49
2 Optimisation of Spodumene Ore Flotation using Zeta Potentials By Joshua Charles Grigio As a requirement of the degree of Chemical and Metallurgical Engineering Murdoch University of Perth, Western Australia February 2018

Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

2

    

   

Optimisation of Spodumene Ore Flotation 

using Zeta Potentials  

 

 

By 

Joshua Charles Grigio 

 

 

 

 

As a requirement of the degree of 

Chemical and Metallurgical Engineering 

 

Murdoch University of Perth, Western Australia 

 

February 2018 

   

Page 2: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

3

Acknowledgements  I would like to make special mention to my advisor, Dr. Drew Parsons of Murdoch University for his 

guidance and knowledge in aiding me in understanding my studies. 

 

I also must thank Prof. Yee‐Kwong Leong of the Chemical Engineering Department at the University of 

Western Australia, for guiding and assisting me in understanding the theory of zeta potentials and for 

providing access to the zeta probe. 

 

I would also like to express my thanks to Nasim Khoshdel Salakjani, Rory Gilligan, Hans Oskierski and 

Artur Deditius for helping to identify a means of efficiently analysing spodumene. 

 

A special thanks to Alaa Kamaluldeen for taking samples in for XRD analysis. 

 

A  mention  to  Murdoch  University’s  laboratory  technician  Stewart  Kelly  for  assistance  with 

experimental work. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 3: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

4

Abstract 

With  the  increase  in  global  lithium  consumption,  it  is  vital  that  lithium  refinery  processes  are  optimised  to 

combat this growing need. One of the richest sources of lithium, spodumene, was tested alongside a common 

gangue material,  silica,  for  its  zeta potential. Variables used are namely modifiers  iron chloride, magnesium 

chloride, calcium chloride and calcium alginate. These materials’ concentrations were tested using a zeta probe 

to  identify  theoretically  optimal  conditions  to  selectively  float  spodumene  from  the  gangue.  The  source  of 

spodumene used was a lithia concentrate obtained from Talison Greenbushes mine and refinery, giving a lithia 

(Li2O)  concentration  of  7.0%,  which  is  the  target  of  this  investigation.  Once  the  zeta  potentials  for  both 

spodumene and  silica were obtained  from a  range of pH values,  flotation  tests were performed  to  test  the 

theory, followed up by XRD analysis to identify an estimated lithia concentration and confirm whether or not 

there are some applicable uses for zeta potential measurements in the mining industry. 

It  was  discovered  post  experimentation  and  analysis,  that  at  notable  concentrations  for  certain  cations, 

collectors  and  pH  conditions,  namely  250 mg/L  of  Ca  (II)  at  a  pH  of  4  with  an  anionic  collector,  Fe  (III)  at 

concentrations less than 50 mg/L in neutral conditions with a cationic collector and at greater concentrations on 

ions  in acidic conditions with an anionic collector. Further  research  in  ranges of Mg  (II) and sodium alginate 

concentrations would be required to identify their uses to optimise spodumene flotation; or separation from 

the bulk slurry solution. 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Page 4: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

5

Contents 

Title 

1. Cover Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .01 

2. Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .02 

3. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03 

4. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .04 

5. Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05 

Literature Review 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06 2. Flotation History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .06 

3. Zeta Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .07 

4. Spodumene and Other Minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .09 

5. Materials, Methods and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Methods 1. Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Zeta Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3. Micro Flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 4. Bulk Flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 5. XRD Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 

 Results 

1. Zeta Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2. XRD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

 

Analysis 

1. Zeta Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

2. XRD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 

 

 

 

 

 

 

 

 

Page 5: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

6 1. Introduction 

Lithium is an increasingly used metal in common goods, such as batteries, ceramics, glass, polymers, lubricants, 

tougher alloys, with more uses still to be discovered. Due to its low atomic number and mass, it readily reacts 

with various elements to form an array of compounds, so it is not found in its native state. Lithium compounds 

are  found amongst clays and brine sources, however,  it  is more commercial  to obtain  lithium  from mineral 

sources,  such as  spodumene, with pure spodumene containing a variating 8% of  the  target mineral  Lithium 

Oxide  (Li20)  [1],  [6],  [8],  [9],  [10],  [11],  [13]. With  advancements  in  lithium  batteries  to  be  used  in  alternative  energy 

sources,  the  needs  for  lithium  have  increased.  To  attend  to  this  need,  the  flotation  of  spodumene  from 

Greenbushes Talison mine pegmatic ore will be examined, by making use of zeta potential test to determine 

optimal flotation conditions to obtain a higher grade and recovery; the target grade of Lithia (Lithium Oxide) 

reaching at  least 7.5% (which corresponds  to  roughly 95% spodumene) attained by Greenbushes  from their 

pegmatite ore [13].  

This  report will  cover  several  notable  areas of  the project,  including  a brief  look  into  recent  froth  flotation 

history, as well as developments  involving  the use of zeta potentials  in  the study, also, a  look at  the  target 

spodumene  and  its  associates  found  at  the  Greenbushes mine  site,  tantalum  bearing  tantalite,  tin  bearing 

cassiterite,  also  taking  into  consideration  of  other  minerals  based  on  the  various  mining  zones  (albite, 

tourmaline, muscovite, apatite, beryl, garnet, microcline and so on). This will follow on to what reagents will be 

used  to  test  for  optimal  conditions  (such  as  pH,  frothers,  collectors,  solution  temperature,  activators  and 

depressants) as well as methods (such as particle size, agitation and residence time). The aim of this review is 

to examine data and identify which range of variables should be tested for their zeta potential, with the aim to 

use a  zeta meter  to obtain  the  stability of  the  surface of a mineral under  certain conditions;  to  find where 

spodumene is more stable to hold onto an air bubble to be collected in the final concentrate, over other gangue 

and undesirable minerals.  

 

2. Flotation History 

There have been many advancements in the field of hydrometallurgy, when it comes to increasing the grade 

and/or recovery of the target mineral for froth flotation. From the beginning of the 20th century, froth flotation 

became prevalent in the flotation of ores, originally with greater volumes of oil to aid lifting the mineral particles, 

however,  it was later found that by reducing the oil concentration to less than 1%, mineral covered bubbles 

formed at the surface more readily [24]. Roughly 16 different oils were found to be able to float mineral particles 

sustainably, with oleic acid being one of the most used ones (among coal tar extractions, petroleum, wood tars 

as well as pine oils to name a few). The ability to produce higher grade feeds from lower grades (such as copper 

and iron) sparked noticeable peaks of froth flotation usages in large scales in 1960 and 1980 [24]. 

There are six types of reagents used in froth flotation; these are activators, depressants, collectors, flocculants, 

frothers and modifiers. Collectors are used to bond with minerals at the particle surface, the collector typically 

has two ends, with one end bonding with the particle, the other, bonding with the air bubble, which increases 

the likelihood that the mineral particle will float to the surface. Activators are used to increase the chances that 

Page 6: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

7 a collector will bond with a particular mineral, likewise, a depressant is used to decrease the chances that the 

collector will bond with a mineral that is not meant to be floated. Also known as conditioners, modifiers are 

organic or inorganic compounds that alter the minerals in the slurry to aid in flotation, such as the removal of 

oxide layers or removing a bond between target and waste material. Frothers are added to produce the froth, 

controlling  the  concentration  of  the  frother  in  the  slurry  is  useful  for maintaining  bubble  size  and/or  froth 

stability (to be looked into later). Flocculants are added to agglomerate finer particles, forming larger ones, using 

selective  flocculation,  particular  minerals  can  be  depressed  successfully.  (see  Figure  1  for  a  visual  of 

flocculation). 

 

Figure 1. Display of flocculation of fine particles suspended in solution, where the flocculant is added, bonding to the fines, forming larger particles before depressing. [28] 

Notable discoveries of flotation reagents include the use of ketones and aldehydes to act as soluble frothers in 

1909, dithiophosphates to act as collectors in 1926, sodium silicate to act as a depressant in 1928 (as well as the 

use of sodium carbonate as a pH regulator), starches to be used as a depressant in 1931, and amines to be used 

as cationic collectors in 1935 [24]. 

The idea that flotation occurs because of oppositely attracted bubbles and mineral particles was up for debate 

in 1915, which was later discarded. This idea eventually developed into today’s ideology, where the potential 

difference between the air bubble and mineral particle surface is what describes the interactions between the 

two surfaces; this potential is known as zeta potential, which will be discussed later. 

Multiple  techniques  have  been  devised  over  the  years  of  research  and  development  in  understanding  the 

science  behind  flotation. Notable  examples  include  the Hallimond  tube  flotation  technique,  bubble  contact 

angle  determination,  electrokinetics  and  electrochemistry  (in  terms  of  rest  potential,  polarisation  and 

impedance spectroscopy examination). Each of these techniques play on the difference in charges between the 

mineral  surface  and  the  air  bubble,  the  direct  examination  of  these  charges  come  under  the  study  of 

electrokinetics, which are heavily dependent on the idea of the electrical double layer (EDL). 

 

3. Zeta Potential 

The  electrical  double  layer  (EDL)  phenomena  plays  an  important  role  in  the  flotation  of  silicate  and  oxide 

minerals, as well as any non‐metallic froth flotation; with the exception of sulphide minerals. The theory of the 

Page 7: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

8 EDL is the presence of particles charged oppositely to the charge of the mineral surface surrounding the particle. 

These  particles  could  be  ions  that  are  naturally  present  in  solution  (such  as  hydronium  and  hydroxide),  or 

additives  such as modifiers, collectors, activators or depressants. Other mineral particles can collect around 

another particle of an opposite charge, the force of attraction between these particles are known as adhesion 

forces. The charge at the mineral surface is formed when the mineral enters a solution and depending on the 

conditions of the solution (such as pH, ion presence among other reagent concentrations), the surface of the 

mineral gains a charge neutralising the charge of the solution. 

There are solution conditions where the charge of the mineral becomes zero, this is known as the point of zero 

charge (PZC); which is only considered as this when there is no ion adsorption occurring on the mineral surface, 

aside  from naturally occurring  ions.  In  the presence of  ion adsorption,  the surface chemistry of  the mineral 

changes, at any point where the charge of the layer surrounding the mineral surface becomes 0 is the isoelectric 

point (IEP). There are methods of testing the behaviour of the mineral in terms of zeta potential using either 

electroacoustic  or  light  scattering  methods,  whilst  titrating  the  testing  solution  with  pH  to  identify  the 

PZC/IEP(s).  

There  have  been  other  usages  of  zeta  potential  apart  from  froth  flotation.  Copper  sulphide  oxidation was 

examined using zeta potentials, finding that the copper oxide layer forming over copper sulphide dissolves in 

solution in a pH under 8, while the oxide layer forms at a pH of over 6 (see Figures 2 to 4 for various copper 

sulphide observations [16]).  

 

Figure  2.  Zeta  potential  versus  pH  curve  of  chalcocite,  circles  represent  solution  conditioned  for  60 minutes  in  nitrogen 

environment, triangles are in presence of oxygen. Filled shapes represent pH change from 11 to 5, empty shapes represent 

reverse pH change. [16] 

Page 8: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

9

 

Figure  3.  Zeta  potential  versus  pH  curve  of  bornite,  circles  represent  solution  conditioned  for  60  minutes  in  nitrogen 

environment, triangles are in presence of oxygen. Filled shapes represent pH change from 11 to 5, empty shapes represent 

reverse pH change. [16] 

 

Figure  4.  Zeta  potential  versus  pH  curve  of  enargite,  circles  represent  solution  conditioned  for  60  minutes  in  nitrogen 

environment, triangles are in presence of oxygen. Filled shapes represent pH change from 11 to 5, empty shapes represent 

reverse pH change. [16] 

 

Figure  5.  Zeta  potential  versus  pH  curve  of  tennanite,  circles  represent  solution  conditioned  for  60 minutes  in  nitrogen 

environment, triangles are in presence of oxygen. Filled shapes represent pH change from 11 to 5, empty shapes represent 

reverse pH change. [16] 

Zeta  potentials  are  also  examined  in  the  study  of  biochemistry. Where  the,  examination  of  the  interaction 

between  a  synthesised  positively  charged  [60]  fullerene  agglomerate  and  negatively  charged  E.  coli  or  P. 

phosphoreum  cell  cultures  in  various  saline  conditions  were  observed.  The  discovery  of  the  effect  of  salt 

neutralising the zeta potential and aggregation of the molecule, and interactions between the bacterial cells 

Page 9: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

10 and  aggregates  provided  insight  to  the mechanism of  toxicity, which  could  lead  to  identifying  antibacterial 

methods using the [60] fullerene derivative [18]. 

The zeta potential between the mineral surface and the air bubble is the main focus of froth flotation of the 

target  mineral,  namely  its  stability  to  stay  attached  to  the  air  bubble;  the  mineral  being  spodumene. 

Acknowledging its point of 0 charge ranging from 2.68 (with a change to 3.3 in the presence of calcium ions) [25] 

to 3.4 [24], it is likely that the ore will be tested for its zeta potential around that range of pH’s. 

