1
University of Southern California Center for Energy Informatics Analy&cs for Demand Response Op&miza&on in a Microgrid Saima Aman, PhD Student Computer Science Department, University of Southern California, Los Angeles, CA (Joint Work with Yogesh Simmhan and Viktor K. Prasanna, Electrical Engg. Department, USC) Demand Response – What and Why Datadriven Analy&cs Consump&on Modeling Curtailment Modeling Demand Response Policy Engine References Data Type Source Features Relevance for DR Electricity Consump7on FMS 15min; all buildings Build forecas7ng models of consump7on Electricity Curtailment FMS 15min; few buildings Build forecas7ng models of curtailment Customer Behavior data CB team Nontemporal; select group Model customer par7cipa7on in DR Weather data* Weather Under ground hourly; temp. & humidity Affects consump7on & curtailment Building data* FMS website sta7c Predict consump7on & curtailment Schedule data* USC calendars ~hourly Affects consump7on & curtailment *publicly available * Sta7c Data (collected once) * Dynamic Data (changing preference) * Sta7c Data (physical features) * Dynamic kWh data Customer Data Building Data Demand Response Policy Engine Customers Campus Buildings Customer Model Domain Knowledge Modeling En77es Direct Control/ Curtailment Signal Voluntary Curtailment Message Reasoning Curtailment Model Consump7on Model 1. S.Aman, Y.Simmhan, and V.K.Prasanna. Improving energy use forecast for campus microgrids using indirect indicators. In Workshop on Domain Driven Data Mining, IEEE, 2011. 2. Y. Simmhan, V. K. Prasanna, S. Aman, S. Natarajan, W. Yin, and Q. Zhou. Towards datadriven demandresponse op7miza7on in a campus microgrid. In ACM Workshop On Embedded Sensing Systems For Energy Efficiency In Buildings. ACM, 2011. 3. S. Aman, W. Yin, Y. Simmhan, and V. K. Prasanna. Machine learning for demand forecas7ng in smart grid. In Southern California Smart Grid Research Symposium, 2011. 4. Y. Simmhan, S. Aman, B. Cao, M. Giakkoupis, A. Kumbhare, Q. Zhou, D. Paul, C. Fern, A. Sharma, and V. K. Prasanna. An informa7cs approach to demand response op7miza7on in smart grids. Technical report, 2011. Demand Response (DR): Adjustment of electricity consump7on during peak load periods in response to a signal from the u7lity. Our Research Focus Develop reliable forecas7ng models for consump7on and curtailment to assist campus facility managers Design Policy Engine for DR op7miza7on on campus Map results from campus experiments to cityscale Email: [email protected] Web: hfp://wwwscf.usc.edu/~saman/ Benefit of Analy&cs for U&lity Benefit of Analy&cs for Customers reliably forecast electricity demand plan genera7on and supply implement DR programs decide 7meofuse pricing determine baselines for curtailment interpret historical electricity consump7on adjust consump7on according to forecasts adopt energyefficient prac7ces schedule onsite genera7on effec7vely par7cipate in DR programs Modeling Method Approach Pros & Cons TimeSeries Model (HoltWinters & ARIMA) Uses previous 7me series energy usevalues to predict future values Domain knowledge not required Addresses variable trends/seasonality Requires model parameter es7ma7on Regression Tree Model Maps a variety of direct and indirect features, X t to the output, y t Timeinvariant model Easy to interpret from domain perspec7ve Making predic7ons is fast Predic7on possible with missing data Our proposed method: Causalitydriven Hybrid Model Maps current features, X t and regressive values of causa7ve features, α t , to the output, y t Causa7ve features are found using the Granger Causality method that determines causal rela7on between 7me series of different features Efficient model based on causa7ve features Befer predic7ve power Hidden factors not captured Requires parameter es7ma7on Time lags affect causality results Combinatorial explosion with increase in the number of features Goal: Design, develop, and field ML models that work reliably for following granulari7es: Temporal: 15min and Daily Spa7al: Buildinglevel and Campuslevel Goal: Determine the following : Depth of curtailment (how much can be reduced) Latency of curtailment (how soon can it be reduced) Dura7on of curtailment (how long can it sustained) 0 50 100 150 200 250 0 0.2 0.4 0.6 0.8 1 1.2 DR Signal Electricity Consump7on Latency Dura7on Depth Building Strategy Type of Curtailment Factors affec&ng curtailment Modeling approach Direct Building Control Global temperature reset HVAC Dutycycling outdoor temperature occupancy ini7al physical state type of equipment age of structure Supervised learning (ongoing work) Voluntary Customer Control turn off ligh7ng turn off plugload equipment Customer par7cipa7on (voluntary & variable); Customer comfort levels Markov Chains (ongoing work) Goal: provide decision support for DR: Determine the following: the buildings for load curtailment the subset of customers to target for voluntary curtailment signals the set of strategies for individual buildings and customers Challenges: Balance curtailment and comfort levels Adapt to changing customer preference Some buildings have manager override Current DR Policies: Adhoc or heuris7csbased Address sta7c and short term op7miza7on Causal Network Our Proposed Modeling Approach (ongoing work) Datadriven approach based on Markov Decision Processes (MDP) Op7mal policy for each building type and customer segment Each en7ty is represented in terms of variables: predicted curtailment, frequency of over and under curtailment, etc. En77es are segmented; can migrate between segments based on behavior

