16
©Copyright JASSS Matthew Oremland and Reinhard Laubenbacher (2014) Optimization of Agent-Based Models: Scaling Methods and Heuristic Algorithms Journal of Artificial Societies and Social Simulation 17 (2) 6 <http://jasss.soc.surrey.ac.uk/17/2/6.html> Received: 28-Jun-2013 Accepted: 08-Dec-2013 Published: 31-Mar-2014 Abstract Questions concerning how one can influence an agent-based model in order to best achieve some specific goal are optimization problems. In many models, the number of possible control inputs is too large to be enumerated by computers; hence methods must be developed in order to find solutions that do not require a search of the entire solution space. Model reduction techniques are introduced and a statistical measure for model similarity is proposed. Heuristic methods can be effective in solving multi-objective optimization problems. A framework for model reduction and heuristic optimization is applied to two representative models, indicating its applicability to a wide range of agent-based models. Results from data analysis, model reduction, and algorithm performance are assessed. Keywords: Agent-Based Modeling, Optimization, Statistical Test, Genetic Algorithms, Reduction Introduction 1.1 Agent-based models (ABMs) are often created in order to simulate real-world systems. In many cases, ABMs act as in silico laboratories wherein questions can be posed and investigated; such questions often arise naturally in the context of the system in question. For example, an ABM of a financial network might be used to determine which policies lead to maximized profit, while an ABM modeling social networks might be studied to determine the most effective means of transmitting information. Questions concerning how one can influence an ABM in order to best achieve some specific goal are optimization problems. In other contexts, optimization may refer to parameters or model design. It is important to reiterate that the meaning of the term in this study is different – it refers to the optimal choice of a sequence of external inputs to a model in order to achieve a particular goal. The stochasticity inherent in many ABMs means that care must be taken when attempting to solve optimization problems. Under fixed initial conditions, data from individual simulation replications often vary. Thus, careful analysis of ABM dynamics is a prerequisite for the development of optimization techniques. In particular, statistical methods must be brought to bear on the interpretation of simulation results. 1.2 In this study, statistical and optimization techniques are presented which can be applied directly to ABMs: translation of the model to an equation-based form is not necessary. There are several advantages to this approach – such techniques can be applied to virtually any ABM, and there is no need for transformation of either the model or the controls. Repeated simulation is used to obtain reliable results, and controls are applied directly to the ABMs. While there may be models for which this approach fails, the sufficiently broad examples provide good evidence that for large classes of ABMs, meaningful results can be obtained by direct analysis and optimization. 1.3 The goal of this paper is to introduce and illustrate a framework for solving optimization problems using agent-based models. In general, the number of possible solutions to an optimization problem is far too large for enumeration. Thus, heuristic methods must be employed to answer such questions. Computational efficiency is a key factor in this process; as such, the use of scaled approximations can be invaluable. As long as a scaled model faithfully maintains the dynamics of the original, it can be used to solve the optimization problem, resulting in a reduction of run time and computational complexity. 1.4 The paper is organized as follows: standards for data analysis are established and a statistical measure for model similarity is proposed. A heuristic technique known as Pareto optimization is proposed as a means for solving optimization problems. The framework is presented via the use of two models acting as representatives of large classes of ABMs, which ought to hold interest for researchers from a wide variety of disciplines. Brief model descriptions are outlined in the text, and detailed model descriptions following the Overview, Design Concepts, and Details (ODD) protocol for agent-based models (Grimm et al. 2006; Grimm et al. 2010) are provided in the appendices. These descriptions ought to provide enough detail that the model (and results) can be reconstructed and verified by independent research. Related work 1.5 Optimization problems of the type presented here have been studied in models of influenza and epidemics (Kasaie et al. 2010; Yang et al. 2011), cancer treatment (Lollini et al. 1998; Swierniak et al. 2009), and the human immune system (Bernaschi & Castiglione 2001; Rapin et al. 2010), to name a few. Previous studies have investigated the effect of various model features on outcomes – for example, subway travel on the spread of epidemics (Cooley et al. 2011), mobility and location in a molecular model (Klann et al. 2011), molecular components in a cancer model (Wang et al. 2011), and strategies for mitigating influenza outbreaks (Mao 2011) – while not quite posing formal optimization problems. A study on the effect of ABMs in determining malaria elimination strategies (Ferrer et al. 2010) suggests that results from agent-based models are invaluable in the analysis of interventions. 1.6 In other studies, ABMs have been transformed into systems of differential equations (Kim et al. 2008a) and polynomial dynamical systems (Hinkelmann et al. 2011; Veliz-Cuba et al. 2010), among others. The importance of spatial heterogeneity has been examined in specific (Harada et al. 1995) and more general (Happe 2005) cases, and predator-prey ABMs have been analyzed using statistical methods (Wilson et al. 1993; Wilson et al. 1995). A framework for solving optimization problems 1.7 The framework is summarized in Figure 1; subsequent sections motivate and explain the process in detail. http://jasss.soc.surrey.ac.uk/17/2/6.html 1 16/10/2015

Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

©CopyrightJASSS

MatthewOremlandandReinhardLaubenbacher(2014)

OptimizationofAgent-BasedModels:ScalingMethodsandHeuristicAlgorithms

JournalofArtificialSocietiesandSocialSimulation 17(2)6<http://jasss.soc.surrey.ac.uk/17/2/6.html>

Received:28-Jun-2013Accepted:08-Dec-2013Published:31-Mar-2014

Abstract

Questionsconcerninghowonecaninfluenceanagent-basedmodelinordertobestachievesomespecificgoalareoptimizationproblems.Inmanymodels,thenumberofpossiblecontrolinputsistoolargetobeenumeratedbycomputers;hencemethodsmustbedevelopedinordertofindsolutionsthatdonotrequireasearchoftheentiresolutionspace.Modelreductiontechniquesareintroducedandastatisticalmeasureformodelsimilarityisproposed.Heuristicmethodscanbeeffectiveinsolvingmulti-objectiveoptimizationproblems.Aframeworkformodelreductionandheuristicoptimizationisappliedtotworepresentativemodels,indicatingitsapplicabilitytoawiderangeofagent-basedmodels.Resultsfromdataanalysis,modelreduction,andalgorithmperformanceareassessed.

Keywords:Agent-BasedModeling,Optimization,StatisticalTest,GeneticAlgorithms,Reduction

Introduction

1.1 Agent-basedmodels(ABMs)areoftencreatedinordertosimulatereal-worldsystems.Inmanycases,ABMsactasinsilicolaboratorieswhereinquestionscanbeposedandinvestigated;suchquestionsoftenarisenaturallyinthecontextofthesysteminquestion.Forexample,anABMofafinancialnetworkmightbeusedtodeterminewhichpoliciesleadtomaximizedprofit,whileanABMmodelingsocialnetworksmightbestudiedtodeterminethemosteffectivemeansoftransmittinginformation.QuestionsconcerninghowonecaninfluenceanABMinordertobestachievesomespecificgoalareoptimizationproblems.Inothercontexts,optimizationmayrefertoparametersormodeldesign.Itisimportanttoreiteratethatthemeaningoftheterminthisstudyisdifferent–itreferstotheoptimalchoiceofasequenceofexternalinputstoamodelinordertoachieveaparticulargoal.ThestochasticityinherentinmanyABMsmeansthatcaremustbetakenwhenattemptingtosolveoptimizationproblems.Underfixedinitialconditions,datafromindividualsimulationreplicationsoftenvary.Thus,carefulanalysisofABMdynamicsisaprerequisiteforthedevelopmentofoptimizationtechniques.Inparticular,statisticalmethodsmustbebroughttobearontheinterpretationofsimulationresults.

1.2 Inthisstudy,statisticalandoptimizationtechniquesarepresentedwhichcanbeapplieddirectlytoABMs:translationofthemodeltoanequation-basedformisnotnecessary.Thereareseveraladvantagestothisapproach–suchtechniquescanbeappliedtovirtuallyanyABM,andthereisnoneedfortransformationofeitherthemodelorthecontrols.Repeatedsimulationisusedtoobtainreliableresults,andcontrolsareapplieddirectlytotheABMs.Whiletheremaybemodelsforwhichthisapproachfails,thesufficientlybroadexamplesprovidegoodevidencethatforlargeclassesofABMs,meaningfulresultscanbeobtainedbydirectanalysisandoptimization.

1.3 Thegoalofthispaperistointroduceandillustrateaframeworkforsolvingoptimizationproblemsusingagent-basedmodels.Ingeneral,thenumberofpossiblesolutionstoanoptimizationproblemisfartoolargeforenumeration.Thus,heuristicmethodsmustbeemployedtoanswersuchquestions.Computationalefficiencyisakeyfactorinthisprocess;assuch,theuseofscaledapproximationscanbeinvaluable.Aslongasascaledmodelfaithfullymaintainsthedynamicsoftheoriginal,itcanbeusedtosolvetheoptimizationproblem,resultinginareductionofruntimeandcomputationalcomplexity.

1.4 Thepaperisorganizedasfollows:standardsfordataanalysisareestablishedandastatisticalmeasureformodelsimilarityisproposed.AheuristictechniqueknownasParetooptimizationisproposedasameansforsolvingoptimizationproblems.TheframeworkispresentedviatheuseoftwomodelsactingasrepresentativesoflargeclassesofABMs,whichoughttoholdinterestforresearchersfromawidevarietyofdisciplines.Briefmodeldescriptionsareoutlinedinthetext,anddetailedmodeldescriptionsfollowingtheOverview,DesignConcepts,andDetails(ODD)protocolforagent-basedmodels(Grimmetal.2006;Grimmetal.2010)areprovidedintheappendices.Thesedescriptionsoughttoprovideenoughdetailthatthemodel(andresults)canbereconstructedandverifiedbyindependentresearch.

