43
This work is distributed as a Discussion Paper by the STANFORD INSTITUTE FOR ECONOMIC POLICY RESEARCH SIEPR Discussion Paper No. 12-006 Optimal Multi-Phase Transition Paths toward A Stabilized Global Climate: Integrated Dynamic Requirements Analysis for the ‘Tech Fix’ By Paul A. David and Adriaan van Zon Stanford Institute for Economic Policy Research Stanford University Stanford, CA 94305 (650) 725-1874 The Stanford Institute for Economic Policy Research at Stanford University supports research bearing on economic and public policy issues. The SIEPR Discussion Paper Series reports on research and policy analysis conducted by researchers affiliated with the Institute. Working papers in this series reflect the views of the authors and not necessarily those of the Stanford Institute for Economic Policy Research or Stanford University

Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

This work is distributed as a Discussion Paper by the

STANFORD INSTITUTE FOR ECONOMIC POLICY RESEARCH

SIEPR Discussion Paper No. 12-006

Optimal Multi-Phase Transition Paths toward A Stabilized Global

Climate: Integrated Dynamic Requirements Analysis for the ‘Tech Fix’ By

Paul A. David and Adriaan van Zon

Stanford Institute for Economic Policy ResearchStanford UniversityStanford, CA 94305

(650) 725-1874

The Stanford Institute for Economic Policy Research at Stanford University supports research bearing on economic and public policy issues. The SIEPR Discussion Paper

Series reports on research and policy analysis conducted by researchers affiliated with the Institute. Working papers in this series reflect the views of the authors and

not necessarily those of the Stanford Institute for Economic Policy Research or Stanford University

Page 2: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

OptimalMulti‐PhaseTransitionPathstowardAStabilizedGlobalClimate:

IntegratedDynamicRequirementsAnalysisforthe‘TechFix’

By

PaulA.DavidH andAdriaanvanZonI

HStanfordUniversity,AllSoulsCollege,OxfordandUNU‐MERIT(NL)IUNU‐MERITandSBEUniversityofMaastricht(NL)

Version1.1:28November2011Version2:5January2012Version:3:12June2012

Version:4:15September2012

ABSTRACT

Thispaperanalyzes the requirements fora socialwelfare‐optimized transitionpath towardacarbon‐freeeconomy,focusingparticularlyontheroleofR&Dandothertechnologicalmeasuresto achieve timely supply‐side transformations in the global production regime thatwill avertcatastrophic climate instability.We construct a heuristic integratedmodel ofmacroeconomicgrowthconstrainedbygeophysicalsystemwithclimate feedbacks, includingextremeweatherdamages from global warming driven by greenhouse gas emissions, and ‘tipping point’ forcatastrophic runaway warming. A variety of options for technology development andimplementation, and the dynamic relationships among them will be examined: interactionsamong the, each having a distinctive primary functionality CO2 emissions control. Thespecificationsrecognize(i)theendogeneityandembodimentoftechnical innovations,and(ii)theirreversibilityandlonggestationperiodsofrequiredintangible(R&D)andtangiblecapitalformation. Efficient exercise of these options is shown to involve sequencing differentinvestment and production activities in separate temporal “phases” that together form atransitionpathtoacarbonfreeeconomy.Tostudytherequirementsofatimely(catastrophe‐averting)transition,weformulateasequenceofoptimalcontrolsub‐problemslinkedtogetherby transversality conditions, the solution of which determines the optimum allocation ofresources and sequencing of the several phases implied by the options under consideration.Ours is “planning‐model” approach, which departs from conventional IAM exercises byeschewing assumptions about the behaviors of economic and political actors in response tomarketincentivesandspecificpublicpolicymeasures.Solutionsforeachofseveralmulti‐phasemodels yields the optimal phase durations and rates of investment and production thatcharacterize the transition path. Sensitivity experiments with parameters of economic andgeophysical sub‐systems provide insights into the robustness of the requirements analysisundervariationsinthetechnicalandgeophysicalsystemparameters.

JELcodes:Q540,Q550,O310,O320,O330

Keywords:globalwarming,tippingpoints,catastrophicclimateinstability,technologyfixoptions,R&Dinvestments,capital‐embodiedinnovations,optimalsequencing,IAMandDIRAMpolicydesignapproaches,multi‐phaseoptimalcontrol,sustainableendogenousgrowth

Contactauthorsbyemail:[email protected][email protected]

Page 3: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐1‐

OptimalMulti‐PhaseTransitionPathstowardaStabilizedGlobalClimate:

IntegratedDynamicRequirementsAnalysisforthe‘TechFix’

1.BackgroundandMotivation

ClimatechangeisnowconvincinglylinkedtoincreasingatmosphericconcentrationsofGHG(greenhousegases).1Amongthosewhohaveexaminedtherelevantscientificdatatherehasbeenagrowingconsensusthatthisposesaninter‐relatedhostofworrisomeproblems.Moreover,ratherthanconvenientlygoingaway,orbeinggraduallybeingaccommodatedbyadaptationsonthepartoftheworld’speoples,theseproblemsarelikelytogrowworse.Whileonmanyspecificpointsofclimatescienceuncertainties,doubtsanddisagreementpersist,theunderlyingphysicalandchemicalprocessesresponsibleforanthropogenic“greenhouseeffects”warmingtheEarth’surfacearefirmlygrounded,asistheaccumulatingmassofempiricalobservationsattestingtotheriseinmeanglobaltemperaturethathastakenplaceduringthepasttwocenturies.2Together,thesefindingsfirmlyundergirdthescientificallyinformedwarningsabouttheconsequencesofcontinuing“businessasusual”basedonburningfossilfuels.

TherisinglevelsofmoisturethatwillaccompanythewarmingoftheEarth’ssurfaceinthetemperatelatitudescanbeexpectedtodrivemorefrequentandmoresevereweathercycles,bringingheavierprecipitation,strongerwindsandweather‐relateddamagestophysicalpropertyandlossesofhumanlife.Moreover,itismorethanconceivablethatatsomepointinthenotverydistantfuturecontinuingthecurrentrateofGHGemissionsandunimpededglobalwarmingwillusherinanageofcatastrophicallyabruptclimatechanges,characterizedbychaoticinstabilitiesinEarth’sclimates.Thiswoulddrasticallycurtailthefractionoftheworld’scurrentpopulationthatwouldbeabletoachieveastateof“adaptivesurvival”preservingsubstantialresemblancestopresentstateofcivilization.

MitigatingenvironmentaldamagesfromCO2,methaneanddangerousparticulateemissionsbymoreextensivelydeployingknowntechnologies,andreplacingcarbon‐

1SeeIPCC(2007)andtheSternReview(Stern,2006)foranextensiveoverviewofthecausesandconsequencesofclimatechange.

2SeeSolomonetal.(2007)onthephysicalbasisandscientificevidenceforIPCCconclusionsregardingglobalwarminganditssourcesinhumanactivity.“Climateskepticism”and“globalwarmingdenial”shouldnotbeconfusedwiththegenerallyacknowledgedscientificuncertaintiesthatstillsurroundthevaluessomekeyparametersinquantitativemodelsoftheprocessesinvolvedinanthropogenicglobalwarming‐‐e.g.,themagnitudeofthe“climatesensitivity”(linkingchangesinmeanglobalsurfacetemperaturetorelativegaininatmosphericGHGconcentration),andthecriticalleveloftemperaturegainthatwouldtriggerirreversiblerunawaywarmingandcatastrophicclimateinstability.Seefurtherdiscussionbelowanddetailsinfootnotes6‐7.

Page 4: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐2‐

basedproductionsystemswiththosethatutilizenewandeconomicallyefficient“carbon‐free”technologies,aretwoobviouscoursesofactionthatmaybeabletoavertthesegrimfutureprospects.Togetherwithstillmoreradicaladaptationsthatpossiblymaybeachievedbygeo‐engineeringtocaptureandsequesterexistingatmosphericcarbonandmethane,theseformthecoreofthetechnologicaloptionswhosedevelopmentanddeploymentarethefocusofthisexploratoryexaminationofthedynamicsofafeasibleandtimelytransitiontoasustainablelow‐carbonglobaleconomy.

AprogramofpublicandprivateR&Dinvestmentsyieldingdirectedtechnicalchangesofthiskindshouldbeviewedasa“supply‐sidestrategy”inthecampaigntostabilizeglobalGHGconcentrationsataviablelevel.Sucha“technologyfix”programwouldbecomplementarytocarbontaxes,andthe“capandtrade”schemesthathaveenvisagedthedevelopmentofaglobalmarketforcarbon‐emissionspermitsandderivativeinstruments.Theselattermechanismswouldworkprimarilybyraisingthecurrentandexpectedfuturerelativepricesofcarbon‐intensivegoodsandservices.Weretheytohavethateffect,thevolumedemandforgoodsandservices(e.g.,electricitysupply,transportation)thatareespeciallycarbon‐intensiveintheirmethodsofproduction,wouldbereduced.Whereasthe“carbonemissions‐pricing”policyproposalstomeetthechallengesofclimatechangearedirectedtowardachievingsameultimategoalasthe“technologyfix”strategy,theygiveatbestsecondarynoticetotherolethatpubliclysupportedR&Dinvestmentsdirectedtowardsthegenerationofcarbon‐freetechnologiesmayplayinthedynamicsofatransitiontoanew,radicallylesscarbon‐intensivesystemofproductionfortheworldeconomy.The“supply‐side”approachthatthispaperexplores,however,shouldnotbeunderstoodmerelyasanoptionalsupplementto“demand‐management”throughemissions‐pricingpoliciesthattodatehavereceivedpreponderantanalyticalandpracticalattentionintheeconomicsliteratureonclimatechange.PreviouseconomicargumentsforgreaterinvestmentinR&Danddiffusionoftechnologicallyenhancedproductionmethodsarerelativelyfewandfarbetweenintheeconomicsliteratureconcernedwithclimatechange,butitisnotablethatacademicpapersinthatgenrehadbeguntoemergeevenbeforethedebacleoftheattemptatthe2009CopenhagenConferencestrengthenandexpandtoKyotoTreatyprotocols.3Neithertheseearly

3InthewakeoftheSternReport(2007)andtheCopenhagenConferenceeconomicargumentsforgreaterpublicandprivateinvestmentinR&D,andsubsidiesforthediffusionofadvancedtechnologiesdirectedtoloweringCO2emissionsbeganappearingwithgreatermorefrequently–althoughthesetypicallyremainedunspecific.Earlystatementsproposinga“technologyfix”approachincludeArrow,Cohen,Davidetal.(2008),NelsonandSarewitz(2008),Klemperer(2007/2009),David(2009),David,Huang,SoeteandvanZon(2009),andHendry(2010).None,toourknowledge,venturetoexaminetherequiredbehaviorofdirectedR&DandcapitalformationembodyinginnovationsthatwouldlowertheglobalrateofGHGemissionsperunitofrealoutput,whichisthefocusofthepresentwork.Suchtheoreticaland

Page 5: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐3‐

foraysintothisarea,norotherworkstoourknowledge,venturedtoexaminetherequireddynamicsequencingofdirectedR&Dandothertechnologypoliciesaffectingpublicandprivatesectorinvestmentsrequiredforatimelytransitiontoalow‐GHGemittingproductionregime,thepolicyissuethatisthefocusoftheresearchreportedhere.

IthasbeensuggestedthatCO2emissionsabatementachievedbytheintroductionofcarbon‐taxesor“cap‐andtrade”schemesfor“pricing”transferableemissionspermits,couldindirectlyachievethewhatpublicresearchexpendituresandtaxsubsidiesforprivateinvestmentin“green”R&Dwouldotherwisehavebedirectedtoaccomplish.4Theargumentisthattheeffectofraisingthecostofcarbon‐intensiveprocessesandproductstoproducersandconsumerswillbetostimulateproducers’demandsforoffsetting,carbon‐freetechnologiesandinduceincrementalprivatefundingofthesearchofthoseinnovativemethods.

Althoughthatisapossibility,sotooistheoppositeoutcome.Ifraisingcarbontaxesdoeseffectivelycurtaildemandforhighlycarbon‐intensiveproducts,theresultmaywellbeagenerallyadverseexpectationsaboutmarketgrowthandaconsequentweakingofincentivesforR&Dinvestmentinallproductiontechniquesforinthoselinesofbusiness.5Moreover,theimpositionofcarbontaxationthatislikelytobemaintainedandevenriseinthefuturemightwellhavetheperversefirst‐ordereffectofdepressingthepresentvalueoffossilfuelstocksintheground,bringingforwardintimetheexploitationofthoseresourcedepositsandtendingtodepresspricesinmarketsfor

computationalmodellingthathasbeenundertakentodatehaslargelyfollowingthepioneeringworkofGoulderandSchneider(1999),whichisnotedbelow.

4Amongthepioneeringeffortstoexaminethepropositionthatraisingthepriceofcarbonwouldinducebeneficialprivateinvestmentsintechnologicalinnovation,seetheworkingpapersbyNordhaus(1997),andGoulderandMathai(1998).GoulderandSchneider(1999)carriedthislineofinquiryfartherbyusingacomputablemulti‐sectorgeneralequilibriummodeltoquantitativelyassesstheextenttowhichrealGDPcostsofimposingCO2abatementtaxeswouldbealteredbytheeffectsofendogenoustechnologicalimprovementsresultingfromR&Dinvestmentinducedbytheeffectofthetaxontherelativepricesofcarbonvs.non‐carboninputs.Thismodellingexercisedidnot,however,undertakeanevaluationoftheefficacyofthehypothesizedinducedtechnicalchangesintermsofthemagnitudeoftheabsoluteabatementoftheeconomy’saggregateCO2emissionsrate.Morerecentexercisesinintegratedclimatepolicyassessmenthaveundertakentodoso,asisnoticedbelow(insection2).

5Thequestioncannotbesettledontheoreticalgrounds,butseeGans(2009)foranalysisoftheconditionsunderwhichcarbon‐taxeswouldhaveaperverseeffectofdiscouragingcarbonemissions‐reducingtechnologyresearchandinnovation.Acemoglu,Aghion,Bursztynx,andHemous(2010)exploretheconditionsforcarbontaxesinagrowthmodelwithenvironmental(carbonemissions)constraintsandendogenousdirectedtechnicalchangedrivenbyprivatesectorR&Dinvestments.Theyfindthatwithasufficientlyhighelasticityofsubstitutionbetweenhighlycarbon‐intensityandlowcarbon‐intensityinputsinproduction,carbontaxescanswitchdirectedR&Dto“clean”(lowcarbonintensity)technologicalresearch,andthatthereisacomplementaryrolefor“temporaryR&Dsubsidies”.Butthecomplicationsof“GreenParadox”effectsofcarbontaxes(seefn.6,below),andcarbon‐savingR&Dsubsidiesarenotaddressedbytheirtheoreticalanalysis.

Page 6: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐4‐

carbonfuel.6Beyondthispossibledrawbackinrelianceuponcarbontaxes,thereisstillgreaterroomfordoubtsregardingtheefficacyofdownstreamcap‐and‐tradeschemes,whichpricetheemissionsfromburningcarbon,butnotthecarbonmaterialthatistheenergysource.

Itisnotatallobviousthatputtingapriceontheemissionsfromtheburningofhydrocarbonsnecessarilywouldsufficetoraisethecombinedpriceofthematerialanditscombustion,sothepossibilityofaperverserelativepricechangecannotbedefinitivelyruledout.7Bycontrast,theproposalofan“up‐stream”implementationofthecapandtrademechanism(seeRepetto2011)isadministrativelyattractivebecauseeffectiverestrictionofthevolumeoffossilfuelsavailablefrom“firstsellers”itwouldnecessarilyraisethecostofcarbon‐basedenergysources.Furthermonitoringandenforcementofthe“caps”wouldbegreatlysimplifiedbythelimitednumberof“firstsellers”andtheeaseofidentifyingthem–especiallyincomparisonwiththemyriaddownstreamusersthatwouldrequireCO2emissionpermits.Theoreticalanalystsoftheproblematic“GreenPardox”effectofcarbontaxesactuallyincreasingtheextractionanduseofcarbonfuelsareagreedthatthisperverseoutcomewouldnotmaterializeifahighenoughadvaloremtaxratecouldbeimposedsoonerratherthanpromisedforthefuture.But,asefficientasadministrativelyfeasibleasitmightbeforcentralgovernmentauthoritiesinthelargesteconomicstoquicklyimposecoordinatedtightregulatory

6Discussionofthelatterproblemwasbroachedfirstbyinn(2008,2009:pp.10‐13)whoprovidedalabel‐‐“TheGreenParadox”–underwhichatheoreticalliteraturesoondeveloped(see,e.g.,vanderPloegandWithagen(2010),Hoel(2010).l,thattheprospectofinnovationsthatwouldprovidemoreattractivesubstitutesforfossilfuelasanenergysourcewoulddepressthevalueofthosenaturalresourcedeposits,leadingtheownerstoraisethecurrentrateofextractionanduseofcarbonasanenergysource–therebyoffsettingtheCO2‐mitigatingintentionofpoliciesofferingpublicsubsidiesfor“greeninnovation.”