Opmizaonina) Microgrid)) - GitHub Pagessaimacs.github.io/pubs/2012-sdm-poster.pdf · University of Southern California Center for Energy Informatics Analy&cs)for)Demand)Response)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Opmizaonina) Microgrid)) - GitHub Pagessaimacs.github.io/pubs/2012-sdm-poster.pdf · University of Southern California Center for Energy Informatics Analy&cs)for)Demand)Response)

University of Southern California

Center for Energy Informatics

Analy&cs  for  Demand  Response  Op&miza&on  in  a  Microgrid    

Saima  Aman,  PhD  Student    Computer  Science  Department,  University  of  Southern  California,  Los  Angeles,  CA  

(Joint  Work  with  Yogesh  Simmhan  and  Viktor  K.  Prasanna,  Electrical  Engg.  Department,  USC)  

Demand  Response  –  What  and  Why   Data-­‐driven  Analy&cs  

Consump&on  Modeling   Curtailment  Modeling  

Demand  Response  Policy  Engine  

References  

Data  Type   Source   Features   Relevance  for  DR  Electricity  Consump7on  

FMS   15-­‐min;  all  buildings  

Build  forecas7ng  models  of  consump7on  

Electricity  Curtailment  

FMS   15-­‐min;  few  buildings  

Build  forecas7ng  models  of  curtailment  

Customer  Behavior  data  

CB  team   Non-­‐temporal;  select  group  

Model  customer  par7cipa7on  in  DR  

Weather  data*   Weather  Under-­‐ground    

hourly;  temp.  &  humidity    

Affects  consump7on  &  curtailment  

Building  data*   FMS  website   sta7c   Predict  consump7on  &  curtailment  

Schedule  data*   USC  calendars   ~hourly   Affects  consump7on  &  curtailment  

*publicly  available  

*  Sta7c  Data        (collected  once)  *  Dynamic  Data  (changing  preference)    

*  Sta7c  Data        (physical  features)  *  Dynamic  kWh  data  

Customer  Data  

Building  Data  

Demand  Response    Policy  Engine    

Customers  

Campus  Buildings  

Customer  Model  

Domain  Knowledge   Modeling  En77es  

Direct  Control/  Curtailment  Signal  

Voluntary  Curtailment    Message    

Reasoning  

Curtailment  Model  

Consump7on  Model  

1.  S.Aman,  Y.Simmhan,  and  V.K.Prasanna.  Improving  energy  use  forecast  for  campus  micro-­‐grids  using  indirect  indicators.  In  Workshop  on  Domain  Driven  Data  Mining,  IEEE,  2011.  2.  Y.  Simmhan,  V.  K.  Prasanna,  S.  Aman,  S.  Natarajan,  W.  Yin,  and  Q.  Zhou.  Towards  data-­‐driven  demand-­‐response  op7miza7on  in  a  campus  microgrid.  In  ACM  Workshop  On  Embedded  Sensing  Systems  For  

Energy-­‐  Efficiency  In  Buildings.  ACM,  2011.  3.  S.  Aman,  W.  Yin,  Y.  Simmhan,  and  V.  K.  Prasanna.  Machine  learning  for  demand  forecas7ng  in  smart  grid.  In  Southern  California  Smart  Grid  Research  Symposium,  2011.  4.  Y.  Simmhan,  S.  Aman,  B.  Cao,  M.  Giakkoupis,  A.  Kumbhare,  Q.  Zhou,  D.  Paul,  C.  Fern,  A.  Sharma,  and  V.  K.  Prasanna.  An  informa7cs  approach  to  demand  response  op7miza7on  in  smart  grids.  Technical  

report,  2011.    

