Optimisation of Hydrokinetic Turbine

  • Upload
    abu1987

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    1/13

    Optimisation of hydrokinetic turbine array layouts via surrogatemodelling

    Eduardo Gonzalez-Gorbe~na*, Raad Y. Qassim, Paulo C.C. Rosman

    Centro de Tecnologia, Cidade Universitaria, Ilha do Fundao, Bloco C, sala 203, CEP 21945-970, Rio de Janeiro, Brazil

    a r t i c l e i n f o

     Article history:

    Received 20 March 2015

    Received in revised form

    5 November 2015

    Accepted 15 February 2016

    Available online 27 February 2016

    Keywords:

    Hydrokinetic energy

    Turbine array layout

    Surrogate based optimisation

    a b s t r a c t

    A procedure for the optimisation of hydrokinetic turbine array layout through surrogate modelling isintroduced. The method comprises design of experiments, computational   uid dynamics simulations,

    surrogate model construction, and constrained optimisation. Design of experiments are used to buildpolynomial and Radial Basis Function surrogates as functions of two design parameters: inter-turbine

    longitudinal and lateral spacing, with a view to approximating the capacity factor of turbine arrayswith inline and staggered layouts, each of which having a  xed number of turbines. For this purpose, two

    scenarios have been used as case studies, considering uniform and non-uniform free-stream  ows. Themajor advantage of this method in comparison to those reported in the literature is its capability to

    analyse different design parameter combinations that satisfy optimality criteria in reasonable compu-tational time, while taking into account complex  oweturbine interactions and different turbine types.

    © 2016 Elsevier Ltd. All rights reserved.

    1. Introduction

    In recent years, in-stream hydrokinetic energy has drawn theattention of investors around the world. The large amounts of en-ergy found in river   ows, tidal channels and ocean currents has

    served as a strong motivation for research in optimising hydroki-netic turbine arrays with a view to making their commercialexploration viable. There are several issues concerning the designof turbine array layout, such as array size, complex   oweturbine

    interactions, different turbine types, and environmental impacts,which are necessary to be taken into account, in order to employsuitable optimisation methods. Vennell et al.   [1]  distinguish be-tween two scales of array optimisation: macro and micro array

    design scales, where macro-design relates to the total number of 

    turbines in a farm, the number in each row and the number of rowsin the array. On the other hand, micro design is concerned with theindividual positions of the turbines within the array. This paper

    focuses on the aspect of micro design of turbines arrayoptimisation.

    In almost all reported research work on the turbine array layoutoptimisation problem, two approaches have been employed. In the

    rst type of approach, highly simplied one dimensional tidal  owmodels are employed [2e6]. In the second type of approach, morecomplex multidimensional tidal   ow models are adopted   [7e9].The simplied model approach possesses the appeal of simplicity;however, this approach cannot capture the complex nonlinear uid

    ow interactions between turbines. In the second approach, more

    realistic models are employed; however, they are so computa-tionally demanding that the whole design parameter space cannotbe explored, and as a consequence, only a limited number of 

    manually selected turbine array congurations are studied in thesearch for an optimal solution. Recently, a third approach has beenproposed [10], whereby a gradientebased optimisation method isdeveloped to solve the turbine array layout optimisation problem

    for a given initial turbine array conguration. In the approach

    presented by Funke et al.  [10], a function (of the solution of theshallow water  uid   ow partial differential equations and of thedesign parameters, which comprise the location of turbines) is

    optimised subject to constraints, which include the shallow water

    uid  ow partial differential equations. The approach of  [10] pos-sesses several strong points: it combines macro and microarrangement optimisation, sound mathematical basis, relatively

    fast computation times even for large turbine arrays, and simulta-neous determination of the  uid velocity  eld and the location of turbines. However, it is much more complex to implement, de-mands high computer storage capacity, it may encounter dif -

    culties in obtaining a global optimum solution, and the parameter

    *   Corresponding author.

    E-mail addresses:  [email protected] (E. Gonzalez-Gorbe~na),  qassim@

    peno.coppe.ufrj.br (R.Y. Qassim), [email protected]  (P.C.C. Rosman).

    Contents lists available at ScienceDirect

    Renewable Energy

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . co m / l o c a t e / r e n e n e

    http://dx.doi.org/10.1016/j.renene.2016.02.045

    0960-1481/©

     2016 Elsevier Ltd. All rights reserved.

    Renewable Energy 93 (2016) 45e57

    mailto:[email protected]:[email protected]:[email protected]:[email protected]://www.sciencedirect.com/science/journal/09601481http://www.elsevier.com/locate/renenehttp://dx.doi.org/10.1016/j.renene.2016.02.045http://dx.doi.org/10.1016/j.renene.2016.02.045http://dx.doi.org/10.1016/j.renene.2016.02.045http://dx.doi.org/10.1016/j.renene.2016.02.045http://dx.doi.org/10.1016/j.renene.2016.02.045http://dx.doi.org/10.1016/j.renene.2016.02.045http://www.elsevier.com/locate/renenehttp://www.sciencedirect.com/science/journal/09601481http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2016.02.045&domain=pdfmailto:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    2/13

    set to be optimised must be continuous. This last one may representa serious weakness as it does not allow for the choice of different

    turbine types at different locations as part of the output. The degreeof freedom in allowing for different turbine type choice, is crucialfor the assessment of the economic viability of sites with nonuniform depth. In such cases, the design parameter space includes

    discrete variables depicting turbine size of different turbine types.This feature is typical of the classical equipment selection problemin operations research [11,12].

    This paper is a continuation of the work presented by Gorbe~na

    etal. [13], where a different approach of optimisation is introduced.In Ref. [13], the well established method known as Surrogate-BasedOptimisation (SBO) of computer experiments is applied to theoptimisation of uniform turbine array layouts under steady state

    uniform   ows. Where uniform array layouts are dened by twospacing parameters: longitudinal spacing and lateral spacing. Thismethod provides a less expensive surrogate model of a morecomplex model facilitating the exploration of the entire design

    space. An additional advantage of this method is that it enables theoptimisation of continuous and discrete design parameters simul-taneously. As the number of design parameters increases, the

    necessary number of computer experiments grows, resulting in the

    main drawback of the SBO method. In the literature, there are anumber of papers where surrogates have been used to solvedifferent variants of the wind farm layout optimization problem.

    Rodrigues et al. [55] used surrogates of wind roses to optimise thelayout of offshore wind farms. Zhang et al.   [56]  implemented aresponse surface-based cost model for wind farm design. InRef.   [57]  wind power assessment is approximated through surro-

    gates, using wind parameters as design variables, to evaluate themaximum wind farm capacity factor for a specied farm size andinstalled capacity. Recently, Mehmani et al.   [58]   presented anapplication of the surrogate-based particle swarm optimisation for

    large-scale wind farms.Except for the work of Funke et al.   [10], most of the studies

    related to hydrokinetic turbine array optimisation consider uniform

    layouts positioned in uniform channels with at bed bottoms andwith uniform free-stream ows [6,8,13,14]. In the present work, thecapabilities of different surrogates are analysed to optimise uni-form turbine array layouts positioned in regular and irregularchannels to generate different  ow conditions.

    The paper is organised as follows. In Section 2, the SBO approachis presented and discussed. In Section 3, the problem formulation ispresented, and this is followed in Section 4  by the design of com-puter experiments. In Section  5  computer simulation results are

    presented. In Section 6, surrogate model construction is carried out,which is then assessed and validated in Section  7. In Section 8, thesurrogate optimisation model is presented. Finally, conclusions andsuggestions for future work are presented in Section 9.