7Thissourceofambiguityregardingtheeffectsofusingthe“capandtrade”mechanismtosetapositivepriceoncarbonemissions,itshouldbeemphasized,isdistinctfromtheconcernsaboutthepossibledisincentiveeffectsofcarbontaxes’negativeimpactsondemandsforcarbon‐intensivegoodsandservices–e.g.,thoserelyingheavilyonproductionprocessesusingenergysourcessuchascoal,oilandnaturalgas.Thetheoryofexhaustiblenaturalresourcepricing,followingtheclassicworkofHotelling(1931)tellsusthattheresourcevaluationmustriseattherateofinterest,andwithmarginalextractioncostsconstant,thepriceoftheflowofmaterialstradedinthemarketmustriseparipassuswiththatoftheresourcedeposit.Subsequenttheoreticalcontributionsonexhaustibleresourceeconomics,e.g.Heal(1976),Dasgupta,HealandMajumdar(1978),DasguptaandHeal(1980)‐‐havepointedoutthatdownwardpressureextertedbyanticipationsofadvancesin“backstop”technologiespermittingsubstitutionofcarbon‐freeenergysources(and,moregenerally,moreenergy‐efficientproductionprocessinnovations)wouldlowerthelevelsfromwhichthemarketpricesofcoal,oilandnaturalgaswouldbetrendingupwards.Thiseffectwouldworktoslow,ifnottermporarilyhaltthediffusionofthoseinnovations.Whetherthemagnitudeofthefirst‐orderoffsetonpricesincarbonmarketswouldbelargeenoughtoperverselyneutralizetheintendedimpactofaglobalcap‐and‐tradescheme,orsolargeastotemporarilylowertheafter‐taxunitcostofburningcarbonfuels,isadistinctempiricalquestion(ofobviouspolicy‐relevance)thatdeservesmoreattentionthanithasreceived.Onfirstconsideration,itseemsthattheanswermustturnontheextentoftheanticipateddemanddisplacementinrelationtothesizeoftheresourcereservesthatcouldbeaccessedfromthemarketsinquestion.WearegratefultoLawrenceGoulderobservationthatthelaterconsiderationmakethemagnitudeoftheoffset‐effectsgreaterinthecaseofhighqualityoilreservesthanitwouldbefortheworld’sexistingcoaldeposits.

Page 7: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐5‐

capsonfirstvendors,suchactionswouldbetantamounttodirectlyrestrictingextractionandimportationoffossilfuels.Thepoliticaleconomyofdomesticlegislationandinternationaltreatynegotiations,however,presentlyandforsometimetocomewouldmilitatestronglyagainstpracticalimplementationofthisapproachtofixingthegreenhousegasexternality,doesnotseemtogiveitanyadvantagevis‐à‐visthemorefamiliar“downstream”cap‐and‐trademechanism.8

Inthesecircumstancesitshouldberemarkedthatthepresentandlikelyfuturesocialandpoliticalresistancestostringentandenforceablecarbon‐pricingpoliciesmightbeweakenedweretherecrediblegroundsforanticipatingthattheeconomicwelfarecostsentailedinswitchingtoalternativeenergysourceswouldbesignificantreducedbyaconcertedmulti‐nationalprogramofdirectedtechnologicalinnovation.Whilethedynamicsofthistechno‐politiconexuswillneedtobethoughtthroughcarefully,theargumentforsystematiceconomicanalysisofthepotentialroletechnologypoliciesineffectingatimely,climatestabilizingtransitiontoaviable“lowcarbon”economytransitionthereforecan,atleastforthetimebeing,restinpartonthepossibletemporalasymmetryofcomplementary(orsuper‐modular)relationshipsbetweenthetwomajorpolicyapproaches.

Whenviewedinthatexpandedandexplicitlydynamicperspective,aprogramthatstartswith“techfix”maymakethatpolicyinitiativecomplementaryto(andnotasubstitutefor)fiscalandregulatoryinstrumentsdesignedtogetmarketpricesofcarbonfueltoreflecttheirmarginalsocialcosts.Thisconsiderationprovidesanothercompellingreasonforaccordinggreaterattentiontotherequirementsofa“technologypush”strategythanithasreceivedinpreviousandcontemporaryeconomicresearchonclimatechangepolicy.

2.Preliminariesformodellinga“TechFix”strategy’sdynamicrequirements

Allofthepreviouslymentionedsupply‐sideoptions,however,requirepayingexplicitattentiontomajorchangesinproductionsystemsand/orchangesinlife‐styleandconsumptionpatterns.Furthermore,toexplorethedynamicsoftransitionstowardsalesscarbon‐intensiveproductionregimeandtherolethatresearchpolicywouldhavetoplay,itisnecessarytoconsiderthetemporaldurationofR&Dactivitiesdirectedtoalteringtheperformancecharacteristicsofvariousclassesoftechnology,aswellasthedurationoftangiblecapitalformationprocessesrequiredbytechnologiesthatmustbe“embodied”innewphysicalplantandequipment.Suchquestionscanbemostusefully

8Indeed,itseemmorethanlikelythatgovernmentregulationsbanningunlicensedfirstsalesoffossilcarbonsourcesofenergyistantamountstateexpropriationandcontrolofthoseformsofnaturalresourcewealth,andwouldmeetwithstrongpoliticaloppositionfrompowerfuleconomicinterestsas“defactosocialization”oftheirprivatelyownedmineralwealth.

Page 8: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐6‐

exploredinthispaperwithintheframeworkofaheuristicmodelofendogenousglobaleconomicgrowth,whichistheresearchapproachpursuedhere..

Itisnolessessentialtobeginbyexplicitlytakingintoaccountthedynamicbehaviorofthegeophysicalsystemwithinwhichtheglobaleconomyisset.Thatlargerphysicalcontextquiteobviouslyimposesbothnaturalresourceandenvironmentalconstraintsupontheproductionregime,aswellasimpingingdirectlyuponhumanwelfare–inthisinstancethroughthecontinuinganthropogenicemissionsofgreenhousegasesandtheirdestabilizingimpactsuponglobalclimateandtheaccompanyingalterationofweatherpatterns.

2.1Geophysicalsystemconstraints

TherearenowfirmscientificfoundationsforthegrowingconcernsthattoallowGHGemissionstocontinueatanythingclosetotheirpresentratemaysoonsetinmotionirreversiblerunawayglobalwarming,withpotentiallycatastrophicconsequencesforglobalecosystemsandforhumanlifeasweknowit.Thisconclusionhassurvivedthepersistingdoubtsvoicedbyadwindlingfringeofacademic“climatechangesceptics”andoutrightdeniersoftheseriousnessoftheproblemsthatcontinuedglobalwarmingwillpose.9

ThemassofevidenceprovidedbychemicalanalysisofthegasesinthedeepicecoresthathavebeenextractedfromArcticandmountainglaciersduringthepastdecade‐and‐a‐halfhasallowedclimatescientiststodocumentahistoryofabruptalterationsoftheEarth’sclimate(s)duringpre‐Holoceneepoch.TherecordpointstothepossibilitythatevenmodestglobalwarmingdrivenbycontinuedanthropogenicemissionsofGHGcouldtriggertheonsetofirreversibleglobalwarming,butaformofclimateinstabilitythatduringthemostrecenttransitionbetweenglacialandstadialepochsfeatureda

9DespitetheevidencepresentedbySolomonetal.(2007),doubtshavebeenraisedaboutconclusionthatthewarmingtrendobservableduringthesecondhalfofthe20thcenturyresultedfromradiativeforcingduetohumanactivities.ThesedoubtsarerootedincriticismofIPCCmodelsofgeneralclimatecirculationmodels(GCMs)onaccountoftheirpoorperformanceinpredictingthehighfrequencyandhighrelativeamplitudevariationsinglobalclimateduringthepast50‐60years.See,e.g.,Scarfetta(2011)andreferencesthereinforstudiesshowingthatthelattervariationscanbemoreaccuratelypredictedbystatisticallyfittingharmonic(Fourierseries)regressionmodelsthatcombineindicatorsofmultipleastronomicalcycleswithdifferingfrequencies.Suchresearch,however,shedsscantlightonthedynamicsofthephysicalforcingprocessesthatwouldaccountcasuallyfortheobservedstatisticalcorrelation,nordoestheexistenceofunexplainedfluctuationsaroundatrendvitiatethepositivestatisticalsignificanceofthetrenditself.Recenttheoreticalefforts,suchasthatbyStockwell(2011),offergeneralphysicalbasisfortheskeptics’contentionthatperiodicradiativeforcingfromastronomicalsources,notaccountedforintheIPCC’sGCMs,couldberesponsibleforthelatter’sfailuresinpredictingrecenthighfrequencyvariationsobservedintheEarth’stemperature.Thetroublewiththislineofspeculativecriticismseemsobviousenough:variationsinsolarradiationarenotthoughttobeaconcurrentlyemergingfeatureinthehistoryofourplanet’sastronomicalenvironment.Consequentlyitishardtounderstandhowthatphenomenoncouldaccountforthe“hockey‐stick”up‐turnobservedinthelasthalf‐millennium’sworthofdataindicatingthelong‐termtrendintheEarth’stemperature.

Page 9: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐7‐

prolongederaof“climateflickering.”10Thislattertermreferstoaclimateregimecharacterizedbyhighfrequencyswitching(withperiodicitiesasshortas3to5years)betweenmarkedlywarmerandcooleraveragetemperatures‐‐thelatterdifferingbyasmuchashalfthe12oC.rangebetweenthelowestandhighestextremesrecordedduringEarth’sglacialandstadialepisodes.ThepossibilityofcatastrophicstatechangeofthatsortunderminesthesanguinesuppositionsthatthecontinuedemissionsofCO2wouldsimplyresultinasmoothtransitiontoawarmerglobalclimatetowhichhumansocietieswouldbeabletosuccessfullyadapt.

Thepositivefeedbacksthatwoulddriverunawayglobalwarmingdynamics‐‐anditsmanifoldentaileddamagestohumanwelfare–arethosegeneratedbytheamplificationofthelinkagebetweenelevatedGHGconcentrationlevelsofanthropogenicoriginsandstrongerradiativeforcingthatproducesfasterwarmingofEarth’ssurface.Thewarmingatvariouspointstriggersself‐reinforcingalterationsinthebehaviourofthegeophysicalsystem.ThesefeedbackprocesseswouldoperatetoincreasethestrengthoftheradiativeforcingresultingfromagivenatmosphericGHGconcentrationlevel;boostthesurfaceabsorptionofheat,andhencetherateofwarmingproducedbyagivenlevelofradiativeforcing;supplementdirectanthropogenicemissionsofCO2bytriggeringreleasesofmethane(amuchmorepowerfulGHG)–which,atlowertemperatures,wouldhaveremainednaturallysequesteredinthepermafrostbeneathglacialiceandinthemethanehydrateslyingontheshallowseabedatthenorthernedgeofthearcticocean.

Someoftheinterveningstepsofsuchsequences(depictedschematicallyinFigure1)haveacascade‐likesub‐structurethatservetoextendandfurtheracceleratethepositivefeedbackprocess.11Forexample,glacialretreat,byloweringalbedo(thefractionofsunlightreflectedbytheearth’ssurface)intheaffectedregionsleadsimmediatelytogreaterlocalheatabsorption.Thisinturnpromotesthawingoftheexposedpermafrostandtheformationof“thawlakes”fromwhich(likeotherwetlands

10HallandBuhl(2006)reviewthefindingsfromrecentadvancesinclimatescience,andpointoutthatitsimplicationsthoroughlyunderminethesuppositionlongmaintainedbymainstreamcontributorstotheliteratureonenergyandenvironmentaleconomics,namely,that“climatechange”drivenbyrisingGHGconcentrationlevelscouldbesatisfactorilymodelledasasmoothtransitiontoahigherequilibriumleveloftheglobalmeansurfacetemperature–ashasbeenassumedbytheintegratedassessmentmodels(IAMs)thathavefiguredprominentlyandremainsalientintheenergyandenvironmentaleconomicsfield.SeeHallandBehl(2006:pp.461‐462)foradetaileddiscussionofthisandrelatedfeaturesofthegeophysicalsub‐systeminNordhausandBoyer’s(2000)updatingoftheoriginal(Nordhaus1994)DICEmodel,TheassumptionthatradiativeforcingduetotheaccumulationofatmosphericCO2woulddriveasmoothtransitiontoahigherequilibriumtemperatureoftheEarth’ssurfaceisretainedbyNordhaus(2010)inthelatestupdateofDICE(2010),aswellasintheannualizedversionofthemodelthatCai,JuddandLontzek(2012)createasabasisforDSICE,astochasticversionofthemodel.

11SeeStern(2007),pp.11‐14,forashortoverviewofthepositivefeedbacks,includingreductionofalbedothroughreducedice‐coverageofthearcticregions,thawingofpermafrostandinducedreleaseofmethane,aswellasthereleaseofmethanefromoceanichydratestores.

Page 10: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐8‐

coveringdecayingorganicmaterial)methanewillbubbletothesurface.Similarly,thewarmingoftheupperocean,particularlyintheshallowerArcticwaterscandestabilizethemethaneclathratecompoundsthathadformedthere–and,moregenerallyinthedeeperocean–duringanearlierepoch.Similarly,warmingofthelargepeatdepositsinthearcticSiberianshelfwouldaugmentthereleaseofmethanefromthatnaturalsource.Methaneintheatmosphereisover20timesmorepotentthanCO2initsgreenhouseeffects,andsocloudsofthegas,bubblinguptothesurfaceandflowingquicklytotheatmospherebeingwillcausetheCO2‐equivalentconcentrationlevelandthestrengthofradiantforcingtospikeupwards.But,methane(CH4)isanunstablemoleculethatissubjecttoimmediatedegradationbyexposuretothewatermoleculecalled“OHradical,”whichsetsinmotionachemicalchainreactionthatwithinseveraldayswillhaveconvertedthenewlyaddedmethanemoleculestowaterandCO2.12Consequently,thestrongeffectuponradiantforcingofasuddenjumpinatmosphericmethaneconcentration(unlikethatofgainsinCO2ppmv)isonlytransientanditspersistingdirectresultupontherateofglobalwarmingwillbeequivalenttothatoftheadditional(unabated)CO2producedbythechemicalreactionsthatdegradeCH4.Asurgeinwarmingresultingfromaprolongedelevationoftherateofmethaneflux,nevertheless,maybesufficientlyextendedtoinducefurtherpositivefeedbackeffectsthatareself‐reinforcingandcontributetoraisethepersistingatmosphericconcentrationofCO2.13

CloudsofmethanegascouldbeabruptlyreleasedbythewarmingofshalloweroceanwatersalongtheArticOcean’sedges,sinceitisexpectedthatariseofonly2∘C.inwatertemperaturewouldbeenoughtodestabilizethemethaneclathratecompoundsthatareholdingCH4trappedinitscage‐likemolecularstructure.This,thehypothesized“ClathrateGun”effect–whichwouldoperateanalogouslytoproduceabruptmethanereleaseswhenthepermafrostretreated,nowthoughttobeaprimarymechanismofthepre‐historicepisodesofpronouncedhighfrequencytemperatefluctuationsthathaveleftarecordinthedeeparticice‐cores.14

12SeeArcher(2011:Ch5)foralucidexpositionofthemethanecycle,drawinglargelyonJacob(1999).TheOHradical(denotedOH●)isproducednaturallybytheeffectofsunlightonwater,whichcausesthelatertoloseahydrogenatom,andtoimmediatelystealonefromanavailablemethanemolecule‐‐yieldingH2Oandthemethylradical(CH3●),whichachainofsimplechemicalreactionsendsupproducing2stablemoleculesofwaterandoneofcarbondioxide.

13Whileitappearsthatthereislittlelikelihoodofthishappeningspontaneouslythroughnaturalevents(suchasdisruptionsofthedeepoceanseabed)thatwouldtakeplaceonlargeenoughscaletohavecatastrophicclimateconsequences,thesizeandinstabilityoftheEarth’smethanehydratereservesandtheuncertaintiessurroundthepresentstateofscientificknowledgeleadasobreclimatescientistlikeArcher(2011)tocharacterizethosepotentialitiesas“frightening”.

