋ฉด์ฒด์™€ ์ „๊ฐœ๋„๋กœ๋ถ€

ํ„ฐ ์ˆ˜์ง์  ์ˆ˜ํ•™ํ™”๋ฅผ ์œ ๋„ํ•˜๊ธฐ์— ์šฉ์ดํ•˜๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ „๊ฐœ๋„๋Š” ์ดˆ๋“ฑํ•™๊ต๋ถ€ํ„ฐ ๋‹ค๋ฃจ

๋Š”๋ฐ, ๋ณผ๋ก ๋‹ค๋ฉด์ฒด์˜ ์ „๊ฐœ๋„๋ฅผ ์–ป์œผ๋ ค๋ฉด ๋‹ค๋ฉด์ฒด์˜ edge ๋“ค์„ ์นผ๋กœ ์ž˜๋ผ ๋‹ค๋ฉด์ฒด๋ฅผ

ํ‰๋ฉด์— ํŽผ์ณ์•ผํ•œ๋‹ค. ์ด ๋•Œ, ์ž˜๋ผ์ง€๋Š” edge ๋“ค์˜ ๋ชจ์ž„์€ ๋‹ค๋ฉด์ฒด์˜ ์ƒ์„ฑ์ˆ˜ํ˜•๋„๋ฅผ ์ด

Page 12: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

(a)

(b)

๋ฃจ๋Š” edge ๋“ค๋กœ ๊ฐœ๋…ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ์–ด

๋–ค ์ƒ์„ฑ์ˆ˜ํ˜•๋„๋กœ ์ž๋ฅด๋ฉด ์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ์˜ ๊ฒฝ์šฐ์™€

๊ฐ™์ด ํŽผ์ณ์ง„ ๋ฉด๋“ค์ด ์„œ๋กœ ๊ฒน์ณ์ง€๋Š”๊ฐ€? ๋†€๋ž๊ฒŒ๋„

1975๋…„์— ์ œ๊ธฐ๋œ ๋‹ค๋ฉด์ฒด unfolding ๋ฌธ์ œ (๋ณผ๋ก

๋‹ค๋ฉด์ฒด์˜ ์–ด๋–ค ์ƒ์„ฑ์ˆ˜ํ˜•๋„๋ฅผ ๋”ฐ๋ผ unfolding ํ•˜

๋ฉด ๊ฒน์ณ์ง€์ง€ ์•Š๋Š” ์ „๊ฐœ๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค) ๋Š”

์•„์ง๋„ ๋ฏธํ•ด๊ฒฐ ๋ฌธ์ œ์ด๋‹ค.

๋ณธ R&E ํƒ๊ตฌ์˜ ํ•ต์‹ฌ์€ ํ”Œ๋ผํ†ค ๋‹ค๋ฉด์ฒด๋ฅผ ์‹œ์ž‘์ 

์œผ๋กœ ํ•˜์—ฌ ๋จผ์ € Truncation ๊ณผ Stellation ์œผ๋กœ ์•Œํ‚ค๋ฉ”๋ฐ์Šค ๋‹ค๋ฉด์ฒด์™€ ์นดํƒˆ๋ž€ ๋‹ค๋ฉด

์ฒด๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ๊ณผ ๋Œ€์นญ์„ฑ์„ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค๋ฉด์ฒด ๋ถ„ํ• ์„ ํ†ตํ•ด ์ „๊ฐœ๋„

๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค๋ฉด์ฒด๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ , ๋˜ํ•œ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค๋ฉด์ฒด ์ƒ‰์น  ๋ฌธ์ œ์™€ ๋‹ค๋ฉด์ฒด

๊ฒฝ๋กœ ๋ฌธ์ œ๋ฅผ ์กฐํ•ฉ๋ก ์ ์œผ๋กœ ํƒ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ณผ๋ก ๋‹ค๋ฉด์ฒด์˜ ์ƒ‰์น  ๋ฌธ์ œ๋Š” ์œ ๋ช…ํ•œ

four color problem ๊ณผ ๊ด€๋ จ์ด ์žˆ์œผ๋ฉฐ, ํ•™์ƒ๋“ค์ด trial and error ๋กœ ์ƒ‰์น  ๋ฌธ์ œ๋ฅผ

์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์‚ฌ์‚ฌ๊ต์œก์—์„œ๋Š” Truncation ๊ณผ Stellation ์œผ๋กœ ๊ตฌ์„ฑ์„ ํ†ตํ•ด