 

4. Spodumene and Other Minerals 

Found  among  pegmatitic  ores,  spodumene  is  an  igneous,  monoclinic  pyroxene  aluminosilicate  compound 

(Li2.OAl2O3.(SiO2)4), where pure spodumene has a lithia composition of roughly 8% [1], [6], [8], [9], [10], [11], [13], making 

it one of the richest sources of lithia in nature. The pegmatite ore located in Greenbushes contains a maximum 

grade of 50% spodumene; equating to roughly 4% lithia [3], [4], [12], [13], with some sources noting a grade as low as 

2.4% and as great as 4.5% [14]. The mining reserve as of 1995 contained ore holding 4.06% lithia, 0.06% Tantalum, 

0.24% Tin, 0.42% Niobium/Columbium and 30% kaolin (an aluminium‐silica clay) [4].  

Various grades of lithia from spodumene are required for different consumer products, a high grade spodumene 

assays at least 7.25% lithia, which is roughly 90% spodumene, for lithium production, a lithia grade of 5.00% is 

required (roughly 60% spodumene) [6]. Other sources of lithia for glass production include a 4.40% grade from 

petalite concentrate and a 4.00% grade from lepidolite. 

Other  sources  of  spodumene  include  the  lithium  pegmatic  ore  from  the  Kings  Mountain  pegmatite  belt 

(containing 20% LiAl[SiO3]2 (spodumene) with roughly 8.0% lithia [5], [6]), the Black Hills mine (containing 1.9% 

spodumene [6]), the Minas Gerais provincial mines in South America (containing 20 – 30% spodumene in the 

larger intermediate zone and 60 – 80% spodumene in the smaller core zone, [6]). There is also the lithia resource 

in Bikita, Africa, containing a grade of 1.4% lithium [6], and the 20 km long Kamativi belt, containing grade of 5 – 

10% spodumene.  

The ore is found in pegmatite ore deposits, which also consist of other aluminosilicate minerals, such as albite 

(NaAlSi3O8),  K‐feldspar  or  orthoclase  (KAlSi3O8),  quartz  (SiO2/SiO4),  biotite  K(Mg,Fe)3AlSi3O10(F,OH)2, 

tourmaline (various metal silicate complex),  tantalite ((Fe,Mn)Ta2O6), garnet (metal silicate with a chemical 

formula  of  (X3Y2(SiO4)3),  calcite  or  calcium  carbonate  (CaCO3),  cassiterite  (SnO2),  scapolite  (metal  silicate 

complex), muscovite (KAl2(AlSi3O10)(F,OH)2), beryl (Be3Al2(SiO3)6), apatite (Ca5(PO4)3(F,Cl,OH)), among many 

others. Looking at Table 1  (see appendix),  the notable amounts of  silica, alumina,  iron oxide,  sodium oxide, 

potassium oxide, lithia, rubidium and tin, gives an inference of notable amounts of orthoclase (potassium and 

alumina), albite (sodium and alumina), spodumene (lithia and alumina) and quartz, with traces of tantalite (from 

the iron oxide) and beryl (from the calcium and beryllium). 

Determination of how well spodumene remains stable when bonded to air bubbles is definitely one of the main 

considerations when deciding the optimal operating conditions for the flotation process. When this range  is 

obtained, it would make sense to test out these conditions with the other elements to test their stability. It is 

Page 10: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

11 assumed that a greater zeta potential between the gangue mineral surface and air identified, than one between 

the spodumene mineral surface and air, would result in a lower grade of the target spodumene in the flotation 

concentrate. However, this can be used to selectively float the gangue instead of the target to produce a better 

grade of tailings. 

 

5. Materials, Methods and Conditions 

Froth flotation can become a very complex experiment, with a variety of variables such as reagent concentration 

and type, solution temperature, conditioning time, pH, slurry solids concentration, particle size and agitation 

velocity. The main methodology to the experiment is to use a zeta meter with a sample of pure spodumene (or 

as pure as can be obtained) and test its zeta potential under various solution conditions and identify the optimal 

conditions of flotation for the mineral. From this range of conditions, the other minerals present will also be 

tested in the same way as the spodumene, just under the range of the optimal conditions identified with the 

spodumene, the actual minerals present in the pegmatite ore sample will be obtained using X‐Ray Diffraction 

(XRD) on a sample to identify the mineral and basic composition (in terms of spodumene and silica). From there, 

several conditions will be selected to be tested further using the ore sample (from Talison Greenbushes) under 

small scale testing, using either a Hallimond tube or a two‐litre flotation vessel. During this, other elements such 

as air flow rate, agitation rate, and temperature will remain constant, these values will be based off previous 

laboratory experiments and what the individual task requires. 

In  terms  of  spodumene  flotation,  there  have  been  numerous  experiments  performed  in  the  interest  of 

optimising  the  recovery  of  the  lithia  bearing  compound  amongst  similar  undesirables.  Collectors  used  are 

typically oleic acid [6], [9], [10], [15], pine oil [6] (also used as a frother), fuel oil  [6], [11], sodium resinate [11], Armac‐T 

(amine acetate) [6], [11], dodecyl amine [15] and the anionic collector sodium oleate (NaOL) [20], [21], [23]. Among those, 

combinations of fuel with oleic acid and oleic with naphthenic acids in fuel was also used, along with just the 

oleic acid and pine oil [6].  

A collector mixture of 500 g/t of oleic acid, 200 g/t of naphthenic acid and 3500 g/t of fuel oil produced the best 

results, giving the best combination of recovery and selectivity out of the other variations tested [6], a pH of 6.5 

to 7.0 was used, with a feed size of 300/75 microns. 

Oleic acid was used at a constant concentration of 6.0 x 10‐4 M, which provided a maximum recovery of 80% of 

spodumene with a constant sodium hydroxide concentration, which found that a greater concentration of the 

base gave a greater recovery of spodumene and a lower recovery of feldspar; and a constant quartz recovery 

[9], the size of the feed used was ‐105 + 38 microns, with a conditioning time of 3 minutes and flotation time of 

5. Modifiers sodium carbonate and calcium chloride were used, the presence of the calcium ions would alter 

the point of zero charge for the minerals present, this change would be identified using the zeta meter to identify 

the new PZC. 

Experiments using oleic acid found that a lower concentration of the collector of 0.35 kg/t gave a greater grade 

of lithia (5.6%) with a lower recovery of 81.3%, compared to a 2.8 kg/t concentration of the collector, giving a 

Page 11: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

12 grade of 4.2% and recovery of 95.7%, with the optimum recovery obtained from a concentration of 1.4 kg/t [10]. 

The ideal pH range giving the best recovery and grade (of roughly 96 and 4.2% respectively) is seven to nine, the 

rotor velocity (in rpm) of 1000 gave the best recovery and grade (matching the above at roughly 96 and 4.2% 

respectively). The conditioning time pattern revealed that the longer the conditioning time after 5 minutes, the 

greater the grade but the lower the recovery. The ideal temperature giving a recovery of 96% and 4.6% grade 

was room temperature, and the better pulp concentration (in terms of solids) was roughly 17‐18%. 

Combinations of 75% oleic acid and 25% dodecyl amine gave a similar recovery of both spodumene and beryl in 

acidic conditions; if there was a noticeable amount of beryl present in the ore, this would become a problem 

[15]. The presence of activator ions, iron and calcium greatly increased the recovery of spodumene, however, it 

had the same effect on the beryl at a lower concentration, the ability to add metallic ions to improve spodumene 

recovery is still highly dependent on the concentration of beryl in the ore sample. 

Experiments with NaOL proved that without the presence of metallic ions in solution, the ability the oleate has 

as a collector  is minimal, and with the presence of the  ions,  the recovery of quartz and albite are too great 

compared to the spodumene recovery (see appendix) [20]. The presence of activator Fe (III) ions in solution, using 

particles sized 38 to 45 microns, produced the best recovery at a pH of roughly 8.5; corresponding to sources 

[10] and [15]. 

Similar results were obtained using only sodium oleate as a collector, being very poor without the addition of 

collectors, a dosage of 200 mg/L of either magnesium or calcium ions with a concentration of 6.0 x 10‐4 M of the 

oleate at their optimal pH’s gave a recovery close to 85% (see Figure 6). The presence of magnesium ions in 

solution provided two points of zero charge, the first being roughly 2.5, the second being roughly 8, which could 

introduce the possibility of using a cationic collector using a pH of roughly 7 to 7.5 (see Figure 7). The presence 

of calcium ions had a similar effect, introducing a second point of zero charge at a pH of roughly 11 (see Figure 

7). The addition of sodium oleate removed the second point of zero charge, it isn’t likely that the addition of the 

activators and the oleate will create much of a notable effect on the flotation of spodumene, as the charge on 

the surface of the mineral remains negative. 

 

Figure 6. Recovery of spodumene at varying concentrations of ions at constant sodium oleate concentration. [21] 

Page 12: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

13

 

Figure 7. Change in zeta potential over pH with varying ions present in solution. [21] 

Selective  flotation  of  spodumene  from  feldspar  produced  the  result  that  a  cationic  collector would  have  a 

greater collecting effect on the feldspar over the spodumene, hence, it is assumed that a cationic collector would 

not  provide  the  optimal  flotation  conditions  for  spodumene,  due  to  the  presence  of  the  feldspar  in  the 

pegmatite  ore  sample,  it  did  however  provide  a  greater  recovery  of  spodumene  over  feldspar  using  a 

concentration of 4.0 x 10‐4 M of the oleate collector at a pH of 9 to give a recovery of roughly 50% [23].  However, 

the addition of a cationic collector (DTAC) with a molar ratio of 9:1 of the oleate to the DTAC produced a recovery 

of 80% for spodumene at a pH of just over 8, while the feldspar had a recover below 20%, which brings into 

question the idea on what would occur when both a cationic and an anionic collector are present in solution. 

Experiments using oleate with/without Fe (III) and Ca (II) ions gave promising results that the presence of iron 

ions in solution with a concentration of 7.0 x 10‐4 M of the oleate at a pH just above neutral, provided a near 

100% recovery; due to the presence of the iron ions shifting the point of zero charge to just below neutral (see 

Figure 9) .  

 

Figure 8. Recovery of spodumene using same dosage of oleate at pH roughly 7.5. [25] 

Page 13: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

14

 

Figure 9. Zeta potential of spodumene against pH in absence or presence of ions in solution. [25] 

 

 

Methods 

1. Sample Preparation 

From the rough kilogram sample, a portion was removed for producing a 50% spodumene sample for flotation. 

Assuming the 85% spodumene, 246 grams of the sample was mixed with 143 grams of silica. The sample was 

sieved to 75 microns, the undersized product was kept, while the remainder was added to a ring mill and milled 

for approximately 20 seconds, the solids were removed, sieved and repeated until the majority of the sample 

passed this size; attaining a rough P80 size of 75 microns. Later in the zeta potential testing (see later in the 

report), residual flotation reagents were detected, evident from the highly stable froth obtained from mixing 

with water. The reagents had to be flushed, done so by performing a series of hot hydrochloric acid washes, 

decanting, filtration and drying, repeated till no foam was present when mixing a sample with water. The wash 

was  then performed on  the purer  spodumene sample  for other measurements. The dried sample was  then 

passed through a rotary splitter three times to thoroughly mix the sample. For silica tests, a sample was milled 

much the same as the spodumene mix, milled for 20 seconds, sieved, repeated then passed through a rotary 

splitter  several  times  to  thoroughly mix  the  sample. After  this,  a  sample was  removed, with  the  remainder 

placed back  in  the  ring mill,  then  continued  to grind until  there  is no  resistance  left when  rubbing  the  fine 

powder together, this will be for the XRD testing. 

Collector reagents were made up to 0.02 moles per litre (M), namely sodium oleate (NaOl) and Centrimonium 

Bromide (CTAB) in one litre volumes. Done by adding the solid salts to a one litre volumetric flask, partially filling 

with distilled water to better dissolve the solute, top up with water then poured into a sample bottle. A solution 

of  Sodium  Chloride  was  made  at  a  concentration  of  0.02 M  to  act  as  a  background  salt  for  pure  sample 

measurements. The modifiers were made up to a concentration of 400 mg/L of the metal ions, Ca (II), Mg (II), 

and Fe (III). Solutions of one gram‐per‐litre were made up later to deal with larger volumes of solution, with all 

forms of metal cations introduced into solution as chloride hydrates, as it was advised to use chloride metal 

salts  to stay consistent with  the background salt, as different anions effect  the conductivity of  the solution, 

Page 14: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

15 effecting the zeta potential readings. Troubles with the Fe (III) chloride hexahydrate were present, as the solid 

readily became a  liquid at slightly‐above room temperatures, taking a sample was overcome by pouring the 

liquid hydrate into a plastic sample jar, then ground to obtain a powder.  

2. Zeta Potential 

Both  the 85%  spodumene  concentrate  and  silica  samples were  separately  tested  for  their  zeta potential  in 

various conditions, using the University of Western Australia’s Colloidal Dynamics ZetaProbe (acoustic model 

Testel SMEG‐04933; which charges the particles and records ultrasonic vibrations they form from this reaction). 

A solution of 5.15% lithia (68.75% spodumene) and silica were made (by weight) based on a specific gravity of 

spodumene of 3.15 [25] and 2.65 [27] for silica in a total volume of 260 mL. An unaltered zeta potential test was 

performed using the sodium chloride solution at 0.01 M, 0.02 M, and 0.002 M for both minerals to get a basis 

reading to compare to. The samples were then tested using the magnesium, calcium, and iron (III) ions at 100 

and 120 mg/L, 200 and 250 mg/L, and 40 and 120 mg/L respectively. The potentials were then measured with 

the change in pH, beginning at roughly 5 dropping to a pH of 2.5 using 0.57 M nitric acid, then rising to 11 with 

0.57 M potassium hydroxide. This was done for the spodumene samples, following that, it was advised to add 

2 – 3 drops of 8 M potassium hydroxide at the beginning to take readings from roughly 11 to 2.5 to cut down 

analysis time; done with the silica samples.  