14Evenquitemoderatewarmingoftheoceanwatersalongthecontinentalshelvesisthoughttobesufficienttodestabilizethemethaneclathratecompoundsthathaveformedontheseabedinnorthern

Page 11: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐9‐

Yetanotherperversefeedbackloopinvolvesforestdie‐back.ThisworriesscientistsstudyingtheborealforeststretchingacrossthenorthernlatitudesofthenorthAmericancontinentandRussia‐‐azonewhosetreesrepresentbetween25and30percentoftheworld’sforestcover,andwhichisreportedtohaveexperiencedthemostpronouncedtemperatureincreasesobservedanywhereontheplanetduringthelastquarteroftwentiethcentury.InthenorthernlatitudeofSiberiathepredominantneedle‐sheddinglarchforestsarebeingreplacedbyevergreenconifersthatgrowmorerapidlyinthesummerwarmth,buttheevergreentreesabsorbmoresunlightandtheirexpansionisthuscontributingtotheglobalwarmingtrend.15

Thelossofpredictabilityoflocalenvironmentalchangesaccompanyingprofoundecologicaldamageandlossesofhumanlifeandwelfare,andthesocio‐economicrepercussionsthatwouldexacerbatetheprocesstherebysetinmotion,canbelefttotheimaginationatthispoint.Sufficeittosaythattheprospect,howeverremote,impartsconsiderableurgencytothetaskofdevelopingaworkableapproachtoidentifyingtherequirementsofaneffective“technologyfix”toavertingitsrealization.Ourmodellingapproachinthispaperbuildsuponthepioneeringworkofeconomistsonclimatepolicyanalysisrepresentedinso‐calledintegratedassessmentmodels(IAMs)thatprovideasimplifiedcharacterizationoftheessentialfeaturesofthegeo‐physicalsystem.16ThesequantitythelinkagebetweentheflowofGHGemissionsfromeconomicactivityandtheaugmentedradiativeforcingthatdriveshighermeanglobaltemperaturesattheEarth’ssurface(the“green‐house”effect).ModellingthecarboncycletakesaccountofthenaturalsequestrationofCO2intheforestsandoceans,andtheconsequentlaggedeffectintheadjustmentoftheaccumulatedatmosphericstockofGHG(equivalentCO2ppmv);the“climatesensitivity”parameterdescribestheequilibriummeansurfacetemperature’sresponsetoadoublingoftheCO2‐e

latitudes.Onthe“ClathrateGun”hypothesis,andit’srelevanceasanexplanationofabruptclimatechangeandthephenomenonof“climateflickering”attheendofthelasticeage,seeKennettetal(2003),Maslinetal.(2004),HallandBehl(2006),ReaganandMoridis(2007).Thehighfrequencyofthetemperaturefluctuationsrecordedintheice‐coresareheldtomilitateagainsttheearliertheorythatthisabruptandcatastrophicalterationoftheclimatesystemcouldhavebeenproducedbya“thermohalinecollapse”,whichwouldresultclimatecyclesofmuchlowerfrequencies.

15WhetherthisiscompensatedbytheirgreatercapacityforabsorbingCO2isnotclear.Ifsuchisthecase,itisbeingoffsetinthesoutherndrierborealzone,wherewater‐stressedtreesinthesummergrowlessrapidlyandtheforestsarebeingreplacedbygrasslandsandpasture.http://en.wikipedia.org/wiki/Boreal_forest#Climate_change

16ForsurveysandreviewsoftheevolvingfieldofresearchonIAMs,afterNordhaus(1993),seeDowlatabadi(1995),KellyandKolstad(1999),Parker,Letcher,Jakemanetal(2003),Ackerman,DeCanio,HowarthandSheeran(2009).

Page 12: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐10‐

concentrationintheatmosphere.17Withinthatcharacterizationofthephysicalframework,ourmodeladdsspecificationsoftheproductionsectorofanendogenousgrowthmodelinwhichdirectedR&Dexpenditurescanraisetheproductivityofnewlyformedcapitalgoodsembodyingnovel“carbon‐free”technologies,andhenceenhancetheeconomicefficiencyofthoseadditionstoaggregate(sustainable)productioncapacity.18Thisisthenexusthroughwhichpublic“researchpolicy”interventionsthatboostinvestmentsinscienceandR&Dcanpositivelyaffectsocialwelfarebyloweringthecostsofswitchingtoproductionsystemscharacterizedbylow,orinthelimit“GHGemissions‐free”technologies.19

Butinthismatterthetimingaswellasthemagnitudeofremedialactionisacriticalconcern.TheIntergovernmentalPanelonClimateChange(IPCC)hasconcurredintheconclusionthatthereisacriticalthresholdat2degreesC.ofglobalwarmingfromthe

17Forpurposesofourmodeldescribedbelow,atmosphericGHG(ppmv)concentrationlevelsaregivenbyaninitialbaselinelevelplusascalarfunctionoftheintegralof(CO2‐e)emissionsfromthebaselinedate,thelatterbeingproportionaltothemeanrateofCO2emittedperunitofoutputproduced(proportionaltoutilizedcapacity)andnotbeingabsorbedbytheforestsandtheupperandlowerocean.ThissimplificationignoresthelageffectsofemissionsonchangesinatmosphericCO2thatresultfromthecarbon‐cyclediffusionofthegasbetweentheatmosphereandtheupperocean,betweentheupperoceanandthelowerocean,andtheupperoceanandtheatmosphere.Inadditionitlinearizestherelationshipbetweentheatmosphericconcentrationofcarbonrelativetoitslevelatabasedate(Et/E0,inournotation)andtheabsolutegaininradiativeforcingfromtheatmosphere,Ft.–F0.WidelyusedIAMs‐‐e.g.,versionsofDICEduetoNordhaus(2002,2007)–typicallyrepresentthechangeinatmosphericradiativeforcingastakingtheformΔFt=η[log(Et/E0)–log(2)]withadjustmentsforthedirectandindirecteffectsofradiativeforcingfromtheupperandloweroceans.Ignoringthelatter,andthelagsintherelationshipbetweenchangesintheradiativeforcingandthoseinEarth’ssurfacetemperature,theparameterηistheapproximate“climatesensitivity”:theexpectedlong‐rungaininTrelativetoitsbaselevelresultingfromdoublingtheatmosphericC02concentration.Oursimplifieddynamicsofthegeophysicalsubsystemismoreacceptableinmodelingthetransitionpathstoclimatestabilizationthanitwouldbeinsimulatingthecourseofcarbonemissionsandtemperaturechangesoverthe600yearlongtimespanofoptimally”moderated”CO2emissionsenvisagedbyDICE(2007)anditsprecursorIAMs.

18Presently,R&Doutcomesarecompletelydeterministicinourmodel,butweenvisagetheintroductionofstochasticityinseveralrelationships,includingthisone.

19InproceedinginthiswaywehavenotignoredthecontroversialsuggestionadvancedbyWeitzman(2009b)thatthescientificuncertaintysurroundingthebehaviorofthegeo‐physicalsystem,suchasthedistributionofthe“climatesensitivity”parameter,leavesopenthepossibilityofcatastrophicoutcomesthatmayoccurwithvanishinglysmall“fat‐tailed”probability.Thedismalimplicationforeconomicpolicydesignwouldseemtobetheextremeformofthe“precautionaryprinciple”inwhichallotherconsiderationsareoutweighedbythisthreatandthewillingnesstopaytoavertitbecomeinfinite.Toacceptthatviewwouldmilitateutterlyagainstanyefforttopursuesocialwelfareoptimizingpolicyanalysiswithintheframeworkofanequivalentdeterministicsystem.Butwhiletheexistenceofa“fat‐tailed”distributionfollowsfromBayesianstatistics,asshownbyWeitzman’smathematicalresult,theimplicationsofhis“dismaltheory”concerningtheeconomicpolicyimplicationshavebeenfoundtocomefromtheassumedtheconstantrelativeriskaversion(CRRA)propertyofthetraditionsocialutilityfunctionthathasbeenpositedbyWeitzman,alongwithothereconomistsworkingthewelfareanalysisofclimatepolicy.Millner(2011),inalucidandinsightfulreviewofthecontroversyignitedbyWeitzman(2009b),showsthatthe“harmonicabsoluteriskaversion”(HARA)utilityfunction‐‐ageneralizationthetraditional(CRRA)utilityfunctionthatiswidelyusedinthefinanceliterature‐‐notonlyyieldsfinitewelfaremeasureswhenrisksarefat‐tailed;underplausibleparameterconditionsitalsomakespolicyevaluationsrelativelyinsensitivetothetailsoftheconsumptiondistribution.

Page 13: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐11‐

earth’spreindustrialmeantemperaturebeyondwhichtheprobabilityofbeingabletoavertcatastrophicrunawayglobalwarmingbeginstodropbelow50‐50.DuetothecumulativevolumeofpersistingGHGemissionsupuntilthispointintime,however,theworldalreadyiscommittedtoafutureriseinmeanglobaltemperature(relativetothepresent)ontheorderof0.5to1degrees–evenifcarbonemissionswerecompletelystopped.Evenifthe”tipping‐point”weresetata3degreegain,thisleavesrelativelylittleroomforfurtherwarmingwithoutcatastrophicconsequences,astheSternReportpointedout(Stern,2006:p.15).Theimplicationisthatundera“businessasusual”rateofGHGemissionstheremaynotbeverymuchtimeleftbeforethecriticalthresholdwillbecrossedandtheproblemfacingtheworld’spopulationwillbetransformedtooneoflearningtoadaptasbestwecantothealmostunimaginablemountingdamageandsocietaldisruptionsentailedincopingwithadestabilizedclimatesystem.

Againstthisworrisomebackground,itisaparticularlyharshfactofpresenteconomiclifethattomakemajorchangesinproductionsystemsalsotakesconsiderabletime(andresources).Thisisbecausethetransitionfromcarbon‐basedproductiontocarbon‐freeproductioninvolvesfirstthe(further)developmentofcarbon‐freealternativesandsecondlythesubsequentimplementationofthesealternativesthroughinvestmentintangiblecapitalformationprojects,includinginfrastructuremodificationsthatwillhavelonggestationperiods.Furthermore,thedevelopmentofthenewtechnologiesrequiredwillentailthecommitmentofresourcestoR&Dprojectsofuncertainandpossibleextendeddurations.TheclaimsoftheseprogramsoftangibleandintangibleinvestmentthereforewillpressuponconsumptionlevelsforsomeperiodwithoutyieldingresourcesavingsorsignificantlyloweringtherateofGHGemissions.

Thus,therealityoftransitioningtowardsacarbon‐freeeconomyintimetoavoidcrossingthecriticaltemperaturethresholdintoclimateinstabilitywillbe,atbest,anuncomfortable,unremittingandperilousjourneyforhumanity.TheparticularanalyticalchallengethatistakenupinthispaperishowbesttoscheduleR&Dexpendituresandrelatedtangiblecapitalformationatthemacro‐levelsoastomaximisethesocietalwelfare(ormorerealisticallyminimizethedamagetosocialwelfare)associatedwiththeentiretransitionpathtowardsacarbon‐freeproductionregimeinaGHG‐stabilizedenvironment,takingintoaccountthediversionofresourcesawayfromconsumptionthatthoseinvestmentsentail.Towardsthisendwehaveconstructedamulti‐phase,multi‐technologyendogenousgrowthmodelthatallowsfortheexpenditureofR&Dresourcesonthecreationandimprovementof“carbon‐freetechnology”andacknowledgesthatthisformofinvestmentdivertsrealresourcesfromconsumptionandhenceadverselyaffectssocietalwelfareintheshortrun(doing‘nothing’wouldhavenegativewelfareeffectsinthelongrun,however).

Takentogether,theeconomicandgeo‐physicalsub‐systemsposeatimingproblem,sinceoldcarbon‐basedtechnologiesgenerateCO2emissions,andpostponingtheimplementationofnew,carbon‐freetechnologiesreducesthetimeavailableforbuilding

Page 14: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐12‐

upnewcapacitywhilecumulativeemissionsofCO2(andotherGHG)remainbelowtheassociatedcriticalthresholdconcentration(andassociatedmeanglobalsurfacetemperature)thatcantriggertheonsetofclimateinstability.StartingsoonenoughtoundertaketheR&D(whichtakesbothtimeandresources)canmakeavailableabetterperformingfamilyoflow‐carbonandcarbon‐freetechnologiesintimetoembodythatknowledgeinnewproductionfacilitiesandavoidcrossingthat“tippingpoint”,buthowsoonissoonenoughwilldependupontherateofR&Dinvestmentsandtheirimpactontheproductivityofcarbon‐freeproductionfacilities,aswellastheeconomy’scapacitytoreplace“dirty”carbon‐usingcapacitywithacarbon‐freecapitalstock.

Thefollowingsectionofthepaperdemonstrateshowthisandrelatedquestionscanbeansweredbyformulatingandsolvingasequenceofoptimalcontrolsub‐problemsforeachdistinctivephaseinthetransitionfroma“business‐as‐usual”carbonbasedeconomytoasustainablecarbonfreeeconomy,andthentyingoptimizedphasestogetherin“stackedHamiltonians”bytheuseoftransversalityconditionsthatguaranteetheoptimalityofthetransitionpathasawhole.Thesub‐sectionsof2applythisapproachindevelopingincreasinglymorecomplicatedmodels,allconstructedonthebasisofthemostelementarygrowthmodel.Section3commentsonanumberofinsightsthatthethreepartialmodelsprovideaboutquestionsoftiminginexercisingvarioustechnology‐fixoptions.Italsoreportspreliminaryresultsfromtheuseofsensitivityanalysistoassesstheeffectsonoptimalinvestmentpathsofvariationsintheassumedlocationofclimate“tippingpoints”.ThepaperconcludesinSection4withabriefreviewofwhathasbeenlearned,whatremainstobestudied,andtheproximatenextstepsinpursuingthislineofresearchintothedesignandimplementationrequirementforasuccessfultechnologyfixforglobalclimateinstability.

2.Modelingthephasesofatimelytransitiontoa”carbon‐free”productionsystem

2.0Anincrementalmodel‐buildingagenda

Ratherthanundertakingfromtheoutsettospecifythestructureofanequivalentdeterministicdynamicalsystemthatincorporatesnumerousfeaturesofeachofthevariouspossibletechnologicalstrategiescouldbedeployedtostabilizeglobalclimate,weproceedtowardsthatgoalinastep‐by‐stepmanner,takingthreediscretepartialmodel‐buildingsteps,andinvestigatingwhatcanbelearnedaboutthedynamicsofanoptimaltransitionpathfromeachofthem,consideredseparately.

Westartfromabasicmodelinwhichtherearetwoavailabletechnologicaloptions,amaturecarbon‐intensivetechnologythatisembodiedinexistingfixedproductionfacilitiesandacarbon‐freetechnologythathasyettobedeployedbyappropriatecapitalformation.ThetableauinFigure1(below)providesasummaryoverviewofactivitiesthatdistinguishthethreephasesofthetransitionthattransformsthe

Page 15: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐13‐

economyofourBasicModelfromacarbon‐burning“businessasusual”regimetooneinwhichtheswitchtoproducingexclusivelywithcarbon‐freecapitalfacilitieshasstabilizedtheglobalclimate.Thetableau’shorizontalcolumnsindicatethetwodifferentproductiontechnologiesthatcanbeusedbythegenericeconomy,whereasthedifferentkindoftangible(andintangibleinvestments)thatmaybeundertakenareshownintherows.Theshading(inred,fortheBasicModel)showsthecombinationsofconcurrentinvestmentandproductionactivitiesthatarecompatiblewithefficientresourceallocationineachphaseofthetransitionpath.

Next,weintroduceintotheBasicModelset‐upthepossibilityofundertakingR&Dexpendituresduringthe“businessasusualphase”.Theseinvestmentsin“directedtechnologicalchange”areaimedtoreducetheunitcapitalcostsofproductionfacilitiesembodyingthecarbon‐freetechnology,raisingtheaverageproductivityofKBenoughtomatchthatofcapacitybasedonthecarbon‐usingtechnology.Inthiselementarymodelofathree‐phase“endogenousR&D‐driventransition”,onlywhenthattechnologicalgoalisattaineddoesR&Dexpenditures(andfurthertangibleinvestmentincarbon‐intensiveproductioncapacity)cometoahalt,andtangiblecapitalformationbeginsdeployingthecarbon‐freetechnology.ThisisindicatedinFigure2bythetableau’sblueshadedareas.

Figure1:BasicModel(Red)

Investment Production (Capacity in Operation)

 Old Carbon High emission rate

Greened CarbonLower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production business as usual 

   

Carbon‐free capital KB 

joint production    joint production 

   carbon free production 

R&D on carbon‐free technology 

     

R&D on clim–mate eng.  