์•„๋Š” ๋‹ค๋ฉด์ฒด์—์„œ ๋ชจ๋ฅด๋Š” ๋‹ค๋ฉด์ฒด๋กœ์˜ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ๋งŒ๋“ค๊ณ  ์ด๋Ÿฐ ๊ณ ๋ฆฌ๋ฅผ ํ†ตํ•ด ์ƒ‰์น  ๋ฌธ

์ œ์™€ ๊ฒฝ๋กœ ๋ฌธ์ œ๋ฅผ ์ ‘๊ทผํ•œ๋‹ค. ์ด ๋•Œ, ๊ณ ๋ฌด๋กœ ๋งŒ๋“  ๋ณผ๋ก ๋‹ค๋ฉด์ฒด๋ฅผ ํ‰๋ฉด์— ๋†“๊ณ  ํ‰๋ฉด

๊ณผ ์ ‘์ด‰ํ•œ ๋ฉด์„ ๋–ผ์–ด๋‚ด๊ณ  ๋‚˜๋จธ์ง€ ๋ฉด์„ ์žก์•„๋‹น๊ฒจ ํ‰๋ฉด์— ๊น”๋ฉด ๋งŒ๋“ค์–ด์ง€๋Š” ๋‹ค๋ฉด์ฒด์˜

polyhedral graph๋ฅผ ํ†ตํ•ด ๊ทธ๋ž˜ํ”„ ์ด๋ก ๊ณผ ๋‹ค๋ฉด์ฒด ๋ฌธ์ œ๋ฅผ ์ ‘๋ชฉ์‹œ์ผœ ์ˆ˜์ง์  ์ˆ˜ํ•™ํ™”๋ฅผ

์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ๋‹ค๋ฉด์ฒด์˜ polyhedral graph์˜ ๊ตฌ์กฐ๋Š” ๋ฌด์—‡์ธ๊ฐ€? 1934๋…„

์— ๋ฐœํ‘œ๋œ Steinitz ์ •๋ฆฌ์— ์˜ํ•ด ๋ณผ๋ก๋‹ค๋ฉด์ฒด์˜ polyhedral graph ๋Š” ์—ฐ๊ฒฐ๋„๊ฐ€ 3์ธ

ํ‰๋ฉด ๊ทธ๋ž˜ํ”„์™€ ๋™์ผํ•˜๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์„ ํ†ตํ•ด ๋‹ค๋ฉด์ฒด์˜ ์ƒ‰์น  ๋ฌธ์ œ

์™€ ๊ฒฝ๋กœ ๋ฌธ์ œ๋ฅผ ๊ณ ๋“ฑ์ˆ˜ํ•™์œผ๋กœ ์ˆ˜์งํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด, four color problem

์„ ์œ„ํ•ด Birkhoff ๊ฐ€ ์ƒ๊ฐํ•ด๋‚ธ chromatic polynomial ๋„ ์•„๋Š” ๊ฒƒ์—์„œ ๋ชจ๋ฅด๋Š” ๊ฒƒ์œผ

๋กœ์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ chromatic polynomial ์— ์˜ํ•ด ์ •์‚ฌ๋ฉด์ฒด ๊ทธ๋ž˜ํ”„์˜

proper coloring ์˜ ๊ฐœ์ˆ˜๋Š” chromatic ๋‹คํ•ญ์‹

๋กœ ๋ถ€ํ„ฐ ๊ตฌํ•ด์ง„๋‹ค. ๋˜ํ•œ ๋Œ€์นญ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ n๊ฐ€์ง€ ์ƒ‰์œผ๋กœ ์ƒ‰์น 

ํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ์ˆ˜๋Š” Polya์˜ enumeration ๋‹คํ•ญ์‹

์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

ํ•œํŽธ, ์ •์‹ญ์ด๋ฉด์ฒด ๊ทธ๋ž˜ํ”„์˜ chromatic ๋‹คํ•ญ์‹์€

โ‹ฏ ์ด๋ฉฐ, ๋˜ํ•œ ๋Œ€์นญ์„ฑ์„ ๊ณ ๋ คํ•˜๋ฉฐ

n๊ฐ€์ง€ ์ƒ‰์œผ๋กœ ์ •์‹ญ์ด๋ฉด์ฒด์˜ ๋ฉด์„ ์ƒ‰์น ํ•˜๋Š” ๋ฐฉ๋ฒ•์˜ ์ˆ˜๋Š” ํด๋ฆฌ์•ผ์˜ ๋‹คํ•ญ์‹

๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค๋ฉด์ฒด ์ƒ‰์น  ๋ฌธ์ œ์™€๋Š” ๋‹ฌ๋ฆฌ ๋‹ค๋ฉด์ฒด

๊ฒฝ๋กœ ๋ฌธ์ œ ์ค‘ ํ•ด๋ฐ€ํ„ด ๊ฒฝ๋กœ์˜ ๋ฌธ์ œ๋Š” ์•„์ง ๋ฏธํ•ด๊ฒฐ ๋ฌธ์ œ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ

๋กœ ๋‹ค๋ฉด์ฒด์˜ ํ•ด๋ฐ€ํ„ด ๊ฒฝ๋กœ ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋‹ค๋ฉด์ฒด์˜

regulatity, ์ด๋ฃจ๋Š” ๋ฉด์˜ ์ข…๋ฅ˜, ๋Œ€์นญ์„ฑ ๋“ฑ๊ณผ ๊ด€๋ จํ•˜์—ฌ ํ•ด๋ฐ€ํ„ด ๊ฒฝ๋กœ ๋ฌธ์ œ๋ฅผ ์ ‘๊ทผํ• 

๊ฒƒ์ด๋‹ค.

Page 13: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

do dXutXurXurXlurXuruX

๋ฉด์˜ ์—ฐ๊ฒฐ์„ฑ๊ณผ ๋ฉด๊ณผ ๋ฉด ์‚ฌ์ด์˜ ์ ‘ํž˜๊ฐ (dihedral angle)์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ „๊ฐœ๋„๋ฅผ ๋งŒ๋“ค

์–ด์•ผ ํ•˜๋Š”๋ฐ, ๋‹ค์Œ์˜ ์˜ˆ๋Š” ์นดํƒˆ๋ž€ ๋‹ค๋ฉด์ฒด์ธ rhombic dodecahedron ์˜ ๋ชจ์Šต์ด๋‹ค.

ํ”Œ๋ผํ†ค ๋‹ค๋ฉด์ฒด์™€ ์นดํƒˆ๋ž€ ๋‹ค๋ฉด์ฒด๋Š” ๋ชจ๋‘ ๊ฐ™์€ ์ ‘ํž˜๊ฐ์„ ๊ฐ–๋Š”๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์•Œํ‚ค๋ฉ”๋ฐ์Šค

๋‹ค๋ฉด์ฒด์—์„œ๋Š” ๋”ฑ ๋‘ ๊ฐœ๋งŒ ๋ชจ๋“  ์ ‘ํž˜๊ฐ์ด ๊ฐ™๋‹ค. ์—ฌ๊ธฐ์„œ ๊ธฐ๋ณธ์ ์ธ ๋‹ค๋ฉด์ฒด์— ๋Œ€ํ•œ ์ ‘

ํž˜๊ฐ์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ „๊ฐœ๋„๋กœ ๋‹ค๋ฉด์ฒด๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ์—ฐ์Šต์„ ํ•œ๋‹ค. ์ „๊ฐœ๋„๋ฅผ ๊ทธ๋ ค๋‚ด๋Š” ์†Œ

ํ”„ํŠธ์›จ์–ด์˜ ์‚ฌ์šฉ๋ฒ•์€ ๋‘ ๊ฐ€์ง€์ธ๋ฐ, ํ•˜๋‚˜๋Š” ๋™์ ๊ธฐํ•˜ ๋ช…๋ น์„ ํ†ตํ•œ ๊ฒƒ์ด๊ณ , ๋‹ค๋ฅธ ํ•˜

๋‚˜๋Š” ๊ฑฐ๋ถ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋‹ค์Œ์˜ ์˜ˆ๋Š” ๊ฑฐ๋ถ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๋‹ค๋ฉด์ฒด

์˜ ์ „๊ฐœ๋„๋ฅผ ๊ทธ๋ฆฌ๊ณ , ๋˜ํ•œ ์ด๋ฅผ ์ ‘๋Š” ๊ณผ์ •์„ ์„ค๋ช…ํ•œ ๊ฒƒ์ด๋‹ค. ๋‹ค์Œ์˜ ์˜ˆ์—์„œ, ๋ฌธ์ž

d๋Š” ์ ‘ํž˜๊ฐ์„ 90๋„๋กœ ํ•˜๋Š” ๊ฒƒ์ด๊ณ , ๋ฌธ์ž X๋Š” ์ •์‚ฌ๊ฐํ˜•์„ ๋งŒ๋“œ๋Š” ํ–‰๋™์ด๊ณ , u๋Š” ์œ„