Demand  Response  (DR):  Adjustment  of  electricity  consump7on  during  peak  load  periods  in  response  to  a  signal  from  the  u7lity.      Our  Research  Focus  •  Develop  reliable  forecas7ng  models  for  consump7on  and  

curtailment  to  assist  campus  facility  managers  •  Design  Policy  Engine  for  DR  op7miza7on  on  campus  •  Map  results  from  campus  experiments  to  city-­‐scale  

Email:  [email protected]  Web:  hfp://www-­‐scf.usc.edu/~saman/    

Benefit  of  Analy&cs  for  U&lity   Benefit  of  Analy&cs  for  Customers  •  reliably  forecast  electricity  demand  •  plan  genera7on  and  supply  •  implement  DR  programs  •  decide  7me-­‐of-­‐use  pricing  •  determine  baselines  for  curtailment  

•  interpret  historical  electricity    consump7on  •  adjust  consump7on  according  to  forecasts    •  adopt  energy-­‐efficient  prac7ces  •  schedule  on-­‐site  genera7on  •  effec7vely  par7cipate  in  DR  programs  

Modeling  Method  

Approach   Pros  &  Cons  

Time-­‐Series  Model  (Holt-­‐Winters  &  ARIMA)  

Uses  previous  7me  series  energy  use-­‐values  to  predict  future  values  

• Domain  knowledge  not  required  •  Addresses  variable  trends/seasonality  •  Requires  model  parameter  es7ma7on  

Regression  Tree  Model  

Maps  a  variety  of  direct  and  indirect  features,  Xt  to  the  output,  yt

•  Time-­‐invariant  model  •  Easy  to  interpret  from  domain  perspec7ve  • Making  predic7ons  is  fast  •  Predic7on  possible  with  missing  data  

Our  proposed  method:  Causality-­‐driven  Hybrid  Model  

Maps  current  features,  Xt  and  regressive  values  of  causa7ve  features,  αt,  to  the  output,  yt  

Causa7ve  features  are  found  using  the  Granger  Causality  method  that  determines  causal  rela7on  between    7me  series  of    different  features  

•  Efficient  model  based  on  causa7ve  features    •  Befer  predic7ve  power  •  Hidden  factors  not  captured  •  Requires  parameter  es7ma7on  •  Time  lags  affect  causality  results  •  Combinatorial  explosion  with  increase  in  the  number  of  features  

Goal:  Design,  develop,  and  field  ML  models  that  work  reliably  for  following  granulari7es:  •  Temporal:  15-­‐min  and  Daily  •  Spa7al:  Building-­‐level  and  Campus-­‐level    

Goal:  Determine  the  following  :  •  Depth  of  curtailment  (how  much  can  be  reduced)  •  Latency  of  curtailment  (how  soon  can  it  be  reduced)  •  Dura7on  of  curtailment  (how  long  can  it  sustained)  

0  

50  

100  

150  

200  

250  

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

DR  Signal  Electricity  Consump7on    

Latency                  Dura7on  Depth  

Building  Strategy  

Type  of  Curtailment  

Factors  affec&ng  curtailment  

Modeling  approach  

Direct  Building  Control  

• Global  temperature  reset  

• HVAC  Duty-­‐cycling  

outdoor  temperature  occupancy  ini7al  physical  state  type  of  equipment  age  of  structure  

Supervised  learning    (ongoing  work)  

Voluntary  Customer  Control  

•  turn  off  ligh7ng  •  turn  off  plug-­‐load  equipment  

Customer  par7cipa7on  (voluntary  &  variable);  Customer  comfort  levels  

Markov  Chains  (ongoing  work)  

Goal:  provide  decision  support  for  DR:  Determine  the  following:  

•  the  buildings  for  load  curtailment  •  the  subset  of  customers  to  target  for  voluntary  curtailment  signals  

•  the  set  of  strategies  for  individual    buildings  and  customers  

 Challenges:  •  Balance  curtailment  and  comfort  levels  •  Adapt  to  changing  customer  preference  •  Some  buildings  have  manager  override  

Current  DR  Policies:  •  Ad-­‐hoc  or  heuris7cs-­‐based  •  Address  sta7c  and  short  term  op7miza7on  

Causal  Network  

Our  Proposed  Modeling  Approach  (ongoing  work)  •  Data-­‐driven  approach  based  on  Markov  Decision  Processes  (MDP)  

•  Op7mal  policy  for  each  building  type  and  customer  segment  

•  Each  en7ty  is  represented  in  terms  of  variables:    predicted  curtailment,  frequency  of  over  and  under  curtailment,  etc.  

•  En77es  are  segmented;  can  migrate  between  segments  based  on  behavior