Relatedwork

1.5 Optimizationproblemsofthetypepresentedherehavebeenstudiedinmodelsofinfluenzaandepidemics(Kasaieetal.2010;Yangetal.2011),cancertreatment(Lollinietal.1998;Swierniaketal.2009),andthehumanimmunesystem(Bernaschi&Castiglione2001;Rapinetal.2010),tonameafew.Previousstudieshaveinvestigatedtheeffectofvariousmodelfeaturesonoutcomes–forexample,subwaytravelonthespreadofepidemics(Cooleyetal.2011),mobilityandlocationinamolecularmodel(Klannetal.2011),molecularcomponentsinacancermodel(Wangetal.2011),andstrategiesformitigatinginfluenzaoutbreaks(Mao2011)–whilenotquiteposingformaloptimizationproblems.AstudyontheeffectofABMsindeterminingmalariaeliminationstrategies(Ferreretal.2010)suggeststhatresultsfromagent-basedmodelsareinvaluableintheanalysisofinterventions.

1.6 Inotherstudies,ABMshavebeentransformedintosystemsofdifferentialequations(Kimetal.2008a)andpolynomialdynamicalsystems(Hinkelmannetal.2011;Veliz-Cubaetal.2010),amongothers.Theimportanceofspatialheterogeneityhasbeenexaminedinspecific(Haradaetal.1995)andmoregeneral(Happe2005)cases,andpredator-preyABMshavebeenanalyzedusingstatisticalmethods(Wilsonetal.1993;Wilsonetal.1995).

Aframeworkforsolvingoptimizationproblems

1.7 TheframeworkissummarizedinFigure1;subsequentsectionsmotivateandexplaintheprocessindetail.

http://jasss.soc.surrey.ac.uk/17/2/6.html 1 16/10/2015

Page 2: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Figure1.Anoverviewoftheframeworkpresentedinthiswork.Thethreeshadingsrepresentthephasesofanalysis,scaling,andoptimization.

DataReliability

1.8 Akeyfactorinanalysisofagent-basedmodelsisstochasticity.Theapproachsuggestedhereistoexaminehowdataaverageschangeasthenumberofsimulations(runs)increases.Inmanycases,thedatawillsettleinonsomeaveragethatisnotimproveduponbyincreasingthenumberofruns.Determiningasufficientnumberofrunsisthefirststepinobtainingreliableresults.Theemphasisonsolvingoptimizationproblemsnecessitatesthisprocess:whilesomeofthestochasticityinherenttoanindividualrunislostwhenaveragingoverrepeatedruns,itisnecessaryinordertodeterminethegeneralefficacyofonecontrolversusanother.

1.9 Agent-basedmodelsareoftenimplementedonagrid,representingthe'space'ofthemodel(oftentimes,thegridindeedrepresentssomephysicalspace).Treatingtheoriginalsizeandscopeofthemodelastrue,thegoalofscalingistodeterminetheextenttowhichamodelcanbereducedwithoutalteringpertinentdynamics.Themodelsexaminedherecontainphysicalagentstraversingphysicallandscapes.Inthissetting,thestrategyistograduallyscaledownthemodeluntilthedynamicsnolongerfaithfullyrepresenttheoriginalmodel.Whenapplicable,thisstrategyresultsinreducedruntime–inmanycasessubstantiallyso–reducingthecomputationalrequirementsforthesolvingofoptimizationproblemsandallowingaccesstoawiderrangeofanalyticaltools.

1.10 Determiningtowhatdegreeareducedmodelisafaithfulrepresentationoftheoriginalisanimportantquestion.Intermsofoptimization,itisnecessarytodeterminetheextenttowhichmodelscanbereducedforthepurposeofoptimalcontrol.Inordertoaccomplishthis,asampleofthecontrolspaceisimplementedinboththeoriginalmodelandreducedversions.Foreachreducedversion,thecontrolsarerankedaccordingtotheireffectivenessinregardstotheoptimizationorcontrolobjective.Theaimistouseareducedmodelasaproxyfortheoriginal;thus,therankingofthecontrolsonthereducedmodelmustbecomparedtotherankingofthesamecontrolsappliedtotheoriginal.

1.11 WeproposeCohen'sweightedκ(Cohen1968)asameasureofconcordanceofrankingsfordifferentmodelsizes.Letpobsbetheobservedproportionofagreementinthetwolistsandletpexpbetheproportionofagreementexpectedbyrandomchance.Thenκ=(pobs−pexp)/(1−pexp).Henceifthelistsareinperfectagreement,κ=1;ifthelistsarenomoresimilarthanwhatisexpectedpurelybychance,κ=0.Thissimilaritymetricforrankedlistsdeterminespenaltiesbasedonthemagnitudeofdisagreement.Fordetailsofhowtocalculatepobs,pexp,andweightedpenalties,seeCohen(1968).

1.12 Forexamplesoftheuseofthisstatisticasameasureofagreement,seeFleiss(1971)andEugenio(2000).Cohen'sweightedκischosenbecauseofitswidedocumentationandimplementationinavarietyofstudies;assuch,thereisprecedentforthismeasure.Thereisnoobjectivewaytodetermineabenchmarkvalueforκ.Severalstudiesproposeaκvaluegreaterthan0.75asbeingverygood(Altman1991;Fleiss1981),whileothersrecommendavalueof0.8orhigher(Landis&Koch1977;Krippendorff1980).Inthisstudynobenchmarkisset;rather,κvaluesareassessedaposteriori.Formoredetailsonsettingabenchmarkforκ,seeSimandWright(2005),andElEmam(1999).

1.13 ItisofcoursenotguaranteedthatallABMswillbeamenabletothestrategiespresentedhere(fordiscussiononthisissueseeDurrettandLevin(1994)).Infact,modelsmayexistforwhichnoreductionispossible–nevertheless,reductionstrategiesarefrequentlyusefulandinvariablyinformative.Inparticular,theinvestigationofdifferencesinqualitativebehaviorcanbeservedbythese(andother)methodsofmodelreduction.ForexamplesofmodelreductionstrategiesappliedtoABMs,seeZouetal.(2012),Roosetal.(1991),andYesilyurtandPatera(1995).Itisalsoworthnotingthat'modelreduction'isaphrasewhosemeaningmaybediscipline-dependent:theextenttowhichamodelcanbereducedisdependentonwhichmeaningistakenandwhichmodeldetailsonewishestopreserve.

ParetoOptimization

2.1 Onceasuitablereductionhasbeenmade,anoptimizationproblemcanbesolvedusingthereducedmodelasasurrogatefortheoriginal.PerhapsthemostexploredmethodforoptimalcontrolofABMshascomeintheformofheuristicalgorithms.Giventhatenumerationofthesolutionspaceisofteninfeasible,heuristicalgorithmsareusedtoconductaguidedsearchofthesolutionspaceinordertodeterminelocallyoptimalcontrols.

2.2 SeveralheuristicalgorithmshavebeenutilizedinsolvingoptimizationproblemsforABMs.Examplesincludesimulatedannealing(Pennisietal.2008),tabusearch(Wang&Zhang2009),andsqueakywheeloptimization(Lietal.2011).Inthisstudy,attentionisfocusedonacertaintypeofgeneticalgorithm(GA).Thesealgorithms,firstbroughttogeneralattentionin1989(Goldberg1989),aredesignedtomimicevolution:solutionsthataremorefitareusedto'breed'newsolutions.GAshavebeenusedinconjunctionwithABMstofindoptimalvaccinationschedulesforinfluenza(Pateletal.2005),cancer(Lollinietal.2006),andindeterminingoptimalanti-retroviralschedulesforHIVtreatment(Castiglioneetal.2007).Vaccinationscheduleoptimizationresultsobtainedfromsimulatedannealingandgeneticalgorithmshaveevenbeencomparedandcontrasted(Pappalardoetal.2010).AstheprimaryfocusofthispaperistointroduceageneralframeworkforsolvingoptimizationproblemsforABMs,acomparisonofvariousheuristicmethodsisoutsidethescopeofthisstudy.ForamorecomprehensivelookatheuristiccontrolofABMs,seeOremland(2011).

2.3 Thecontrolproblemsdescribedherehavemultipleobjectives–thisnecessitatesassigningweightstoeachobjective.Determinationofweightsinmulti-objectiveoptimizationproblemscanbeproblematicbecauseapriori,theappropriateweightsmaybeunknown–inparticular,theassignmentisatthediscretionoftheinvestigator.Whiletherehavebeenvariousproposalsfortheseassignments(foranexample,seeGennertandYuille(1988)),anymethodwhichdoesnotrequireweightshasparticularappeal.

2.4 Paretooptimizationisjustsuchaheuristicmethod:insteadofafocusingonasinglesolution,thealgorithmreturnsasuiteofsolutions.SolutionsontheParetofrontierrepresentthosethatcannotbeimproveduponintermsofoneobjectivewithoutsomesacrificeinanother.Inthissense,eachsolutionontheParetofrontierisoptimalwithrespecttosomechoiceofweights.Thus,the'managerial'decisionofhowtoassignweightscanbesettledafterthesearchhasconcluded.