    2. Surrogate based optimisation

    Surrogate models are inexpensive approximations of more

    complex computational models allowing fast exploration of thedesign space, therefore reducing the overall design process dura-tion and cost. Also known as response surfaces, metamodels, or

    emulators, surrogate models are used for several tasks like: opti-misation, sensitivity analysis, design-space exploration and para-metric studies amongst others. There is a wide variety of metamodels available in the literature, each of which possessing

    advantages and limitations. Popular methods for creating surrogatemodels include polynomial functions [15], Radial Basis Functions(RBF) [16] and kriging [17]; for a review of metamodel techniquessee Refs. [18e20]. Selecting the proper metamodel to be used de-

    pends on the nature of the engineering problem under

    consideration, as well as on the available data. For this reason,conducting a comparison analysis of the surrogate models that are

    built with different methods is of great importance. Trying out all of them is beyond the scope of this work, and instead two specicmethods are employed and compared. The dif culty of surrogatemodelling consists in the construction of a reliable emulator using

    the least possible number of samples. A typical   ow diagramsummarising the Surrogate-Based Optimisation (SBO) procedure isshown in Fig. 1.

    In the present paper, SBO procedure is applied to the optimi-

    sation of turbine array layout, with two design parameters as in-dependent variables: longitudinal and lateral spacing, with a viewto approximating the capacity factor,   CF , of turbine arrays withinline and staggered congurations, each of which is studied under

    uniform and non-uniform ows. A second purpose is to analyse theadequacy of polynomial and RBF modelling methods for theirapplication to the turbine array layout problem.

    3. Problem formulation

    In order to solve an optimisation problem, it  rst needs to be

    formulated in such a manner that the objective function, design

    parameters and constraints are dened. This is a crucial step, whichneeds special attention. The consideration of optimising uniformarray layouts may be reduced to a two-dimensional horizontal

    optimisation problem. Therefore, the optimisation problem can beformulated as a function of two design parameters: longitudinaland lateral distance between rows ( x1 ¼ DX) and columns ( x 2 ¼ DY)of turbines, respectively. This consideration implies that all tur-

    bines within the array are positioned at the same depth.It is important to notice that even though, in this particularcase,

    we focus in the optimisation of uniform array layouts, this methodis applicable for more sophisticated problems. The problem may be

    sophisticated by adding new design parameters, for example, butnot only, the inclusion of the vertical dimension ( x 3 ¼ DZ), differentturbine rotor diameters ( x5 ¼  D1; x6  ¼  D 2; x7  ¼  D 3), setting a range

    for the number of turbines to be installed, etc.Once the design parameters are dened, it is necessary to

    specify which is the dependant variable. In this work, the turbinearray layout has been optimised to maximise prot from electricenergy production. Energy production of the array may be quan-

    tied through the Capacity Factor, CF , ratio, see Eq.  (4), that is thepower produced over a period of timedivided by the rated power of the turbines. In this way, considering the simulations are time in-dependent, the surrogate model,   ^ y  ( x ), will represent the instan-

    taneous Capacity Factor of the array as a function of longitudinaland lateral spacing between turbines.

    4. Design of computer experiments

    The design of computer experiments consists in statisticalmethods to establish combinational relationships of input variablesinvolved in the optimisation problem. The objective of a design plan

    consists in minimising the error between the surrogate and com-puter models using the smallest possible number of simulations.Therefore, the main challenge resides in an adequate description of 

    the design space.In the literature, there exists extensive work on this subject:

    introducing, analysing, and comparing different methods,   c.f.,[18,21e23]. Among the established methods of design of experi-

    ments, the Latin Hypercube Design [24] is one of the most widelyused sampling methods. Latin Hypercube Designs (LHD) mayfollow strategies for improving its performance over the designspace. Some of these strategies consist in adopting some optimality

    criteria; a review of several of these methods may be found in

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57 46

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    3/13

    Refs.   [18,25]. For the purpose of this paper, a  maximin   distancecriterion is adopted to dene one set of experimental data, as it

    provides better designs to estimate regression parameters   [59].This criterion maximise the minimum Euclidean (or   [   2-norm)distance between sample points [26].

    As dened in Section 3, the design variables are two: longitu-

    dinal ( x1  ¼  DX) and lateral ( x 2  ¼  DY) distance between rows andcolumns of turbines, respectively. Now, the number of computerexperiments, n, to train the surrogate needs to be specied. As anempirical rule, the number of data collection points in a sampling

    plan should be around ten times the number of design variables, s;c.f., [27]. Other authors [28] state that the number of sample pointsmust be at least equal to or greater than the number of modelparameters to be estimated. Following the above recommendation,

    in this work a sample plan of  n ¼ 20 has been selected. Consideringphysical and operational restrictions, the limits of each variable areset to:

    10D   x1    30D and 2D   x2    4D:

    Where D  is the turbine rotor diameter.Fig. 2 shows the design of experiments used in this work. The

    selected sample plan design includes two sets of experimental data.The  rst data set consists of an approximate  maximin  LHD (n,   s),with  n  ¼  11 and   s  ¼  2 (blue points) (in web version), which areobtained using the built-in function  lhsdesign  available in Matlab

    [60]. The second data set consists of 9 experimental points (red

    points), which intend to obtain information of the variables spaceend and middle values and help improve the surrogate  tness, as

    noted by Ref. [13]. The sample values (u ¼ 1, 2, …, n) for each inputvariable (i ¼  1, 2, …, s) are normalised on the interval [1, 1].

    5. Computer simulation

    Computer simulation runs have been carried out using thestudent version of the CFD software ANSYS 15.0 FLUENT  [29]  tosolve three-dimensional  ows. Turbines are modelled as actuatordisks, assuming a horizontal axis turbine type, this being one of the

    simplest representations of a rotor, which provides reliable results

    with affordable computational expense [30e32]. In FLUENT, this isachieved using a porous-jump boundary condition  [29].

    In order to study the capabilities of the proposed surrogate

    models, two channel geometries, both with the same length (x-axis), are studied for inline and staggered turbines array layouts. A

    at bottom channel with constant width (y-axis) along its length,

    illustrated in Fig. 3  and  Fig. 4, has been used to optimise layoutswith steady state free stream uniform  ow conditions. To avoid theeffect of lateral boundaries on turbine performance, for each of thesimulations on the  at bottom channel, the distance between the

    turbines located at the sides of the array and these boundaries isxed in 6D. On the other hand, an irregular channel, presented inFig. 5 and Fig. 6, has been used for the same purpose but this time,under steady state free stream non-uniform   ow. The irregular

    channel has a variable width along its length but its geometry is

    Fig. 1.  Simulated Based Optimisation  ow chart.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57    47

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    4/13

    maintained constant for all simulations. The geometries of thechannels are kept as simple as possible to guarantee that the

    number of elements does not exceed the limits by the ANSYSFLUENT student version.

    The number of turbines (N t ) are given and  xed. For the inlineand staggered arrays 6 and 8 devices are considered, respectively.

    Its vertical position (z-axis) is also xed, as well as the position of the centreline of the turbines. The arrangement of the inline arrayconsists of two rows with three turbines each. In the case of thestaggered array, there are three rows, with two turbines in the

    second row, and three turbines in each of the rst and third rows.Turbines (T 1, T 2, …, T Nt) are numbered from top to bottom and fromleft to right, starting at the top left turbine. For an illustration of theturbine arrangement in each case, see Figs. 3e6.

    A constant owvelocity of 2.5 m s1 is prescribed at the inlet forthe regular channel. In the case of the irregular channel, a sinu-soidal  ow velocity in [ms1] is given as an input signal at the inletboundary, see Fig. 7.