     

Page 16: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐14‐

Figure2:BasicModelwithR&D(Blue)

Inthethirdofthepartialmodelstobeexamined,thestructureofthebasicmodelisextendedbyallowingfortheexploitationofathirdclassoftechnologicalopportunities.ThesedonotrequiresignificantR&Dinvestments,sincetheymakeuseofknown“core”engineeringtechniquestoprovidean“intermediate”,lesscarbon‐intensivesetofproductiontechnologiesthatineffectserveto“green”existingcarbon‐usingdirectproductionfacilitiesandinfrastructure.BecausetheyarecharacterizedbylowerratesofCO2emissionsperunitofcapitalthantheoldcarbon‐basedtechnologies(evenifahighercapitalcostperunitofoutput),theyprovideareducedemissions‐outputratio.Thustheycan“buytime”tomakethetangibleinvestmentsneededtoswitchtoacarbon‐freeproductionregime.

Figures3.1and3.2displayintableauformthepairofalternative5‐phasetrajectoriesthatariseinthecaseofthebuy‐timemodel.Eachversioncanbesolveforanoptimaltransitionpath,buttofindtheoptimumoptimorumitisnecessarytoevaluateandcomparetheimpliedpresentvalueofthesocialwelfareindexassociatedwitheachofthem.20

20Notethattheproductionconstraintsinthemodel,includingthosederivedfromthetechnologicalparametervalues,maydeterminewhich,betweenalternativetrajectoriescansatisfytheoptimalityrequirements,sothatanswertothequestionofwhichtochoosebecomeanempiricalmatter.Seesection2.3forfurtherdiscussion.

Investment  Production (Capacity in Operation)

 Old Carbon High emission rate

Greened Carbon Lower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production  business as usual 

   

Carbon‐free capital KB 

joint production   joint production 

   carbon free production 

R&D on carbon‐free technology 

production  business as usual 

   

R&D on climate engineering 

     

Page 17: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐15‐

Figure3.1:BuyTimeModelTrajectory1(DarkGreen)

Investment  Production (Capacity in Operation) 

 Old Carbon High emission rate 

Greened Carbon Lower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production business as usual 

   

Carbon‐economizing KD (retrofitted KA)  

joint old & green carbon production 

joint old & green carbon production 

 

 Greened carbon production 

 

Carbon‐free capital KB 

 Joint greened carbon and carbon‐free production

Joint greened carbon and carbon‐free production 

    Carbon‐free regime 

Figure3.2:BuytimemodelTrajectory2(LightGreen)

Investment  Production (Capacity in Operation) 

 Old Carbon High emission rate 

Greened Carbon Lower emission rate 

Carbon Free Zero emission rate 

Carbon‐using capital KA 

production business as usual 

   

Carbon‐economizing KD (retrofitted KA) 

Joint old and green carbon production 

Joint old and green carbon production 

 

 Carbon‐free capital KB 

Joint old and green carbon, carbon‐free production 

Joint old and green carbon, carbon‐free production 

Joint old and green carbon, carbon‐free production 

 Green carbon and carbon‐free production 

Green carbon and carbon‐free production 

   Carbon‐free production 

Intheoptimalcontrolsolutionseachofthethreeforegoing“partial”modelsofaclimatestabilizingtransition,theinternallyoptimizedphasesofthemodelaretiedtogetherbytransversalityconditions.Thatmakesitpossibletoobtainthe“requirements”oftheentireoptimaltransitionpath,intermsoftheoptimumdurationsofitsphases,andtheoptimizedwithin‐phaselevelsofactivityforproduction,consumption,andinvestmentrates(boththeintangibleR&Dandthealternativetangibleformsoftechnology‐embodyingcapitalformation)–aswellastheimpliedflowsofCO2emissionsuptothepointatwhichtheglobaleconomy’sproductionregimereachesthegoalofacarbon‐freestatethatavertstheonsetofirreversibleclimateinstability.Eveninthesimplestofpossiblegrowth‐modelsettingthathasbeenspecified,thesolutionsofeachofthese

Page 18: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐16‐

successivelymorecomplicatedmodelstofindtheirrespectiveoveralloptimaltransitionpathsmustbeobtainedbynumericalanalysisoftheresultingsystemsof“stackedHamiltonians”–thedetailsofwhichfollowingsectiondiscussesadseriatim.

Thepresenceofdifferentphasesoftransitioninwhichproductioncapacityembodyingnew(comparatively“clean”)technologiesisbuiltupandthatbasedonold(“dirtier’)techniquesisrundownandeventuallydiscarded,isthefeaturethatrendersthismodellingframeworkdifferentfromthestandardAKgrowthmodel.Acentraltaskforouranalysisofeachofthemodels,therefore,mustbetofindtheoptimalconfigurationofspecificinvestmentandproductionactivities,incombinationwiththeoptimalityoftheirschedulingduringthecourseofthetransitiontoaviableandstabilizedclimate.

Thequestionsaddressedbythismodellingexercisearenotpredictive.Ratherthanventuringtothrowlightonwhatwillhappen,theyaskwhathastobedone,andwhenmustitbedoneinordertogetfromacarbon‐basedproductionsystemtoacarbonfreeproductionsystemthatwouldavertrunawayglobalwarming,whilemaintainingthehighestpresentvalueofsocialwelfarethatisconsistentwithattainingthatgoal.

WehavebegunbysettingupaHamiltoniansystemwithastandardCIESinter‐temporalutilityfunctioninwhichconsumption(percapita)isitsargument,sincepopulationandlaborinputs)aresuppressedandimplicitlyassumedtobeconstant.21Thelatterisconsistentwithourmakinguseofthesimplestpossibleoveralldynamicsetting,namely,theAK‐modelofendogenouseconomicgrowthduetoRebelo(1991),andBarroandSala‐i‐Martin(2004,ch.4).Wehaveextendedthelatterstructurebyreplacingitsspecificationofasingle,linearcapital‐usingproductiontechnologybytheassumptionthattherearemultiplediscrete(linear)technologiesthatmaybeusedeithersimultaneouslyorsequentially,includingonethatcanbeenhancedbydirectedinvestmentsinR&Dactivities.

Thereducedunitcostofcapitalembodyingthecarbon‐freetechnologyasaresultofdirectedR&Dexpenditures,however,isonlyrealizedthroughthetechnology’ssubsequentdeploymentingrosstangiblecapitalformation.Toputasomewhatsharperpointonthis,itisnotenoughtothinkaboutR&Dpoliciesandprograms.Mechanismsofdiffusionintouse,asdistinctfromthedisseminationofinformationabouttechnologicalinnovationsalsomustbefiguredexplicitlyamongtherequirementsofa“technologyfix.”

21Readersinterestedinthedetailsofthestructuralequationsandsolutionsofthemodelsdiscussedheremayconsultthe“TechnicalAnnex:ModelingOptimalMultiphaseTransitionPathstoSustainableGrowth”(July2011),whichisavailableathttp://siepr.stanford.edu/system/files/shared/OptimalMulti.pdf,orcanbedownloadedasasupplementtoanearlierversionofthispaper(presentedon12/14attheSIEPR‐GEEGSocialScienceandTechnologySeminar)at:http://siepr.stanford.edu/programs/SST_Seminars/index.html.

Page 19: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐17‐

AlthoughtheAK‐settingisextremelysimple,becauseweallowfordifferentphasesinthetransitionfromcarbonbasedtocarbonfreeproduction,theresultingmodelisabletogenerateasetoftimepathsforthetransitiontoastabilizedclimate(andstationarylevelofatmosphericGHGconcentration)that,inpractice,canbedeterminedonlybytheuseofnumericalmethods.22Afuture,morecomplicatedextensionofthisset‐upisenvisaged,inwhichthecumulativeincreaseinGHGconcentration,orthemeanglobalsurfacetemperaturegainassociatedwithit,enterstheutilityfunctionnegatively.23

Thetransitionphasesmentionedearlierarelinkedtogetherthroughtransversalityconditions(cf.LeonardandVanLong(1992),ch.7inparticular)thatimplicitlydefinethephasechangesintermsofrathergeneraloptimalityconditionsthatoftengiverisetoconditionsontheco‐statevariablesthathaveaclear‐cuteconomicinterpretation.Forexample,itcanbeshownthatitisneveroptimaltosimultaneouslyinvestintwoexistingtechnologiesthataredifferentwithrespecttotheircapitalproductivityandtheiremissioncharacteristics.

Thus,inthecurrentmodelsetting,theexistenceofacumulativeemissiontipping‐pointwillgeneratenotionalemissioncostsassociatedwiththeuseofcarbon‐basedcapital.24Investmentinthelattertypeofcapitalwillstopandthatincarbonfreecapitalwillstartthemomenttheshadowpriceofcarbonbasedcapitalfallsbelowthatofcarbonfree

22Giventhefactthatwedistinguishexplicitlybetweendifferentsub‐phasesduringthetransition,weendupwitha‘stack’ofHamiltonianproblemsthatarelinkedtogetherthroughasetoftransversalityconditions(TVC’s),seefurtherbelowinthetext.Thefirstorderconditions,incombinationwiththeTVC’sandthegiveninitialvaluesofthestatevariables(andthegiventerminalvalueofcumulativeemissions),giverisetoasetofstronglynon‐linearconstraintsontheremaininginitialvaluesofthemodel’simpliedtimepathsforco‐stateandcontrolvariables.Usingtheseinitialvalues,thesimplicityoftheAK‐settingallowsustoobtainclosedformanalyticalexpressionsbymeansofdirectintegrationforthetimepathsofallvariables—exceptforthecumulativestockofGHGemissions.Theresultingpathsthemselvesareinparthighlynon‐linearandlargelyintractable(exceptfortheirunderlyingroots/structuralequations)necessitatingrecoursetonumericalexercisesinordertoinvestigatethepropertiesofthemodel,someofwhicharenotintuitivelytransparentapriori.Moreover,thepathforcumulativeemissionscannotbeobtainedbyanalyticalmeansandrequiresnumericalintegrationstartingfromsomeinitialguessofthelengthoftheBAUphase.TheoptimumdurationoftheBAUphasethenisimpliedbytherequirementthattotalcumulativeemissionsovertheentiretransition(allphases)shouldjustmatchapre‐specified“threshold”value.Evidentlyadifferentapproachwillberequiredbyastochasticformulationofthetransitionprocess–ofwhichthemodeldiscussedherecanbeviewedastheequivalentdeterministicsystem.

23SeeArrow(2009)andWeitzman(2009a,b)onthesignificanceofspecifyinganadditivetemperatureeffectthatisnegative,interpretingthisasadirect“environmental”effectuponsocialwelfare.Analternativeformulationisavailable‐‐inwhichthenegativeterminthesocialutilityfunctionistheinverseofthedifferencethecritical“threshold,”or“tippingpoint”temperature(beyondwhichthewarmingprocessisexpectedtobecomeself‐reinforcing)andEarth’sprevailingglobalmeansurfacetemperature.Thisformulationwouldhaveessentiallythesameconsequencesforinter‐temporalresourceallocation,butitwouldadmittheadversepsychiceffectofapproachingtheexpectedpointatwhichhumanitywill,forallintentsandpurposeshavelostitsabilitytostabilizethewarmingtrendandavertthecatastrophiconsetofclimateinstability.

24Weusetheterm“notional”heretodenotetheexistenceofarealcost,thatis,however,generallynot,oratleastnotfully,paidforinpractice.

Page 20: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐18‐

capital.Asthecostofinvestmentisrepresentedbythewelfarelossassociatedwithconsumptionforegone,andasoneunitofinvestmentgeneratesoneunitofconsumptionforegoneinbothcases,thistransversalityconditionimpliestherequirementthatinvestmentwilltakeplaceinthetechnologythatgeneratesthehighestmarginalnetwelfareperunitofinvestment.Likewise,thediscardingofexistingcapacityistypicallyanactivitythatsignalstheendofaparticularphaseandthebeginningofthenextone.

Theoptimumtimingofsuchaphasechange,andhencethephases’durations,willbegovernedbyageneraltransversalitycondition,namelythattheshadowpriceofanincrementalunitofproductioncapacityembodyingtheparticulartypeoftechnologyshouldbezeroattheexactmomentthatitistakenoutofproduction;otherwise,ifithadapositiveproductiveuse,whydiscardit?Thistransversalityconditionturnsouttobeequivalenttotherequirementthataunitofexistingcarbon‐basedcapitalshouldbediscardedatthemomentthatthemarginalwelfarebenefitsofusingthatunitofcarbon‐basedcapacitydropbelowthecorrespondingmarginalemissioncosts.25

ThefeaturesoftheBasicModelof“technologyswitching”thathavebeenpresentedabovemaybeformallysummarizedintheequationssetoutbelow,whichdescribetheobjective(socialwelfarefunction,U,systemofintertemporalproductionconstraintsandthetransversalityconditionsthatdeterminetheoptimalsolutionforthemulti‐phasetransitionpath(seeTable0).This,thesimplestofthemodels,isdiscussedinfurtherdetail,andthenextendedinthesectionsthatfollow.

2.1TheBasicModel

Thefirstandfoundationalversionofoursuiteofmulti‐phasetransitionmodelsiscalled(appropriatelyenough)theBasicModel.Inthistherearetwoalreadyavailableproductiontechnologies,onethatiscarbon‐basedandalreadyinuse,andacarbon‐freetechnologythatattheoutsetisyettobedeployed.26Thisset‐upcreatesthepossibilityoftherebeingthreedistinctphases.

25Thisconditioncloselyresemblesthenegativequasi‐rentconditionthatgovernstheeconomiclifetimeofclay‐clayvintagesinaperfectcompetitionsetting(seeMalcomson(1975),forexample).

26Forpurposesofthisanalysisitissupposedthattheperiodunderconsiderationcommenceswhenacarbon‐free(B)technologybecomesavailable,althoughitaverageproductivityislowerthanthatofthecapital(KA)embodyingthecarbon‐usingtechnology;or,equivalently,thatthecostoftheproductioncapacity(KB)perunitofoutputexceedsthatofKA.27AstheBAUtechnologyhashighercapitalproductivitythantheCFRtechnologybyassumption,welfarewouldnotbemaximisediftheflowofCO2emissionswouldstopbeforethecumulativeemissionthresholdwouldbereached.

Page 21: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐19‐

Table0____________________________________________________________________________________________________

Phase‐SpecificEquationsoftheBasic3‐PhaseTransitionModel

(production,BAU,JPR)

(netinvestment,BAU)

(netinvestment,JPR)

(emissions,BAU,JPR)

(productionJPR,CFR)

. (netinvestmentCFR)

. (netinvestmentJPR)

+ (Cum.Emissions)

. / 1 (intertemp.socialwelfare,ALLphases)

⟺ (TVCdefiningTJPR(equality Hamiltonians))

⟺ (TVCdefiningTCFR:deactivationYA)

=0 (TVCvalueofdeactivatedcapital=0)

→ . 0 (TVC,standardAKTVCCFRphase)

Infirstphase,whichcanconvenientlybelabelledBAU(for‘BusinessasUsual’)thecarbon‐freetechnologyremainsun‐deployed,andtheonlypositivetangiblecapitalformationtakingplaceaddstothestockofcarbon‐usingproductionfacilities,whicharethecurrentsourceofthesystem’srealgrossoutput.Wehaveassumedthattheavailablecarbon‐freeproductiontechnologycannotmatchthecarbon‐basedalternativeintheaverageproductivityofthecapitalfacilitiesthatembodyit.Tostartdeployingandusingitimmediatelythereforewouldentailanimmediatesacrificeofconsumptionthatcouldbeenjoyedbycontinuingtoinvestandrelyuponcarbon‐basedcapacity.Better,therefore,toplantosacrificefutureconsumption,thepresentutilityvaluewillbediscounted–untilthefuturenegativeshadowpriceoftheassociatedCO2emissionsbeginstoapproximatetheincrementalutilityoftheextraconsumptionflow.ThisistheeconomiclogicofprolongingtheBAUphase,upuntiltheapointwhenitceasestobe

Page 22: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐20‐

optimaltogofurtheralongthatpathandgrosscapitalformationswitchesfromcarbon‐usingtocarbon‐freeproductionfacilities.