2.5 Anextensivelistofreferencesonmulti-objectiveoptimizationtechniquescanbefoundinCoello(2013).ParetooptimizationhasbeenselectedforthisstudyasitisnovelinitsapplicationtoABMs.ThealgorithmadoptedhereisaminorvariantofthatdescribedinHornetal.(1994):itisaheuristicalgorithmthatsearchesthecontrolspaceinanattempttofindtheParetofrontier.PseudocodeforthealgorithmispresentedinAlgorithm1.

http://jasss.soc.surrey.ac.uk/17/2/6.html 2 16/10/2015

Page 3: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Algorithm1.PseudocodefortheParetooptimizationalgorithm.

Software

3.1 Theproposedframeworkrequirestwotypesofsoftware:modeling,andstatisticalanalysis.Agent-basedmodelscanbeimplementedinavarietyofsoftwarepackages.Someofthese,suchasNetLogo(Wilensky2009),Repast(Northetal.2006),andMASON(Lukeetal.2005)havebeendesignedforgeneralagent-basedmodeling.Othersoftwarehasbeendevelopedforagent-basedmodelinginspecificfields–theseincludeC-ImmSim,VaccImm,andSIMMUNEforthehumanimmunesystem(Castiglione1995;Woelkeetal.2011;Meier-Schellersheim&Mack1999),FluTEforinfluenzaepidemiology(Chaoetal.2010),andSnAPforpublichealthstudies(Buckeridgeetal.2011).Whileonecanalwaysimplementone'sowntoolkitforexaminingagent-basedmodels,theuseofestablishedsoftwarecanreduceboththevariabilitybetweenresearchers'implementationsandthelearningcurveforconductingresearchinthisfield.NetLogowaschosenasthemodelingplatforminthisstudy,thoughthereisnoreasonwhythestudycouldnothavebeenundertakenusinganumberofdifferentsoftwarepackages.AstandardNetLogoinstallationcontainsanextensivelibraryofmodelsfromavarietyoffields;themodelsdiscussedhereareadaptationsofpopularmodelsfromthisbuilt-inlibrary.Statisticalanalysiscanbeperformedbyvirtuallyanystatisticalsoftwarepackage;inthisstudy,MicrosoftExcelwasused.DuetothefactthatsimulationdatawasneededinordertoperformParetooptimization,thisprocesswasimplementedinNetLogoaswell.Ingeneral,thetechniquesdescribedherearesufficientlystraightforwardthathighlyspecializedsoftwareisnotneeded,andtheframeworkisnotlimitedtoanyparticularsoftwarechoice.

TwoModels

RabbitsandGrass

4.1 ThefirstmodeltobeexaminedisbasedonasamplemodelfromtheNetLogolibrary(Wilensky2009)involvingrabbitsinafield.Ateachtimestep,eachrabbitmoves,eatsgrass(ifthereisgrassatitslocation),andthenpossiblyreproducesordies,basedonitsenergylevel.Thereareseveralcompellingreasonsfortheuseofthismodelasatestcasefortheproposedframework.Oneisthatthemodelissufficientlysimpletodescribe,soresultscanbeobtained,interpreted,andunderstoodwithminimaloverhead.Amoreimportantreasonisthatthismodelrepresentsthecategoryofgeneralpredator-preysystems(withgrassfunctioningasprey).Suchmodelsarecommonlyusedinecologyandhavebeenwidelystudied.Thus,theframeworkcanbepresentedthroughanexamplethatappealstoabroadcommunityofresearchers.Indeed,thismodelillustratesmanyconceptscommoninABMscontaininginteractingspecies.AdetaileddescriptionofthemodelandalistofparametervaluesareprovidedinAppendixA.

4.2 Controlconsistsofdeciding(eachday)whetherornottoapplypoisontothegrid(i.e.,uniformlytoallgridcells).Specifically,thecontrolobjectiveistodetermineapoisonscheduleuthatminimizesthenumberofrabbitsalivethroughoutthecourseofasimulationwhilealsominimizingthenumberofdaysonwhichpoisonisused.Notethatitisunlikelythatonecontrolschedulewillminimizebothobjectivessimultaneously:forexample,thecontrolwhereinnopoisonisusedcertainlyminimizesthesecondobjective,butnotthefirst.Thus,thisproblemisagoodcandidateforParetooptimization:asuiteofsolutionscanbefound,eachmemberofwhichisoptimaldependingontheweightsassignedtothetwoobjectives.

Scalingresults

4.3 Oneofthecontrolobjectivesconcernstheaveragenumberofrabbitsaliveoverthecourseofasimulation;thus,thisisthepertinentmetricintermsofmodelreduction(giventhattheothercontrolobjective–minimizingdaysonwhichcontrolisused–isentirelypreservedatanymodelsizeandforanynumberofruns).

4.4 AsnotedinDataReliability,thefirstconsiderationwhenattemptingtoscalethemodelisdeterminingthenumberofrunsnecessaryinordertoachievereliableresults.Tothisend,severalcontrolscheduleswereselectedatrandom.Eachwasappliedtotheoriginal50×50model,andresultsweretalliedupto100runs.PopulationdynamicsforthreerandomlyselectedcontrolschedulesarepresentedinFigure2:plotsshowhowtheaveragenumberofrabbitsaliveoverthecourseoftheschedulechangeasthenumberofrunsincreases,witherrorbarsrepresentingonestandarddeviation.

http://jasss.soc.surrey.ac.uk/17/2/6.html 3 16/10/2015

Page 4: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

(a)10controldays

(b)30controldays

http://jasss.soc.surrey.ac.uk/17/2/6.html 4 16/10/2015

Page 5: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

(c)50controldaysFigure2.Averagepopulationvaluessettleintoconsistentvaluesaround50runs.

4.5 Thesethreeschedulesrepresentthreedistinctregionsofthecontrolspace,inthateachcontainsadifferentnumberofcontroldays.Notethatinallcases,thereislittlechangeinthemeanorthestandarddeviationbeyond50runs–thissuggeststhatthereisnoadvantageinaveragingovermorethan50runs.Itisimportanttonotethatifthecontrolobjectiveswerealtered(forexample,ifgrasslevelswereofinterestratherthanrabbitlevels)thenthisconclusionmaynothold.Inparticular,thenecessarynumberofrunsdependsuponthemodeldynamicsofinterest–inthiscase,theaveragenumberofrabbits.

4.6 Onceabenchmarkforreliableresultshasbeenestablished,variousmodelreductionscanbeinvestigatedwithrespecttocontrol.Intheoriginalmodel,thereare50×50=2500patchesand

150rabbitsinitially.AmodelsizeofMmeansthattheworldwidthandheightarebothM.Hence,whenreducingthemodeltosizeM,theinitialnumberofrabbitsoughttobe150(M2/2500)inordertomaintainthesameproportionofrabbitstomodelsize.Allotherstatevariablevaluesremainthesame.

4.7 Foreachofasetofcontrolsappliedtotheoriginalmodel,averagerabbitnumbersareobtainedviasimulation;thecontrolscanthenberankedbythesenumbers.Thesesamecontrolscanbeappliedtoareducedmodel,resultingina(potentially)differentrankedlist.Theκstatistic(seeDataReliability)measuresthesimilaritybetweenthetworankings,therebyservingasameasureoftheextenttowhichthereducedmodelservesasasubstitutefortheoriginal.Itisimportantthattheserankingsaremaintainedoverawiderangeofcontrolschedules,sincesolvingtheoptimalcontrolproblemwillinvolvethepotentialexaminationoftheentiresolutionspace.

4.8 Generatingasetofcontrolsrandomlyresultsinanormaldistributioncenteredonsolutionswithfiftyzerosandfiftyones(onesindicatingtimestepsonwhichpoisonisused).Toavoidfocusingontoonarrowaportionofthecontrolspace,astratifiedrandomsamplewastaken:24valuesN1,…,N24werechosenasfrequencynumbers,representingthenumberofonesintheschedule.Thesevalueswerechosenatrandomwithinthefollowingscheme:threevalueswerechosenbetween1and10,threebetween10and20,andsoon,withthefinalthreechosenbetween70and80.Fourcontrolscheduleswerethenrandomlygenerated,eachcontainingNtonesand(100−Nt)zeros(distributedrandomlythroughouttheschedule),fort∈{1,…,24}.Thus,foreachtrial,atotalof96scheduleswereevaluated,chosenasrepresentativesofthesolutionspace.Notethatscheduleswithmorethan80non-zeroentrieswerenotconsidered,aspreliminaryinvestigationshowedthatsuchscheduleswerequicklyeliminatedfromanyheuristicoptimalcontrolsearch.

4.9 Onetrialisdefinedasfollows:96controlschedules(chosenaccordingtotheabovedescription)wererunusingtheoriginalM=50model,andthenagainonthemodelateachofthefollowingmodelsizes:50,40,30,20,10,5,and3.NotethattheschedulesareruntwiceontheoriginalM=50model:thisisdoneinordertoestablishhowconsistenttherankingsarewhenevaluatedtwiceonthesame-sizedmodel.Insomesense,thisservesasvalidationofthechoiceof50simulationsasbeingsufficientforreliableresults,andalsoprovidesinsightintotheanalysisofanappropriatebenchmarkforκ,aswillbeseenbelow.

4.10 Evaluationof150schedules(eachaveragedover50simulations)atmodelsizeM=50requiresapproximately3seconds.Table1givesthenumberofsimulationsthatcanberunforthereducedmodelsinapproximately3seconds.Giventhattheprimaryadvantageforscalingmodelsistoreduceruntime,itismoreappropriatetocomparedatabasedonequivalentruntimeratherthanusingafixednumberofsimulationsforeachsize.Thisdataaidsinscalinganalysis:ifonewishestoreducetheruntimeby50%,thenumberofrunsthatcanbeperformediseasilycalculated.