3. Micro Flotation 

The 50% spodumene sample was used in flotation tests, where a 50 mL volume of slurry in a 100 mL Hallimond 

Bulb apparatus was tested. Solution conditions made up in accordance to the zeta potential results, in terms of 

pH  and  ion  concentration  (using  hydrochloric  acid  and  sodium  hydroxide  as  pH  modifiers).  Collector 

concentration used was 700 grams per tonne  [26], equating to roughly half a millilitre. The sample mass was 

made up to 5% solids by weight, then conditioned in the solution for 5 to 10 minutes, then flowing 50 L/min of 

air through the solution for 5 minutes. The over flow and under flows were dried and weighed. 

4. Bulk Flotation 

The bulk flotation tests were performed similarly to the micro flotation tests, in terms of pH, ion concentration 

and solid slurry concentration, though performed in a one litre sized flotation cell. One key difference between 

the two is the addition of scraping the froth to obtain the concentrate, which removed liquids from the cell, 

requiring water to be added back into the cell, and further addition of acid and alkaline solutions to maintain 

the pH floating conditions. 

5. XRD Analysis 

Performed using an Empyrean Diffractometer. The operating conditions for scanning the samples involved the 

use of a copper anode, a current of 40 mA, a voltage of 40 kV, a K‐Alpha1 wavelength of 1.54060, K‐Alpha2 

wavelength of 1.54443 and a K‐Beta wavelength of 1.39225. 

The original sample (unwashed) was analysed for spodumene and silica concentration, based on the counts of 

the molecules, ranging from 10 to 90 degrees. Followed by the concentrates produced from flotation. To obtain 

an approximate assay of the floats, a partition curve of spodumene, comparing the counts with the grade, was 

Page 15: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

16 produced  using  7.0%,  5.5%,  4.0%,  2.0%  and  0.0%  lithia  (85%,  68.75%,  50%,  25%  and  0.0%  spodumene 

respectively), with the remainder making up silica. To efficiently scan, the samples had to be ground further 

(using a ring mill or mortar and pestle depending on volume), with a maximum passing size of roughly 30 microns 

was recommended, due to equipment  limitation, a sieve screen size of 35 microns was used. Noting for the 

mortar and pestle method, the sample was ground to a point where no resistance of the sample was heard. 

Results 

1. Zeta Potentials 

From the results obtained from the Colloidal Zeta Probe, there are changes to the zeta potentials (and isoelectric 

points) of the spodumene and silica samples when comparing the background salt readings and the addition of 

ions. 

From the background readings: 

 

Figure 10. Zeta potential of spodumene with varying concentrations of background salt with pH. 

‐14

‐12

‐10

‐8

‐6

‐4

‐2

0

2

2 4 6 8 10

Zeta Potential (mV)

pH

Na 0.02 M Na 0.002 M

Page 16: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

17

 

Figure 11. Zeta potential of silica with varying concentrations of background salt with pH. 

The Point of Zero Charges for spodumene and silica respectively at roughly 2 and 3 (when looking at 0.02 M of 

sodium ions in Figure 10, and assuming the trend for silica continues its current directory in Figure 11), which 

corresponds with literature values.  

 

 

Figure 12. Zeta potential of spodumene with varying concentrations of Ca (II) ions with pH compared to 0.002 M NaCl reading. 

‐14

‐12

‐10

‐8

‐6

‐4

‐2

0

2 4 6 8 10 12

Zeta Potential (mV)

pHNa 0.01 M Na 0.002 M

‐1.0

‐0.5

0.0

0.5

1.0

1.5

2.0

2.5

2.0 4.0 6.0 8.0 10.0 12.0

Zeta Potential (mV)

pH

Ca 200 mg/L Ca 250 mg/L Na 0.002 M

Page 17: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

18

 

Figure 13. Zeta potential of silica with varying concentrations of Ca (II) ions with pH compared to 0.002 M NaCl reading. 

With the addition of the Ca (II) ions to the solution, the zeta potential charge with respect to the spodumene 

sample remains positive, where normally the charge becomes negative at a pH of roughly 5.5, the addition of 

the calcium ions prevents this from occurring (see Figure 12). An increase in the concentration of calcium ions 

appears to slightly increase the charge. This affect is similar with the silica results, although this  is done at a 

higher pH, where the silica becomes positive at a pH of roughly 9 (see Figure 13). In terms of silica, an increase 

in the concentration of calcium ions present in solution altered the isoelectric point of the sample, shifting it to 

a more neutral pH with a greater ion presence. 

 

 

Figure 14.  Zeta potential  of  spodumene with  varying  concentrations of Mg  (II)  ions with pH  compared  to 0.002 M NaCl 

reading. 

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

5

10

2.5 4.5 6.5 8.5 10.5 12.5

Zeta Potential 9mV)

pH

Ca 200 mg/L Ca 250 mg/L Na 0.002 M

‐1

‐1

0

1

1

2

2

3

3

2 4 6 8 10

Zeta Potential (mV)

pH

Mg 100 mg/L Mg 120 mg/L Na 0.002 M

Page 18: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

19

 

Figure 15. Zeta potential of silica with varying concentrations of Mg (II) ions with pH compared to 0.002 M NaCl reading. 

The addition of Mg (II) ions in the solution produces similar results with the Ca (II) ions, produced with a smaller 

concentration  of  the  former’s  ions.  Following  calcium’s  trend,  an  increase  in  magnesium  ions  produced  a 

stronger zeta potential reading for the spodumene sample, and was slightly different when comparing the silica 

samples, at a stronger concentration of ions resulted in a stronger reading up until very basic pH conditions (see 

Figures 14 and 15 for spodumene and silica respectively). The narrow variation of magnesium ion concentrations 

gave little to indicate how it affected the isoelectric points of the samples, a small dilation of the spodumene 

graph comparing the two concentrations inferred the isoelectric points reached closer to a neutral pH with an 

increase in ion concentration.  

 

Figure  16.  Zeta  potential  of  spodumene with  varying  concentrations  of  Fe  (III)  ions with  pH  compared  to  0.002 M NaCl 

reading. 

‐25

‐20

‐15

‐10

‐5

0

5

10

2 4 6 8 10 12

Zeta Potential (mV)

pH

Mg 100 mg/L Mg 120 mg/L Na 0.002M

‐13

‐8

‐3

2

7

2 4 6 8 10 12

Zeta Potential (mV)

pH

Fe 40 mg/L Fe 120 mg/L Na 0.002 M

Page 19: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

20

 

Figure 17. Zeta potential of silica with varying concentrations of Fe (III) ions with pH compared to 0.002 M NaCl reading. 

The presence of the Fe (III) ions in solution presented a very different response when compared to the calcium 

and magnesium data. In the presence of the latter ions, the spodumene sample maintains a positive charge and 

minimal isoelectric point displacement, whereas an increase in iron concentration shifts the IEP of the sample 

to a basic solution (see Figure 16). For the silica, an increase in iron ion concentration shifts the isoelectric point 

to a more acidic point, and the trend of the zeta potential follows the background silica data (see Figure 17). 

 

 

Figure 18. Zeta potential of spodumene with varying concentrations of alginate with pH compared to 0.002 M NaCl reading. 

‐16

‐11

‐6

‐1

4

9

2.5 4.5 6.5 8.5 10.5 12.5

Zeta Potential (mV)

pH

Fe 40 mg/L Fe 120 mg/L Na 0.002 M

‐6

‐5

‐4

‐3

‐2

‐1

0

1

2

3

2 4 6 8 10 12

Zeta Potential (mV)

pH

Al 35 mg/L Al 75 mg/L Na 0.002 M

Page 20: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

21

 

Figure 19. Zeta potential of silica with varying concentrations of alginate with pH compared to 0.002 M NaCl reading. 

The presence of the alginate in solution gave little affect to the isoelectric points of the spodumene, with a small 

change present between concentrations at 35 and 75 mg/L (see Figure 18). The trend does not follow the plain 

background data, with a turning point present at a pH of roughly 9.5, and a turning point at 10 for the stronger 

concentration of alginate and salt for silica (see Figure 19). 

It should be noted that the use of calcium alginate was used and dissolved in excess sodium to ensure dissolution 

in alkaline conditions, the excess of the sodium increases the concentration of ions which affects the reading 

obtained. It is unknown as to the extend which the excess salt on its own will affect the zeta potential of the 

spodumene and the silica on its own. The graphs presented earlier infer that there is a difference, the extent 

however is unidentified from the data obtained. 

 

2. XRD Data 

Data was obtained from the finely ground samples to obtain a count of particles at variations of angles. A pure 

sample of silica was tested, along with a raw sample of the spodumene concentrate, as well as 2.0%, 4.0% and 

5.5% lithia samples (containing roughly 35%, 50% and 68.75% spodumene respectively; see Figures 20 to 24). 

The concentrates of the three floats that were assumed to produce a greater final grade were also analysed to 

test the theory of the zeta potentials (with XRD results present as Figures 25 to 27), these were the floats from 

using Ca (II) at 250 mg/L, Mg (II) at 120 mg/L and using Fe (III) at 120 mg/L (in pH conditions of 4.3, 9 and 6 

respectively). 

 

 

‐15

‐10

‐5

0

5

10

2 4 6 8 10 12

Zetaa Potential (mV)

pH

Al 35 mg/L Al 75 mg/L Na 0.002 M

Page 21: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

22

 

Figure 20. XRD data on the raw spodumene concentrate sample, containing roughly 85% spodumene. 

 

 

Figure 21. XRD data on a sample of pure silica.

Comparing Figures 20 and 21 for the spodumene concentrate and the silica samples, the peaks which represent 

the spodumene above are identified at position 31 +/‐ 0.5o, whereas the silica is identified as the peak at position 

~26.5o and 21o.  

.

 

 

Page 22: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

23

 

Figure 22. XRD data on a 2.0% Lithia or 25% spodumene sample. 

 

Figure 23. XRD data on a 4.0% Lithia or 50% spodumene sample. 

Comparing  Figures 22 and 223as  the 25 and 50%  spodumene  samples  respectively,  the  large peak at  26.5o 

notably drops as the concentration of lithia increases, this lithia increase is presented as the rise in small peaks 

present at position 31 and 32 degrees. Figure 23 follows this trend. 

 

 

 

Page 23: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

24

 

Figure 24. XRD data on a sample containing 5.5% Lithia or roughly 68.75% spodumene. 

 

Figure 25. XRD data on the float concentrate using Ca (II) ions at a concentration of 250 mg/L, maintaining a pH of roughly 

4.3. 

Figures 24 to 26 contain similarities to the 5.5% lithia (~69% spodumene) graph, given a similar count at the 26.5 

and 31/32‐degree positions, visually indicating a rough grade of the concentrate at roughly 5.5% lithia from the 

4.0% lithia feed. 

 

 

 

 

 

Position [°2θ] (Copper (Cu))20 30 40 50 60 70 80

Counts

0

50000

100000

5.5%Li2O 98-009-0145 98-028-0109

Position [°2θ] (Copper (Cu))20 30 40 50 60 70 80

Counts

0

50000

100000

Ca-250 mg-L 98-008-3849 98-028-0109

Page 24: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

25  

 

 

 

Figure 26. XRD data on the float concentrate using Mg (II) ions at a concentration of 120 mg/L maintaining a pH of roughly 

9. 

 

Figure 27. XRD data on the float concentrate from using Fe (III) ions at a concentration of 120 mg/L maintaining a pH of 

roughly 6. 

 

Analysis 

1. Zeta Potentials     

Position [°2θ] (Copper (Cu))20 30 40 50 60 70 80

Counts

0

20000

40000

60000

80000

Mg-120 mg-L 00-046-1045 98-003-0521

Position [°2θ] (Copper (Cu))20 30 40 50 60 70 80

Counts

0

50000

100000 Fe-120 mg-L 98-006-7121 98-003-0521

Page 25: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

26 The intent for obtaining and visually graphing the change in zeta potential of both spodumene and silica with 

varying modifiers  at  different  concentrations, was  to  identify  theoretically  optimal  operating  conditions  (in 

terms of pH) to ideally float the spodumene and depress (or not selectively float) the gangue (silica) from the 

feed.  

It was confirmed from past experiments that Ca (II), Mg (II), and Fe (III) ions affect the isoelectric points and 

(zeta) potentials of the spodumene and silica samples. The use of alginate as a modifier (and paired with sodium 

oleate) and been used previously, though not on aluminosilicates like spodumene, which it proved to have some 

effect on the potential reading, however, further testing on a wider concentration of alginic acid and using a 

soluble form (such as sodium oleate) will be done if there was time to investigate. The idea that the calcium 

alginate used, was never well dissolved in solution, making the actual concentration unknown, it was assumed 

that when concentrate was removed from the floatation cell,  laws of Le‐Chatelier would  indicate that some 

alginate would dissolve once some was removed in the froth. This idea lead to an altered method of flotation 

by increasing the conditioning and flotation time to allow time for the alginate to dissolve and adsorb to the 

mineral surface.  