AsecondphaseopenswiththestartofpositiveinvestmentinfacilitiesembodyingtheCFRtechnology,andthecessationofBAUcapitalformation,thereforemarkstheopeningoftheBasicmodel’ssecondphase.Fromthispointforwardthereisnegativenetinvestmentincarbon‐usingfacilities,sincethephysicaldepreciationoftheexistingstockisnolongerbeingoffsetbypositivegrossinvestmentincapitalofthattype.ThisphaseoftheBasicmodelisreferredtoas‘thejointproduction’(JPR)phase,ascapitalgoodsembodyingbothclassesoftechnologybeingusedtogenerateoutput.Thetransitiontoacarbon‐freeproductionregimeandclimatestabilizationiscompletewiththeshut‐downoftheremainingcarbon‐usingfacilitiesand,hence,stoppageoftheflowofCO2emissionsjustasthecumulativestockofemissions(andthetemperature)approachtheirrespectivecriticalthresholdlevels.Thatmarksthebeginningofthethirdandfinalphaseofsystem’stransitiontosustainable,carbon‐freegrowth.27

Theintensityoftheflowsduringeachphase,aswellasthemomentsintimeatwhichthevariousphasechangesarescheduled,allfollowfromthefirst‐orderconditions(FOCS),thetransversalityconditionsandfromthegiveninitialandterminalvaluesforthestate‐variablesthatarepartoftheoptimumcontrolproblem.Eventsandphase‐

27AstheBAUtechnologyhashighercapitalproductivitythantheCFRtechnologybyassumption,welfarewouldnotbemaximisediftheflowofCO2emissionswouldstopbeforethecumulativeemissionthresholdwouldbereached.

Page 23: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐21‐

changesinthecontextoftheBasicModelaresummarisedinFigure4(below),which

showsthedevelopmentovertimeofthestockofcarbon‐basedcapitalKA,thestockofcarbon‐freecapitalKBandcumulativeemissions,GCO2

Thepointsmarkedonthetime‐axisoftheFigure(TU,TJ,TF)indicatetheoptimalmomentsatwhichtherespectivephases(BAU,JPR,CFR)begin.ItmaybenotedthatalthoughthecumulativestockofemissionscontinuestoriseduringtheJPRphase,isdoessoatadecreasingrateasthestockofcarbon‐basedcapitalKAisrundownandreplacedbyitscarbon‐freesubstitute.Thefinal,carbon‐freeproductionphasestartswhencumulativeemissionsatmosphericconcentration(GCO2)almostreachestheexpectedthrclimate“tipping‐point,andthecurvemarkedCO2becomesflattotherightofTF.

Evidently,thevariousphasesinthemodelarequalitativelydifferent.Thefirstphase,i.e.theBAUphase,usesahighgrowthtechnologywhichunfortunatelyquicklyraisesthestockofcumulativeCO2emissionsthatisboundedfromabovebythecumulativethreshold.Beforethatlevelisreached,investmentincarbonfreetechnologymusthavetakenplaceduringphaseJPRtobringcarbonfreeproductioncapacityuptoalevelwheretheswitchfromusingcarbon‐basedcapacitytousingcarbonfreecapacitywouldnotforcechangesinconsumptionlevelsthataretoodisruptive,sinceconsumersdislikeconsumptionshocks,asisimpliedbyouruseofasocialwelfarefunctionthatdepends

Page 24: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐22‐

uponthepresent(discounted)discountedlevelsofpercapitaconsumption,andisofthe(CIES)formallowingforrelativeriskaversion.

Fort>TFtheworldis“green”,and,giventhemoreexpensivecarbon‐freeproductionfacilitiesthatarerequiredtostabilizetheatmosphericCO2‐equivalentconcentrationlevel,theoutput(percapita)willhavetogrowforsomewhileattherelativelyslowpaceatwhichtheKBisaccumulatingwiththegrosscarbon‐freecapitalformationrateconstrainednottocuttooheavilyintoconsumption.Eventually,however,thebuild‐upofthecarbon‐freecapitalstockissufficienttosupportbothrisingconsumptionandahigherrateofinvestmentinKB,whichthereafteraccumulatesataquickenedpace.28

2.2ABasicModelwithEndogenousR&D

InadditiontotheBasicModel,wehavespecifiedaversioninwhichR&DcanbeundertakentoimprovetheproductivityoftheCFRtechnologybeforeitsactualimplementationthroughgrossinvestmentintheCFRtechnology.R&DrequiresresourcestobeinvestednowinreturnforafutureintangibleassetintheformofknowledgeofhowtoembodyCFRproductiontechniquesinproductionfacilitieswhosecapitalcostperunitofoutputwillbelowerthanisthecaseatpresent.Surprisingly,thisviewoftheroletobeplayedbyR&DincontrollingfutureGHGemissionsissomethingofanoveltyinthesmalleconomicliteraturethathasemployedintegratedassessmentmodellingofclimatepolicyoptions,becauseinsofarasthecontributionofinvestmentsinR&Dto“directed”technologychangeandinnovationhasbeenconsideredatall,the“direction”hasbeentakentobetheloweringofCO2emissionsperunittotaloutputintheeconomy.29Tosharpenthecontrastwiththelatterapproach,Section2.3(below)

28ThestructureoftheBasicModelhassomecommonalitieswiththeanalysisinValente(2003)ofatwo‐phaseendogenousgrowthmodelinwhichproductionbasedonessential(energy)inputsobtainedfromexhaustibleresourcesswitchestoa“backstoptechnology”thatprovidesaconstantsupplyofsustained(e.g.,solar)energy.R&Dinvestmentspermitgrowththroughproductivityimprovementsthatoccuratthesameratewitheithertechnologies(althoughthelevelsofproductivitycandiffer),andtheoptimaltimingoftechnologyswitchingisdeterminedbywelfaremaximizationinwhichutilitydependsupondiscountedpercapitaconsumption.Valentesimilarlyobtainsoptimalcontrolsolutionsforeachstageandtiesthesepathstogetherwithtransversalityconditions.But,unlikeinthepresentanalysis,thepointatwhichtherenewabletechnologycanbeefficientlyembodiedintangiblecapitalusedinproductionisnotendogenouslydeterminedbydirectedR&Dexpendituresandthediversionofoutputtobuildingthe“renewables‐base”capitalstock.NorisapositiveshadowpriceexplicitlyattachedtousingtheexhaustibleresourceinValente’sanalysis,becauseitabstractsfromthegeophysicalclimate‐systemconstraintsthataffecttheoptimaltransitionpath.Aswillbeseen,theresearchapproachhereexaminesmuchmorecomplicated,multi‐stagetransitions.

29Tothebestofourknowledge,theearliestpreviousinvestigationoftheeffectsofallowingforendogenoustechnologicalchangeinacomputationalclimatepolicyassessmentmodelappearsintherelatedpapersbyGoulderandMathai(1998),andGoulderandSchneider(1999),whichspecifytheeffectofR&Dexpendituresonchangesinaneconomy‐widetotalfactorproductivitycoefficient.InthesepioneeringinvestigationsoftheimpactofinducedtechnologicalchangeontheattractivenessofCO2abatementpolicies,absolutechangesinproductivity(orrealmarginalcost)levels,ratherthantheproportionaterateofchangeinproductivitywasspecifiedasapositiveincreasing(decreasing)functionofR&Dexpenditures.InGoulderandSchneider(1999:pp.216,223)thisfunctionalrelationshipnot

Page 25: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐23‐

examinestheoptionofachievinggreaterefficienciesintheuseofcarbon‐basedenergycanbeachievedwithoutR&Dexpenditures,butbyinvestmentsintheengineeringimplementationofexistingtechnologicalknowledgethatwouldresultinhigherunit(tangible)capitalcostsofcarbon‐basedproductionfacilities.30

Furthermore,inspecifyingtheimpactofsuchR&DinvestmentsontheunitcostofCFRcapitalgoods(KB)wedeliberatelydepartfromthe“R&Dproductionfunction”formulationthatisfamiliarinendogenousgrowthmodelsfollowingLucas(1988),Romer(1990)andAghionandHowitt(1991).Ratherthantakingtheinstantaneousrate

ofimprovementintheproductivityofCFB‐embodyingcapital, /B B ,tobeproportionaltothecurrentabsoluteflowofR&Dresourceinputs,R,asin

0 1B R B ,

analternativespecificationisproposedhere:

( ), 0 1B R B B ,

whereςisaconstantproductivityparameter,and representsthemaximumvaluethatBcanattain.31

Thereareseveralfeaturesofthisspecificationthatargueforits’useinthepresentapplicationscontext.Firstly,ithastheadvantageofintroducingdecreasingreturnsto

furtherrestrictedintheirmathematicalanalysisofa2‐periodmodel;whereasthelinearspecification,B R wasusedintheirdynamicmulti‐periodgeneralequilibriumsimulationstudies.Nordhaus(2002)takesadifferentapproach,ineffectassumingthatinducedresearcheffortfocusessolelyonreducingtheCO2emissionsintensityofproduction.Nordhauspositsaseparateproductionfunctionforcarbon‐basedenergyinputswhichareusedinfixedproportiontothenon‐energyinputsinaneconomy‐wideproductionfunction.Hethenspecifiesthattherateofchangeofthecarbon‐intensitycoefficientinenergyproductionisgivenby(dσ/σ)=‐[ψRβ–Ω],whereΨ>0isaconstantandΩ>0isa(constant)rateofobsolenceofthetechnicalknowledgegainedthroughR&Dandreflectedinσ.TheempiricalfindingsofGriliches(1973),Hall(1995)andothersonthelinkbetweencommercialR&DandindustrialproductivitygrowtharecitedbyNordhausinsupportofthisspecification,althoughingeneralthetime‐spanstowhichthedataonindustry‐levelandfirm‐leveldatarelatearefarshorter,andhardlyoftheglobalscopetypicallycontemplatedinIAMmodels.

30Ofcourse,thisdistinctionisnotnecessarybecauseonecanmodelthesituationinwhichR&Dexpendituresareallocatedbetweenthetwo“directions”oftechnologicalchange,loweringraisingtheratioofgrossoutputperunitofCO2emissions,andraisingtheproductivityofcarbon‐freetangiblecapitalusedinproduction.Butbecausethepresentinvestigationisconfinedtomodelingthepathstosuccessfulclimatestabilization,andthetimescaleforthatisfarshorterthanthehundredsofyearscontemplatedintheexistingvariantsoftheNordhaus(1994,1999,2002,2007)DICEmodel,itisnotunreasonabletosupposethatthepresentlyexistingstockofimplementabletechniquesforenhancingtheproductivityofcarbon‐energyinputscouldsufficeforaconsiderablenumberofdecadeswithoutrequiring“refreshment”byfocusedinvestmentofR&Defforts.Seefurtherdiscussionofthe“buytime”optioninsection2.3,below.

31With , , asconstantpositiveparameters,BandRthereforebecomeadditionalstate‐andcontrolvariablesinourdynamicsystem.

Page 26: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐24‐

R&Dinasettingthat,unliketheconventionalendogenousgrowthmodels,excludesthepossibilityofaspecifictechnologybeingrenderedinfinitelyproductive(andsoresultingininfinitelyrapidgrowth)merelybytheapplicationofmoreandmoremassiveR&Dexpendituresatanyparticularmomentintime.32AllowingdecreasingmarginalreturnsinR&Drecognizesthatatagivenstageintheadvanceofknowledgethestateoffundamentalscientificunderstandingofthephysicalprocessesinvolvedmaystillbeinadequatetopermittheeffectiveapplicationofmoreandmoreresourcestothesolutionofaparticularpracticalproblem‐‐suchasthefurtherimprovementoftheproductivityofaparticularclassoftechnology‐embodyingcapitalfacilities.

Secondly,thisformulationoftheeffectsofinvestmentinR&DactivitiesmaybethoughttoreflectaPlatonicworldinwhichafinitenumberofsolutionpossibilitiesfortechnicaltransformationsarepresentfromthestartoftime,buttheseasarulewillnotrevealthemselvesspontaneously.Theycanbeuncovered,however,andformulatedforpracticalapplicationthroughcostlyresearchanddevelopmentproceduresbasedupontheexistingstateoffundamentalscientificknowledge,ratherthanbeingcreateddenovoandwithoutlimitbytheexpenditureofresourcesintheperformanceofR&Dactivities.33ThatmorerestrictiveviewofthetransformativepowerofinvestmentinR&Dandisappropriatenotonlyfortheforegoinggeneralreasons,butalsobecausetheconcerninthiscontextisnotwiththeundirectedglobalexpansionofthetechnologicalopportunitysettypicallyenvisagedintheoreticalgrowthmodels.Rather,theaimofthe“directedR&D”inthepresentmodelistoenhancetheeconomicpropertiesofparticularkindsofprocessinventions,withnewproductinventionsonlyinsofarasalterationsinproductcharacteristicsareconsequentialfortheraisingtheefficiencyofcapitalinputsintocarbon‐freeproductionprocesses.34

Withintheframeworkcreatedbyintroducingthis(oranyother)R&DproductionfunctionintotheBasicmodel,thereareagainthreedistinctphasesofthetransitiontoastabilizedclimate.Table1(below)comparesthephasesintheoriginalbasicmodelwiththeversionintroducingR&D.ItshouldbenotedthatwhiletheR&Dmodelresembles

32Theequilibrium(steady‐state)growthrateinastandardAK‐modelriseslinearlywiththerategrowthintheproductivityofcapital(cf.BarroandSala‐i‐Martin,2004),andthereforewiththeflowrateofR&Dexpenditures.Theexistenceoftechnology‐specificintrinsicproductivitylimitsset–inthelimit‐‐bythephysicalpropertiesofthematerials,chemicalandelectricalprocessesentailedinproductionmakesthissoimplausiblethatevenitsassertionasametaphorisofdubioususefulness.

33ItalsohastheadvantageofbeingjointlyconcaveinBandR,whichisanecessaryconditionforthewelfaremaximizationproblemtohaveasolution.

34Followingthisinterpretation,addingendogenoustechnologicalchangetotheBasicModelallowsustocharacterizetheoptimalpathofglobalR&DthatisdirectedtoincreasingtheproductivityofCFRcapital.CorrespondinglytheimpactofR&Dinvestmentoneconomicwelfareismodeledasbeingfeltindirectly,ratherthandirectlyintheformofpureproductqualityenhancements.Inotherwords,thewelfaregainscomethroughreductionofthesacrificeofconsumptionutilityrequiredinthetransition,andforthesubsequentsustainedgrowthof(percapita)consumptionunderstabilizedclimaticconditions.

Page 27: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐25‐

theBasicModel,becauseithasthreephasesandtwooptimumswitchingmoments,itdiffersinhavingthreestatevariablesandtwocontrolvariables.

Table1.ComparisonoftheBasicandEndogenousR&DModels

Basic model

Phase BAU1  Business as usual 

JPR1  Joint production 

CFR1 

Carbon‐free 

Investment in  Carbon‐based capital Carbon‐free capital Carbon‐free capital

Output using  Carbon‐based capital Both carbon‐based and 

reduced emission capital 

Carbon‐free capital 

only 

Endogenous R&D Model

Phase BAU2  Business as usual 

JPR2  Joint production 

CFR2 

Carbon‐free 

Investment in  Carbon‐based capital Carbon‐free capital Carbon‐free capital

R&D 

investment in Carbon‐free technology  Carbon‐free capital  Carbon‐free capital 

Output using  Carbon‐based capital Both carbon‐based and 

carbon‐free capital 

Carbon‐free capital 

only 

ThereasonisthatitturnsouttobeoptimaltostartdoingR&DtoimproveaparticulartechnologyfromtheveryfirstmomentthatinformationaboutaworkableCFR‐technologybecomesavailable.OntheassumptionthattheCFRtechnologyisdiscoveredattimezerobutislessproductivethanthematurecarbon‐usingtechnologywhenembodiedinequallycostlyproductionfacilities,R&Dactivitythenbeundertaken(only)duringthephasewhentangiblecapitalformationandproductionadheretothecarbon‐dependentfeaturesoftheBasicmodel’sBAUphase.Followingthat,aJPRphasewillcommencewithgrossinvestmentdirectedtodeployingtheimprovedCFRtechnologyinKB‐typeproductionfacilities.

2.3A“Buy‐TimeModel”–GreeningCarbon‐basedCapitalintheBasicModel

Wenowturntothethirdofthepartialmodels,inwhichthestructureofthebasicmodelisenrichedbyintroducingathirdcategoryoftechnologies,namelyaknown“intermediate”classofcarbon‐usingproductiontechniquesthatarecharacterizedbylowerratesofCO2emissionsperunitofcapitalbutcapitalproductivityperunitofoutputthatislowerthanofthematurecarbon‐basedtechnologies,butnotasmuchlowerthanthatoftheinitial(pre‐R&D)versionsofthecarbon‐freetechniquesof

Page 28: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐26‐

production.35Thisconceptualizationcorrespondsbroadlytothevarietyofwell‐groundedengineeringmethodsmaybeusedtoupgradecarbon‐usingproductionfacilities,whetherbyimprovingtheenergyefficiencyofresidential,businessandgovernmentofficebuildingsbybetterinsulation,heatingandcoolingsystems,andreducingthepassiveconsumptionelectricitybyelectricalandelectronicappliancesbyconfiguringthemtoswitchoffcompletelywhennotinuse,andsoforth.ButitalsosubsumesproposalsfortheexpandedexploitationofnaturalgasasareducedGHG‐emissionssourceofenergy,includingtheacknowledgementthatincrementalcostsperBTUwouldberequiredtocurtailtheenvironmentaldamagecurrentlyassociatedwith“fracking”methods.