Table1:Numberofsimulationsinequivalentruntime.

Worldsize Simulations Avg.runtime(sec.)50 50 3.0440 75 3.0030 135 3.0520 290 3.0310 1100 3.035 3500 3.013 5700 3.03

4.11 Figure3summarizesκvaluesforvariousworldsizesandruntimes.Eachdatapointrepresentsthemeantakenovertentrials,witherrorbarsrepresentingonestandarddeviation.Abenchmarkvalueofκ=0.8isplottedaswell–itispresentedtoserveasapreliminarygaugeofhowwellthereducedmodelscapturethedynamicsoftheoriginal.Eachlineonthegraphconnectsdatapointsofequivalentruntime.Figure3helpsidentifyunviablereductions:acceptingabenchmarkofκ=0.8,worldsizesbelow20arenotsufficientlyaccuraterepresentativesoftheoriginalmodel(andthesize20modelisonlysufficientat100%runtime).Thedataalsoshowthatifoneinsistsonusingthesize3model,thebenchmarkforκwillhavetobelowered.Itfurthershowsthatifonewishestousethesize3modelandinsistsonaκvaluehigherthan0.8,itwillcertainlyrequireanincreaseintheruntimeofthemodel(andeventhen,maynotbepossible).

4.12 Severalimportantconclusionscanbedrawnfromthisdata:oneisthatifthepriorityisachievingthehighestpossiblevalueforκ,thentheoriginalsize50modelisalwaysthebestchoiceforanyfixedruntime.Thisisperhapsunsurprising,asonecanonlyexpecttolosesomeaccuracyasmodelsizedecreases.

http://jasss.soc.surrey.ac.uk/17/2/6.html 5 16/10/2015

Page 6: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Figure3.Cohen'sweightedkforvariousworldsizesandruntimes.

4.13 Anotherimportantconclusionisthatiftheonlypriorityisdecreasedruntime,itisalwaysbettertousefewerrunsofthesize50modelratherthanmorerunsofasmallermodel.Thisfollowsbecauseeachlinerepresentsafixedruntime,andforanyfixedruntime,thesize50modelresultsinthehighestvalueforκ.Afixedbenchmarkforκfurtherinformsaresearcherwithapriorityofreducedruntime:asthedatashow,ifonewishestokeepκabove0.8,thenitispossibletoreducetheruntimeby90%,butnotfurther(asindicatedbythedataforthesize50modelat0.3seconds).Thus,notonlycanonedeterminewhichworldsizeshouldbeusedinordertoobtainminimumruntime,butalsotheminimumruntimethatcanbeachievedinordertomaintainapre-setbenchmarkforκ.

4.14 Theremaybecaseswhereareducedmodelisofparticularinterest–forexample,Hinkelmannetal.(2011)describesmethodsfortranslatingABMsintopolynomialdynamicalsystems,offeringadvantagessuchassteadystateandbifurcationanalysis.Thenumberofrequiredequationsmaybetoolargeforthesize50model,butnotsoforthesize10model.Asimilarconcernappliestodifferentialequationsapproximations.ExamplesoftheseconsiderationsarediscussedinKimetal.(2008a)andKimetal.(2008b).Hence,dependingonthepriorityofthemodeler,thedatahereshowwhichworldsizesmaybeusedandwhatκvaluescanbeexpectedwhendoingso.Furthermore,notethatforsmallerworldsizestherangeofκvaluesisdecreased.Inparticular,inordertoachieve1%runtimeonthe50×50model,κdecreasesfrom0.90to0.68.However,inordertoachievea1%runtimeonthe3×3model,κdecreasesfrom0.38to0.33.Thus,forsmallermodelsκmaybelessaffectedbyadecreaseinruntime.

4.15 Inadditiontotheaboveconclusions,thedatainformsthestudyofpointsatwhichthedynamicsofthemodelundergoaqualitativechange.Thereisalargerchangeinreducingfromworldsize10to5thanthereisingoingfromsize20to10;thisindicatesthedynamicsaremorerapidlychangingbetweenworldsizes10and5.Inparticular,thedataseemtosuggestthatthepertinentdynamicsarenotdrasticallyalteredbetweentheoriginalsize50modelandthesize20model,butchangeratherquicklyatsmallersizes.Thisisofparticularinterestinlightofthefactthattheoriginalworldsizewaschosenmoreorlessarbitrarily.Ifonebeganwithasize10model,itmaynotbepossibletoreduceittothesameextentthatonecanreduceasize50model.

4.16 AsmentionedinDataReliability,severalstudiessuggestaκvalueof0.8asabenchmarkforsufficientsimilarity.Whilelargelycitedandused,theapplicabilityofthisvalueoughttobeexaminedinlightoftheresultsobtainedbyheuristicalgorithms.Inparticular,foreachmodelsizeanappropriateκvaluecanbedeterminedaposterioribasedonsaidresults.Thegoalofthismodelreductionanalysisisnottoprescribewhichmodelsizeone'should'use;rather,giventhattheprocessdependsonthepriorityofthemodeler,thegoalistopresentκvaluesandruntimesonecanexpectwhenusingaparticularreducedmodel.

ResultsfromParetoOptimization

4.17 AsdiscussedinParetooptimization,thegoalofaParetooptimizationalgorithmistoreturnasuiteofsolutions,eachofwhichisoptimalforaparticularchoiceofobjectiveweights.Forthismodel,theobjectivesaretominimizethenumberofdaysonwhichcontrolisusedandtominimizethenumberofrabbitsaliveduringthecourseofasimulation.Recallthatacontrolisavectoroflength100withentriesin{0,1}.Figure4showsanexampleoftheParetofrontier.Eachdotcorrespondstoonecontrol,plottedaccordingtothevaluesontheaxes.The×'smakeuptheParetofrontierofthisdataset:foreverypointonthisfrontier,oneoftheobjectivescannotbeimproveduponwithoutsomesacrificeintheother.Ontheotherhand,foreachpointnotonthefrontier,thereexistssomepointinthesetthatimprovesuponbothobjectives:inparticular,foreverysquare(i.e.,non-Paretofrontier)datapoint,thereexistsatleastoneotherpointwithfewercontroldaysandaloweraveragenumberofrabbits.ThegoaloftheheuristicParetooptimizationalgorithmistodetermine,asnearaspossible,thetrueParetofrontierofthecontrolspace.Thus,remainingfiguresconsistofParetofrontiersonlyandnottheentiredatasets.InordertoinvestigateavarietyofκvaluesasdeterminedinScalingresults,severalrepresentativemodelsizesandruntimeswerechosen.ForeachrepresentativemodeltheParetooptimizationalgorithmwasrunandaParetofrontierobtained.IfareducedmodelisasuitablesubstitutefortheoriginalthentheParetofrontierforthereducedmodeloughttobethesameastheParetofrontieroftheoriginalmodel.Foreachreducedmodel,thecontrolsmakingupthefrontierareimplementedintheoriginalmodelinordertodetermineiftheyareactuallyParetooptimal(asthereducedmodelresultshassuggested).NotethatParetooptimizationhasbeenperformedontheoriginalmodelaswellinordertoserveasabasisforcomparison.

4.18 Figure5summarizesresultsforrepresentativemodelswithlowerκvalues.Eachshapecorrespondstoonerepresentativemodel,withresultscomingfromtheimplementationofthesecontrolsintheoriginalmodel.Theseresultssuggestthatmodelswithκvaluesbelow0.5arenotverygoodsurrogatesfortheoriginalmodel.Inparticular,therearefewerdatapoints,andtheytendtoclusternearcertainregionsofthefrontier.Inshort,veryfewofthecontrolsdeterminedtobeParetooptimalbytheserepresentativemodelsareinfactParetooptimalintheoriginalmodel.Figure6showssimilarresultsformodelswithhigherκ

Figure4.AnexampleParetofrontierfortheRabbitsandGrassmodel.Frontierpointsaremarkedwithanxandnon-frontierpointswithasquare.

values.Therepresentativemodelwithaκscoreof0.89producesaParetofrontierveryneartothefrontieroftheoriginalmodel,suggestingthataκvalueof0.89issufficientlyhigh–hence,areducedmodelwithaκvalueof0.89canlikelybeusedasasurrogatefortheoriginalmodel.Thedataforthemodelwithaκvalueof0.76isalsoneartotheParetofrontieroftheoriginalmodel,thoughnottothesameextent.Forthemodelwithκ=0.65,therearefewerdatapoints,andtheseareabitfurtherfromthetruefrontier.

http://jasss.soc.surrey.ac.uk/17/2/6.html 6 16/10/2015

Page 7: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Figure5.Paretofrontiersformodelswithlowerkvalues.

4.19 Finally,Figure7suggeststhatthereisamildlylinearrelationshipbetweentheκvalueofareducedmodelandthenumberofpointsontheParetofrontier.ThesamesettingswereusedforeachParetooptimizationalgorithm;yet,ingeneral,thisdatashowsthatmodelswithlowerκvaluestendtoproducesmallerParetofrontiers(evenwithinthereducedmodelitself).Onepossibleexplanationforthisisthatforareducedmodel,thereisanarrowerrangeinthepossibledynamicsofamodel,andthusthetrueParetofrontierforareducedmodelmayindeedbesmaller.Thus,again,κvaluesindicatetheextenttowhich

Figure6.Paretofrontiersformodelswithhigherkvalues.

modeldynamicsarepreserved.Aqualitativeexaminationofthedatapresentedheresuggeststhataκbenchmarkintheregionof0.75–0.80isinfactagoodbenchmarkforthisexample.Onceagain,thefinaldecisionrestswiththeresearcherandisultimatelydeterminedbythelevelofdesiredaccuracy.

http://jasss.soc.surrey.ac.uk/17/2/6.html 7 16/10/2015

Page 8: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

>

Figure7.Plotofkvaluevs.sizeoffrontier,withlineofbestfit(Pearson'sr2=0.66).