    The outputs of the computer simulation are averaged surfaceintegrals of velocity magnitudes for each porous disk; i.e.,

    Z S 

    U dd AT  ¼ U d AT  ¼Xni¼1

    ud;iaT ;i   (1)

    where, AT is the cross sectionarea of the turbine rotor, U d represents

    the averagedow velocity at the rotor, and ud,i is the ow velocity ati-th surface facet, with area   aT,i, that forms the disk surface. By

    knowing  AT ,  U d is obtained for each disk. Then, the instantaneousCapacity Factor, CF , of the  j-th array layout is calculated using Eqs.(3) and (4), and  ow velocities at each turbine rotor are obtainedfrom the CFD simulations; i.e.,

    P i ¼ 1

    2rC PL AT U 

    3d;i   (2)

    Fig. 2.  Sampling plan using LHD maximin criterion for n ¼ 11 and s   ¼ 2 (blue points)

    and 9 extra points (red points). (For interpretation of the references to colour in this

    gure legend, the reader is referred to the web version of this article).

    Fig. 3.  Top view of the regular channel geometry used for uniform  ow CFD simulations. In the  gure, the turbine congurations are shown: a) inline layout (top) and b) staggered

    layout (bottom) with x1   ¼ 20D and x2   ¼ 2D.

    Fig. 4.   Front view of the regular channel geometry used for uniform  ow CFD simulations. In the  gure, the turbine congurations are shown for: a) inline layout (top) and b)

    staggered layout (bottom) with x1  ¼

    20D and x2  ¼

     2D.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57 48

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    5/13

    CF  j ¼

    PNt i

    P i

    PNt 

    i

    P r ;i

    (3)

    where, P i  and  P r,i represent the power output and rated power of the i-th turbine of a set of  Nt  turbines, respectively;  r depicts waterdensity, taken to be 998.2 kg m3;   nally,   C PL  depict the power

    coef cient expressed in terms of the local velocity  U d. Through the1-dimensional linear momentum actuator disc theory in an innitemedium an upper bound for the theoretical maximum powerextractable, the known Betz's limit [33], is obtained, with C P  ¼  16/

    27 (C PL ¼  2). However, it is worth noting that for a turbine in openchannel   ows [34], the Betz upper bound may well be exceededdue to constrained   ow conditions, but a series of requirements

    have to be achieved [35]. In this study, horizontal axis turbine typeswith 20 m rotor diameters are considered to have a rated power of 2.58 MW at a  ow velocity of 3 m s1. Detailed information about

    the CFD simulations and validation of the porous-jump boundary

    condition method may be obtained in Ref.  [36].

    6. Surrogate construction

    After the sampling plans have been computationally imple-

    mented, the next step involves selecting an approximating func-tional form,   ^ yi   ( x ), to use as a surrogate of complex computersimulations,  yi ( x ), in this case representing the  CF  j of each turbine

    array layout. The majority of metamodels can be dened with alinear combination of a set of basis functions { B1 ( x ), B 2 ( x ), …,  Bn( x )}. Thus, the general form of a metamodel can be expressed as:

     b yið x Þ ¼  b1B1ð x Þ þ b2B2ð x Þ þ … þ blBlð x Þ   (4)where   b ¼ fb1;   b2;…; bng   are coef cients that need to beestimated.

    Therefore each computer experiment is approximated by a sumof basis functions plus an error,   ε,

     yið x Þ ¼ b yið x Þ þ  εi   (5)As mentioned before, there are multiple candidates, each withits advantages and limitations. In order to choose the right surro-gate method, Santos [37] describes a series of criteria based on theessence of the problem. In this work, we focus on two specicmethods: polynomials and RBF, which are discussed below.

    6.1. Polynomial functions

    Polynomial functions are the most popular type of metamodels.

    They have been widely used in engineering problems because theyare relatively easy to construct [38]. The main disadvantage of loworder polynomial models is the inadequacy to represent highlynon-linear responses, while high order polynomials are more sus-

    ceptible to be unstable   [19]. As the number of basis functions

    Fig. 5.  Top view of the irregular channel geometry used for non-uniform  ow CFD simulations. In the  gure, the turbine congurations are shown for a) inline layout (top) and b)

    staggered layout (bottom) with  x1   ¼ 20D  and  x2   ¼ 2D.

    Fig. 6.   Front view of the irregular channel geometry used for non-uniformow CFD simulations. In the  gure, the turbine congurations are shown for: a) inline layout (top) and b)

    staggered layout (bottom) with  x1   ¼ 20D  and  x2   ¼ 2D.

    Fig. 7.  Flow velocity pro

    le at inlet of the irregular channel.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57    49

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    6/13

    increases with the number of input variables,  s, and the degree of polynomial, low order polynomial models are preferable to repre-

    sent linear or slightly non-linear responses because they can pro-vide accurate predictions from small data sets.

    In this work, the polynomials used are second order, as in Eq. (7),and third order, as in Eq. (8)

     b yð x Þ ¼ bb0 þ Xsi¼1 bbi xi þ Xs

    i¼1 bbii x2i   þ Xs1

    i¼1Xs

     j¼iþ1 bbij xi x j;   i ¼  1; 2;

    (6)

     b yð x Þ ¼ bb0 þ Xsi¼1

     bbi xi þ Xsi¼1

     bbii x2i   þ Xs1i¼1

    Xs j¼iþ1

     bbij xi x j þ … þXs1i¼1

    Xs

     j¼iþ1

     bb2ij x2i x j þ Xs1i¼1

    Xs j¼iþ1

     bb2 ji xi x2 j   þ Xsi¼1

     bb3ii x3i ;   i¼ 1; 2;

    (7)

    Polynomial parameters, bbi, are calculated through the leastsquares procedure [15], which minimises the sum of the squareerrors,

    LS ¼   εTε ¼ ðy BbÞTðy  BbÞ ¼Xni¼1

    8

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    7/13

    For each of the simulations scenarios and layouts, results formetamodel   tting are summarised in   Fig. 9. Note that values of RMSE are normalised by the range of observed data [ ymin, ymax] andthe values of MAX represent units of Capacity Factor.

    Results for each scenario and surrogate are represented graph-ically (see Figs. 10e17) as contour plots to help visualize the shapeof the response surfaces.

    8. Surrogate optimisation

    Once the surrogate is builtand validated, it can be used to obtainan optimal solution subject to a series of constraints. A general form

    to express a constrained maximisation optimisation problem is

    Maximise   f 0ð x ÞSubject to :   g ið x Þ  g i;   i ¼  1;…; m

    h jð x Þ  ji;   j ¼  1;…; k

    where the vector  x  { x1, …, xs} is the set of design variables of the

    problem, the function   f 0: R n/ R is the objective function, the

    functions   g i   and   hi: R n/ R,   i   ¼   1, …,m   and   j   ¼   1, …,k   are the

    inequality and equality constraint functions, and the constants  b1,

    …,bm and  d1, …,dk are the bounds and values of the constraints. Insurrogate optimisation, the objective function is given by the vali-dated metamodel, i.e.,  f 0 ¼   ̂y ( x ).

    In the turbine array layout optimisation problem for a com-mercial scale project, a series of constraints types arise (e.g.: eco-nomic, environmental, zoning, structural loads, etc.) that need to besatised. As these constraint types depend on the specic nature of 

    each project, it is not the objective of this work to present a uniqueoptimisation problem, but to formulate and include a series of constraints to serve as a prototype for more complex optimisationproblems. In Li et al.  [46], an integrated model for estimating en-

    ergy cost is presented, which considers many aspects of a tidal

    current turbine farm, where each of them are extensivelydiscussed.