Break‐throughresearchandnovelengineeringprinciples,however,arenotrequiredtoexploitthisclassofcarbon‐basedenergysourcesandproductiontechnologieshere,butspecificapplicationsofcoreengineeringknowledgeadaptationofexistingdesignstolocalcontextswillraisetheaverageunitcapitalcostscarbon‐usingplantequipmentthathasundergonethiskindof“green‐upgrading,”aswellasthatofa“lessdirty”energysourcesuchasnaturalgas,andsafernuclearpower‐plantswithprovisionsforlong‐termsequestrationoftheirtoxicwaste.Thegaintobehadbyseizingthis“low‐hangingfruit”comesinthereducedrateofCO2,whichmeansundertakingtheentailedincrementalcapitalexpendituresconstitutesawayto“buyingtime”earlyinthetransitioninordertobeabletosubsequentlyproceedmoreslowlyinreplacingthewholecarbon‐basedproductionregimewithonebasedonnew,carbon‐freeproductionfacilities.

35Onthelatter,seetherecentnoticedexampleoftheannualconsumptionofover$3billionworkofelectricpowerintheU.S.byHDTV“set‐top”boxessuppliedbycablecompanies,duetothechoiceoflowcostdesignsthatthatdonotactuallystopdrainingpowerwhentheyareswitchedoff(see,“AtopTVSets,aPowerDrainthatRunsNonstop,”TheNewYorkTimes,June26,2011:p.1.).TheMcKinseyGlobalInstitutedevotedconsiderableattentionintheyearsbeforethefinancialcrisistostudiesofcurrentandnear‐termoptionsforenergyefficiencyroutestoCO2emissions‐reductionsandprivatecostssavingthroughupgradingofproductionanddistributionsystems.See,e.g.,FarrelandRennes(2008);GroveandR.Burgelman(2008).IntheU.S.,numerousproposalsforthiskindof“retrofitting”havehaddifficultygainingpolicy‐tractionduetotheprevailingpolicybiastowardsresearchsubsidizestosupport“innovation”inrenewableenergytechnologies.”Morerecently,thecaseforexpandedexploitationofnaturalgasandgreaterinvestmentinotheropportunitiestoimprovetheproductivityofcarbon‐basedtechnologiesthat(similarly)offerhigheroutputpervolumeofGHGemittedhasbeencogentlyandvigorouslyadvancedbyBurtonRichter(2010).DuringthecrisisandrecessionyearstheattentionoftheEuropeanCommissionshiftedawayfromtheexpensiveandlonger‐termresearchenvisagedbyitsambitiousStrategicEnergyTechnologiesPlan[SET,COM(2007)723];itfocusedinsteadonavarietyofshorter‐termtacticsaimedatstimulatingaggregatedemandinwaysthatwouldimplementalreadyavailabletechnologiesfor“green”purposes,notably:retro‐fittingbuildingsforgreaterenergyefficiency,supportingtheautomotiveindustrytoincreaseproductionoflow‐CO2vehiclesusingelectricbatteriesandsecondgenerationbio‐fuels(seediscussioninDavid,op.cit.(2009).IntheU.S.,numerousproposalsforthiskindof“retrofitting”havehaddifficultygainingpolicy‐tractionduetotheprevailingpolicybiastowardsresearchsubsidizestosupport“innovation”inrenewableenergytechnologies.

Page 29: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐27‐

Notsurprisingly,therefore,theextenttowhichthe“buytimeoption”willbeattractivetoexploitinthecontextofourBasicmodel,bybuildingupproductioncapacity(KD)inthisintermediate“greened”formratherthancapitalthatembodiesthemature,morecarbon‐intensivetechnology,dependsnotonlyontheassociatedcapitalproductivitybutalsoonthereductiongainedinemissionsperunitofoutput.Itturnsoutthatintroducingthepossibilityofutilizingthisthirdclassoftechnologiesgivesrisetoamodelinwhichthereare5distinctphasesthatcanbearrangedineitheroftwoalternativetransitiontrajectories,asindicatedbyFigures3.1and3.2anddetailedinTable2.36

Moreover,whichtrajectorywillbetheonethatisoptimalforthissimpleeconomytofollowdependsupontheparameterconfigurationthatsetstheBTMtechnology’soutput/emissionratio.Giventhese‘technicaldata’,thechoicebetweenthealternativetrajectoriesthatwillbefollowedinexploitingthe“buytimeoption”isprescribedbycomparingthewelfarevaluationsofthetwosolutionsofthetwooptimalcontrolprograms.37Trajectory1,asdescribedbythefollowingTable,isfoundtobethewelfaredominantmemberofthepairwhenthethatratioishigh,whereaswhentheratioislowitisbettertofollowTrajectory2,whichcallsforashorterperiodofinvestmentinbuildingstocksofKDandanearlierswitch(inthethirdphaseratherthanthefourth)togrosscapitalformationembodyingthecarbon‐freetechnologies.

InTable2(below),theheaderlinescontainthelabelsforthesub‐phasesineachtrajectory.38Theentriesbeloweachphaselabelbelongingtoatrajectorycontainashorthanddescriptionoftheactivitiestakingplaceduringoratthebeginningofthesub‐phases.Noticethatthemaindifferencebetweenbothtrajectoriesisthetimeatwhichthecarbon‐usingA‐technologyisde‐activated.Asaconsequence,outputduringsub‐phaseBTM22oftrajectory2comesfromthreedifferentsources,sotheequationdescribingtheaccumulationofBTMcapitalismorecomplicatedthanthatfortrajectory1.39

36Notethattheactof‘buyingtime’involvesusingatechnologywitharelativelyhighoutput/emissionratio.Hence,logicallyspeaking,buyingtimeisassociatedwithproductionusingthattechnologyratherthanwithinvestmentinthattechnology.Therefore,inthiscase,theBTMphaseissubdividedintothreesub‐phases,inwhichwehavepositiveoutputfromtheBTMtechnology(hereindexed‘D’),andtheCFRphasestartswhentheBTM‐technologyisdeactivated.Typically,thej‐thBTMsub‐phaseoftrajectorykislabeledBTM.

37Thatthemodelitselfdirectsattentioninthiswaytotherelevanceofempiricalinformationaboutcertainparametersisworthnotice,becauseitmayhelpinprioritizingareaswarrantingmoreconcreteanddetailedempiricalresearchinengineeringandappliedeconomics.

38Typically,thej‐thBTMsub‐phaseoftrajectorykislabeledBTMj,k.

39Althoughthismakestheentiremodelconsiderablymoredifficulttosolve,itwassolvableforMathematica.

Page 30: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐28‐

Table2.Alternativetrajectoriesinvolvingthebuytime(BTM)technology

Trajectory 1

Phase 

BAU1  Business as 

usual 

BTM11  Buying time 

BTM21  Buying time 

BTM31  Buying time 

CFR1 

Carbon‐free 

Investment in Carbon‐

based capital 

Reduced 

emission 

capital 

Reduced 

emission 

capital 

Carbon‐free 

capital 

Carbon‐free 

capital 

Output using Carbon‐

based capital 

Both carbon‐

based and 

reduced 

emission 

capital 

Reduced 

emission 

capital only 

Carbon‐free 

capital and 

reduced 

emission 

capital 

Carbon‐free 

capital only 

Trajectory 2

Phase 

BAU2  Business as 

usual 

BTM12  Buying time 

BTM22  Buying time 

BTM32  Buying time 

CFR2 

Carbon‐free 

Investment in Carbon‐

based capital 

Low emissions 

capital 

Carbon‐free 

capital 

Carbon‐free 

capital 

Carbon‐free 

capital 

Output using Carbon‐

based capital 

Both carbon‐

based and 

reduced 

emission 

capital 

All three types 

of capital 

Carbon‐free 

capital and 

reduced 

emission 

capital only 

Carbon‐free 

capital only 

Bysolvingthestackedoptimumcontrolproblemsassociatedwiththemodelversionsoutlinedabove,wearriveatacompleteandintertemporallyconsistentdescriptionofthenatureandtimingofthevariousphases,aswellastheshapeofthetime‐pathsoftangibleandintangiblecapitalinvestment,levelsofproductionandconsumption,aswellascumulativeemissionsasafunctionofthestructuralparametersofthemodel.Theseparametersincludetheprobablelocationofthecumulativeemissionsthreshold,theproductivityoftheR&Dprocessaswellastheproductivitydifferencesbetweencarbon‐basedandcarbon‐freetechnologies,andthe‘standard’preferenceparametersfortheconsumptioncomponentofthesocialutilityfunction,i.e.therateoftimediscountandtheintertemporalelasticityofsubstitution.

3.Preliminaryresults,experimentswithphysicalsysteminteractions

Tothispointinthepresentresearchprogram,themodelsdescribedintheforegoingpageshavenotbeencalibratedonactualdatafortheglobaleconomy.NorhavewecompletedourworkontheintegrationoftheBTMmodelwiththeendogenousR&D

Page 31: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐29‐

model.ThelatterisamatterofparticularinterestbecausebeingabletoextendthelengthoftimeduringwhichR&Dexpendituresaremaintainedis(asfaraswepresentlycansee)likelytobethemostproductiveuseoftheaddedtime“bought”byCO2emission‐ratereductionseffectedbyexercisingtheBTMoption.Usingknowntechniquestoupgradingcarbon‐usinginfrastructuresanddirectlyproductivecapitalfacilitiescertainlywouldbeasociallymoreproductivepurposethanhasteningtheinevitabledescentintoclimateinstabilityjustforthesakeofprolongingcurrentenjoymentofthehigherconsumptionlevelsassociatedwith“businessasusual.”

Comparisonsoftheresultsobtainedwiththedifferentpartialmodels,however,yieldsanumberofusefulinsightsabouttheroleofdirectedR&Dinvestmentinthetransitiontoclimatestabilization.OnestrikingandintuitivelyunderstandablefindingthatemergesfromtheoptimizedsolutionoftheendogenousR&Dmodelishighlightedbyitsjuxtapositionwiththefeaturesofthetransitionpathfoundforthebasicmodel.Inthelattercase,business‐as‐usualinvestmentincarbon‐usingcapital(KA)comestoahaltwhencarbon‐freetechnologycanbeembodiedinproductionfacilities,regardlessoftheirgreaterunitcapitalcost;whereasintheformermodeltheBAUphaseendsonlywhenR&DsucceedsinrenderingtheunitcostsofproductionfacilitiesembodyingCFRtechniquescompetitivewiththatofKA.40

AllowingforthepossibilityofinvestmentinR&Ddirectedtowardsloweringtheunitcapitalcostsofcarbon‐freeproductionprocesseshastheeffectofraisingthetangibleinvestmentincarbon‐usingproductionfacilities,shorteningtheabsoluteandrelativedurationoftheBAUphase‐‐leavingthelengthofthesubsequentjointproductionphaseessentiallythesame.Inotherwords,beingabletoinvestintheresearchrequiredfora“technicalfix”hastheexpectedresultofspeedingthebeginningofCFRproduction,thecessationofinvestmentincarbon‐usingproductionfacilities,andcorrespondingly,theretirementoftheoldcarbon‐basedcapitalstock.

TheunderlyingeconomiclogichereisthattheanticipationofbeingabletobuildmoreproductiveCFRcapacityinthefuturegeneratesaheightenedderiveddemandforBAUcapacity,andhenceahigherrateoftangiblecapitalformationincarbon‐basedfacilities‐‐sincethedesiredstockofCFRcapitalisaproducedmeansofproduction.The

40Strictlyspeaking,thelastpartofthisstatementisnotquitetrueinthemodelonwhichthisdiscussionisbased,becausetheupperlimitonthecapitalproductivityoftheCFRtechnology,B‐barissetbelowthethatforthecarbon‐usingtechnology.R&DremovesasmuchaspossibleoftheproductivitydeficitofKBrelativetoKAbeforeimplementingtheCFRtechnologytangiblecapital.B.Butthisisinnowayessential,andtherearenoapriorireasonsfornotentertainingthepossibilitythatCRFtechnologiescan(eventually)havelowerunitcapitalcoststhancarbon‐basedtechnologies,sothatiftheexponentandconstantintheproductivitychange‐R&Dinputfunctionarequitesmall,themodelisthemodelisnotinconsistentwiththeobservationthattheworldweliveinis(still)adependentuponacarbon‐usingregimeofproduction.

Page 32: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐30‐

resultinghighervolumeofKAgeneratesalargeroutputflow,providingagreaterpoolofresourcesthatcanbespentonR&DinvestmentduringtheBAUphase,andsubsequentlyforCFR‐embodyingcapitalformationintheJPRphase.Itshouldbenoted,however,thatthiswouldbeadangerousplantohavepursuedwerethetechnicalimprovementsincarbon‐freeproductionsystemsthathadbeenexpectedtoresultfromR&Dexpendituretofallshortofexpectations.Insuchcircumstances–hardlyunrealisticinviewoftheuncertaintiessurroundingtheperformanceofR&D‐‐itwouldbenecessarytoeventuallymaketherequiredswitchtomuchmorecostlyCFRproductioncapacity,attendedbyconsequentlygreaterlossesofconsumptionandwelfare.

ThissuggeststhepracticalrelevanceofcombiningtheendogenousR&DmodelandtheBTMmodel,because,byaddingthe“buytimeoption”ofreducingtheCO2emissionsratesonthecarbon‐usingproductioncapacity,therewouldbemoretimelefttobuild‐upthenecessarycarbon‐freecapitalstock.Sincethatcapitalformationprocesswouldweighallthemoreheavilyofconsumptionlevels,exercisingthe“buytimeoption”canserveasapartialinsuranceagainsttheadversewelfareconsequencesofdisappointedexpectationsregardingtheeffectivenessofR&Dinvestmentinenhancingtheproductivityproductionfacilitiesembodyingcarbon‐freetechnologies.Althoughthetwooptionsoftenseemtobediscussedasalternative,substitute“climatepolicies”theyaremoreproperlyseentobecomplementsinanexpanded“technologyfix”portfolio.

Itisafairlystraightforwardmattertoconductsensitivityexperimentswiththesepartialmodels,inordertogetaqualitativeimpressionoftheimpactofparametervariationsthat,giventhedeterministicformthemodelcanbegintosuggesttherangeofdistributionsinthedynamicsthesystemexhibitwerethemodelcomponentreformulatedmorerealisticallyinstochasticterms.Moreover,suchsensitivityexperimentsalsoshedlightonthewayinwhichtherequirementsforasuccessfulclimate‐stabilizingtransitionwillbeaffectedby‐‐andthereforeneedtomakeexanteallowfor‐‐alterationsintheperceivedandactualdynamicfeedbacksarisingfrominteractionsbetweentheeconomicandthegeo‐physicalsubsystems.41

Sinceatthisstageofourworktheresultsofthesolutionofthemodelconsideringboththebuy‐timeoptionandR&Ddirectedtoinnovationsincarbonfreeproductiontechnologyarestillbeinganalysed,wereporttheresultsofusingsensitivityexperimentswiththe“external”physicalspecificationsofourpartialeconomicmodelsasapreliminarymeansofexploringtheimpactsoftheirinteractions.Amongthevarietyofcomputationalexperimentsthatcanbereadilyexecuted,thefollowingpairhasyieldedresultsthatareofprincipalinterest:(i)loweringthecumulativeGHGemissionstipping‐point,and(ii)increasingtheannualrateofphysicaldepreciationofcarbon‐basedproductioncapacity.

41Forexample,amorecautionarystancetowardsthedangersofsurpassingthecumulativeemissionsthresholdmayinvolvealoweringofthe‘model’‐thresholdbelowits‘realworld’expectedlevel.

Page 33: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐31‐

ThefirstoftheseoffersasimplewaytoassessthegrosseffectsofmakingprecautionaryallowancesfortheambiguitysurroundingtheexactleveloftheatmosphericGHGconcentrationlevelthatwillbea“tippingpoint”intothedomainofirreversibleclimateinstability.42Therobustresultwefindforallvariantsofloweringthecriticalthresholdfortemperaturegain(orequivalently,thecumulativeemissionstippingpoint)isthattherequiredlengthofthetransitiontoastabilizedclimatewouldbeshortenedbyabridgementoftheBAUphase,leavingthedurationofthejointproductionphaseessentiallyunaltered.Initially,outputisreducedbutconsumptionisraised,sothatinvestmentintangiblecapitalformationispostponed;althoughconsumptionsubsequentlywillbereduced,therealsoislessinvestmentinthenewCFRtechnology,and,indeedandlowerlevelsofactivityacrosstheboard–comparedtothosefoundforthe(basic)referencemodelwhenthetemperature‐gainthresholdissetatahigher,lessconstraininglevel.