SugarScapeModel

4.20 ThesecondmodelisamodifiedversionofSugarScape(Epstein1996),inwhichapopulationofagentstraversealandscapeinsearchofsugar.Thismodelwaschosenforseveralreasons:first,itisspatiallyheterogeneous.ThisisacommonfeatureofmanyABMsandthusitisimportanttodemonstratehowtheframeworkpresentedherecanbeappliedtomodelswhereinspaceisanissue.Second,themodelhasbeenexaminedbyresearchersinavarietyoffields–studiesbasedonSugarScapehavefocusedonmigrationandculture(Deanetal.2000),distributionofwealth(Rahmanetal.2007),andtrade(Dascluetal.1998).Assuch,itisofbroadgeneralinterestasatestcase.Thus,futureworkmaybuildontheframeworkpresentedhereasameansofconductingresearchinareasasdiverseassocialscience,biology,andeconomics.

4.21 ThebasisofthemodelusedhereisincludedwiththestandardNetLogodistribution(Wilensky2009).Thelandscapeconsistsoffixedregionscontainingdifferentamountsofsugar;assuch,thismodelcontainsaspatialheterogeneitynotpresentintherabbitsandgrassmodel.TheoriginallandscapeispresentedinFigure8;darkerregionsrepresentareaswithmoresugar.Periodically,antsaretaxedbasedontheirvision,metabolism,andlocation(e.g.,high-visionantsinsugar-richregionsmaybetaxedathigherratesthanlow-visionantsinregionswithlesssugar).Theoptimizationproblemistodeterminethetaxschedulethatmaximizesthetotaltaxincomecollectedwhileminimizingthenumberofdeaths.Fullmodeldetails,includingthosepertainingtotaxation,areprovidedinAppendixB.Notethatcertainparametervaluesarealteredwhenconsideringreducedmodels;parametervaluesinAppendixBrefertothe50×50model.

Figure8.Landscapeofthe50x50SugarScapemodel.Darkerregionscontainmoresugar.Eachregionislabeledwithanumber;Table8providesmaximumsugarlevelsbyregion.

ScalingResults

4.22 Atotalof100controlsweregenerated,consistingofthreedifferentaveragetaxrates.Thenumberofdeathsandtaxincomeforeachwascollectedoveratotalof100runs.RepresentativedataispresentedinFigure9,witherrorbarsrepresentingonestandarddeviation.Asseeninthefigure,thereisverylittlechangeinthemeanandstandarddeviationofthedatabeyond50runs;hence,thereisnobenefittoaveragingovermorethan50simulations.

4.23 GiventheimportanceofthespatiallayoutoftheSugarScapemodel,itisnecessarytopreservethislayoutasnearlyaspossibleinanyreducedversion.Landscapereductionwasdeterminedbythenearest-neighboralgorithm,ameansofre-samplingtheoriginallandscapeinordertodeterminethelayoutofareducedversion.

4.24 Inadditiontoscalingthemap,thenumberofagentswasalsoscaled.Whilelowvisionisdefinedtobe1atanymodelsize,highvisiondependsonthesizeofthegrid:anagentwithvisionvona50×50gridhasvisionvn=v(n/50)onann×ngrid.Forgridsizes10and5,thiswouldresultinhighvisionbeingequivalenttolow;thusinthesetwocaseshighvisionwasdefinedtobe2.Themetabolismofeachagentisnotscaled:ateachmodelsize,itwasrandomlysetbetween1and4(inclusive).

4.25 Torunthesimulation50timesatmodelsizeM=50(meaninga50×50grid)takesapproximately8.5seconds.Table2showsthenumberofsimulationsthatcanberuninequivalentruntimeforreducedmodelsizes.

(a)Avg.taxrateof0.125

http://jasss.soc.surrey.ac.uk/17/2/6.html 8 16/10/2015

Page 9: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

(b)Avg.taxrateof0.25

(c)Avg.taxrateof0.375Figure9.Averagevaluesfordeaths(solid)andtaxincome(dashed)againsettleintoconsistentvaluesby50runs.Taxincomevalueshavebeenscaledlinearlytofitonthe

plots.

4.26 Figure10showsκvaluesforvariousmodelreductions.Sincetherearetwovariablesinthiscase(deathsandtaxincome),controlscanberankedaccordingtoeither,resultingintwodifferentκvalues.Notethatwhenrankedaccordingtothenumberofdeaths,κvaluesareextremelylow–infact,closetobeingcompletelyrandom.Whiletherankingsaccordingtotaxincomeresultinhigherκvalues,theystillfallshortoftheproposedminimumbenchmarkof0.8.

Table2:Numberofsimulationsinequivalentruntime.

Worldsize Simulations Avg.runtime(sec.)50 50 8.5140 88 8.4830 173 8.4920 427 8.5210 1375 8.535 3900 8.48

http://jasss.soc.surrey.ac.uk/17/2/6.html 9 16/10/2015

Page 10: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Figure10.Cohen'sweightedkwithcontrolsrankedbydeaths(left)andbytaxincome(right).

4.27 Aninterestingfeatureofthisdataisthatthereappearstobenogreatdifferenceintheκvaluesobtainedfrommodelsrunat2%oftheoriginalruntimeversusthoseobtainedfrom100%runtime.Thismayindicatethatthenumberofrunsusedforreliabledatawasoriginallysettoohigh,oritmayindicatethatκvaluesatorbelow0.45areequallyunreliable.Nevertheless,thereisacleartrendshowingthatasthemodelsizedecreasestheκvaluesdecreaseaswell.Asinthepreviousexample,thismaybeanindicationofqualitativechangesinmodeldynamicsasthemodelsizeisreduced.

ResultsfromParetoOptimization

4.28 Althoughκvaluesappearlowerinthiscase,itisnecessarytoagainexaminetheperformanceofreducedmodelswithrespecttocontrol.Whilethesuggestedbenchmarkof0.75–0.8provedfittingforthepreviousmodel,itmaybethatalowerκbenchmarkisacceptableinthiscase.ResultsarepresentedinFigure11.

http://jasss.soc.surrey.ac.uk/17/2/6.html 10 16/10/2015

Page 11: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Figure11.ParetooptimizationresultsforSugarScape.4.29 Paretofrontiersfromthreemodelsarepresentedhere:thosewithκvaluesof0.43,0.27,and0.15(withrespecttotaxincome).Theshapesofthedatafromthethreemodelsfollowthesame

basicshapeofthetrueParetofrontier(labeled'Master'inthefigure),butthereisadistinctdifferenceinperformance.Inparticular,noneofthecontrolsfoundbyanyofthesemodelsareontheParetofrontieroftheoriginal.Furthermore,theredoesnotappeartobeanysignificantdifferencebetweensolutionsfoundusingthemodelwithκ=0.43andthosefoundusingthemodelwithκ=0.15.Thisindicatesthatnotonlyarenoneofthesemodelsappropriateasreplacementsfortheoriginal,butthattheremayinfactbeaminimumκvalue,belowwhichallmodelsareunsuitable.Inotherwords,thedownwardtrendindicatedinFigure10maybemisleading:whileitseemstosuggestthatasmodelsizedecreases,themodelsbecomelessrepresentativeofthedynamicsoftheoriginal,theresultsinFigure11suggestthatthisisn'tactuallythecase.Onthecontrary,modelswithaκvalueof0.15maybenoworsethanthosewithκvaluesof0.43.Giventhatnomodelsattainedaκvaluehigherthan0.45,itisimpossibletojudgethebenchmarkof0.75asappropriatelyhigh.Ontheotherhand,itispossibletoconcludethatκvaluesatorbelow0.45arecertainlytoolow.

Conclusions

5.1 Thegoalofthispaperistointroduceaframeworkforoptimizationofagent-basedmodels.Oncereliabledataisobtained,reducedmodelscanbecomparedtotheoriginal.SimilaritycanbemeasuredusingCohen'sweightedκ.Paretooptimizationwasimplementedinordertosolvecontrolproblemsinbothcases,allowingforaposteriorianalysisoftheκbenchmark.Resultspresentedhereshowthatinoneexample,theestablishedbenchmarkintherangeof0.75–0.8wasindeedsufficientformodelreduction,whilethesecondexampleshowedthatvaluesbelow0.45weretoolow.Theseresultssuggestκcanbeameaningfulmeasureformodelreduction.

5.2 Themodelspresentedherewereselectedfortheiruniversalityandpopularity–assuch,theyactasstandardmodelstowhichanyattemptatanalysisshouldbeapplied.InprinciplethereisnoreasonwhythemethodologywouldnotapplytoextensionsofthesemodelsortootherABMs.Inthefuturethiscollectionofmodelsshouldbeexpandedtoincludeawidervarietyofmodelsofincreasingcomplexity.Thismethodologyhasbeenappliedheretomodelswhereinspaceandagentlocationarekeyfeatures;itmayrequiresomemodificationinordertogeneralizetonon-spatialmodels.Inaddition,othermethodsforanalysisofagent-basedmodelsincludetransformationtoequationmodels.Suchwork(usingthesamemodelspresentedhere)isunderway.