    The following prot optimisation model constitutes an examplefor both, inline and staggered, array layouts. The model seeks tomaximise annual prot. Constraints take into account the price of electricity, operational and maintenance costs (O&M), an annual

    rental fee for submerged land occupied by the project, turbineclearance regions and maximum area occupied by the turbine farm.Considering as a reference data from different countries around theworld, a  xed price of electricity is set at 0.25$/kWh  [47]. On the

    other hand, O&M costs are proportional to the sum of the linelengths (L) joining all turbines in the array. This procedure assumesO&M cost is proportional to the maintenance vessel travel distance;i.e. the larger the farm is, the higher the O&M cost is. A value of 

    0.025$/kWh is dened as a lower bound for O&M costs. This valueis approximated, and it is based on typical O&M costs for offshorewind energy farms in Europe  [48].  It is assumed that an annualrental fee of $0.025 per square metre of submerged land occupied

    by the project,   AF   [49], is incurred. A detailed   nancial examplecomprising CAPital EXpenditure (CAPEX), OPerational EXpenditure(OPEX) and Levelised Cost of Energy (LCOE) costs fora test stage of a

    1 MW tidal turbine is available in Ref.   [50]. Other economical

    studies involving marine renewable energies are available inRefs. [51e53]. The resulting optimisation model is mathematicallyformulated as follows:

    MAX   ðPrice of electricity O&M costsÞ XNt 

    i

    P i$t 

    ðcost of leasingÞ   (18)

    Subject to

    XNt 

    i

    P i$t  ¼

    PNt i

    P i

    PNt 

    i

    P r ;i

    $

    XNt 

    i

    P r ;i$t  ¼  CF ð x1; x2Þ$

    XNt 

    i

    P r ;i$t 

    ¼ b yð x Þ$XNt i

    P r ;i$t    (19)

    t  ¼  8760h (20)

    Price of electricity ¼  0:25$=kWh (21)

    O&M cost½$=kWh ¼ ð0:025=560ÞL½m þ 0:0089 (22)

    Cost of leasing ½$=year ¼ 0:025$=

    m2$year$ AF 

    hm2

    i  (23)

    Di  ¼  20m   ci ¼  1;…; N T    (24)

    T 1ð200; y þ x2Þ;   T 2ð200; 200Þ;   T 3ð200; y  x2Þ2i ¼  1;…; N T (25)

    10D   x1    15D   (26)

    20D   x1    30D   (27)

    Inline array:

    N t  ¼  6 (28)

    Fig. 8.  Sampling plan points (blue) and testing points (red). (For interpretation of the

    references to colour in this  gure legend, the reader is referred to the web version of 

    this article).

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57    51

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    8/13

    L½m ¼ x1 þ 4 x2   (29)

     AF  ¼ ð2$5D þ x1Þ$ð2$4D þ 4 x2Þ  0:256km2 (30)

    T 4ð200 þ x1; y þ x2Þ;   T 5ð200 þ x1; 200Þ;   T 4ð200 þ x1; y  x2Þ2i

    ¼ 1;…; N T 

    (31)

    Staggered array:

    N t  ¼ 8 (32)

    L½m ¼ 2

     x21 þ x22

    0:5þ 5 x2   (33)

     AF  ¼ ð2$5D þ 2 x1Þ$ð2$4D þ 5 x2Þ  0:448km2 (34)

    Eq. (18) denes the objective function to be maximised, whichrepresents the annual revenue. Eq. (19) expresses how the annualenergy output is calculated by combining the desired surrogate   ^ y

    Fig. 9.  Normalised root mean square error (top) and absolute maximum error (bottom) obtained with the surrogates for each array layout out and scenario.

    Fig. 10.  Quadratic polynomial capacity factor surfaces responses for arrays in Channel-1, inline (left) and staggered (right) layouts.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57 52

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    9/13

    ( x ) with Eq. (3). Constraints (20e27) are common for both types of array layouts, while constraints (28e31) are specic for the inline

    array and constraints (32e37) are particular for the staggeredlayout. Constraint (20) denes the time in hours for which theprot is calculated. Constraints (21e23) set the price of electricity,

    O&M costs and project area leasing, respectively. Constraint (24)species the rotor diameter,  D, of the   i-th turbine in metres [m].

    Local coordinates (x, y) dene turbine position, (T i (x, y) ci ¼  1, …,

    N T ). Constraint (25) denes the position of the  rst row of turbines(T 1, T  2 and  T  3), while constraints (31) and (35) denes the positionfor the rest turbines in each array. Constraints (26) and (27) deneestablished regions of turbine clearance; for example, these regions

    may be associated with waterways. Constraints (28) and (32)

    establish the number of turbines for each array type. Constraints(29) and (33) express the sum of the line lengths (L) joining all

    turbines in the array. Finally, constraints (30) and (34) represent themaximum area AF  that an array may have.

    The optimisation model is solved through the enumeration

    method [54]. This method consists in evaluating all possible com-binations of the design parameters space, then the solution that

    satises all conditions is selected. For this purpose, the design pa-

    rameters are discretised in increments of 0.25D for x1 and of 0.025Dfor  x 2. The results obtained for the above optimisation model foreach modelling scenario and surrogate are summarised in Table 1.

    In general, the results of   x1   and   x 2   obtained for each of the

    surrogates implemented in common scenarios are very similar. As

    Fig. 11.  Cubic polynomial capacity factor surfaces responses for arrays in Channel-1, inline (left) and staggered (right) layouts.

    Fig. 12.  Linear RBF capacity factor surfaces responses for arrays in Channel-1, inline (left) and staggered (right) layouts.

    T 4ð200 þ x1; 200 þ 0:5 x2Þ;   T 5ð200 þ x1; 200 0:5 x2Þ;T 6ð200 þ 2 x1; 200 þ x2Þ;   T 7ð200 þ 2 x1; 200Þ;   T 8ð200 þ 2 x1; 200  x2Þ2i ¼  1;…; N T 

    (35)

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57    53

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    10/13

    expected, for the uniform ow scenario, optimum conguration forinline array layouts demand larger longitudinal distances betweenrows, while for staggered arrays this distance is shorter. Differencesin longitudinal distance between inline and staggered arrays are of 

    the order of 20D, while differences of lateral distance between bothcongurations are up to 0.6D, this being shorter for the inline lay-outs when compared with the staggered congurations. On theother hand, arrays under non-uniform   ows present the same

    pattern for longitudinal distance with respect to the previouslymentioned   ow condition but with orders of magnitude lower(~10D). Lateral distance between arrays under non-uniform   oware practically the same with values of 4D.

    Regarding ef ciency, staggered arrays have a higher powerdensity than inline arrays when they are under uniform  ows, asthe former produce more power in smaller regions than the latter.The main reason for this is that downstream turbines benet from

    the stream accelerated through the gaps between upstreamturbines.

    While the results obtained for arrays under uniform ow can begeneralized for   at channels non-constrained by side walls, the

    optimum array congurations obtained for the channel under non-uniform  ow are specic for this particular case.

    9. Discussion and recommendations

    Through this paper, we have presented a different approach for

    the turbine array layout optimisation problem. Two variations of Polynomial and RBF surrogate methods are employed to   t anobjective function dependent on two variables: longitudinal andlateral spacing. The methodology is applied to two different sce-

    narios, considering uniform and non-uniform   ow, with theobjective to assess the capacities of each surrogate.

    As a consequence of having a greater number of turbine rows,

    results from the surrogate 

    tting validation evidence a greatersensitivity of the response results for staggered layouts than forinline ones. Similarpattern occurs with the cases with non-uniform

    ow, as the irregular channel scenario increases non-linearity inthe objective function response.