The idea behind adding excess sodium was also influenced by Le‐Chatelier, as an increase in the concentration 

of sodium ions would theoretically displace the calcium from the alginate and create the sodium form. This 

excess of sodium and chloride ions drastically increased the conductivity of the solution, which later found out 

that this altered the reading obtained from the zeta probe, vertically shifting the results. This was countered in 

extreme measures  (namely all alginate tests) by running a background solution then recalculate the data to 

create a more accurate result. This was only done in the extreme case, performing this task for the other ion 

concentrations  would  have  increased  the  reliability  of  the  data.  This  error  is  present  particularly  with  the 

background salt readings of silica, as a point of zero charge should have been reached from the readings, which 

was not the case. Not having confidence in the original data set reduces the confidence in the remaining data 

sets, particularly to what extent does the other ions affect the surface charge.  

Concentrating on the calcium and magnesium data,  it  is possible that at some point the spodumene in both 

cases could have been negatively charge, particularly when in the pH range of five to eight. It is also unknown if 

there is any horizontal shift ion the isoelectric points of the silica, as this value was heavily depended on when 

deciding the pH range for operating conditions, so if the silica surface charge becomes positive when the goal 

of  floating  the spodumene  is  to keep  its  surface charge positive and using  the negatively charged oleate  to 

collect  it,  silica  is  likely  to  be  collected  much  like  the  spodumene;  which  is  unideal.  Given  the  low  ion 

concentration of the Fe (III) solutions, any horizontal shifting of the data (which affects the obtained isoelectric 

points) are assumed to be negligible. 

Looking back at Figures 12 to 17, the turning points of the zeta potentials indicate that there is ion adsorption 

or desorption at the mineral surface. An increase in the conductivity of the solution means that there are more 

ions present in the solution, inferring that an increase in conductivity was a result from ions desorbing from the 

mineral surface. A drop in the conductivity of the solution infers that ions are adsorbing onto a mineral surface, 

removing ions from solution hence reducing conductivity (see Figures 28 to 33).  

Page 26: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

27

 

Figure 28. Change in conductivity of slurry containing spodumene and Ca (II) ions when run through zeta probe. 

 

Figure 29. Change in conductivity of slurry containing silica and Ca (II) ions when run through zeta probe. 

Calcium ions appear to adsorb onto the spodumene surface in acidic conditions and will continue until a pH of 

roughly five is reached. From this point the calcium desorbs from the mineral surface and returns to solution. 

The return of the positive  ions to solution  increases the positive charge of  the solution, but negative to the 

spodumene surface, maintaining the positive surface charge of the spodumene. In terms of the silica, from the 

pH  range where  the  calcium  reacts  with  the  spodumene  surface,  the  conductivity  of  the  solution  remains 

constant  for a  rough pH range of 4  to 8.5, where any calcium  ions adsorbed onto  the silica surface desorb, 

making  the solution charge negative  to  the mineral  surface,  slowly  increasing  the charge until  it  reaches an 

isoelectric point of roughly 9.5. 

Under the assumption that the mineral surface charge of spodumene remains positive and the charge of silica 

remains negative until a pH of 9.5 is reached, performing a floatation using sodium oleate and keeping a pH 

range close to nine or four.  It  is at these two points where the charge of the spodumene mineral surface  is 

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.5 4.5 6.5 8.5 10.5

Conductivity (m

S/cm

)

pH

Conductivity during Potential Measurements of Spodumene with Calcium

Ca 200 mg/L Ca 250 mg/L

0

1

2

3

4

5

6

2.5 4.5 6.5 8.5 10.5 12.5

Conductivity (m

S/cm

)

pH

Conducitivty during Potential Measurements of Silica with Calcium

Ca 200 mg/L Ca 250 mg/L

Page 27: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

28 positively charged, and silica  is negatively charged. Operating at a pH of roughly 4 or 9 not only maintains a 

positive charge on the spodumene surface, it also reduces the negative charge (closer to 0) of the silica. This is 

important to note, though the oleate would not directly pick up the silica, the silica, due to its opposite charge 

to spodumene at these two points, can become entrained in the froth, forming an unwanted recovery of gangue 

material. A more negative charge on the silica would increase the level of attraction between the silica and the 

positive spodumene, keeping that negative charge minimal would reduce entrainment and improve the final 

grade of the spodumene concentrate.  

 

 

Figure 30. Change in conductivity of slurry containing spodumene and Mg (II) ions when run through zeta probe. 

 

Figure 31. Change in conductivity of slurry containing silica and Mg (II) ions when run through zeta probe. 

The interaction between magnesium ions and the surface of the spodumene is similar to the calcium ions, as 

the ions adsorb to the mineral surface to some degree in acidic conditions, then desorb after reaching a pH of 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.5 4.5 6.5 8.5 10.5

Conductivity (m

S/cm

)

pH

Conductivity during Potential Measurements of Spodumene with Magnesium

Mg 100 mg/L Mg 120 mg/L

0

1

2

3

4

5

6

7

2.5 4.5 6.5 8.5 10.5 12.5

Conductivity (m

S/cm

)

pH

Conductivity during Potential Measurements of Silica with Magnesium

Mg 100 mg/L Mg 120 mg/L

Page 28: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

29 5. This follows the charge of the spodumene surface remaining positive due to the presence of the magnesium 

ions altering the charge of the solution relative to the mineral surface.  

The  magnesium  ions  react  slightly  different  with  the  silica  than  the  calcium  ions  do.  In  both  cases,  the 

magnesium ions adsorb onto the surface of the silica, remains stable then continues to adsorb onto the mineral 

at a pH of 8.5.  It  is currently uncertain as to why this  is the case, though the difference is very small.  It was 

assumed that this small change in conductivity was due to the addition of ions into solution when changing the 

pH of solution to get the range of pH for the zeta potential data.  

 

 

Figure 32. Change in conductivity of slurry containing spodumene and Fe (III) ions when run through zeta probe. 

 

Figure 33. Change in conductivity of slurry containing silica and Fe (III) ions when run through zeta probe. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2 4 6 8 10 12

Conductivity (m

S/cm

)

pH

Conductivity during Potential Measurements of Spodumene with Iron

Fe 40 mg/L Fe 120 mg/L

0

1

2

3

4

5

6

2 4 6 8 10 12

Conductivity (m

S/cm

)

pH

Conductivity during Potential Measurements of Silica with Iron

Fe 40 mg/L Fe 120 mg/L

Page 29: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

30 The Fe (III) ions appear to be the most stable out of the three metal ions in the pH range of four to nine, which 

appears to be what influence the three metal ions have in common. This stability infers that the effects that the 

iron presented in the individual data sets would still occur in the presence of both minerals.  

 

Looking  at  the  spodumene  sample,  the  iron  adsorbs  onto  the  spodumene  surface  readily,  and  as  the  pH 

increases,  the  iron slowly desorbs out  into solution, creating a slightly positive solution, making  the particle 

charge negative. The reverse occurs with the silica, as the iron concentration increases, the surface of the silica 

mineral  surface  becomes more  negative, whereas with  the  spodumene  the  iron  keeps  the mineral  surface 

positive in slightly more neutral conditions. 

 

2. XRD Data 

The float concentrates, post find grinding, were examined using X‐Ray Diffraction to analyse the counts of both 

silica and spodumene to obtain a grade of spodumene in the final concentrate. In order for this to be done, 

samples of 0.0%, 2.0%, 4.0%, 5.5% and 7.0% lithia samples were prepared to be analysed.  

 

 

Figure 34. Graph depicting the relationship between the known fraction of silica in sample and the count of a position. 

 

From the linear equation derived from Figure 34, the grade of the concentrate can be obtained. Given this can 

only be from the particular angle and not from any other. From the equation, the grades for the concentrates 

for  the  calcium, magnesium  and  iron  experiment  are  61.69%,  60.37%  and  70.41%  respectively.  The  actual 

recoveries  of  the  spodumene  from  the  feed  are  81.61%,  42.97%  and  45.01%  respectively  for  the  calcium, 

magnesium and  iron experiments,  the  latter of  the  two had  low recoveries mainly due  to  the smaller mass 

obtained from the concentrate, which follows popular belief that grade and recovery are inversely proportional, 

given  that  the  iron  concentrate  had  the  greatest  final  grade,  calcium  ended  up  with  a  higher  spodumene 

recovery.  

y = ‐3008.8x + 3096.9R² = 0.9747

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Counts

Silica Fraction

Reading at Position 30.63o

Page 30: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

31 It was noted that using XRD data to quantify the grade of the concentrates is inefficient. The better alternative 

to analyse for lithium content  in a spodumene sample, would have been a digestion of the sample in highly 

corrosive hydrofluoric acid. Apart from being very dangerous to work with, it is not 100% efficient at dissolving 

the lithium from the spodumene, to then use AAS to obtain an ion count. From comparing the XRD data, it could 

be used  to compare peaks visually  (which again would become a notable  source of error)  to  identify which 

concentrate contained a better grade. To combat the chance that not all of the sample would be measured, 

multiple runs of the same sample would be performed and data averaged. 

Looking over the experiment, there were notable sources of error. The times used for conditioning varied from 

taking the time to adjust the pH of the slurry. Visually, it appeared that a larger volume of slurry would have 

been  required  for  the  micro  floats  to  better  simulate  refinery  conditions,  or  at  least  refinery  lab  testing 

conditions. Grinding and particle size was also an issue, though it cannot be proven for certain, it is likely that 

the particle size distributions for the XRD analysis would variate, which would affect the final reading.  

In terms of error for the zeta potentials tests, the particle sizes distributions were also noted to be a little on the 

large size to obtain accurate data, this was overlooked as that was noted part way through the analysis stage 

and would require redoing the lab work. If more time was given to get another batch of spodumene and silica 

and finely grind it to get better readings, it would have been done. Though the conductivities were low for the 

majority that were tested, error would have been reduced there if background conductivity readings were done 

to recalculate zeta potentials, which again was mentioned well on into the zeta probe analysis. There were also 

some figures, such as 16 and 18, that appeared to reach a turning point in its zeta potential reading, where going 

into more basic solutions to test its zeta potential would have proven useful for testing in basic conditions, this 

would have been done by  introducing a stronger base  to  reduce  the effects of volume change on the data. 

Another though for further testing would have been using a wider range of ion concentrations, such as 200 mg/L 

of iron to identify the effect of stronger concentrations of iron have on IEP’s of both spodumene and silica.  

In terms of reagents, a purer form of spodumene, not the concentrate that was used in this investigation, would 

have  been  used  (particularly  for  zeta  potential  and  XRD)  to  get  a more  accurate  reading.  Another  notable 

reagent is the alginate, there is some potential to use the readily dissolvable sodium alginate and test that in 

non‐saline solutions, it would also improve the accuracy on the concentration of dissolved alginate present. 

 

Conclusions 

The flotation of spodumene from pegmatite ore (namely the gangue material silica) can become very complex, 

there are numerous variables involved, particularly the unknown variables such as the point of zero charge on 

the minerals present in the ore, and how they will react with the spodumene during flotation. The aim of this 

report was to go through different modifiers and identifying its zeta potential measurements by using a zeta 

meter with silica and spodumene. Going through past experiments, there are several patterns, namely the use 

oleic acid is prevalent and effective, however the combination of sodium oleate and DTAC (CTAB in this case) 

requires some attention. The addition of metallic activator ions such as Fe (III), Ca (II), Mg (II) and alginate were 

tested.  

Page 31: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

32 In terms of Ca (II), using a decent 250 mg/L concentration in acidic conditions (where the pH is roughly four), a 

good recovery can be obtained. In terms of magnesium, it is likely that the test performed with the magnesium 

wasn’t done well, and requires further research to identify its optimal conditions, though it is likely that it shares 

trends with calcium. In terms of Fe (III), a weaker strength of iron (below 50 mg/L) would require a positively 

charged collector (such as the centrimonium bromide) in neutral conditions, the more concentrated the Fe (III) 

is in solution, a negative collector (such as oleate) would be used in slight acidic conditions. Though no XRD data 

on the alginate was produced, from observations, the silica can be floated and spodumene depressed when 

operating at a pH of 4 with 35 mg/L of alginate, as when cleaning the cell there were two distinct layers present 

(assumingly spodumene and silica based on the differences in colour). 

Further  study  would  involve  performing  more  flotation  tests  to  get  more  accurate  data  on  recovery  and 

concentrate grade. Looking into the difference between floating completely opposing charges of surface, mixing 

ions (calcium and iron?) or a strongly charged and weakly charged like pair (both positive, though see if there is 

an actual dominance of the more strongly charged). 

References 

[1] Anonymous, “Lithium,” in Metal Bulletin Monthly, Vol. 440, London, 2007, pp. 46 – 47. 

[2] Weblog post, “Zacks Investment Research: Albemarle to Double Lithium Production at Greenbushes Mine,” 

in Newstex Finance & Accounting Blogs, Chatham: Newstex, 2017. 

[3] Anonymous, “Talison Expands Greenbushes Lithium Operations,”  in Engineering and Mining Journal, Vol. 

213.7, Jacksonville, 2012, pp. 16. 

[4]  G.  A.  Partington,  N.  J.  McNagghton  and  I.  S.  Williams,  “A  Review  of  the  Geology,  Mineralization,  and 

Geochronology  of  the  Greenbushes  Pegmatite,  Western  Australia,”  in  Economic  Ecology,  Vol.  90,  Dep.  Of 

Geology and Geophysics 1995, pp. 616 – 635. 