Thegeneralfinding,then,isthatwithlessscopeforCO2emissionsbeforetheexpectedcriticalthresholdwillbereached,productionwithcarbon‐usingcapacitymustbecurtailedandthelengthofthetransitionabridged;withlesstimetobuildupcarbon‐freecapitalgoods,theeventualgrowthofoutputandconsumptionhastobedeferreduntilclimatestabilizationwithacarbon‐freeproductionregimehasbeenachieved.Afurther,consistentresultappliesinthespecificcasesoftheendogenousR&DandBMTmodels:becausealowercriticalthresholdleaveslesstimetodoR&Dortobuytime,ordertocounterthateffecttosomeextent,thedistributionofR&DactivityovertimemustbeshiftedtoinfavourofR&DnowandagainstR&Dlater.

Thus,theplanningmessagestobetakenfromthisisthatsettingalowerGHGppmtarget‐‐inkeepingwithgreateraversiontoriskambiguityandconsequentadherencetothemaximinstrategydictatedbythe“precautionaryprinciple,”callsforrapidlyrampinguptherateofR&Dexpenditures.Similarly,itwarrantsboostingattheoutsettherateofcapitalformationinproductionfacilitieswithupgradedoutput/emissionsperformance.Later,bothtypesofinvestmentwillhavetodecline,firstrelativetooutputandthenabsolutely,oncethebuild‐upofcarbonfreeproductioncapacitygetsunderway.

42Theimplicationsofallowingfortheambiguityinthelocationofthe“tippingpoint”beyondwhichwarmingbecomesaself‐reinforcingprocessevenwhereGHGemissionsofimmediateanthropogenicorginshaveceasedcompletelywillneedtobeassessedwithinthecontextofafullyintegratedstochasticversionofourmodel.LeomineandTraeger(2011)introduceprobabilisticfunctionsforcrossingaclimateregimetippingpointintoarecursiveformulationoftheDICEintegratedassessmentmodelforestablishingoptimalclimatepolicies.Thetippingpoint'sprobabilityandtimingthusbecomeendogenouslydeterminedbythechosenemissionpolicy.Recognizingthattheprobabilitydistributionforthe“temperatureThreshold”correspondingtothe“tippingpoint”isnotknownwithconfidence,policydecisionscanbemadethatreflect“ambiguityaversion”byselectingstrategiesthatreducethedownsidevariancearoundtheexpected“thresholdtemperature.LemoineandTraeger’ssimulationsshowthatunderreasonableparameterizationoftheDICEmodel,allowancefortippingpointsinthiswaycanraisethenear‐termsocialcostofcarbonemissionsbyasmuchas50%.

Page 34: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐32‐

Oursecondsetofexperimentsprovideasimplifiedwayofemulatingthehigherfrequencyofdamagesthatcanbeexpectedtoresultfromextremeweathereventsassociatedwithchangingclimate(s),andtoassesstheimpactontheoptimizedtransitionplanofanticipatingtheconsequencesofwarmingthatalreadyis“inthepipeline,”duetothepasthistoryofGHGemissions.Anincreasedrateofunscheduledcapitallosses(damagesfromincreasedclimateinstability)hastheeffectofpostponingthearrivaloftheCFRphase,primarilybecauseproductionusingthecarbonbasedtechnologyisnegativelyaffected,leadingtoalowerflowofCO2emissionsintheprocess.Thisis“thegoodnews”,but,unfortunatelyitisnotthewholestory.

Sinceitseemsreasonableforpurposesofthisanalysistoassumethatthesenegativeclimateeffectswillimpactoldcarbon‐basedfacilitiesmostseverely,ifnotexclusively,43therateofreturnoninvestmentincarbon‐usingfacilitieswillbelowerthanisthecaseintheabsenceofallowanceforthisfeedbackofclimatedestabilization(i.e.,inthebasemodel).The“badnews”isthatthisresultsinlowerinitialratesofcarbon‐usingcapitalformation(grossinvestmentinKAandKD)andhigherratesofconsumptioninanextendedBAUphase.ConsequentlytheconstraintplaceonthegrowthofproductivecapacityduringthisearlyphaseofthetransitioncurtailstherateofR&Dinvestment,andtheglobaleconomy’ssubsequentabilitytorapidlyaccumulatethenecessarystockofcapitalembodyingcarbon‐freetechnologies.

Oneimplicationoftheforegoingfindingswouldseemtobethatexpendituresaimedataverting“unscheduledlosses”inproductioncapacityduetoclimateinstability‐relateddamages,maybequitea“goodinvestment”.Itshouldbenotedthatundertheassumptionofincreaseddamages,thelevelofR&Dactivityalsoisaffectednegatively.But,consideringthatinafullyendogenousintegratedmodel,climate‐relatedcapital‐losseswillbedrivenbyrisingGHGconcentrationlevelsandhighermeansurfacetemperatures,theyarelikelytotakeaheaviertollonexistingproductioncapacityatdatesfartherinthefuture,ratherthanfromtheoutsetofthetransition.

Thatparticularformofnon‐stationaritycanbeemulated(albeitroughly)byafurthersimulationexperimentinwhichthephysicaldepreciationrateoncarbon‐usingcapitaljumpstothehigherlevelonlyafterthetangibleinvestmentinthattypeofcapitalhasstopped.Wemaysupposethattheanticipationofthosefuturecapitallosses,asbefore,willexertadepressingeffect(albeitlessheavily)upontheexpectednetrateofreturntoinvestmentinKAduringtheBAUphase.Consequently,althoughtheinducednear‐termreductionintangible(carbon‐technologyusing)capitalfacilities,andtheriseof

43Theconsiderationunderlyingthisassumptionisthealargeportionofthecarbon‐basedinfrastructureanddirectlyproductivitycapitalstockwillbelegaciesfromtheBAUregimeandthehistoricallyantecedentstate,itwillbelocatedintemperatelatitudesandbuiltinfashionsthatwillleaveitmorevulnerabletotheeffectsofcoastalandriverineflooding,andservewind‐damagefromhurricanesandmonsoons,thantherecentlyconstructedcarbon‐freefacilities.Thelatter,ideally,willhavebeendesignedandsitedwiththoserisksinmind.

Page 35: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐33‐

consumptionpercapitawilloccurduringtheBAUphase,thatwouldnothappenfromthephase’soutset.Instead,itwouldbeconcentratedintheperiodjustbeforethecarbon‐usingstockattainsitmaximum,when(undertheassumedtimingoftheincreasedrateofunscheduledcapitallosses)theweather‐createddamagesstarttooccurwithgreaterfrequency.44Theoveralleffectofthesealterationsinthetimingofintangible(R&D)investmentsuponontheterminalvalueoftheproductivityofcapitalembodyingCFRtechnologiesisbounded,however,becausetheBAUphaseduringwhichR&Distakingplacewillhavebeenstretchedout.ThatchangecompensatesforthecumulativeeffectofadecreaseintheflowrateofR&Dinputs,andthesoamelioratethelatter’snegativeimpactupontheextentofproductivityimprovementsinKB.

Amajormessagethatemergesfromtheforegoingmodellingexerciseandparameterizationexercisesisonethatmightwellhavebeenanticipatedatitsoutset.Whatwelearnfromheuristicmodelbuildingofthepresentkindishowtothinkabouttheproblem,andnotnecessarywhattoconcludeaboutthebestcourseofactioninmeetingthechallengeitposes.Eventhehighlysimplifieddynamicalsystemthatwearestudyinghassufficientinterconnectedandmutuallyinterdependent“movingparts”totaxone’sunassistedintuitionsastothewaysthatvariationsintheparametersofthegeophysicalandeconomicsubsystemswillaltertheoptimizedtransitionpathstoastabilizedglobalclimate.

Moreover,whilethesimplicityoftheheuristicgrowthmodelmakesmoretransparentthelogicofchangesinthedirectionsofinvestmentandproductionactivityintheirvariousforms,thesequencedphasestructureofthetransitionisnotsoimmediatelyobvious.Norcantheimpactsofparametricvariationsontheoptimalphases’relativedurationsbeascertainedwithoutundertakingexplicitlyquantitativeanalyses.Thelattercanservetoprioritizeareasforempiricalresearch,byidentifyingtechnicalparameters(andinmodelswithricherspecificationsofagents’behaviors,criticalbehaviouralparameters)‐‐themagnitudesofwhicharefoundtostronglyimpactthewelfarepropertiesandshapetheresourceallocationrequirementsintheearlystagesoftheoptimaltransitionpath.Buildingsuchmodels,andinvestigatingtheimplicationsofmoresophisticated,integratedsystemsofeconomic‐climateinteractions,shouldnotbeseenasapursuitintendedtoproduceasubstitutefortheexerciseofintuitivejudgementsaboutmattersofeconomicpolicydesign.Intheend,thelatterwillhavetoweighmanyimportantpracticalconsiderationsofhumanbehavior,cultureandpoliticsthanwillresistaccuratecaptureintractablequantitativemodels.Instead,weregard

44Thisdifferenceintiminghastheeffectofreleasingresourcesthatallowforafasterbuild‐upofcarbon‐freecapital(byassumption,designedsoastobenotsusceptibletotheelevatedseverityoftheweather).Inaddition,duetothespecificationadoptedfortheR&Dproductionfunctioninourmodel,thereleaseofthoseresourcesatalaterpointinthefuture,afterconsiderableR&Dexpenditureshavetakenplace,islesscostly(intermsofCFRproductivitygainsforegone)thanisthecasewhenthevolumeofR&Disloweredfromtheoutset.

Page 36: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐34‐

theexerciseofexperience‐basedintuitionsandquantitativeanalysestobecomplementaryingredientsinthepolicydesignprocess;andbelievetheywillworkmoreeffectivelyandreliablywheneachisallowedtoinform,sharpenandqualifytheconclusionstowhichoneisledbytheirjointemployment.

4.Whatistobelearnedfromthenextstageinthisresearchprogram?

Thepresentpaperfocusesonunderstandingthedeterministicsystemofthemodellingframeworkwehaveconstructed,andhasindicatedthedirectionsinwhichwecanproceedtocompletetheintegrationofthepartialmodelswithinacompleteendogenouseconomicandgeo‐physicalsystem.

Inthenextmajorstageoftheprogram,itwillbeimportanttomovetoastochasticintegratedmodel,byspecifyingtheprobabilitydistributionsgoverningthe“climatesensitivity”ofthephysicalsystem,whichistheprincipalnexusbetweenthealteredproductionsystemandthewelfareconsequencesoftheclimatechangesbroughtaboutbyglobalwarming.45Similarly,wealsomustrecognizethestochasticnatureoftheoutputofR&Dexpenditureinputsandthepayoffsoftechnologicaladvancespermittinghigherproductivityintheavailablestockofcapitalembodyingcarbon‐freetechnologies.Butforthepresenttherearemanyinterestingthingstolearn,andquestionstoanswerbyexploringtheequivalentdeterministicversionofourmodel.

Fordifferentparameterconstellationsweareabletoshowhowthetimingofthephaseswillchange,andhowtheevolutionovertimeofwelfarepercapitawillbeaffected,butalsohowtherequiredR&Dexpendituresandthevolumeofgrosscapitalformationwillchange,bothintermsoftheirdistributionandintensityovertime.Wealsoshowhowuncertaintyregardingthepositionoftheclimatetippingpointincombinationwithdifferentdegreesofprecautionarybehaviourwouldaffecttheoptimumtimingandintensitiesofthevariousactivitiesdistinguishedinthemodel.

Theflipsideofthelattercomputationalanalysisisourabilitytoexplorethewelfaredamageof“policyimplementationfailures”.StartingfromtheoptimalprogramforthetransitiontoaviableandstableGHGconcentrationlevel,itisfeasibletoshowtheeffectsofbudgetaryorpoliticalconstraintsthatresultinspecificallytimedpostponementsofpublicinvestmentinR&D,oruncompensatedprivatecutsintheupgradingofcarbon‐basedproductionfacilities,orintheroll‐outofthecarbon‐free

45Thenatureofthedistributionofthefeedbackparameterdescribingthephysicalsystem’sresponse(intermsofglobalmeansurfacetemperaturetoadoublingoftheatmosphericGHGconcentrationlevelissurroundedbyverysubstantialuncertaintiesarisingfromthecomplexitiesoftheinteractionsamongthephysicalandchemicalprocessesthatunderliethefeedbacksequencesindicatedintheintroduction.Inthepresentcontextthereisanimportantissueastowhetheritisreasonabletoassumethattheeffectsonthedistributionaroundthemean“climatesensitivity”ofchangesinthemeanGHGconcentrationlevelwillbevariance‐preserving.

Page 37: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐35‐

technologywhen,undernormalbusinessconditionsitwouldbeadvantageoustoundertakeinstallationoftherequiredcapitalinvestments.Howmuchthetimingofactionmattersinthissystem,andthepenaltiesfordeviationfromtheoptimalpathcanbeshownundertheassumptionthatnoeffortismadetore‐optimizefromthepositionthathasresultedintheaftermathofsuch“shocks”,andalsoundertheassumptionoftryingto“catchup”afteraparticularrangeofdelaysbymeansofre‐optimizingthetransitionpath.Thusitispossiblecomputationallywithinthisheuristicmodellingframeworktodescribetherelationshipbetweenthelengthsofimplementationdelaysduringspecificphasesofasuccessfultransitiontoclimatestability,andtheconsequentcostsintermsofnet‐welfareforegone.

5.Getting“TechFix”intotheclimatepolicymix:Abeginning,notaconclusion:Thisinitialstageinourprojectedexplorationsofthe“requirements”forasociallyoptimaltransitiontosustainableglobaleconomicgrowthinaviablestabilizedclimatehasbeenmotivatedprimarilybythebeliefthatitisvitallyimportanttogive“technologyfix”optionsacentralplaceinstructuredanalysisofpoliciesthatcanrespondeffectivelytothechallengeofclimatedestabilization.Environmentalandenergyeconomistshavebeenquicktoemphasizetheallocationalefficiencyofvariousfiscalandregulatorymeansofraisingthemarketpricesofcarbonfuels,andsuggestedthattheefficacyofthatpolicyapproachwouldbeenhancedbytheireffectsininducing“carbon‐saving”technicalinnovationfromprivatesector.

Ashasbeenpointedout,however,thelatterpropositionpresupposesthatraisingthecostoffossilfuelsourcesofenergywouldnotnegativeincomeeffectsthatdampenedprivateR&Dexpendituresbyenergy‐intensivesectorsoftheeconomy.Furthermore,theintegratedassessmentmodelsthateconomistshavedevelopedasquantitativetoolstoguidepoliciesaimingtoraisethepriceofcarbontypicallyfailtoshowtheconditionsunderwhichtheywouldelicitasufficientflowofinnovationsthatweredirectedspecificallytocurtailingandeventuallydisplacingfossilfuelsasadominantglobalsourceofenergy.Toaddressthis“policyassessmentgap”wouldentailgivinggreaterattentiontospecifyingtherelevantcharacteristicsofthearrayofenergy‐usingtechnologies,andthecorresponding“endogenoustechnologicalprogress”sub‐system,andtoconnectthemwiththeothercomponentsoftheaggregateeconomicgrowthmodelsthatwillgovernthepaceandextentofdeploymentofimprovedproductiontechniques.

Thedynamicintegratedrequirementsanalysismodeling(DIRAM)approachthathasbeenintroducedheremaybeviewedasapreliminarysteptowardsamoreilluminatingrepresentationwithinthecontextoffamiliarIAMsofthepotentialroleoftechnologicalmeasuresinthetransitionfromthepresentdominanceofcarbon‐basedenergytoalowcarbonglobalregimeofproduction.Itsurelywilloccurtosomereaderstoquestion

Page 38: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐36‐

accordingprioritytoelaboratingthetechnologicalspecificsofexistingIAMs,onthegroundthatmanyotherfeaturesofthesehighlystylizedmodelsalsowarrantfurtherelaboration,andgreaterpolicyrelevancecallsforaspatiallydisaggregatedapproachthatwouldtakeaccountofgeographicalandecologicalvariationsaffectingboththeglobaleconomyandtheclimatesystem.Indeed,therealreadyhavebeenmanyeffortsalongjustsuchlines,impelledbyapolicyinterestinassessingthedifferentialregionalandnationalincidenceofthecostsofcurtailingglobalGHGemissions.Othersmightarguefortheimportanceofrecognizingtheendogeneityofchangesinthesize,agestructureandspatialdistributionofglobalpopulation,andmoresophisticatedwelfareframeworktoaccountfordemographicaswellaseconomicchangesinthetransitiontoaviablestabilizedclimate.

evenwerethelatterqualificationtobewavedaway,thereshouldberoomtoconsiderthatarrivingatdomesticandinternationalagreementstoimposefutureincreasingpricesforfossilfuelswouldbepoliticallylessarduouswheretheregoodprospectsforsignificantmitigationofsuchcommitments’adverseimpactsonfuturerealprofitratesandconsumptionlevels.Justthatcontextwouldbecreatedbyapriorcommitmentonthepartofthealreadydevelopedandscientificallyandtechnicallyadvancecountriestomajorcoordinatedtechnologicalprograms‐‐suchasthoseaimedatsignificanlyincreasingtheefficiencyofenergydistributionanduse,andatloweringtherealunitcostsofnon‐fossilfuelsourcesofenergy.