    For both   ow conditions and layouts, Radial Basis Functionsdenote an overall better performance than polynomial models in

    Fig. 13.  Thin Plate Spline RBF capacity factor surfaces responses for arrays in Channel-1, inline (left) and staggered (right) layouts.

    Fig. 14.  Quadratic polynomial capacity factor surfaces responses for arrays in Channel-2, inline (left) and staggered (right) layouts.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57 54

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    11/13

    terms of NRMSE. In the regular channel case scenario, the quadraticpolynomial provides better   tting and stability than the cubicpolynomial. When nonlinearities increase, RBF achieve superior

    results of NRMSE, even though MAX error are high, as for thescenario of staggered layout in an irregular channel. In order tominimise MAX error results, adaptive sampling designs aremethods to consider. In conclusion, if the problem to be modelled is

    highly nonlinear and involves an important number of variables,the use of RBF is preferable due to their   exibility despite beingmore computationally demanding. On the other hand, polynomialmodels may be a choice for problems with fewer variables and

    smoother behaviour.Through optimisation application, an example of how to explore

    the surrogate taking into account a series of constraints consideringgeometric and costs limitations has been shown. Results for the

    various surrogates present a good agreement among them.Therefore, small differences in   CF   can lead to signicant protvariations at the end of a year.

    Advanced computational modelling techniques of hydrokinetic

    energy turbines array may be adopted to increase the approxima-tion with real conditions. The geometry and rotation of the turbinesunder unsteady open channel  ow conditions can be modelled. As

    the complexity of computational modelling increases, simulationsbecome more time demanding. It is for these cases that themethodology presented in this paper becomes even moreappealing, as it provides a surrogate of the underlying model,

    which is easier to work with for design space exploration andsensitivity analysis. The main dif culties of the method are toformulate the problem in terms of a few number of design variablesand to obtain a reliable surrogate using as less as possible computer

    simulations.Future research is directed to implement the SBO approach for

    the hydrokinetic array layout problem considering continuous anddiscrete design parameters, like space coordinates for turbine

    positioning and rotor turbine diameter size, as well as to develop amore sophisticated optimisation model, including the three-dimensional free positioning of turbines and considering environ-mental constraints as the inuences in sediment dynamics.

    Fig. 15.  Cubic polynomial capacity factor surfaces responses for arrays in Channel-2, inline (left) and staggered (right) layouts.

    Fig. 16.  Linear RBF capacity factor surfaces responses for arrays in Channel-2, inline (left) and staggered (right) layouts.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57    55

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    12/13

     Acknowledgements

    The corresponding author wishes to acknowledge the post-

    doctoral fellowship provided by the following funding agency fromBrazil: Conselho Nacional de Desenvolvimento Cientíco e Tec-nologico (CNPq) (Grant number: 500177/2014-7).

    References

    [1] R. Vennell, S.W. Funke, S. Draper, C. Stevens, T. Divett, Designing large arraysof tidal turbines: a synthesis and review, Renew. Sust. Energy Rev. 41 (2015)454e472, http://dx.doi.org/10.1016/j.rser.2014.08.022.

    [2] I.G. Bryden, S.J. Couch, How much energy can be extracted from moving waterwith a free surface: a question of importance in the   eld of tidal currentenergy? Renew. Energy 32 (2007) 1961e1966,   http://dx.doi.org/10.1016/ j.renene.2006.11.006.

    [3] C. Garrett, P. Cummins, Limits to tidal current power, Renew. Energy 33(2008) 2485e2490, http://dx.doi.org/10.1016/j.renene.2008.02.009.

    [4] R. Vennell, Tuning turbines in a tidal channel, J. Fluid Mech. 663 (2010)253e67, http://dx.doi.org/10.1017/S0022112010003502.

    [5] R. Vennell, Tuning tidal turbines in-concert to maximise farm ef ciency, J. Fluid Mech. 671 (2011) 587e604,   http://dx.doi.org/10.1017/S0022112010006191.

    [6] R. Vennell, Realizing the potential of tidal currents and the ef ciency of tur-bine farms in a channel, Renew. Energy 47 (2012) 95e102,  http://dx.doi.org/10.1016/j.renene.2012.03.036.

    [7] S.H. Lee, S.H. Lee, K. Jang, J. Lee, N. Hur, A numerical study for the optimal

    arrangement of ocean current turbine generators in the ocean current power

    parks, Curr. Appl. Phys. 10 (2010) S137eS141,   http://dx.doi.org/10.1016/ j.cap.2009.11.018.

    [8] T.A. Divett, Optimising Design of Large Tidal Energy Arrays in Channels:Layout and Turbine Tuning for Maximum Power Capture Using Large EddySimulations with Adaptive Mesh, PhD Thesis, University of Otago, 2014.Retrieved from  http://hdl.handle.net/10523/4995.

    [9] R. Malki, I. Masters, A.J. Williams, T.N. Croft, Planning tidal stream turbinearray layouts using a coupled blade element  ecomputational  uid dynamicsmodel, Renew. Energy 63 (2014) 46e54,   http://dx.doi.org/10.1016/ j.renene.2013.08.039.

    [10] S.W. Funke, P.E. Farrell, M.D. Piggott, Tidal turbine array optimisation usingthe adjoint approach, Renew. Energy 63 (2014) 658e673,  http://dx.doi.org/

    10.1016/j.renene.2013.09.031.[11] E. Topal, S. Ramazan, A new MIP model for mine equipment scheduling by

    minimizing maintenance cost, Eur. J. Oper. Res. 207 (2010) 1065e1071, http://dx.doi.org/10.1016/j.ejor.2010.05.037.

    [12] B. Yilmaz, M. Dagderviren, A combined approach for equipment selection: F-PROMETHEE method and zero-one goal programming, Expert Syst. Appl. 38(2011) 11641e11650, http://dx.doi.org/10.1016/j.eswa.2011.03.043.

    [13] E.G. Gorbe~na, R.Y. Qassim, P.C.C. Rosman, A metamodel simulation basedoptimisation approach for the tidal turbine location problem, Aquat. Sci. Tech.3 (1) (2015) 33e58, http://dx.doi.org/10.5296/ast.v3i1.6544.

    [14] R. Vennell, The energetics of large tidal turbine arrays, Renew. Energy 48(2012) 210e219, http://dx.doi.org/10.1016/j.renene.2012.04.018.

    [15]   R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process andProduct Optimization Using Designed Experiments. Wiley Series in Proba-bility and Statistics, John Wiley and Sons, New York, NY, 1995.

    [16]   M.D. Buhmann, Radial Basis Functions: Theory and Implementations, Cam-bridge University Press, 2003.

    [17] N. Cresssie, Spatial prediction and ordinary kriging, Math. Geol. 20 (4) (1988)

    405e

    421, http://dx.doi.org/10.1007/BF00892986.

    Fig. 17.  Thin Plate Spline RBF capacity factor surfaces responses for arrays in Channel-2, inline (left) and staggered (right) layouts.

     Table 1

    Results from the optimisation model.