๋กœ t๋Š” turn ํ•˜๋ผ๋Š” ๋ช…๋ น์ด๋‹ค. ์ด์ œ, do dXutXurXurXlurXuruX ๋ช…๋ น์„ ํ•˜๋ฉด ๊ฑฐ๋ถ์ด๊ฐ€

๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‹ค๊ฐํ˜•์„ ์—ฐ๊ฒฐ์‹œ์ผœ ์ „๊ฐœ๋„๋ฅผ ๋งŒ๋“ค๊ณ , ๋งˆ์šฐ์Šค๋ฅผ ํ†ตํ•ด ์ ‘์„ ์ˆ˜ ์žˆ๊ฒŒ ๋œ

๋‹ค.

์ •์œก๋ฉด์ฒด ์ „๊ฐœ๋„๋ฅผ ๋งŒ๋“ค์–ด ๋ณด์•„์š”.

ํ•จ์ˆ˜ X { ๋ฐ˜๋ณต 4 { ์  ์ด๋ฆ„; ๊ฐ€์ž 20; ๋Œ์ž 90;}

๋‹ค๊ฐํ˜•; new; }

ํ•จ์ˆ˜ u {๊ฐ€์ž 20;}

ํ•จ์ˆ˜ t {๋Œ์ž 180;}

ํ•จ์ˆ˜ l {๋Œ์ž 90;}

ํ•จ์ˆ˜ r {๋Œ์ž -90;}

ํ•จ์ˆ˜ d { dd=90;}

Page 14: Operation-Based Notation for Archimedean GraphArchimedean graphs can be generated from Platonic graphs that are used as seed graphs. Keyword: Archimedean graph, Polyhedral graph, Polyhedron

ํ”Œ๋ผํ†ค ๋‹ค๋ฉด์ฒด ์ •๋‹ค๋ฉด์ฒด ์ „๊ฐœ๋„ ๊ฐœ์ˆ˜

์ •์œก๋ฉด์ฒด 11

์ •์‹ญ์ด๋ฉด์ฒด 43380

์ •์ด์‹ญ๋ฉด์ฒด 43380

์ •ํŒ”๋ฉด์ฒด 11

์ •์‚ฌ๋ฉด์ฒด 2

๋‹ค๋ฉด์ฒด๋ฅผ ์ „๊ฐœ๋„๋ฅผ ํ†ตํ•ด ๊ตฌํ˜„ํ•˜๋ฉฐ ์ƒ‰์น  ๋ฌธ์ œ์™€ ๊ฒฝ๋กœ ๋ฌธ์ œ๋ฅผ ํƒ๊ตฌํ•  ์ˆ˜๋„ ์žˆ๋‹ค.

๋‹ค์Œ๊ณผ ๊ฐ™์ด positive genus ๋‹ค๋ฉด์ฒด์™€ star-like ๋‹ค๋ฉด์ฒด๋ฅผ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

์ „๊ฐœ๋„์™€ ๊ด€๋ จ๋œ ์ˆœ์—ด ์กฐํ•ฉ ๋ฌธ์ œ๋กœ ๋‹ค๋ฉด์ฒด์˜ ์ „๊ฐœ๋„๋ฅผ ์„ธ๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค

์–ด, ํ”Œ๋ผํ†ค ๋‹ค๋ฉด์ฒด๋ฅผ ๋งŒ๋“œ๋Š” ์ „๊ฐœ๋„์˜ ๊ฐœ์ˆ˜๋Š” ๋ช‡ ๊ฐœ๋‚˜ ์žˆ์„ ์ˆ˜ ์žˆ์„๊นŒ? Parker

(1998) ๋Š” ์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋‹ค๋ฉด์ฒด์˜ ์ „๊ฐœ๋„ ๊ฐœ์ˆ˜๋ฅผ ๊ตฌํ•˜์˜€๊ณ , ๊ทธ

์•„๋ž˜์˜ ๊ทธ๋ฆผ์€ ์ •์œก๋ฉด์ฒด๋ฅผ ์ด๋ฃจ๋Š” 11๊ฐœ์˜ ์ „๊ฐœ๋„๋ฅผ ๋‚˜์—ดํ•œ ๊ฒƒ์ด๋‹ค.