5.3 AsABMsareusedmoreandmoretoinvestigatereal-worldsystems,optimizationandoptimalcontrolproblemswillnaturallyariseinthecontextofABMs.Heuristicmethodshaveseveraladvantages:theyareeasytoimplementonacomputerandtheycanbeappliedtovirtuallyanyABM.Thisisparticularlyimportantformodelsthataretoocomplexforconversiontoothermathematicalforms,e.g.,incaseswheredifferentialequationsareinsufficient.Theuserhasdirectcontroloverhoweachalgorithmruns,andcanfine-tuneparametersandsettingstobettersuitthemodel.However,therearedrawbackstothesemethods.Forthoseinterestedinthecertaintyoffindinggloballyoptimalsolutions,heuristicmethodsarelacking.Ontheotherhand,onemayobtainsufficientcontrolsusingthesemethods,andthatisastepintherightdirectionforcontrolofABMs–inparticularwhenone'sgoalistoobtaincontrolsthatareeithersufficientorsimplybetterthananypreviouslyknown.

5.4 Itispossiblethatthecomplexityofagent-basedmodelswillmakeformulaictranslationtorigorousmathematicalmodelsintractable–inthatcase,heuristicmethodsprovidetheonlymeansforoptimizationandoptimalcontrolofagent-basedmodels.Coupledwiththemodelreductiontechniquesandanalysisintroducedhere,thistechniqueprovidesvaluablemethodologyforsolvingcontrolproblemswithagent-basedmodels.

Acknowledgements

FundingforthisworkwasprovidedthroughU.S.ArmyResearchOfficeGrantNr.W911NF-09-1-0538,andsomeideasweredevelopedbytheOptimalControlforAgent-BasedModelsWorkingGroupatNIMBioS,UniversityofTennessee.Additionally,theauthorsaregratefultoreviewersfortheircarefulconsiderationofthemanuscript.Manyhelpfulsuggestionswereimplementedduetoreviewerfeedback.

Appendices

A:Overview,Designconcepts,andDetails(ODD)protocolforRabbitsandGrassThemodeluponwhichthisversionisbasedisincludedinthesamplelibraryofNetLogo(Wilensky2009),apopularagent-basedmodelingplatform.Thedescriptionhereiswarrantedasitincludesthemechanicsofanoptimizationproblem,thedetailsofwhicharenotavailableelsewhere.

Purpose

Thepurposeofthismodelistoexaminepopulationdynamicsofasimpleenvironmentalsystem.Inparticular,itisamodelofrabbitseatinggrassinafield.Oneachdayofthesimulation,poisoncanbeplacedonthefieldinordertokilltherabbits.Thisversionofthemodelisanattempttoanswerthefollowingoptimizationquestion:whatisthebestwayofcontrolling(i.e.,minimizing)therabbitpopulationwhilealsominimizingtheamountofpoisonused?

Entities,statevariables,andscales

Thissectioncontainsadescriptionofthegridcells,spatialandtemporalscales,andtherabbits.Italsocontainsadescriptionoftheformatofapoisonschedule,theinvestigationofwhichisthekeyfeatureofthemodel.

Gridcells,spatialscale,andtemporalscale.Theworldisasquaregridofdiscretecells,representingafield.Thegridistoroidal:edgeswraparoundbothinthehorizontalandverticaldirections.Thedistancefromthecenterofacelltoaneighboringhorizontalorverticalcellis1unit(thusthedistancebetweentwodiagonalcellsissqrt(2)).Unitsareabstractspatialmeasurements.Timestepsarealsoabstractdiscreteunits.Asimulationconsistsofafinitenumberoftimesteps.Theonlystatevariableforeachcellindicateswhetherornotthecellcurrentlycontainsgrass.Whengrassiseatenonagridcellthereisacertainprobabilitythatitwillgrowbackateachtimestep.Thisgrowthhappensspontaneously.

Table3:Gridcellstatevariables.

Statevariable Name ValueSidelengthoffield s 50gridcellsTotalgridcells N 2500Presenceofgrass grass? 0=nograss,1=grassGrassgrowthprobability γ/0.02Simulationtime total_sim_time 100timesteps

Rabbits.Eachtimestep,rabbitsmove,eatgrass(ornot),andreproduce(ornot).Reproductionisasexualandbasedonenergylevel,whichisraisedwhenarabbiteats.Rabbitsloseenergybothbymovingandbyspawningnewrabbits.Ifarabbit'senergyleveldropsto0orlowertherabbitdies.

Table4:Rabbitstatevariables.

Statevariable Name ValueMovementcost move_cost 0.5Energyfromfood food_energy 3Birththreshold birth_threshold 8Currentenergylevel energy varies

http://jasss.soc.surrey.ac.uk/17/2/6.html 11 16/10/2015

Page 12: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Poisonschedule.Apoisonscheduleuisavectoroflengthtotal_sim_timewitheachentryeither0or1.Eachentrycorrespondstoonetimestepinthesimulation;0meansthatpoisonisnotusedand1meansthatpoisonisused.Thus,thereareatotalof2^(total_sim_time)possiblepoisonschedules.Thepoisonhasamaximumefficacythatdegradesovertimewithrepeateduse.Ifthepoisonisnotusedtheefficacyincreasesagain,uptothemaximum.

Table5:Poisonscheduledetails.

Statevariable Name ValueMaximumefficacy p_max 0.3Degradationrate p_deg 5Currentefficacy p_eff Variesin(0,p_max]

Processoverviewandscheduling

Inordertominimizeambiguity,detailsofmodelexecutionarepresentedaspseudocode;seeAlgorithm2.

Designconcepts

IntheupdatedODDprotocoldescription(Grimmetal.2010)thereareelevendesignconcepts.Thosethatdonotapplyhavebeenomitted.

Basicprinciples.Inessence,thismodelisapredator-preysystemwhereintherabbitsarepredatorsandthegrassisprey.Introductionofpoisonintothemodel,andhavingthatpoisonmodeledasadirectexternalinfluenceonpopulationlevels,createsanaturalsettingforanoptimizationproblem.Onecanstudytheeffectofvariouspoisonstrategiesonpopulationlevels–intermsofminimizingtherabbitpopulationitcanbethoughtofasaharvestingproblem,butintermsofminimizingpoisonitcanbethoughtofasresourceallocation.

http://jasss.soc.surrey.ac.uk/17/2/6.html 12 16/10/2015

Page 13: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Algorithm2.PseudocodefortheRabbitsandGrassprocessandscheduling.

Emergence.Rabbitpopulationandgrasslevelstendtooscillateasthesimulationprogresses.Thefrequencyandamplitudeoftheseoscillationscanbeaffectedbyparametersettingsandinitialvaluesandhencemaybedescribedasemergentmodeldynamics.

Interaction.Agentinteractionisindirect:sincerabbitmovementisexecutedserially,itispossiblethatotherrabbitsdepleteallofthegrassinaparticularrabbit'spotentialfieldofmovement,therebyreducingoreliminatingthechanceforthatrabbittogainenergy.

Stochasticity.Rabbitmovementistotallyrandominthattheycannotsensewhetherneighboringgridcellscontaingrassornot.Whethergrassgrowsbackonanemptygridcellisalsorandom,andagridcellthathasbeenemptyforseveraltimestepsisnomorelikelytogrowgrassthanacellthathasonlyjustbecomeempty.

Observation.Rabbitpopulationandgrasscountsarerecordedateachtimestep.Thetotalnumberofrabbitsaliveduringthecourseofasimulationservesasameasureoffitnessofthepoisonschedule.

Initialization

Atinitialization,20%ofthegridcellscontaingrass;thesearechosenatrandom.Thereare150rabbitsplacedatrandomlocationsthroughoutthegrid.Eachbeginswitharandomamountofenergybetween0and9inclusive(rabbitswith0energymaysurvivethefirsttimestepbyeatinggrass).Totalsimulationtimeis100timestepsandeachsimulationcontainsapoisonscheduleu,describedinPoisonschedule.

Inputdata

Thereisnoinputdatatothemodel.

Submodels

Themodelcontainsnosubmodels.

Optimization

Sincethemulti-objectiveoptimizationproblemisthekeyfeatureofthemodelaspresentedhere,afewclarifyingdetailsareinorder.Theobjectivesoftheoptimizationproblemaretodetermine,fortheparametervaluesprovided,asetofParetooptimalpoisonschedulesthatminimizethenumberofrabbitswhilealsominimizingtheamountofpoisonused.Thenumberofrabbitsreferstothetotalnumberofrabbitsaliveduringthecourseofasimulation–notjustthosealiveattheendofthefinaltimestep.Sinceapoisonscheduleisabinaryvectoroflengthtotal_sim_time,theamountofpoisonusedisrepresentedbythesumoftheentriesofthatvector.

B:Overview,Designconcepts,andDetailsprotocolforSugarScapewithtaxationPurpose

TheversionofSugarScapepresentedhereisamodifiedversionoftheoriginalSugarScape(Epstein1996),amodelinwhichabstractentitiesroamalandscapemadeofsugar.Theseagentsareperiodicallytaxedfortheirsugarstores–thetaxrateisconstantbutthefrequencydiffersfromregiontoregion.ThepurposeofthisversionofSugarScapeistoinvestigatetheeffectsofvarioustaxationpoliciesontaxincomeandagentpopulation.Inparticular,themodelisusedtoinvestigatethefollowingquestion:whatistheoptimaltaxationpolicyformaximizingcollectedincomewhileminimizingdeaths?