    Flow scenario Array layout Surrogate   x1 [D]   x2 [D]   CF  [%] Prot [M$/year]

    Uniform Inline Quadratic poly. 30.00 2.000 46.50 13,043

    Uniform Inline Cubic poly. 30.00 2.275 47.38 13,225Uniform Inline RBF-Linear 30.00 2.075 46.98 13,161

    Uniform Inline RBF-TPS 29.25 2.125 47.82 13,425

    Uniform Staggered Quadratic poly. 10.00 2.500 56.22 21,466

    Uniform Staggered Cubic poly. 10.00 2.500 56.41 21,538

    Uniform Staggered RBF-Linear 10.00 2.600 56.51 21,527

    Uniform Staggered RBF-TPS 11.25 2.225 58.57 22,276

    Non-uniform Inline Quadratic poly. 21.50 3.600 64.52 18,258

    Non-uniform Inline Cubic poly. 22.75 4.000 69.83 19,521

    Non-uniform Inline RBF-Linear 21.75 3.725 69.83 19,700

    Non-uniform Inline RBF-TPS 22.50 3.950 71.15 19,930

    Non-uniform Staggered Quadratic poly. 10.00 4.000 59.88 22,052Non-uniform Staggered Cubic poly. 10.00 4.000 62.49 23,011

    Non-uniform Staggered RBF-Linear 12.50 3.925 61.75 22,311Non-uniform Staggered RBF-TPS 11.00 3.800 62.51 22,944

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57 56

    http://dx.doi.org/10.1016/j.rser.2014.08.022http://dx.doi.org/10.1016/j.renene.2006.11.006http://dx.doi.org/10.1016/j.renene.2006.11.006http://dx.doi.org/10.1016/j.renene.2006.11.006http://dx.doi.org/10.1016/j.renene.2008.02.009http://dx.doi.org/10.1016/j.renene.2008.02.009http://dx.doi.org/10.1017/S0022112010003502http://dx.doi.org/10.1017/S0022112010006191http://dx.doi.org/10.1017/S0022112010006191http://dx.doi.org/10.1016/j.renene.2012.03.036http://dx.doi.org/10.1016/j.renene.2012.03.036http://dx.doi.org/10.1016/j.cap.2009.11.018http://dx.doi.org/10.1016/j.cap.2009.11.018http://hdl.handle.net/10523/4995http://dx.doi.org/10.1016/j.renene.2013.08.039http://dx.doi.org/10.1016/j.renene.2013.08.039http://dx.doi.org/10.1016/j.renene.2013.09.031http://dx.doi.org/10.1016/j.renene.2013.09.031http://dx.doi.org/10.1016/j.ejor.2010.05.037http://dx.doi.org/10.1016/j.ejor.2010.05.037http://dx.doi.org/10.1016/j.eswa.2011.03.043http://dx.doi.org/10.5296/ast.v3i1.6544http://dx.doi.org/10.1016/j.renene.2012.04.018http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://refhub.elsevier.com/S0960-1481(16)30146-X/sref16http://refhub.elsevier.com/S0960-1481(16)30146-X/sref16http://dx.doi.org/10.1007/BF00892986http://dx.doi.org/10.1007/BF00892986http://refhub.elsevier.com/S0960-1481(16)30146-X/sref16http://refhub.elsevier.com/S0960-1481(16)30146-X/sref16http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://refhub.elsevier.com/S0960-1481(16)30146-X/sref15http://dx.doi.org/10.1016/j.renene.2012.04.018http://dx.doi.org/10.5296/ast.v3i1.6544http://dx.doi.org/10.1016/j.eswa.2011.03.043http://dx.doi.org/10.1016/j.ejor.2010.05.037http://dx.doi.org/10.1016/j.ejor.2010.05.037http://dx.doi.org/10.1016/j.renene.2013.09.031http://dx.doi.org/10.1016/j.renene.2013.09.031http://dx.doi.org/10.1016/j.renene.2013.08.039http://dx.doi.org/10.1016/j.renene.2013.08.039http://hdl.handle.net/10523/4995http://dx.doi.org/10.1016/j.cap.2009.11.018http://dx.doi.org/10.1016/j.cap.2009.11.018http://dx.doi.org/10.1016/j.renene.2012.03.036http://dx.doi.org/10.1016/j.renene.2012.03.036http://dx.doi.org/10.1017/S0022112010006191http://dx.doi.org/10.1017/S0022112010006191http://dx.doi.org/10.1017/S0022112010003502http://dx.doi.org/10.1016/j.renene.2008.02.009http://dx.doi.org/10.1016/j.renene.2006.11.006http://dx.doi.org/10.1016/j.renene.2006.11.006http://dx.doi.org/10.1016/j.rser.2014.08.022

  • 8/18/2019 Optimisation of Hydrokinetic Turbine

    13/13

    [18]   K.T. Fang, R. Li, Sudjianto, A Design and Modelling for Computer Experiments,Chapman and Hall CRC Press, 2005.

    [19]   R.R. Barton, Metamodels for simulation input-output relations, Proc. 24thWinter Simul. Conf. (1992) 289e299. Article number: DEP LW1174.

    [20] G.G. Wang, S. Shan, Review of metamodelling techniques in support of en-gineering design optimization, J. Mech. Des. 129 (4) (2006) 370e380, http://dx.doi.org/10.1115/1.2429697.

    [21]   J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, Design and analysis of computerexperiments, Stat. Sci. 4 (1989) 409e435.

    [22]  T.J. Santner, B.J. Williams, W.I. Notz, The Design and Analysis of Computer

    Experiments, Springer-Verlag, New York, 2003.[23] D. Bursztyn, D.M. Steinberg, Comparison of designs for computer experi-

    ments, J. Stat. Plan. Inference 136 (2006) 1103e1119,   http://dx.doi.org/10.1016/j.jspi.2004.08.007.

    [24] M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods forselecting values of input variables in the analysis of output from a computercode, Technometrics 21 (1979) 239e245, http://dx.doi.org/10.2307/1268522.

    [25]   F.A.C. Viana, G. Venter, V. Balabanov, An algorithm for fast generation of optimal Latin hypercube designs, Int. J. Num. Meth. Eng. 82 (2010) 135e156.

    [26] M. Johnson, L. Moore, D. Ylvisaker, Minimax and maximin distance design, J. Stat. Plan. Inference 26 (1990) 131e148,   http://dx.doi.org/10.1016/0378-3758(90)90122-B.

    [27] J.L. Loeppky, J. Sacks, W.J. Welch, Choosing the sample size of a computerexperiment: a practical guide, Technometrics 51 (4) (2009) 366e376, http://dx.doi.org/10.1198/TECH.2009.08040.

    [28] K. Palmer, M. Realff, Metamodelling approach to optimization of steady-stateowsheet simulations: model generation, Chem. Eng. Res. Des. 80 (7) (2002)760e772, http://dx.doi.org/10.1016/10.1205/026387602320776830.

    [29]  ANSYS Inc, ANSYS FLUENT User's Guide. Release 14.5, USA, 2012.[30] X. Sun, Numerical and Experimental Investigation of Tidal Current Energy

    Extraction, Ph.D. Thesis, University of Edinburgh, UK, 2008,  http://hdl.handle.net/1842/2756.

    [31]   L. Bai, R.G. Spencer, G. Dudziak, Investigation of the inuence of arrayarrangement and pacing on tidal energy converter (tec) performance using a3-dimensional cfd model, Proc. 8th Eur. Wave Tidal Energy Conf. Upps. Swed.(2009) 654e660.

    [32] S.R. Turnock, A.B. Phillips, J. Banks, R. Nicholls-Lee, Modelling tidal currentturbine wakes using a coupled RANS-BEMT approach as a tool for analysingpower capture of arrays of turbines, Ocean Eng. 38 (2011) 1300e1307, http://dx.doi.org/10.1016/j.oceaneng.2011.05.018.

    [33]   A. Betz, Das maximum der theoretisch moglichen Ausnutzung des Windesdurch Windmotoren, Z. für Das. gesamte Turbinenwes. 26 (1920) 307e309.

    [34]   G.T. Houlsby, S. Draper, M. Oldeld, Application of Linear Momentum ActuatorDisc Theory to Open Channel Flow, Tech rep no 2296-08, University of Oxford,Oxford, UK, 2008.