[5] K. S. Moon and D. W. Fuerstenau, “Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) 

from other aluminosilicates,” in Int. J. Miner. Process, Vol. 72, 2003, pp. 11 – 24. 

[6] M. M. Amarante, A. Botelho de Sousa and M. Machado Leite, “Technical Note Processing a Spodumene Ore 

to Obtain Lithium Concentrates  for addition  to Glass and Ceramic Bodies,”  in Minerals Engineering, Vol. 12, 

1999, pp. 433 – 436. 

[7] S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson and T. J. Wallington, “Global lithium 

resources: Relative importance of pegmatite, brine and other deposits,” in Ore Geology Reviews, Vol. 48, 2012, 

pp. 55 – 60. 

[8] F. Brandt and R. Haus, “New concepts  for  lithium minerals processing,”  in Minerals Engineering, Vol. 23, 

2010, pp. 659 – 661. 

[9] F. Yu, Y, Wang and L, Zhang, “Effect of Spodumene Leaching with Sodium Hydroxide on  its Flotation,”  in 

Physicochem. Probl. Miner. Process, Vol 51, 2015, pp. 745 – 754. 

[10] M. Menendez, A. Vial,  J. Torano and M. Gent, “Optimisation of spodumene flotation,”  in The European 

Journal of Mineral Processing and Environmental Protection, Vol. 4, 2004, pp. 130 – 135. 

[11] L. D. Michaud, “Processing Spodumene by Froth Flotation for Lithium Extraction,” in 911 Metallurgist; A 

Practical Guide to Min. Pro. Eng. ,2016, (sourced from private library). 

[12] Talison Lithium, “Greenbushes Lithium Operation,” accessed 15/06/2017. 

[13] Anonymous, “Spodumene,” in Bunbury Port Authority, accessed 16/06/2017. 

Page 32: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

33 [14] Anonymous, “Greenbushes Lithium Mine,” Golden Dragon Capital, accessed 15/06/2017. 

[15] W. Yu‐hua and Y. Fu‐shun, “Effects of Metallic Ions on the Flotation of Spodumene and Beryl,” in J China 

Univ.  Mining  &  Technol,  Vol.  17,  2007  pp.  35  –  39,    http://ac.els‐

cdn.com.libproxy.murdoch.edu.au/S100612660760008X/1‐s2.0‐S100612660760008X‐main.pdf?_tid=995afffa‐

3b7e‐11e7‐a3e9‐00000aab0f01&acdnat=1495080238_7252c1dce541636761a2623783d450e5 

[16] D. Fullston, D. Fornasiero and J. Ralston, “Zeta potential study of the oxidation of copper sulphide minerals,” 

in Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 146, 1999, pp. 113 – 121. 

[17] K. Quast, “Literature review on the interaction of oleate with non‐sulphide minerals using zeta‐potential,” in Minerals Engineering, Vol. 94, 2016, pp. 10 – 20.   [18] D. G. Deryabin, L. V. Efremova, A. S. Vasilchenko, E. V. Saidakova, E. A. Sizova, P. A. Troshin, A. V. Zhilenkov and E. A. Khakina, “A zeta potential value determines the aggregate’s size of penta‐substituted [60] fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells,” in J. of Nanobiotechnol, 2015, pp. 13 – 50.  [19] L. Xu, Y. Hu, H. Wu, J. Tian, J. Liu, Z. Gao and L. Wang, “Surface crystal chemistry of spodumene with different 

size fractions and implications for flotation,” in Separation and Purification Technology, Vol. 169, 2016, pp. 33 – 

42. 

[20]  Z.  Jie, W. Weiqing,  L.  Jing, H.  Yang,  F. Qiming and Z. Hong,  “Fe  (III)  as  an activator  for  the  flotation of 

spodumene, albite and quartz minerals,” in Minerals Engineering, Vol. 61, 2014, pp. 16 – 22. 

[21] W. Liu, S. Zhang, W. Wang, J. Zhang, W. Yan, J. Deng, Q. Feng and Y. Huang, “The effects of Ca (II) and Mg 

(II) ions on the flotation of spodumene using NaOL,” in Minerals Engineering, Vol. 79, 2015, pp. 40 – 46. 

[22] Anonymous, “Purification Technology; Studies from Central South University Provide Data on Purification 

Technology  (Surface  crystal  chemistry  of  spodumene  with  different  size  fractions  and  implications  for 

flotation),” Chemicals & Chemistry, Atlanta, 2016, pp. 1455. 

[23]  L.  Xu,  Y.  Hu,  J.  Tian,  H. Wu,  Y.  Yang,  X.  Zeng,  Z. Wang  and  J. Wang,  “Selective  flotation  separation  of 

spodumene from feldspar using new mixed anionic/cationic collectors,” in Minerals Engineering, Vol. 80, 2016, 

pp. 84 – 92. 

[24] M. Fuerstenau, G. Jameson and H‐R. Yoon, “Froth Flotation; A Century of Innovation,” SME, 2015. 

[25] F. Yu Y. Wang, J. Wang and Z. Xie, “Investigation on different behaviour and mechanism of Ca (II) and Fe (III) 

adsorption on spodumene surface,” in Physicochem. Probl. Miner. Process., Vol. 50, 2014, pp. 535 – 550. 

[26] D. E. Garret, “Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing, Uses 

and Properties”, Elsevier: Academic Press, 2004, pp. 146 – 149. 

[27] E. Papirer, “Adsorption on Silica Surfaces”, vol 90, New York: Marcel Dekker, Inc, 2000, pp.  317

[28]  Anonymous,  “What  is  Flocculation?”,  Tech‐FAQ,  Retrieved  from  http://www.tech‐

faq.com/flocculation.html. 

 

Page 33: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

34 Appendix 

 

 

Table 1. Average composition of pegmatite ore at Greenbushes reserves at various zones. [4] 

Page 34: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

35   

 

 

 

 

Table 2. XRD data for pure silica sample. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 20.6591 12344.85 0.1407 4.29948 11.59

20.9368 17055.93 0.1919 4.24307 16.01 24.0354 231.87 0.2558 3.70263 0.22 25.8349 978.20 0.2558 3.44865 0.92 26.4874 79651.72 0.1791 3.36516 74.76 26.6877 106550.10 0.1407 3.34036 100.00 28.6425 227.36 0.4093 3.11668 0.21 36.4209 6659.18 0.1092 2.46489 6.25 36.5306 10474.98 0.1023 2.45978 9.83 39.3382 5388.67 0.0936 2.28856 5.06 39.4611 8990.21 0.1023 2.28360 8.44 40.1713 3255.36 0.0780 2.24299 3.06 40.2911 4877.22 0.0768 2.23845 4.58 42.4468 6968.75 0.2028 2.12787 6.54 42.5686 2350.33 0.0468 2.12733 2.21 44.5244 115.17 0.8112 2.03328 0.11 45.6843 3689.06 0.0780 1.98432 3.46 45.7876 4571.31 0.0780 1.98008 4.29 45.8982 2024.03 0.0624 1.98048 1.90 50.0510 15505.42 0.1560 1.82095 14.55 50.2493 7568.73 0.0780 1.81873 7.10 50.5813 448.02 0.2028 1.80309 0.42

Figure 35. Recovery of spodumene and beryl under varying conditions, the two figures on the left (a and c) are without the presence of metallic ions, the two on the right (b and d) are plotted recovery against ion concentration, with b being iron and d calcium. [15] 

Page 35: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

36

54.8107 5454.25 0.1248 1.67353 5.12 54.9751 2837.25 0.1092 1.67306 2.66 55.2469 2045.22 0.1248 1.66135 1.92 55.4316 1038.99 0.0780 1.66037 0.98 57.1506 212.30 0.1872 1.61045 0.20 59.9030 12949.13 0.1248 1.54286 12.15 60.0715 6678.00 0.0936 1.54276 6.27 63.9927 2186.66 0.1092 1.45376 2.05 64.1477 1122.99 0.1092 1.45423 1.05 65.6852 509.29 0.1092 1.42034 0.48 67.6764 7805.48 0.1248 1.38332 7.33 67.8830 4612.81 0.0936 1.38304 4.33 68.0807 9759.11 0.1092 1.37608 9.16 68.2630 10313.39 0.1092 1.37285 9.68 68.4461 3388.12 0.0936 1.37303 3.18 73.4055 2667.14 0.1092 1.28885 2.50 73.6188 1330.41 0.0936 1.28884 1.25 75.5981 3794.21 0.1248 1.25682 3.56 75.8276 1890.11 0.1092 1.25670 1.77 77.6041 1902.47 0.1248 1.22927 1.79 77.8658 830.72 0.1248 1.22884 0.78 79.8143 3767.44 0.1092 1.20069 3.54 79.9841 2187.47 0.0624 1.19857 2.05 80.0627 2186.50 0.0780 1.20057 2.05 81.1097 3015.82 0.1092 1.18475 2.83 81.4275 4010.79 0.1404 1.18093 3.76 81.6632 1785.02 0.1092 1.18105 1.68 83.7735 2261.83 0.1092 1.15373 2.12 84.0369 1089.06 0.1092 1.15364 1.02 84.8829 286.08 0.0936 1.14146 0.27 87.3697 255.29 0.1248 1.11526 0.24 87.6836 122.18 0.1716 1.11484 0.11

 

Table 3. XRD data on the 2.0% Lithia sample. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 10.3790 90.84 0.8187 8.52333 0.31 14.5177 528.34 0.0895 6.10150 1.78 19.9532 148.95 0.1151 4.44995 0.50 20.3947 213.33 0.1151 4.35461 0.72 20.8464 6541.74 0.0512 4.26127 22.08 21.1409 727.63 0.0640 4.20256 2.46 24.0119 36.36 0.2047 3.70619 0.12 25.8297 269.64 0.1535 3.44934 0.91 26.6272 29634.15 0.0624 3.34504 100.00 26.7047 13301.88 0.0468 3.34380 44.89 27.9505 283.55 0.0780 3.18961 0.96 29.2286 62.69 0.3432 3.05297 0.21 30.5888 1034.58 0.0936 2.92024 3.49 32.0061 1312.63 0.0624 2.79409 4.43 33.5364 290.45 0.0468 2.67001 0.98 35.1466 37.42 0.2652 2.55129 0.13 36.5305 1842.08 0.0624 2.45775 6.22 36.6287 1146.18 0.0468 2.45748 3.87 38.1935 105.49 0.2184 2.35447 0.36 39.4521 1585.39 0.0780 2.28221 5.35

Page 36: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

37

39.5574 773.33 0.0468 2.28203 2.61 40.2746 836.81 0.0780 2.23748 2.82 40.3814 437.52 0.0468 2.23735 1.48 42.4350 1249.23 0.0624 2.12843 4.22 42.5495 604.77 0.0624 2.12824 2.04 42.8850 126.10 0.2184 2.10713 0.43 43.8949 116.39 0.1404 2.06097 0.39 44.5087 75.54 0.3120 2.03396 0.25 45.7762 872.39 0.0624 1.98055 2.94 45.8982 416.49 0.0624 1.98048 1.41 47.0177 80.49 0.1404 1.93110 0.27 48.7981 236.83 0.0780 1.86473 0.80 49.2829 81.14 0.1872 1.84751 0.27 50.1257 3064.27 0.0780 1.81841 10.34 50.2619 1577.96 0.0624 1.81830 5.32 52.5485 50.11 0.1404 1.74013 0.17 54.8571 830.10 0.0780 1.67223 2.80 55.0010 419.59 0.0780 1.67234 1.42 55.3124 314.44 0.0780 1.65954 1.06 55.4576 148.50 0.0624 1.65965 0.50 57.2250 117.97 0.1404 1.60853 0.40 58.8090 206.82 0.1092 1.56893 0.70 59.9405 1809.01 0.0780 1.54199 6.10 60.1078 863.21 0.0780 1.54191 2.91 60.6466 153.49 0.0780 1.52571 0.52 62.4417 14.99 0.7488 1.48609 0.05 63.6582 172.97 0.0936 1.46060 0.58 64.0168 368.83 0.0624 1.45327 1.24 64.2157 133.37 0.1248 1.45285 0.45 65.7279 61.21 0.1560 1.41952 0.21 66.8080 52.86 0.1872 1.39917 0.18 67.7261 1043.31 0.0936 1.38242 3.52 67.9106 582.07 0.0780 1.38254 1.96 68.1197 1335.04 0.0780 1.37539 4.51 68.3108 1426.94 0.0936 1.37201 4.82 68.4919 486.38 0.0624 1.37222 1.64 68.9758 44.52 0.3120 1.36039 0.15 70.7315 127.77 0.1092 1.33087 0.43 71.7773 80.09 0.2184 1.31403 0.27 73.4456 358.94 0.0936 1.28825 1.21 73.6804 166.34 0.0936 1.28791 0.56 75.6413 541.06 0.0780 1.25621 1.83 75.8644 269.23 0.0624 1.25619 0.91 77.6478 219.23 0.1092 1.22869 0.74 77.8878 114.55 0.1560 1.22855 0.39 78.7194 64.71 0.4368 1.21463 0.22 79.8592 494.10 0.0780 1.20013 1.67 80.1138 253.69 0.0780 1.19993 0.86 81.1203 367.15 0.0936 1.18463 1.24 81.4808 518.68 0.1404 1.18030 1.75 81.7357 212.44 0.0936 1.18018 0.72 82.4281 47.09 0.3744 1.16911 0.16 83.8089 301.33 0.1248 1.15333 1.02 84.0986 109.97 0.1248 1.15295 0.37 87.5463 12.55 0.7488 1.11346 0.04