Entities,statevariables,andscales

Ants.Eachanthasafixedvisionandmetabolismlevelforthedurationofthesimulation;theselevelsvaryfromanttoant.Antscanseeinthefourprincipaldirectionsup,down,left,andright,butcannotseeanyothergridcells.Metabolismdetermineshowmuchsugaranantloses('burns')eachtimestep.Movementisgovernedbyvision:anantmovestothenearestgridcellwithinitsvisionwiththemaximumamountofsugar.Onlyoneantmayoccupyagridcellatanygiventime.Antsdieiftheirsugarlevelreacheszero.Thereisnoupperlimittohowmuchsugaranantmayaccumulate.Lowvisionisdefinedas1,2,or3andlowmetabolismisdefinedas1or2.Thus,eachantbelongstooneofthefollowingfourcategories:lowvision/lowmetabolism(LL),lowvision/highmetabolism(LH),highvision/lowmetabolism(HL),andhighvision/highmetabolism(HH).

Table6:Antstatevariables.

Statevariable Name ValueLocation(currentregion) reg {0,1,…,8}Vision vis randomin{1,2,…,5}Metabolism met randomin{1,2,3,4}Sugar sug variesin{1,2,…}

Gridcells.Whenantsconsumethesugarfromagridcell,thesugargrowsbackatafixedrateoversubsequenttimesteps,uptoapre-determinedmaximumbasedonthelayoutofthelandscape.

Table7:Gridcellstatevariables.

Statevariable Name ValueMaximumsugar s_max oneof{0,1,2,3,4}Sugar s_here {0,1,2,3,4}Growbackrate α/1

Spatialandtemporalscales.ThelandscapeforSugarScapeispresentedinFigure8.ThemaximumsugaramountsforeachregionaregiveninTable8.Therearefiveregiontypes:thosewhosemaximumsugaris0,1,2,3,or4.Eachantoccupiesexactlyonegridcell,andthemapistoroidal–edgeswrapinboththehorizontalandverticaldirections.Thelandscapeisa50×50gridofcells.Giventhefairlyabstractnatureofthemodel,timeandspaceareunitless.Asimulationconsistsofafinitenumberoftimesteps.

Table8:Maximumsugarandgridcellcountsforeachregion.

Region 0 1 2 3 4 5 6 7 8Max.sugar 0 0 1 1 2 3 3 4 4

Taxesarecollectedatregularintervals.Thetaxrateforagivenantdependsonitscategoryandcurrentregion(forexample,anagentwithhighvisionandlowmetabolismmaybetaxedat

http://jasss.soc.surrey.ac.uk/17/2/6.html 13 16/10/2015

Page 14: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

rate0.75inahigh-sugarregionbutonlyat0.25inalow-sugarregion).Taxamountsarealwaysroundeduptothenearestinteger–thisensuresthatanynon-zerotaxratealwayscollectsatleast1unitofsugar.Taxesarecollectedonceeverysubsequent5timestepsforatotaloftentaxcycles.Thechoicetotaxevery5ticksismotivatedbythedesiretonotletthedynamicsstabilize–withfrequenttaxationthedynamicsaremoreimmediatelyaffectedbyprevioustaxrates.

Table9:Taxationandtemporalvariables.

Variable Name Value UnitsSimulationduration total_sim_time 50 timestepsPermissibletaxrates tax {0,0.25,0.5,0.75} N/ATaxinterval tax_interval 5 timesteps

Foreachofthefourantcategoriestherearefivepossibletaxratesdependingontheircurrentregionandeachoftheseratesmaybedifferentforeachofthetentaxcycles.Thus,ataxscheduleisavectoroflength5·4·10=200witheachentryin{0,0.25,0.5,0.75}–thismeansthereareatotalof4^(200)differenttaxschedules.Theoptimizationproblemistodeterminethetaxschedulesthatmaximizethetotaltaxincomecollectedwhileminimizingthenumberofdeaths.

Processoverviewandscheduling

TheABMprocessispresentedinAlgorithm3aspseudocode.Theantandtaxroutinesareexecutedfullybyoneant,thenfullybyanother–i.e.,serially.Hencestatevariablesareupdatedasynchronously.Timestepsarediscreteunits,asismovement:antsjumpdirectlyfromthecenterofonegridcelltothecenterofanother.

Algorithm3.PseudocodeforSugarScapeprocessandscheduling.

Designconcepts

Basicprinciples.ThisversionofSugarScapebuildsontheoriginalbyincorporatingtaxation.Ingeneral,thebasicquestionunderinvestigationishowspatially-dependentlocalinputsaffectglobaldynamics.Specifically,themodelinvestigateshowlocaltaxratesaffecttaxincomeandregionalpopulationdistribution,aquestionwhichholdsinterestinavarietyofreal-worldsettings.

Emergence.Spatialpopulationdynamicsoughttobeanemergentpropertyofthemodel:forexample,hightaxratesinhigh-sugarregionsmightsubstantiallyalterregionalpopulationdynamics.Theprecisemechanismdrivingsuchchangesisnotbuiltintothemodelinanydirectsense.

Objectives.Theobjectiveofeachantistomovetoacellwithinitsvisionwiththemaximumamountofsugar.Thereisnootherconsideration,andantsdonothaveknowledgeofpastorfuturetaxratesatanylocation.

http://jasss.soc.surrey.ac.uk/17/2/6.html 14 16/10/2015

Page 15: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

Sensing.Antsareawareofthesugarlevelandoccupancyofeachgridcellwithintheirvision.Theyarenotawareofanypropertiesofanyotherants,eventhosewithintheirvision.

Interaction.Antsinteractwithoneanotherindirectlyinthesensethatonlyoneantmayoccupyagridcellatanygiventime.Thusiftwoantshavethesamehigh-sugargridcellwithintheirvision,whicheverantisrandomlyselectedtomovefirstwilloccupythatcell.Thismayverywellalterthemovementoftheotherant.Inthisway,serialexecutionandasynchronousupdatearekeyfeaturesofagentinteraction.Ifantorderwasnotrandom(i.e.,thesameantwasallowedtomovefirsteachtimestep),populationdynamicsmightbefundamentallyaltered.

Stochasticity.Antmovementispartiallystochastic:ifanantseesfourunoccupiedgridcellswith2sugarandthreeunoccupiedgridcellswith3sugar,theantwillchoosethenearestcellwith3sugar.This'minimumdistance'policytendstoleadtoantsclusteringonregionalboundaries,astheyhavelimitedincentivetomovetotheinteriorofaregion.ThismovementfeatureisdiscussedinEpsteinandAxtell(1996).

Collectives.Inasense,antsformcollectivesthataffectindividualsinsideandoutsideofthecollective.Thisarisesbecauseonlyoneantmayoccupyagridcellatanytime.Inhigh-sugarregions,antsinthemiddleoftheregiontendtobecometrappedbecauseallavailablespacesareoccupied.Atthesametime,anindividualontheborderofsucharegionisfrequentlyunabletoenterduetothehighpopulationdensitywithintheregion.Thesecollectivesformentirelyasaresultoflocalinteractions.

Observation.Eachsimulationconsistsofafinitenumberoftimesteps.Ateachtimestep,thefollowinginformationiscollected:thetotalamountoftaxcollected,andthenumberofdeathsthatoccur.Foreachsimulation,thetaxpolicyisrecordedaswell.Attheendofeachsimulationthesedataarewrittentoacommaseparatedvalue(.csv)file,auniversalformatforspreadsheetapplications.

Initialization

Themodelisinitializedwith200ants;eachisplacedatarandomunoccupiedlocationonthelandscape.Antsbeginwitharandomamountofsugarbetween5and25(inclusive);thisvalueisdifferentforeachantandchosenfromauniformdistribution.Antsareinitializedwithvisionchosenatrandombetween1and5(inclusive)andmetabolismbetween1and4(inclusive).Visionandmetabolismofagivenantdonotchangeoverthecourseofasimulation.

Inputdata

Thelandscapeisreadinfroma.txtfile;thishelpswithimplementationandmakesiteasiertomakechanges.Ataxpolicycaneitherbechosendirectlyviacodemanipulationorchosenatrandom.Thepolicymustbechosenpriortosimulation.Assuch,thetaxpolicymaybethoughtofasinputtothemodel.

Submodels

TherearenosubmodelsforthisversionofSugarScape.

References

ALTMAN,D.(1991).PracticalStatisticsforMedicalResearch.London:ChapmanandHall.

BERNASCHI,M.&Castiglione,F.(2001).Designandimplementationofanimmunesystemsimulator.Comput.Biol.Med.31,303–331.[doi:10.1016/S0010-4825(01)00011-7]

BUCKERIDGE,D.L.,Jauvin,C.,Okhmatovskaia,A.&Verma,A.D.(2011).SimulationAnalysisPlatform(SnAP):aToolforEvaluationofPublicHealthSurveillanceandDiseaseControlStrategies.AMIAAnnuSympProc2011,161–170.

CASTIGLIONE,F.(1995).C-ImmSimSimulator.InstituteforComputingApplications,NationalResearchCouncil(CNR)ofItaly.<http://www.iac.cnr.it/~filippo/C-ImmSim.html>.

CASTIGLIONE,F.,Pappalardo,F.,Bernaschi,M.&Motta,S.(2007).OptimizationofHAARTwithgeneticalgorithmsandagent-basedmodelsofHIVinfection.Bioinformatics23(24),3350–3355.[doi:10.1093/bioinformatics/btm408]

CHAO,D.L.,Halloran,M.E.,Obenchain,V.J.&Longini,I.M.(2010).FluTE,apubliclyavailablestochasticinfluenzaepidemicsimulationmodel.PLoSComput.Biol.6,e1000656.[doi:10.1371/journal.pcbi.1000656]

COELLO,C.(2013).Listofreferencesonevolutionarymultiobjectiveoptimization.http://www.lania.mx/~ccoello/EMOO/EMOObib.html.Archivedat:<http://www.webcitation.org/6HhFo4K5H>.