    [35] R. Vennell, Exceeding the Betz limit with tidal turbines, Renew. Energy 55(2013) 277e285, http://dx.doi.org/10.1016/j.renene.2012.12.016.

    [36] E.G. Gorbe~na, Um modelo de otimizaç

    ~ao matem

    atico para a geraç

    ~ao deenergia eletrica a partir de correntes hidrodinâmicas, PhD Thesis, COPPE/UFRJ,

    2013 (In Portuguese),   http://www.oceanica.ufrj.br/intranet/teses/2013_Doutorando_Eduardo_Gonzalez_Gorbena_Eisenmann.pdf  .

    [37]   M.I. Santos, Construç~ao de metamodelos de regress~ao n~ao linear para simu-laç~ao de acontecimentos discretos, PhD Thesis, Universidade Tecnica de Lis-boa, 2002 (In-portugues).

    [38]   E.P. Box, N.R. Draper, Empirical Model Building and Response Surfaces, Wiley,NewYork, 1987.

    [39] A.I.J. Forrester, A.J. Keane, Recent advances in surrogate-based optimization,Prog. Aerosp. Sci. 45 (2009) 50e79,   http://dx.doi.org/10.1016/ j.paerosci.2008.11.001.

    [40]  B.J.C. Baxter, The Interpolation Theory of Radial Basis Functions, PhD Thesis,Trinity College Cambridge University, 1992.

    [41]   G.B. Wright, The Interpolation Theory of Radial Basis Functions, PhD Thesis,University of Colorado, 2003.

    [42] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P. Kevin Tucker,Surrogate-based analysis and optimization, Prog. Aerosp. Sci. 41 (1) (2005)1e28, http://dx.doi.org/10.1016/j.paerosci.2005.02.001.

    [43]   T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,second ed., Springer, New York, 2009.

    [44]  R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Meth-odology Process and Product Optimization Using Designed Experiments, thirded., John Wiley  &  Sons, New York, 2009.

    [45]  A. Forrester, A. Sobester, A. Keane, Engineering Design via Surrogate Model-ling: a Practical Guide, John Wiley  &  Sons, 2008.

    [46] Y. Li, B.J. Lence, S.M. Calisal, An integrated model for estimating energy cost of a tidal current turbine farm, Energy Convers. Manag. 52 (2011) 1677e1687,http://dx.doi.org/10.1016/j.enconman.2010.10.031.

    [47] IEA, Energy prices and taxes: quarterly statistic, Int. Energy Agency 4 (2014),http://dx.doi.org/10.1787/16096835.

    [48]  IRENA, Renewable energy technologies: cost analysis series, Int. Renew. En-ergy Agency (2012) 1.

    [49] Maine DEP, Information sheet: regulation of tidal and wave energy projects,Dep. Environ. Prot. (2010). DEP LW1174. Available online in:  http://www.maine.gov/dep/water/dams-hydro/is_tidal_wave_reg.html .

    [50] S. MacDougall, Financial evaluation and cost of energy, in: S. MacDougall, J. Colton (Eds.), Community and Business Toolkit for Tidal Energy Develop-ment, Acadia Tidal Energy Institute, 2012, pp. 131e145. Available online in:http://tidalenergy.acadiau.ca/tl_ les/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdf .

    [51] G. Allan, M. Gilmartin, P. McGregor, K. Swales, Levelised costs of wave andtidal energy in the UK: cost competitiveness and the importance of    ‘‘banded’’renewables obligation certicates, Energy Policy 39 (2011) 23e39,   http://dx.doi.org/10.1016/j.enpol.2010.08.029.

    [52] C.M. Johnstone, D. Pratt, J.A. Clarke, A.D. Grant, A techno-economic analysis of tidal energy technology, Renew. Energy 49 (2013) 101e106,  http://dx.doi.org/10.1016/j.renene.2012.01.054.

    [53] Y. Li, L. Willman, Feasibility analysis of offshore renewables penetrating localenergy systems in remote oceanic areas  e  a case study of emissions from anelectricity system with tidal power in Southern Alaska, Appl. Energy 117(2014) 42e53, http://dx.doi.org/10.1016/j.apenergy.2013.09.032.

    [54]   P. Venkataraman, Applied Optimization with Matlab Programming, JohnWiley  &  Sons, 2001.

    [55]   S.M.F. Rodrigues, P. Bauer, J. Pierik, Modular approach for the optimal windturbine micro siting problem through CMA-ES algorithm, in: Proceedings of the 15th annual conference companion on Genetic and evolutionarycomputation, ACM, 2013, pp. 1561e1568.

    [56] J. Zhang, S. Chowdhury, A. Messac, L. Castillo, A response surface-based costmodel for wind farm design, Energy Policy 42 (2012) 538e550,   http://dx.doi.org/10.1016/j.enpol.2011.12.021.

    [57]   J. Zhang, S. Chowdhury, A. Messac, Uncertainty quantication in surrogatemodels based on pattern classication of cross-validation errors, in: Pro-ceedings of the 14th AIAA/ISSMO Multidisciplinary Analysis and OptimizationConference, Indianapolis, USA, 2012.

    [58]  A. Mehmani, W. Tong, S. Chowdhury, A. Messac, Surrogate-based particleswarm optimization for large-scale wind farm layout Design, in: Proceedingsof the 11th World Congress on Structural and Multidisciplinary Optimization,Sydney, Australia, 2015.

    [59]  A. Dean, M. Morris, J. Stufken, D. Bingham, Handbook of Design and Analysisof Experiments, Chapman and Hall/CRC, 2015.

    [60] B.G. Husslage, G. Rennen, E.R. van Dam, D. den Hertog, Space-lling Latinhypercube designs for computer experiments, Optim. Eng. 12 (4) (2011)611e630, http://dx.doi.org/10.1007/s11081-010-9129-8.