 

Page 37: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

38 Table 4. XRD data on the 4.0% Lithia sample. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 14.5044 1618.02 0.0640 6.10706 8.47 19.9561 498.39 0.0895 4.44931 2.61 20.3248 428.62 0.0512 4.36943 2.24 20.8414 3958.84 0.0768 4.26229 20.72 21.1361 2092.86 0.1023 4.20350 10.95 25.8272 522.38 0.0640 3.44967 2.73 26.6232 19105.48 0.0624 3.34554 100.00 26.7016 8856.76 0.0312 3.34418 46.36 27.9544 718.68 0.0780 3.18917 3.76 29.2489 216.83 0.1248 3.05091 1.13 30.5863 2798.10 0.0624 2.92048 14.65 30.6759 1462.08 0.0312 2.91939 7.65 31.2343 273.23 0.1248 2.86136 1.43 31.9980 3152.28 0.0624 2.79478 16.50 32.0870 1617.47 0.0468 2.79415 8.47 33.5379 459.50 0.0780 2.66989 2.41 35.2311 95.20 0.2340 2.54536 0.50 36.5272 1473.23 0.0624 2.45797 7.71 36.6274 1271.78 0.0468 2.45756 6.66 36.7388 376.02 0.0468 2.44429 1.97 38.1817 296.13 0.0936 2.35517 1.55 39.4493 1094.93 0.0780 2.28237 5.73 39.5569 553.64 0.0468 2.28206 2.90 40.2675 537.03 0.0624 2.23786 2.81 40.3763 264.31 0.0468 2.23762 1.38 40.5824 91.05 0.1404 2.22122 0.48 42.0528 108.78 0.1248 2.14689 0.57 42.4332 762.32 0.0780 2.12852 3.99 42.5459 384.98 0.0624 2.12842 2.02 42.8335 271.83 0.0780 2.10955 1.42 43.9245 401.67 0.0780 2.05965 2.10 44.5070 165.00 0.2496 2.03403 0.86 45.7748 528.21 0.0780 1.98060 2.76 45.8971 234.19 0.0468 1.98052 1.23 47.0544 279.05 0.0468 1.92968 1.46 48.7962 754.29 0.0780 1.86479 3.95 48.9378 363.63 0.0624 1.86435 1.90 49.2610 158.35 0.1716 1.84828 0.83 50.1199 1942.12 0.0624 1.81860 10.17 50.2554 977.04 0.0624 1.81852 5.11 51.0546 27.50 0.2808 1.78748 0.14 52.5674 149.34 0.1248 1.73955 0.78 54.8500 543.61 0.0780 1.67243 2.85 55.0033 300.49 0.0624 1.67227 1.57 55.2986 213.19 0.0624 1.65992 1.12 55.7282 86.20 0.2496 1.64814 0.45 57.2263 209.82 0.1092 1.60850 1.10 57.4496 232.14 0.0936 1.60278 1.22 58.8362 600.26 0.0936 1.56827 3.14 59.0085 325.69 0.0624 1.56798 1.70 59.9405 1181.90 0.0780 1.54199 6.19 60.1023 660.79 0.0780 1.54204 3.46 60.6459 372.09 0.0936 1.52573 1.95 60.8117 187.30 0.0936 1.52575 0.98

Page 38: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

39

62.3534 41.59 0.6240 1.48798 0.22 63.5664 214.55 0.1092 1.46248 1.12 64.0233 219.53 0.0780 1.45314 1.15 64.2141 103.33 0.0780 1.45289 0.54 65.7159 59.33 0.1560 1.41975 0.31 66.7951 183.78 0.0936 1.39941 0.96 67.7166 720.05 0.0936 1.38259 3.77 67.9110 374.21 0.0624 1.38253 1.96 68.1229 869.41 0.0936 1.37533 4.55 68.3017 888.45 0.0936 1.37217 4.65 68.4863 301.70 0.0780 1.37232 1.58 68.9424 120.69 0.1248 1.36097 0.63 70.0243 69.73 0.4992 1.34257 0.36 70.7363 296.15 0.0780 1.33079 1.55 70.9686 148.40 0.1560 1.32700 0.78 71.7537 166.87 0.1716 1.31440 0.87 71.9991 119.44 0.1560 1.31378 0.63 73.4402 226.11 0.0936 1.28833 1.18 73.6448 133.45 0.0936 1.28845 0.70 74.3537 21.77 0.2652 1.27474 0.11 75.6399 375.34 0.0936 1.25623 1.96 75.8762 158.16 0.1248 1.25602 0.83 77.6348 188.02 0.0936 1.22886 0.98 77.8916 121.75 0.1404 1.22545 0.64 78.6549 147.89 0.1716 1.21546 0.77 79.8598 308.06 0.0780 1.20012 1.61 80.0975 174.84 0.1248 1.19716 0.92 81.1504 250.95 0.0936 1.18426 1.31 81.4747 327.41 0.0624 1.18037 1.71 81.7189 125.07 0.1248 1.17746 0.65 82.2887 90.34 0.1248 1.17074 0.47 83.8265 165.57 0.0936 1.15313 0.87 84.0814 74.65 0.1716 1.15029 0.39

 

Table 5. XRD data on the 5.5% Lithia sample. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 10.2446 517.47 0.8187 8.63486 0.41 14.5056 22807.58 0.0768 6.10656 17.88 19.9593 9307.99 0.0768 4.44860 7.30 20.3545 8623.88 0.0895 4.36311 6.76 20.8461 25919.47 0.0768 4.26133 20.32 21.1399 31310.40 0.1023 4.20276 24.54 25.8369 9015.80 0.0640 3.44840 7.07 26.6249 127580.00 0.0624 3.34533 100.00 26.7042 56932.84 0.0468 3.34386 44.63 27.9550 11778.21 0.0780 3.18910 9.23 29.2437 3917.10 0.0624 3.05144 3.07 30.5912 42408.05 0.0624 2.92002 33.24 30.6786 21808.41 0.0312 2.91914 17.09 31.2392 5434.70 0.0624 2.86091 4.26 32.0016 42198.15 0.0780 2.79448 33.08 32.0910 21762.72 0.0312 2.79382 17.06 33.5420 6805.32 0.0624 2.66958 5.33 33.6352 3643.76 0.0468 2.66901 2.86 35.1632 2753.17 0.0780 2.55012 2.16

Page 39: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

40

36.5265 11810.28 0.0468 2.45801 9.26 36.6279 14416.51 0.0624 2.45143 11.30 36.7278 6154.20 0.0468 2.45107 4.82 38.2130 5133.56 0.0780 2.35331 4.02 38.3210 2843.24 0.0468 2.35276 2.23 39.4485 7251.82 0.0780 2.28241 5.68 39.5553 3648.63 0.0468 2.28215 2.86 40.2743 4156.62 0.0624 2.23750 3.26 40.3803 1991.57 0.0468 2.23741 1.56 40.5650 2460.66 0.0624 2.22213 1.93 40.6781 1198.93 0.0468 2.22172 0.94 41.4125 392.05 0.1560 2.17859 0.31 42.0735 2490.43 0.0780 2.14588 1.95 42.4335 5493.77 0.0624 2.12850 4.31 42.5467 2949.69 0.0624 2.12838 2.31 42.8504 5176.83 0.0780 2.10875 4.06 42.9756 2930.13 0.0624 2.10813 2.30 43.9156 5313.10 0.0780 2.06004 4.16 44.0433 3006.49 0.0624 2.05947 2.36 44.4993 3685.41 0.0624 2.03437 2.89 44.6229 2250.08 0.0624 2.03406 1.76 45.7769 3650.08 0.0624 1.98052 2.86 45.9005 1647.67 0.0624 1.98038 1.29 47.0588 4226.91 0.0780 1.92951 3.31 47.1898 2312.40 0.0624 1.92924 1.81 48.7960 8282.16 0.0780 1.86480 6.49 48.9288 4649.30 0.0624 1.86467 3.64 49.2976 3054.60 0.0624 1.84699 2.39 49.4331 1662.36 0.0780 1.84683 1.30 49.8118 1457.46 0.0624 1.82913 1.14 50.1238 13050.20 0.0780 1.81847 10.23 50.2581 6633.11 0.0624 1.81843 5.20 51.0580 571.90 0.1248 1.78737 0.45 52.5815 2701.46 0.0780 1.73911 2.12 52.7323 1414.22 0.0624 1.73880 1.11 53.2649 399.63 0.2808 1.71840 0.31 54.8536 3801.08 0.0780 1.67233 2.98 55.0078 2166.07 0.0780 1.67215 1.70 55.3070 1594.27 0.0624 1.65969 1.25 55.6668 1608.01 0.0780 1.64981 1.26 56.7479 830.41 0.1092 1.62092 0.65 57.2724 4612.46 0.0780 1.60731 3.62 57.4336 4078.27 0.1092 1.60318 3.20 57.7986 2184.08 0.0780 1.59393 1.71 58.8371 9112.97 0.0780 1.56824 7.14 59.0064 4957.07 0.0780 1.56803 3.89 59.9397 8391.55 0.0780 1.54200 6.58 60.1048 4244.09 0.0780 1.54198 3.33 60.6536 6407.08 0.0780 1.52555 5.02 60.8231 3741.59 0.0780 1.52549 2.93 62.1362 791.01 0.1248 1.49266 0.62 62.3346 1063.91 0.0780 1.48839 0.83 62.6720 1130.69 0.0624 1.48118 0.89 63.5525 3119.18 0.0624 1.46277 2.44 63.6668 4363.66 0.0468 1.46042 3.42 63.8417 2265.70 0.0624 1.46046 1.78 64.0212 1892.33 0.0780 1.45318 1.48

Page 40: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

41

64.2127 847.27 0.0780 1.45291 0.66 65.6666 550.39 0.1248 1.42070 0.43 66.8051 3170.87 0.0936 1.39923 2.49 66.9940 1760.96 0.0936 1.39921 1.38 67.7260 4736.49 0.0780 1.38242 3.71 67.9155 2718.75 0.0780 1.38245 2.13 68.1250 6264.48 0.0780 1.37530 4.91 68.3079 6190.15 0.0780 1.37206 4.85 68.4868 1960.32 0.0780 1.37231 1.54 68.9602 2042.73 0.0936 1.36066 1.60 69.1602 1093.21 0.0936 1.36059 0.86 69.8574 1430.40 0.0936 1.34537 1.12 70.2071 1924.35 0.0780 1.34285 1.51 70.7534 4844.93 0.0936 1.33051 3.80 70.9569 2686.03 0.0936 1.33049 2.11 71.7803 3266.39 0.1092 1.31398 2.56 71.9931 2224.46 0.0936 1.31388 1.74 72.5371 657.93 0.1092 1.30212 0.52 73.4430 1764.66 0.0780 1.28829 1.38 73.6543 1056.69 0.0936 1.28830 0.83 74.3604 731.21 0.0936 1.27465 0.57 75.6304 2966.90 0.0936 1.25637 2.33 75.8662 1579.43 0.0780 1.25616 1.24 76.7144 472.37 0.1872 1.24129 0.37 77.1615 656.76 0.0936 1.23828 0.51 77.6426 1499.55 0.0780 1.22876 1.18 77.8413 1612.36 0.1248 1.22612 1.26 78.2837 1268.66 0.0780 1.22332 0.99 78.6815 2937.23 0.0936 1.21511 2.30 78.9222 1857.63 0.0936 1.21502 1.46 79.8633 2191.89 0.0780 1.20008 1.72 80.1152 1218.87 0.0780 1.19991 0.96 81.1518 2240.44 0.0936 1.18425 1.76 81.4716 2212.10 0.1560 1.18040 1.73 81.6929 1078.79 0.0624 1.18069 0.85 82.3330 1841.70 0.0936 1.17022 1.44 82.5723 1419.74 0.0936 1.16744 1.11 83.8130 1444.25 0.1092 1.15329 1.13 84.0712 669.23 0.0936 1.15326 0.52 85.8635 223.47 0.1872 1.13092 0.18 86.4407 327.54 0.1872 1.12484 0.26

 

Table 6. XRD data on the 7.0% Lithia sample or raw spodumene concentrate. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 10.2751 52.28 0.7164 8.60926 0.20 14.2181 4094.29 0.1023 6.22939 15.90 14.4291 5845.03 0.1791 6.13877 22.70 14.6790 5213.35 0.1663 6.03481 20.25 19.7670 2300.52 0.1023 4.49144 8.93 19.9487 3530.60 0.1023 4.45096 13.71 20.0833 3545.51 0.0768 4.42142 13.77 20.4575 2956.30 0.0895 4.34140 11.48 20.9689 9868.26 0.1535 4.23665 38.33 21.2812 7840.17 0.1919 4.17517 30.45 25.7275 3212.19 0.1535 3.46281 12.48