Risingpricesforcarbon‐basedenergywouldencourageanyformcost‐savinginnovationactivitiesand,bythattoken,itwouldraisetheperceivedmarginalsocialpayofffromexpandingpublicsupportforscienceandtechnologyresearch–ifonlytocreateaknowledgeinfrastructurethatwouldlowerthecostsofdirectedinnovationintheaffectedsectorsandlinesofbusiness.Nevertheless,theaugmentedpublicR&Dfundingwouldhavetobeforthcoming,andadditional,differentialsubsidymeasureswouldneedtobeintroducedtodirectprivateR&D(andsubsequentdeploytheresults)towardloweringtheunitcostsofcarbon‐basedandalternativeenergysources.Alternatively,awellthoughtoutsupply‐sideclimatepolicythatstartedwiththegoalofexpandingavarietyofapplications‐orientedR&Dprogramswouldtendtocreatecredibleexpectationsofsubstantialfutureresourcesavingswithcarbon‐freeproductionfacilities,andaconcomitantlysmallersacrificeofmaterialwelfareentailedinrestrictingGHGemissions.ThatcouldcontributetoweakeningeconomicallymotivatedresistancetoascheduleofgraduallyrisingcarbontaxesandthereforeimpartwiderandstrongercommitmentstonationalandinternationalagreementsoncoordinatedandveriableactionsthatwouldcurtailGHGemissions.Bundlingproposedcommitmentsfromlowerincomedevelopingeconomieswithreciprocalloansubsidiesandcostconcessionsinthetransfertonew“greener”andcarbon‐freetechnologieswouldconstituteacrediblepackagefornegotiationsthatwouldgrowinitsattractivenessastheR&Dprogramsmatured.

Page 39: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐37‐

AcknowledgementsThepresentpaperisanextensiverevisionandexpansionofthework(Davidetal.,2011)preparedforpresentationatthe6‐8July2011conferenceoftheInternationalEnergyWorkshop,heldatStanfordUniversity.IthasbenefitedfromthediscussionbyparticipantsintheIEWconferencesessionon“R&DInvestment,ClimateandEnergyPolicy,”andfromcomments(onsubsequentversions)bythoseattheSIEPR‐CEEGSocialScienceandTechnologySeminaron14December2011,andfacultyanddoctoralstudentsattendingtheCEMIseminarsatÉcolePolytechniqueFédéraledeLausanneon17and30May2012.ThecontributionsofBronwynHallandLucSoetetoourpreparatorydraftsonthissubject(Davidetal.,2010)havebeenofenduringvalue,andthemanyperceptivecommentsandsuggestionsofferedbyLawrenceGoulderandThomasWeberdeservespecialacknowledgment.ThanksalsotoAshishArora,DominiqueForay,WardHanson,andWarrenSanderson.Davidgratefullyacknowledgesthesupportofa“seedgrant”fromtheStanfordInstituteforEconomicPolicyResearch.

References:

Acemoglu,D.,P.Aghion,L.Bursztyn,D.Hemous(2010),“TheEnvironmentandDirectedTechnicalChange,”MITWorkingPaper,April28,2010.[Availableat:http://econ‐www.mit.edu/faculty/acemoglu/paper

Ackerman, F., S. J. DeCanio, R. B. Howarth, K. Sheeran(2009) , “Limitations of integrated assessment models of climate change,” Climatic Change 95: pp.297–315 [DOI 10.1007/s10584-009-9570-x]

Arrow,K.J.(2009).“Anoteonuncertaintyanddiscountinginmodelsofeconomicgrowth,”JournalofRiskandUncertainty38(February):87–94.DOI10.1007/s11166‐009‐9065‐1

Arrow,K.J.,L.Cohen,P.A.Davidetal.(2008),“AStatementontheAppropriateRoleforResearchandDevelopmentinClimatePolicy,”TheEconomists’Voice,6(1):Article6,March2008.[Availableat:http://www.bepress.com/ev/vol6/iss1/art6.]

Barro,R.andX.Sala‐i‐Martin(2004),EconomicGrowth,2ndEdition,MITPress.

Cai,Y.,K.L.Judd,T.S.Lontzek(2012a),“DSICE:ADynamicStochasticIntegratedModelofClimateandtheEconomy.”CenterforRobustDecision‐MakingonClimatePolicy,WorkingPaperNo.12‐06,January.

Cai,Y.,K.L.Judd,T.S.Lontzek(2012b),“TippingPointsinaDynamicStochasticIAM,”CenterforRobustDecision‐MakingonClimatePolicy,WorkingPaperNo.12‐07,January.

Page 40: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐38‐

Dasgupta,P.S.andG.M.Heal(1980).TheEconomicsofExhaustibleResources,Cambridge,UK.:CambridgeUniversityPress.

Dasgupta,P.S.andG.M.HealandM.K.Majumdar,(1978),“ResourceDepletionandResearchandDevelopment,”FrontiersofQuantitativeEconomics,vol3B,M.Intrilligator,ed.,Amsterdam:North‐Holland.

David,P.A.(2009),“PreparingfortheNext,VeryLongCrisis:Towardsa‘Cool’ScienceandTechnologyPolicyAgendaforaGloballyWarmingEconomy,”R&DPolicyChallengesforEurope:ConceptualandEmpiricalFoundations,Brussels:EuropeanCommission..[Preprintavailableat:http://www.merit.unu.edu/publications/wppdf/2009/wp2009‐031.pdf].

David,P.A.,C.Huang,L.Soete,A.vanZon(2009).”TowardaGlobalScienceandTechnologyPolicyAgendaforSustainableDevelopment.”UNU‐MERITPolicyBriefNo.4,Maastricht,Netherlands[availableat:http://www.merit.unu.edu/publications/pb/unu_pb_2009_4.pdf].

David,P.A.,A.vanZon(2011),“Optimal Transition Paths toward Global Climate Stabilization: Implications for R&D Investment and Its Timing.” Presented at the International Energy Workshop Conference, held at Stanford University, 6-8 July 2011; Revised version (28 November 2011, presented to Social Science & Technology Seminar, SIEPR-CEEG, Stanford University, 14 December, 2011. [Available at: http://siepr.stanford.edu/system/files/shared/paul%20david_v16.pdf.]

David, P. A. (2012), “Optimal Multi-Phase Transition Paths toward a Stabilized Global Climate:

Integrated Dynamic Requirements Analysis for the ‘Tech Fix’” Revised ver.7 (November) available as UNU-MERIT Working Paper Series No. 12-075, available at: http://www.merit.unu.edu/publications/wppdf/2012/wp2012-075.pdf ; also available as SIEPR Discussion Paper No.12-016, at: http://siepr.stanford.edu/publicationsprofile2530].

Dowlatabadi, H. (1995),”Integrated Assessment Models of Climate Change: An Incomplete Review,” Energy' Policy, VoL 23, No. 4/5, pp. 289-296.

Farrel,D.andJ.K.Rennes(2008),“Howtheworldshouldinvestinenergyefficiency,”McKinseyQuarterly,(June).

Gans,J.S.(2009)."InnovationandClimateChangePolicy."MelbourneEconomicsDepartmentWorkingPaper(27February).[Availableathttp://works.bepress.com/joshuagans/24].

Goulder,L.H.andK.Mathai(1998),“OptimalCO2AbatementinthePresenceofInducedTechnologicalChange.”NBERWorkingPaper6494.Cambridge,MA.(April).

Goulder,L.H.andS.H.Schneider(1999),“InducedTechnologicalChangeandtheAttractivenessofCO2AbatementPolicies,”ResourceandEnergyEconomics,21:pp.211‐253.

Grove,A.andR.Burgelman(2008),“Anelectricplanforenergyresilience,”McKinseyQuarterly,December.

Grubler,A.N.NakicenovicandW.D.Nordhaus,eds.(2002),InducedInnovationandClimateChange:CollectedEssays.Washington,D.C.:ResourcesfortheFuturePress.

Page 41: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐39‐

Hall, D.C. and R. J. Behl (2006), “Integrating economic analysis and the science of climate instability,” Ecological Economics 57: pp. 442– 465.

Heal,G.(1976),“Therelationshipbetweenpriceandextractioncostsforaresourcewithabackstoptechnology,”TheBellJournalofEconomics,7(2):pp.371‐378.

Hendry,D.F.,“ClimateChange:LessonsforourFuturefromtheDistantPast,”DepartmentofEconomicsDiscussionPaper,No.485,(January)2010.

Hoel,M.(2010),“IsthereaGreenParadox?”,CESifoWorkingPaperNo.3169,September,[Availablefromhttp://www.cesifo‐group.or./wp].

Hotelling,H.(1931),“TheEconomicsofExhaustibleResources,”JournalofPoliticalEconomy,39(2),April:pp.137‐175.

IPCC(2007),“SummaryforPolicymakers”.In:ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange,Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.TignorandH.L.Miller,eds.Cambridge,UKandNewYork:CambridgeUniversityPress.

Kelly,D.L.andC.D.Kolstad(1999),"IntegratedAssessmentModelsforClimateChangeControl,"Ch.8inH.FolmerandT.Tietenberg(eds.),InternationalYearbookofEnvironmentalandResourceEconomics1999/2000:ASurveyofCurrentIssues.(Cheltenham,UK:EdwardElgar).

Klemperer,P.(2009)“WhatistheTopPriorityonClimateChange?,”PaperPresentedtothe2007UNConferenceonClimateChangeinBali.OxfordEconomicsDepartment,DiscussionPapers(January)[availableathttp://www.paulklemperer.org].

Lemoine,D.M.andC.Traeger,2011,“TippingPointsandAmbiguityintheIntegratedAssessmentofClimateChange,”PresentedattheInternationalEnergyWorkshop,heldatStanfordUniversity,6‐8July2011;alsoatNBEREnvironmentalandEnergyEconomicsSummerInstitute2011,July15,2011.[Availableat:http://www.nber.org/confer//2011/SI2011/EEE/Lemoine_Traeger.pdf.]

Leonard,D.andN.VanLong,1992,OptimalControlTheoryandStaticOptimizationinEconomics,Cambridge,Eng.andNewYork:CambridgeUniversityPress.

Lenton,T.M.,H.Held,E.Kriegleretal.,2008,“TippingelementsintheEarth’sclimatesystem”.ProceedingsoftheNationalAcademyofScience(PNAS),105:pp.1786–1793.

Lucas,R.E.,1988,“OntheMechanicsofEconomicDevelopment”,JournalofMonetaryEconomics,22,pp.3‐42.

Malcomson,J.M.,1975.“ReplacementandtheRentalValueofCapitalEquipmentSubjecttoObsolescence,”JournalofEconomicTheory,10,pp.24‐41.

Manne,A.S.,andR.G.Richels,(1991),"Buyinggreenhouseinsurance,"EnergyPolicy,July/August):pp.543‐552.

Page 42: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐40‐

Manne,A.S.andR.G.Richels,1992,BuyingGreenhouseInsurance:TheEconomicCostsofCO2EmissionLimits,Cambridge,MA:TheMITPress.

Millner,A.,2011,“OnWelfareFrameworksandCatastrophicClimateRisks.”DiscussionPaper,DepartmentofAgriculturalandResourceEconomics,U.C.Berkeley.September2.PresentedattheStanfordTheoreticalEconomicsInstitute(SITE)–Segment6WorkshoponAdvancesinEnvironmentalandEnergyEconomics.[Availableat:http://www.stanford.edu/group/SITE/SITE_2011/2011_segment_6/2011_segment_6_papers/millner.pdf.](Note:Amorerecentversion,dated28September,hasbeenmadeavailableat:http://nature.berkeley.edu/~amillner/AMillner_files/catastrophes.pdf.]

Nordhaus,W.D.(1993).“Rollingthe‘DICE’:Anoptimaltransitionpathforcontrollinggreenhousegasemissions,”ResourceandEnergyEconomics,15:pp27‐50.

Nordhaus,W.D.(2002),“Modelinginducedjnnovationinclimate‐changepolicy,”Ch.9inInducedInnovationandClimateChange:CollectedEssays,eds.A.Gruebler,N.NakicenovicandW.D.Nordhaus,Washington,D.C.:ResourcesfortheFuturePress.[Preprintavailableat:http://nordhaus.econ.yale.edu/induced_innovation_preprint.pdf.]

Nordhaus,W.D.(2007),AQuestionofBalance:EconomicModelsofClimateChange,(YaleUniversityPress,NewHaven,CT).

Nordhaus,W.D.(2010),”Economicaspectsofglobalwarminginapost‐Copenhagenenvironment,ProceedingsoftheNationalAcademyofSciences,PNASEarlyEdition(6pp.)[availableat:http://www.pnas.org/cgi/doi/10.1073/pnas.1005985107].

ParkerP.,R.Letcher,A.Jakeman(2002),“Progressinintegratedassessmentandmodeling,”EnvironmentalModelling&Software17:pp.209–217

Richter,Burton(2010),BeyondSmokeandMirrors:ClimateChangeandEnergyinthe21stCentury,NewYork:CambridgeUniversityPress.

Romer,P.M.,1990,“EndogenousTechnologicalChange,”JournalofPoliticalEconomy,98,pp.71‐102.

Rebelo,S.,1991,“LongRunPolicyAnalysisandLongRunGrowth,”JournalofPoliticalEconomy,99,pp.500‐521.

Sarewitz,D.andR.Nelson(2008)“Threerulesfortechnologicalfixes.”Nature456(18December)2008:pp.15‐18[availableathttp://DOI:10.1038/456871a].

Scarfetta,N.(2012),”Testinganastronomicallybaseddecadal‐scaleempiricalharmonicclimatemodelversustheIPCC(2007)generalclimatecirculation,”JournalofAtmosphericandSolar‐TerrestrialPhysics,[dx.doi.org/10.1016/j.jastp.2011.12.005]:pp.1‐15.

Solomon,S.etal.,eds.(2007)ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChangeeditedbyS.Solomon.Cambridge,Eng.:CambridgeUniversityPress.

Page 43: Optimal Multi-Phase Transition Paths toward A Stabilized ... · formation. Efficient exercise ... well be a generally adverse expectations about market growth and a consequent weaking

‐41‐

Stern,N.(2006),TheEconomicsofClimateChange,theSternReview,CambridgeUniversityPress.

Stockwell,D.R.B.(2011),“OntheDynamicsofGlobalTemperature,”(August2)[availableathttp://www.rxiv.org/pdf/1108.0004v1.pdf.]

Tol,R.S.J.(2008),“TheSocialCostofCarbon:Trends,OutliersandCatastrophes,”Economics,2(2008‐25),August12[availableathttp://www.economics‐ejournal.org/ej‐search?SearchableText=Tol%2C+R.+J.+S.].

Valente,S.(2009),“EndogenousGrowth,BackstopTechnologyAdoptionandOptimalJumps,”CER‐ETH:CenterofEconomicResearchWorkingPaperNo.09/104,(FebruarySwissFederalInstituteofTechnology,Zurich.[Availableat:http://www.cer.ethz.ch/research/wp_09_104.pdf].

vanderPloeg,F.andC.A.Withagen(2010),“IsThereReallyaGreenParadox?”.CESifoWorkingPaperNo.2963[Availablefromhttp://www.cesifo‐group.or./wp

Weitzman,M.(2009a),“OnModelingandInterpretingtheEconomicsofCatastrophicClimateChange,”TheReviewofEconomicsandStatistics91(1):1–19

Weitzman,M.(2009b).“AdditiveDamages,Fat‐TailedClimateDynamics,andUncertainDiscounting.”Economics3,2009‐39:1‐19.[Availableathttp://www.economics‐ejournal.org/economics/journalarticles/2009‐39]

Sinn,H.W.(2008),“PublicPoliciesagainstGlobalWarming:asupplysideapproach.InternationalTaxandPublicFinance,15:pp.360‐394.

Sinn,H.W.(2009),“TheGreenParadox,”CESifoForum,10(3),Autumn:pp.1‐‐13