    E. Gonz alez-Gorbe~na et al. / Renewable Energy 93 (2016) 45e57    57

    http://refhub.elsevier.com/S0960-1481(16)30146-X/sref18http://refhub.elsevier.com/S0960-1481(16)30146-X/sref18http://refhub.elsevier.com/S0960-1481(16)30146-X/sref19http://refhub.elsevier.com/S0960-1481(16)30146-X/sref19http://refhub.elsevier.com/S0960-1481(16)30146-X/sref19http://dx.doi.org/10.1115/1.2429697http://dx.doi.org/10.1115/1.2429697http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://refhub.elsevier.com/S0960-1481(16)30146-X/sref22http://refhub.elsevier.com/S0960-1481(16)30146-X/sref22http://dx.doi.org/10.1016/j.jspi.2004.08.007http://dx.doi.org/10.1016/j.jspi.2004.08.007http://dx.doi.org/10.2307/1268522http://dx.doi.org/10.2307/1268522http://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://dx.doi.org/10.1016/0378-3758(90)90122-Bhttp://dx.doi.org/10.1016/0378-3758(90)90122-Bhttp://dx.doi.org/10.1016/0378-3758(90)90122-Bhttp://dx.doi.org/10.1198/TECH.2009.08040http://dx.doi.org/10.1198/TECH.2009.08040http://dx.doi.org/10.1016/10.1205/026387602320776830http://refhub.elsevier.com/S0960-1481(16)30146-X/sref29http://hdl.handle.net/1842/2756http://hdl.handle.net/1842/2756http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://dx.doi.org/10.1016/j.oceaneng.2011.05.018http://dx.doi.org/10.1016/j.oceaneng.2011.05.018http://refhub.elsevier.com/S0960-1481(16)30146-X/sref33http://refhub.elsevier.com/S0960-1481(16)30146-X/sref33http://refhub.elsevier.com/S0960-1481(16)30146-X/sref33http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://dx.doi.org/10.1016/j.renene.2012.12.016http://www.oceanica.ufrj.br/intranet/teses/2013_Doutorando_Eduardo_Gonzalez_Gorbena_Eisenmann.pdfhttp://www.oceanica.ufrj.br/intranet/teses/2013_Doutorando_Eduardo_Gonzalez_Gorbena_Eisenmann.pdfhttp://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref38http://refhub.elsevier.com/S0960-1481(16)30146-X/sref38http://dx.doi.org/10.1016/j.paerosci.2008.11.001http://dx.doi.org/10.1016/j.paerosci.2008.11.001http://dx.doi.org/10.1016/j.paerosci.2008.11.001http://refhub.elsevier.com/S0960-1481(16)30146-X/sref40http://refhub.elsevier.com/S0960-1481(16)30146-X/sref40http://refhub.elsevier.com/S0960-1481(16)30146-X/sref41http://refhub.elsevier.com/S0960-1481(16)30146-X/sref41http://dx.doi.org/10.1016/j.paerosci.2005.02.001http://refhub.elsevier.com/S0960-1481(16)30146-X/sref43http://refhub.elsevier.com/S0960-1481(16)30146-X/sref43http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://dx.doi.org/10.1016/j.enconman.2010.10.031http://dx.doi.org/10.1787/16096835http://refhub.elsevier.com/S0960-1481(16)30146-X/sref48http://refhub.elsevier.com/S0960-1481(16)30146-X/sref48http://www.maine.gov/dep/water/dams-hydro/is_tidal_wave_reg.htmlhttp://www.maine.gov/dep/water/dams-hydro/is_tidal_wave_reg.htmlhttp://www.maine.gov/dep/water/dams-hydro/is_tidal_wave_reg.htmlhttp://tidalenergy.acadiau.ca/tl_files/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdfhttp://tidalenergy.acadiau.ca/tl_files/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdfhttp://tidalenergy.acadiau.ca/tl_files/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdfhttp://tidalenergy.acadiau.ca/tl_files/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdfhttp://dx.doi.org/10.1016/j.enpol.2010.08.029http://dx.doi.org/10.1016/j.enpol.2010.08.029http://dx.doi.org/10.1016/j.enpol.2010.08.029http://dx.doi.org/10.1016/j.renene.2012.01.054http://dx.doi.org/10.1016/j.renene.2012.01.054http://dx.doi.org/10.1016/j.apenergy.2013.09.032http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://dx.doi.org/10.1016/j.enpol.2011.12.021http://dx.doi.org/10.1016/j.enpol.2011.12.021http://dx.doi.org/10.1016/j.enpol.2011.12.021http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref59http://refhub.elsevier.com/S0960-1481(16)30146-X/sref59http://dx.doi.org/10.1007/s11081-010-9129-8http://dx.doi.org/10.1007/s11081-010-9129-8http://refhub.elsevier.com/S0960-1481(16)30146-X/sref59http://refhub.elsevier.com/S0960-1481(16)30146-X/sref59http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref58http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://refhub.elsevier.com/S0960-1481(16)30146-X/sref57http://dx.doi.org/10.1016/j.enpol.2011.12.021http://dx.doi.org/10.1016/j.enpol.2011.12.021http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref55http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://refhub.elsevier.com/S0960-1481(16)30146-X/sref54http://dx.doi.org/10.1016/j.apenergy.2013.09.032http://dx.doi.org/10.1016/j.renene.2012.01.054http://dx.doi.org/10.1016/j.renene.2012.01.054http://dx.doi.org/10.1016/j.enpol.2010.08.029http://dx.doi.org/10.1016/j.enpol.2010.08.029http://tidalenergy.acadiau.ca/tl_files/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdfhttp://tidalenergy.acadiau.ca/tl_files/sites/tidalenergy/resources/Documents/Toolkit/Module_7Sweb.pdfhttp://www.maine.gov/dep/water/dams-hydro/is_tidal_wave_reg.htmlhttp://www.maine.gov/dep/water/dams-hydro/is_tidal_wave_reg.htmlhttp://refhub.elsevier.com/S0960-1481(16)30146-X/sref48http://refhub.elsevier.com/S0960-1481(16)30146-X/sref48http://dx.doi.org/10.1787/16096835http://dx.doi.org/10.1016/j.enconman.2010.10.031http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://refhub.elsevier.com/S0960-1481(16)30146-X/sref45http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref44http://refhub.elsevier.com/S0960-1481(16)30146-X/sref43http://refhub.elsevier.com/S0960-1481(16)30146-X/sref43http://dx.doi.org/10.1016/j.paerosci.2005.02.001http://refhub.elsevier.com/S0960-1481(16)30146-X/sref41http://refhub.elsevier.com/S0960-1481(16)30146-X/sref41http://refhub.elsevier.com/S0960-1481(16)30146-X/sref40http://refhub.elsevier.com/S0960-1481(16)30146-X/sref40http://dx.doi.org/10.1016/j.paerosci.2008.11.001http://dx.doi.org/10.1016/j.paerosci.2008.11.001http://refhub.elsevier.com/S0960-1481(16)30146-X/sref38http://refhub.elsevier.com/S0960-1481(16)30146-X/sref38http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://refhub.elsevier.com/S0960-1481(16)30146-X/sref37http://www.oceanica.ufrj.br/intranet/teses/2013_Doutorando_Eduardo_Gonzalez_Gorbena_Eisenmann.pdfhttp://www.oceanica.ufrj.br/intranet/teses/2013_Doutorando_Eduardo_Gonzalez_Gorbena_Eisenmann.pdfhttp://dx.doi.org/10.1016/j.renene.2012.12.016http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref34http://refhub.elsevier.com/S0960-1481(16)30146-X/sref33http://refhub.elsevier.com/S0960-1481(16)30146-X/sref33http://refhub.elsevier.com/S0960-1481(16)30146-X/sref33http://dx.doi.org/10.1016/j.oceaneng.2011.05.018http://dx.doi.org/10.1016/j.oceaneng.2011.05.018http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://refhub.elsevier.com/S0960-1481(16)30146-X/sref31http://hdl.handle.net/1842/2756http://hdl.handle.net/1842/2756http://refhub.elsevier.com/S0960-1481(16)30146-X/sref29http://dx.doi.org/10.1016/10.1205/026387602320776830http://dx.doi.org/10.1198/TECH.2009.08040http://dx.doi.org/10.1198/TECH.2009.08040http://dx.doi.org/10.1016/0378-3758(90)90122-Bhttp://dx.doi.org/10.1016/0378-3758(90)90122-Bhttp://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://refhub.elsevier.com/S0960-1481(16)30146-X/sref25http://dx.doi.org/10.2307/1268522http://dx.doi.org/10.1016/j.jspi.2004.08.007http://dx.doi.org/10.1016/j.jspi.2004.08.007http://refhub.elsevier.com/S0960-1481(16)30146-X/sref22http://refhub.elsevier.com/S0960-1481(16)30146-X/sref22http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://refhub.elsevier.com/S0960-1481(16)30146-X/sref21http://dx.doi.org/10.1115/1.2429697http://dx.doi.org/10.1115/1.2429697http://refhub.elsevier.com/S0960-1481(16)30146-X/sref19http://refhub.elsevier.com/S0960-1481(16)30146-X/sref19http://refhub.elsevier.com/S0960-1481(16)30146-X/sref19http://refhub.elsevier.com/S0960-1481(16)30146-X/sref18http://refhub.elsevier.com/S0960-1481(16)30146-X/sref18