Page 41: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

42

25.8942 3846.49 0.1023 3.44089 14.94 26.5392 5831.44 0.0936 3.35594 22.65 26.6539 6977.10 0.0624 3.34176 27.10 26.7244 5698.68 0.0512 3.33586 22.13 27.8211 4104.07 0.0624 3.20414 15.94 27.8945 5268.80 0.0936 3.19588 20.46 27.9940 5226.80 0.0768 3.18738 20.30 29.1376 1602.21 0.1872 3.06231 6.22 29.2843 1807.20 0.1092 3.05487 7.02 30.4742 15717.26 0.1872 2.93097 61.04 30.6298 21011.02 0.1560 2.91643 81.60 31.2692 2736.89 0.0936 2.85824 10.63 31.8894 17904.13 0.1092 2.80405 69.54 31.9917 25747.81 0.1092 2.79532 100.00 33.4982 3885.23 0.0624 2.67297 15.09 33.5681 3879.62 0.0780 2.66756 15.07 35.1865 1522.31 0.1404 2.54849 5.91 36.5619 6690.05 0.1404 2.45571 25.98 36.6516 7121.26 0.0624 2.45599 27.66 38.1249 2450.95 0.0936 2.35855 9.52 38.2434 2914.57 0.1092 2.35151 11.32 39.4700 432.24 0.2028 2.28122 1.68 40.4971 1308.82 0.0936 2.22570 5.08 40.5789 1377.54 0.0624 2.22692 5.35 41.4139 255.23 0.2808 2.17852 0.99 42.0046 1298.12 0.1092 2.14924 5.04 42.0858 1455.12 0.0624 2.15061 5.65 42.7927 3130.19 0.0780 2.11146 12.16 42.8643 3326.96 0.0780 2.10810 12.92 43.9250 3585.94 0.2028 2.05963 13.93 44.0497 1996.98 0.0468 2.05919 7.76 44.4266 2233.77 0.0936 2.03753 8.68 44.5170 2327.54 0.0780 2.03360 9.04 45.7820 139.63 0.2184 1.98031 0.54 46.9978 2729.38 0.1716 1.93188 10.60 48.7365 5422.44 0.1872 1.86694 21.06 48.9153 2854.65 0.0624 1.86516 11.09 49.2222 1899.92 0.0780 1.84965 7.38 49.2923 1919.39 0.0624 1.84718 7.45 49.7556 815.91 0.1092 1.83106 3.17 50.0854 966.41 0.1560 1.81978 3.75 50.9942 400.02 0.2028 1.78946 1.55 52.5071 1816.41 0.1404 1.74140 7.05 52.6938 1138.22 0.0936 1.73998 4.42 53.2371 326.09 0.1716 1.71923 1.27 54.2741 238.00 0.3744 1.68881 0.92 55.0228 336.19 0.3744 1.66758 1.31 55.5916 1303.15 0.1404 1.65186 5.06 55.8023 713.94 0.0780 1.65021 2.77 56.7034 614.91 0.1248 1.62208 2.39 57.2114 3051.02 0.1092 1.60888 11.85 57.4070 3079.47 0.1248 1.60386 11.96 57.7354 1551.96 0.0936 1.59552 6.03 58.7919 6436.19 0.1248 1.56934 25.00 58.9742 3620.58 0.0936 1.56881 14.06 59.9141 680.12 0.1248 1.54260 2.64 60.5807 4488.98 0.1092 1.52721 17.43

Page 42: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

43

60.7951 2869.34 0.1092 1.52612 11.14 62.0934 541.66 0.0936 1.49359 2.10 62.2912 777.93 0.1248 1.48932 3.02 62.6499 713.85 0.1248 1.48165 2.77 62.8507 443.08 0.1716 1.47740 1.72 63.6314 3775.95 0.1248 1.46115 14.67 63.8179 1707.87 0.0936 1.46095 6.63 65.1403 190.37 0.1872 1.43090 0.74 65.6179 337.68 0.1560 1.42164 1.31 66.7667 2600.37 0.1092 1.39994 10.10 66.9740 1221.31 0.1248 1.39958 4.74 67.6898 300.41 0.1404 1.38307 1.17 68.0477 521.96 0.0624 1.37667 2.03 68.2634 641.04 0.0624 1.37284 2.49 68.8878 1436.74 0.1248 1.36192 5.58 69.1289 858.85 0.1248 1.36113 3.34 69.8077 1239.23 0.1248 1.34620 4.81 70.1804 1449.64 0.0936 1.33996 5.63 70.7208 4251.79 0.1092 1.33104 16.51 70.9358 2231.56 0.1092 1.33084 8.67 71.7358 2416.66 0.1248 1.31469 9.39 71.9508 1608.76 0.1248 1.31454 6.25 72.5030 363.18 0.1404 1.30265 1.41 73.5514 532.10 0.1248 1.28665 2.07 74.2981 487.73 0.0780 1.27556 1.89 74.5319 221.13 0.1404 1.27214 0.86 75.6674 1107.08 0.1404 1.25584 4.30 75.8913 580.36 0.0780 1.25581 2.25 76.6450 364.70 0.1248 1.24224 1.42 77.1468 471.83 0.1092 1.23541 1.83 77.3556 384.44 0.1248 1.23260 1.49 77.7541 1086.77 0.0936 1.22727 4.22 78.2091 1045.89 0.0936 1.22127 4.06 78.6235 2242.04 0.0936 1.21587 8.71 78.8912 1465.00 0.0624 1.21542 5.69 79.8158 215.22 0.1404 1.20067 0.84 80.7609 268.13 0.1248 1.18899 1.04 81.1508 505.61 0.1716 1.18426 1.96 81.4199 343.86 0.1404 1.18396 1.34 82.3076 1298.72 0.1248 1.17052 5.04 82.5325 1131.71 0.1248 1.16790 4.40 83.0781 298.77 0.1404 1.16161 1.16 83.5260 454.41 0.1092 1.15652 1.76 83.7864 337.60 0.1404 1.15358 1.31 85.8203 168.13 0.2496 1.13138 0.65 86.3640 274.70 0.1404 1.12565 1.07 88.3471 134.08 0.1404 1.10543 0.52

 

Table 7. XRD data on the iron (III) 120 mg/L concentrate. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 14.5239 18410.20 0.0768 6.09890 20.40 19.9757 7776.44 0.0768 4.44499 8.61 20.3692 7063.72 0.0895 4.36001 7.83 20.8627 19644.64 0.0640 4.25798 21.76 21.1618 36030.66 0.1023 4.19846 39.92

Page 43: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

44

25.8602 7544.81 0.0768 3.44535 8.36 26.6426 90266.63 0.0780 3.34315 100.00 26.7218 40203.05 0.0312 3.34170 44.54 27.9719 11043.15 0.0780 3.18722 12.23 29.2584 2877.81 0.0780 3.04993 3.19 30.6103 39721.24 0.0780 2.91825 44.00 30.6971 22064.46 0.0468 2.91742 24.44 31.2524 4161.99 0.0780 2.85973 4.61 32.0206 37556.86 0.0624 2.79286 41.61 32.1098 19853.26 0.0468 2.79222 21.99 33.5618 6486.62 0.0780 2.66805 7.19 33.6524 3690.13 0.0312 2.66768 4.09 35.1802 1714.32 0.1404 2.54893 1.90 36.5400 9045.72 0.0624 2.45713 10.02 36.6445 10231.75 0.0624 2.45037 11.34 38.2327 4447.31 0.0936 2.35215 4.93 38.3384 2612.06 0.0468 2.35174 2.89 39.4657 4880.13 0.0780 2.28146 5.41 39.5802 2229.24 0.0468 2.28077 2.47 40.2922 2749.51 0.0624 2.23654 3.05 40.3947 1588.44 0.0468 2.23665 1.76 40.5793 1883.91 0.0780 2.22138 2.09 40.6907 995.01 0.0468 2.22106 1.10 41.4145 221.98 0.2496 2.17849 0.25 42.0893 1973.20 0.0936 2.14511 2.19 42.4482 4367.12 0.0624 2.12780 4.84 42.5628 2461.01 0.0468 2.12761 2.73 42.8798 3846.96 0.0936 2.10738 4.26 42.9883 2374.36 0.0624 2.10753 2.63 43.9419 4846.16 0.0780 2.05887 5.37 44.0577 3326.81 0.0468 2.05883 3.69 44.5138 3301.46 0.0780 2.03374 3.66 44.6345 2580.69 0.0468 2.03356 2.86 45.7925 2442.03 0.0780 1.97988 2.71 45.9257 1094.61 0.0780 1.97935 1.21 47.0706 4016.26 0.0780 1.92906 4.45 47.2073 2283.95 0.0780 1.92857 2.53 48.8178 8611.32 0.0936 1.86402 9.54 48.9548 4680.91 0.0624 1.86375 5.19 49.3087 2355.16 0.0780 1.84661 2.61 49.4517 1395.95 0.0624 1.84618 1.55 49.8419 1222.14 0.0936 1.82809 1.35 50.1410 9691.50 0.0780 1.81789 10.74 50.2736 4940.56 0.0780 1.81791 5.47 51.0794 522.08 0.1560 1.78667 0.58 52.6008 2278.71 0.1092 1.73852 2.52 52.7558 1191.08 0.0936 1.73808 1.32 53.2703 321.06 0.2496 1.71824 0.36 54.8767 2814.74 0.0780 1.67168 3.12 55.0168 1552.91 0.0780 1.67190 1.72 55.3265 1227.68 0.0624 1.65915 1.36 55.6847 1827.02 0.0936 1.64932 2.02 56.7750 748.95 0.1248 1.62021 0.83 57.2836 3062.17 0.1404 1.60703 3.39 57.4596 3291.63 0.1092 1.60252 3.65 57.8100 1988.65 0.0624 1.59364 2.20 58.8587 7647.74 0.1092 1.56772 8.47

Page 44: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

45

59.0259 4639.07 0.0780 1.56756 5.14 59.9574 6084.61 0.0936 1.54159 6.74 60.1260 3206.28 0.0624 1.54149 3.55 60.6685 4392.34 0.0780 1.52521 4.87 60.8346 2844.20 0.0624 1.52523 3.15 62.3541 736.30 0.1248 1.48797 0.82 62.6930 731.52 0.1404 1.48074 0.81 63.5757 2677.68 0.0468 1.46229 2.97 63.6794 3586.16 0.0936 1.46016 3.97 63.8561 2043.83 0.0624 1.46016 2.26 64.0463 1463.14 0.0780 1.45268 1.62 65.2349 187.33 0.2964 1.42905 0.21 65.6882 444.79 0.2184 1.42029 0.49 66.8302 2829.07 0.1092 1.39876 3.13 67.0302 1606.12 0.0624 1.39854 1.78 67.7470 3670.15 0.0780 1.38205 4.07 67.9313 2080.84 0.0780 1.38217 2.31 68.1407 4346.61 0.0780 1.37502 4.82 68.3239 4471.64 0.0936 1.37178 4.95 68.5172 1575.27 0.0624 1.37178 1.75 68.9886 1898.54 0.0936 1.36017 2.10 69.1875 1225.05 0.0624 1.36012 1.36 69.8982 1190.40 0.1248 1.34468 1.32 70.2352 1590.42 0.0936 1.33905 1.76 70.7732 4463.60 0.0936 1.33019 4.94 70.9915 2580.49 0.0780 1.32993 2.86 71.8286 2758.03 0.1092 1.31322 3.06 72.0261 1790.51 0.0936 1.31336 1.98 73.4632 1324.89 0.0936 1.28798 1.47 73.6695 811.87 0.0936 1.28807 0.90 74.3588 249.80 0.3120 1.27467 0.28 75.6565 2269.63 0.0936 1.25600 2.51 75.8945 1228.19 0.0624 1.25576 1.36 76.7134 335.50 0.1560 1.24131 0.37 77.6537 1223.26 0.0468 1.22861 1.36 77.8355 1331.27 0.1248 1.22924 1.47 78.6879 2801.94 0.1092 1.21503 3.10 78.9488 1762.28 0.0936 1.21468 1.95 79.8778 1684.15 0.0780 1.19990 1.87 80.1289 873.82 0.1560 1.19677 0.97 81.1752 1645.02 0.0936 1.18397 1.82 81.4907 1889.49 0.1404 1.18018 2.09 81.7619 891.72 0.1248 1.17987 0.99 82.3669 1618.48 0.0468 1.16983 1.79 82.5960 1312.56 0.0780 1.16716 1.45 83.8401 1123.48 0.1248 1.15298 1.24 84.9404 144.94 0.4992 1.14083 0.16 86.5440 183.88 0.4992 1.12377 0.20

 

Table 8. XRD data on the magnesium 120 mg/L concentrate. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 14.5170 24870.47 0.0768 6.10178 27.76 19.9669 7628.06 0.0895 4.44694 8.51 20.3743 5825.94 0.0768 4.35892 6.50 20.8561 19208.43 0.0768 4.25930 21.44

Page 45: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

46

21.1559 32792.28 0.1023 4.19962 36.60 25.8432 6407.62 0.0895 3.44757 7.15 26.6359 89598.99 0.0624 3.34397 100.00 26.7153 41331.52 0.0312 3.34250 46.13 27.9675 9162.27 0.0936 3.18771 10.23 29.2511 3656.46 0.0624 3.05068 4.08 30.6034 33454.14 0.0624 2.91889 37.34 30.6916 19045.16 0.0468 2.91793 21.26 31.2509 3760.30 0.1092 2.85987 4.20 32.0150 36280.52 0.0780 2.79334 40.49 32.1054 19462.34 0.0312 2.79260 21.72 33.5537 6210.08 0.0624 2.66867 6.93 33.6512 3272.87 0.0468 2.66777 3.65 35.1483 1448.80 0.1092 2.55117 1.62 36.5354 8352.02 0.0624 2.45743 9.32 36.6406 9368.44 0.0624 2.45062 10.46 38.2279 3734.56 0.0780 2.35243 4.17 39.4605 5061.55 0.0624 2.28174 5.65 39.5681 2672.90 0.0624 2.28144 2.98 40.2812 2753.39 0.0624 2.23713 3.07 40.5708 1653.85 0.0624 2.22183 1.85 41.4164 238.28 0.2496 2.17839 0.27 42.0868 1677.46 0.0936 2.14523 1.87 42.4438 4209.35 0.0780 2.12801 4.70 42.5598 2602.10 0.0624 2.12775 2.90 42.8652 3556.51 0.0936 2.10806 3.97 43.9316 4519.45 0.0780 2.05933 5.04 44.0527 3148.06 0.0624 2.05905 3.51 44.5147 3747.02 0.0780 2.03370 4.18 44.6303 2758.55 0.0624 2.03374 3.08 45.7860 2555.16 0.0780 1.98015 2.85 45.9121 1204.58 0.0624 1.97991 1.34 47.0685 3365.94 0.0780 1.92914 3.76 47.1989 2168.53 0.0624 1.92889 2.42 48.8080 7051.13 0.0936 1.86437 7.87 48.9391 4337.75 0.0624 1.86431 4.84 49.2929 2112.90 0.0780 1.84716 2.36 49.8374 1282.83 0.0936 1.82825 1.43 50.1329 9502.55 0.0624 1.81816 10.61 50.2693 4924.05 0.0624 1.81805 5.50 51.1295 390.93 0.2496 1.78504 0.44 52.5932 2247.18 0.0936 1.73875 2.51 52.7357 1261.08 0.0936 1.73870 1.41 53.3683 210.73 0.3432 1.71531 0.24 54.8679 2626.34 0.0780 1.67193 2.93 55.0154 1570.27 0.0624 1.67194 1.75 55.3276 1090.72 0.0936 1.65912 1.22 55.6832 1696.62 0.0936 1.64936 1.89 56.7838 600.77 0.1872 1.61998 0.67 57.2558 2778.84 0.0936 1.60774 3.10 57.4804 2753.68 0.1092 1.60199 3.07 58.8532 6376.24 0.0936 1.56785 7.12 59.0182 3758.21 0.0780 1.56775 4.19 59.9509 6406.84 0.0780 1.54174 7.15 60.1191 3256.24 0.0780 1.54165 3.63 60.6638 4728.70 0.0780 1.52532 5.28 60.8341 2958.82 0.0780 1.52524 3.30

Page 46: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

47

62.3363 671.69 0.2496 1.48835 0.75 63.6655 3859.45 0.0624 1.46044 4.31 63.8524 2256.91 0.0780 1.46024 2.52 64.0285 1554.01 0.0624 1.45304 1.73 64.1992 700.18 0.0936 1.45319 0.78 65.6978 445.12 0.2028 1.42010 0.50 66.8228 2562.28 0.0936 1.39890 2.86 67.0173 1490.78 0.0624 1.39878 1.66 67.7315 3702.06 0.0780 1.38232 4.13 67.9227 2056.09 0.0624 1.38232 2.29 68.1361 4379.77 0.0780 1.37510 4.89 68.3045 4387.92 0.0936 1.37212 4.90 68.4947 1565.78 0.0780 1.37217 1.75 68.9848 1567.99 0.0936 1.36024 1.75 69.8487 1028.23 0.0936 1.34551 1.15 70.2027 1243.06 0.1872 1.33959 1.39 70.7705 3896.04 0.0936 1.33023 4.35 70.9804 2286.67 0.0780 1.33011 2.55 71.7859 2164.92 0.1092 1.31389 2.42 73.4672 1296.29 0.0936 1.28792 1.45 74.3615 236.75 0.4368 1.27463 0.26 75.6467 2239.86 0.0936 1.25614 2.50 75.8925 1184.94 0.1248 1.25579 1.32 77.6442 1069.91 0.0936 1.22873 1.19 77.8715 1144.03 0.1560 1.22572 1.28 78.6742 2409.45 0.1092 1.21521 2.69 79.8673 1693.52 0.0780 1.20003 1.89 80.1069 870.74 0.1560 1.19704 0.97 81.1699 1709.81 0.0936 1.18403 1.91 81.4813 1804.93 0.1404 1.18029 2.01 81.7276 913.09 0.0936 1.18028 1.02 82.3363 1336.99 0.1248 1.17019 1.49 82.5995 1110.80 0.1248 1.16712 1.24 83.8242 1066.00 0.1092 1.15316 1.19 86.4752 197.79 0.4992 1.12448 0.22

 

Table 9. XRD data on the calcium 250 mg/L concentrate. 

Pos. [°2θ] Height [cts] FWHM Left [°2θ] d-spacing [Å] Rel. Int. [%] 12.9452 169.39 0.5117 6.83889 0.14 14.5224 17624.22 0.0768 6.09954 14.13 19.9771 7035.25 0.0768 4.44469 5.64 20.3716 7477.03 0.0895 4.35950 6.00 20.8628 25413.75 0.0768 4.25795 20.38 21.1620 28813.49 0.1023 4.19843 23.10 25.8550 8752.96 0.0640 3.44602 7.02 26.6425 124708.70 0.0780 3.34316 100.00 26.7220 55059.89 0.0312 3.34168 44.15 27.9709 10752.25 0.0780 3.18733 8.62 29.2557 2664.34 0.0780 3.05021 2.14 30.6096 37127.61 0.0780 2.91831 29.77 30.6981 19442.23 0.0468 2.91732 15.59 31.2574 4292.75 0.0936 2.85929 3.44 32.0221 33964.23 0.0780 2.79273 27.23 32.1115 17260.52 0.0468 2.79208 13.84 33.5631 5363.83 0.0780 2.66795 4.30

Page 47: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

48

35.1750 2228.95 0.0780 2.54929 1.79 35.2697 1390.81 0.0468 2.54898 1.12 36.5422 11847.80 0.0624 2.45699 9.50 36.6476 13688.79 0.0624 2.45016 10.98 36.7492 5750.39 0.0468 2.44969 4.61 38.2373 4403.75 0.0780 2.35188 3.53 38.3341 2535.46 0.0468 2.35199 2.03 39.4655 7621.03 0.0780 2.28146 6.11 39.5728 3706.60 0.0468 2.28118 2.97 40.2894 3697.16 0.0624 2.23669 2.96 40.3973 1958.25 0.0468 2.23651 1.57 40.5720 1673.38 0.0780 2.22176 1.34 40.6836 956.00 0.0468 2.22143 0.77 41.4031 319.31 0.2184 2.17906 0.26 42.0886 2011.62 0.0780 2.14514 1.61 42.4510 5856.38 0.0624 2.12767 4.70 42.5620 3094.06 0.0468 2.12765 2.48 42.8711 4515.18 0.0936 2.10779 3.62 42.9809 2726.22 0.0624 2.10788 2.19 43.9421 4305.11 0.0780 2.05886 3.45 44.0624 2838.93 0.0624 2.05862 2.28 44.5209 2822.42 0.1092 2.03343 2.26 44.6358 2124.42 0.0624 2.03350 1.70 45.7934 3573.62 0.0468 1.97984 2.87 45.9183 1661.51 0.0624 1.97966 1.33 47.0603 3342.71 0.0936 1.92946 2.68 47.2055 2004.56 0.0624 1.92864 1.61 48.8130 7037.71 0.0780 1.86419 5.64 48.9518 4153.93 0.0468 1.86385 3.33 49.3089 2246.06 0.0936 1.84660 1.80 49.4502 1448.87 0.0624 1.84623 1.16 49.8265 1386.81 0.0780 1.82862 1.11 50.1402 13053.21 0.0780 1.81792 10.47 50.2763 6466.75 0.0780 1.81782 5.19 51.0879 514.84 0.1248 1.78639 0.41 52.5948 2024.22 0.0936 1.73871 1.62 52.7488 1248.12 0.0468 1.73830 1.00 53.2306 370.89 0.3120 1.71943 0.30 54.2851 284.36 0.1404 1.68849 0.23 54.8726 3652.01 0.0780 1.67179 2.93 55.0244 1984.30 0.0780 1.67168 1.59 55.3229 1692.90 0.0780 1.65925 1.36 55.6852 1483.23 0.0780 1.64931 1.19 55.8483 863.59 0.0624 1.64896 0.69 56.7735 689.55 0.1560 1.62025 0.55 57.2852 3834.29 0.0936 1.60698 3.07 57.4663 3649.04 0.1092 1.60235 2.93 57.8149 2030.42 0.0780 1.59351 1.63 57.9963 900.65 0.1092 1.59291 0.72 58.8577 6782.04 0.0936 1.56775 5.44 59.0270 3678.50 0.0780 1.56754 2.95 59.9577 8103.70 0.0780 1.54158 6.50 60.1243 4135.09 0.0624 1.54153 3.32 60.6689 3847.99 0.0780 1.52520 3.09 60.8395 2451.93 0.0780 1.52511 1.97 62.1556 546.31 0.0936 1.49224 0.44 62.3601 807.40 0.1092 1.48784 0.65

Page 48: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

49

62.6510 577.48 0.1872 1.48163 0.46 63.5732 2780.38 0.0780 1.46234 2.23 63.6828 3526.40 0.0780 1.46009 2.83 63.8616 1922.73 0.0468 1.46005 1.54 64.0397 1878.44 0.0936 1.45281 1.51 64.2265 845.62 0.0624 1.45263 0.68 65.6640 509.43 0.1092 1.42075 0.41 66.8288 2132.46 0.0936 1.39879 1.71 67.0356 1204.84 0.0780 1.39844 0.97 67.7427 4776.68 0.0780 1.38212 3.83 67.9323 2830.87 0.0780 1.38215 2.27 68.1465 6243.51 0.0780 1.37492 5.01 68.3232 6492.47 0.0780 1.37179 5.21 68.5088 2161.12 0.0780 1.37193 1.73 68.9885 1909.84 0.0936 1.36018 1.53 69.1913 1022.81 0.0936 1.36005 0.82 69.8691 1375.66 0.0780 1.34517 1.10 70.2363 1580.40 0.0936 1.33903 1.27 70.7795 4071.55 0.0936 1.33009 3.26 70.9976 2116.94 0.0936 1.32983 1.70 71.8124 2647.19 0.1092 1.31347 2.12 72.0074 1752.10 0.0936 1.31365 1.40 72.5501 454.37 0.1716 1.30192 0.36 73.4684 1904.89 0.1092 1.28790 1.53 73.6904 1108.46 0.0624 1.28776 0.89 74.3395 343.43 0.1560 1.27495 0.28 75.6576 2916.24 0.1092 1.25598 2.34 75.8785 1558.56 0.0780 1.25599 1.25 77.6349 1389.33 0.1092 1.22886 1.11 77.9097 1384.37 0.1404 1.22521 1.11 78.7081 2551.96 0.0780 1.21477 2.05 78.9269 1646.80 0.0936 1.21496 1.32 79.8838 2291.30 0.0780 1.19982 1.84 80.1265 1226.41 0.1404 1.19680 0.98 81.1698 2091.92 0.1092 1.18403 1.68 81.4889 2352.24 0.1716 1.18020 1.89 81.7209 1062.83 0.0936 1.18036 0.85

 

Table 10. Summary of notable points from XRD data from across sample sets with known silica composition. 

 

 

100% Silica 75% Silica 50% Silica 31.25% Silica 12.5% Silica

Position Counts Position Counts Position Counts Position Counts Position Counts

20.93 17055.93 20.8464 6541.74 20.8414 3958.84 20.8461 2591.947 20.9689 9868.26

26.4874 79651.72 26.6272 29634.15 26.6232 19105.48 26.6249 12758 26.6539 6977.1

26.6877 106550.1 26.7047 13301.88 26.7016 8856.76 26.7042 5693.284 26.7244 5698.68

32 0 32.0061 1312.63 32.087 1617.47 32.0016 4219.815 31.9917 25747.81

30.47 0 30.5888 1034.58 30.5863 2798.1 30.5912 4240.805 30.4742 15717.26

30.63 0 30.5888 1034.58 30.6759 1462.08 30.6786 2180.841 30.6298 21011.02

31.9 0 32.0061 1312.63 31.998 3152.28 32.091 2176.272 31.8894 17904.13

Page 49: Optimisation of Spodumene Ore Flotation using Zeta Potentials · Spodumene Ore Flotation ... angle determination, electrokinetics and electrochemistry (in terms of rest potential,

50 Table 11. Recoveries calculated from best floats. 

 

 

 

 

 

 

Ion Conc pH Mass Under Mass OverMass Tota

Spodumene

 In (g)

Overs Grade

%

Spodumene 

Recovered (g)

Recovery

%

Ca 250 4.3 8.259 16.134 24.393 12.197 61.69 9.95 81.61%

Mg 120 9 15.810 8.736 24.546 12.273 60.37 5.27 42.97%

Fe 120 6 16.676 7.835 24.511 12.256 70.41 5.52 45.01%

Figure 36. Recovery of spodumene, quartz and albite using sodium oleate, with and without metallic ions in solution. The first and second figures being at varying pH values, the third having a varying ion concentration, the fourth having a varying collector concentration. [20]