COHEN,J.(1968).Weightedkappa:nominalscaleagreementwithprovisionforscaleddisagreementorpartialcredit. PsycholBull70(4),213–220.[doi:10.1037/h0026256]

COOLEY,P.,Brown,S.,Cajka,J.,Chasteen,B.,Ganapathi,L.,Grefenstette,J.,Hollingsworth,C.R.,Lee,B.Y.,Levine,B.,Wheaton,W.D.&Wagener,D.K.(2011).Theroleofsubwaytravelinaninfluenzaepidemic:aNewYorkCitysimulation.JUrbanHealth88,982–995.[doi:10.1007/s11524-011-9603-4]

DASCLU,M.,Franti,E.&Stefan,G.(1998).Modelingproductionwithartificialsocieties:theemergenceofsocialstructure.In:CellularAutomata:ResearchTowardsIndustry(Bandini,S.,Serra,R.&Liverani,F.,eds.).SpringerLondon,pp.218–229.

DEAN,J.S.,Gumerman,G.J.,Epstein,J.M.,Axtell,R.L.,Swedlund,A.C.,Parker,M.T.&McCarroll,S.(2000).UnderstandingAnasaziculturechangethroughagent-basedmodeling.Dynamicsinhumanandprimatesocieties.OxfordUniversityPress,Oxford,179–206.

DURRETT,R.&Levin,S.(1994).Theimportanceofbeingdiscrete(andspatial).TheoreticalPopulationBiology46(3),363–394.[doi:10.1006/tpbi.1994.1032]

ELEMAM,K.(1999).Benchmarkingkappa:interrateragreementinsoftwareprocessassessments.EmpiricalSoftwareEngineering4(2),113–133.[doi:10.1023/A:1009820201126]

EPSTEIN,J.M.&Axtell,R.(1996).Growingartificialsocieties:socialsciencefromthebottomup.Washington,DC,USA:TheBrookingsInstitution.

EUGENIO,B.D.(2000).Ontheusageofkappatoevaluateagreementoncodingtasks.In:InProceedingsoftheSecondInternationalConferenceonLanguageResourcesandEvaluation.

FERRER,J.,Prats,C.,Lopez,D.,Valls,J.&Gargallo,D.(2010).Contributionofindividual-basedmodelsinmalariaeliminationstrategydesign.MalariaJournal9(Suppl2),P9.[doi:10.1186/1475-2875-9-S2-P9]

FLEISS,J.(1981).StatisticalMethodsforRatesandProportions.Hoboken,NJ:JohnWileyAndSons.

FLEISS,J.L.(1971).Measuringnominalscaleagreementamongmanyraters.PsychologicalBulletin76(5),378–382.[doi:10.1037/h0031619]

GENNERT,M.A.&Yuille,A.(1988).Determiningtheoptimalweightsinmultipleobjectivefunctionoptimization.In:ComputerVision,SecondInternationalConferenceon.[doi:10.1109/ccv.1988.589974]

GOLDBERG,D.(1989).Geneticalgorithmsinsearch,optimization,andmachinelearning.Reading,MA:Addison-Wesley.

GRIMM,V.,Berger,U.,Bastiansen,F.,Eliassen,S.,Ginot,V.,Giske,J.,Goss-Custard,J.,Grand,T.,Heinz,S.K.,Huse,G.,Huth,A.,Jepsen,J.U.,Jrgensen,C.,Mooij,W.M.,Mller,B.,Pe'er,G.,Piou,C.,Railsback,S.F.,Robbins,A.M.,Robbins,M.M.,Rossmanith,E.,Rger,N.,Strand,E.,Souissi,S.,Stillman,R.A.,Vab,R.,Visser,U.&DeAngelis,D.L.(2006).Astandardprotocolfordescribingindividual-basedandagent-basedmodels.EcologicalModelling198(1–2),115–126.[doi:10.1016/j.ecolmodel.2006.04.023]

GRIMM,V.,Berger,U.,DeAngelis,D.L.,Polhill,J.G.,Giske,J.&Railsback,S.F.(2010).TheODDprotocol:Areviewandfirstupdate.EcologicalModelling221(23),2760–2768.[doi:10.1016/j.ecolmodel.2010.08.019]

HAPPE,K.(2005).Agent-basedmodellingandsensitivityanalysisbyexperimentaldesignandmetamodelling:Anapplicationtomodellingregionalstructuralchange.2005InternationalCongress,August23-27,2005,Copenhagen,Denmark24464,EuropeanAssociationofAgriculturalEconomists.

HARADA,Y.,Ezoe,H.,Iwasa,Y.,Matsuda,H.&Sato,K.(1995).Populationpersistenceandspatiallylimitedsocialinteraction.TheoreticalPopulationBiology48(1),65–91.[doi:10.1006/tpbi.1995.1022]

HINKELMANN,F.,Murrugarra,D.,Jarrah,A.&Laubenbacher,R.(2011).Amathematicalframeworkforagentbasedmodelsofcomplexbiologicalnetworks.BullMathBiol73(7),1583–1602.[doi:10.1007/s11538-010-9582-8]

http://jasss.soc.surrey.ac.uk/17/2/6.html 15 16/10/2015

Page 16: Optimization of Agent-Based Modelsjasss.soc.surrey.ac.uk/17/2/6/6.pdf · 1.9 Agent-based models are often implemented on a grid, representing the 'space' of the model (often times,

HORN,J.,Nafpliotis,N.&Goldberg,D.(1994).Anichedparetogeneticalgorithmformultiobjectiveoptimization.In:EvolutionaryComputation,1994.IEEEWorldCongressonComputationalIntelligence.ProceedingsoftheFirstIEEEConferenceonComputationalIntelligence[doi:10.1109/icec.1994.350037]

KASAIE,P.,Kelton,W.,Vaghefi,A.&Naini,S.(2010).Towardoptimalresource-allocationforcontrolofepidemics:Anagent-based-simulationapproach.In:WinterSimulationConference(WSC),Proceedingsofthe2010.

KIM,P.S.,Lee,P.P.&Levy,D.(2008a).APDEmodelforimatinib-treatedchronicmyelogenousleukemia.Bull.Math.Biol.70,1994–2016.[doi:10.1007/s11538-008-9336-z]

KIM,P.S.,Lee,P.P.&Levy,D.(2008b).Modelingimatinib-treatedchronicmyelogenousleukemia:reducingthecomplexityofagent-basedmodels.Bull.Math.Biol.70,728–744.[doi:10.1007/s11538-007-9276-z]

KLANN,M.T.,Lapin,A.&Reuss,M.(2011).Agent-basedsimulationofreactionsinthecrowdedandstructuredintracellularenvironment:Influenceofmobilityandlocationofthereactants.BMCSystBiol5,71.[doi:10.1186/1752-0509-5-71]

KRIPPENDORFF,K.(1980).ContentAnalysis:anIntroductiontoitsMethodology.BeverlyHills,CA:SagePublications.

LANDIS,J.R.&Koch,G.G.(1977).Themeasurementofobserveragreementforcategoricaldata.Biometrics33(1),159–174.[doi:10.2307/2529310]

LI,J.,Parkes,A.J.&Burke,E.K.(2011).Evolutionarysqueakywheeloptimization:Anewanalysisframework.EvolutionaryComputation.<http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00033>.[doi:10.1162/EVCO_a_00033]

LOLLINI,P.,Castiglione,F.&Motta,S.(1998).Modellingandsimulationofcancerimmunopreventionvaccine.IntJCancer77,937–941.[doi:10.1002/(SICI)1097-0215(19980911)77:6<937::AID-IJC24>3.0.CO;2-X]

LOLLINI,P.L.,Motta,S.&Pappalardo,F.(2006).Discoveryofcancervaccinationprotocolswithageneticalgorithmdrivinganagentbasedsimulator.BMCBioinformatics7,352.[doi:10.1186/1471-2105-7-352]

LUKE,S.,Cioffi-Revilla,C.,Panait,L.,Sullivan,K.&Balan,G.(2005).MASON:Amulti-agentsimulationenvironment.Simulation:TransactionsofthesocietyforModelingandSimulationInternational82(7),517–527.[doi:10.1177/0037549705058073]

MAO,L.(2011).Agent-basedsimulationforweekend-extensionstrategiestomitigateinfluenzaoutbreaks.BMCPublicHealth11,522.[doi:10.1186/1471-2458-11-522]

MEIER-SCHELLERSHEIM,M.&Mack,G.(1999).Simmune,atoolforsimulatingandanalyzingimmunesystembehavior.CoRRcs.MA/9903017.

NORTH,M.J.,Collier,N.T.&Vos,J.R.(2006).Experiencescreatingthreeimplementationsoftherepastagentmodelingtoolkit.ACMTrans.Model.Comput.Simul.16(1),1–25.[doi:10.1145/1122012.1122013]

OREMLAND,M.(2011).OptimizationandOptimalControlofAgent-BasedModels.Master'sthesis,VirginiaPolytechnicInstituteandStateUniversity.

PAPPALARDO,F.,Pennisi,M.,Castiglione,F.&Motta,S.(2010).Vaccineprotocolsoptimization:insilicoexperiences.Biotechnol.Adv.28,82–93.[doi:10.1016/j.biotechadv.2009.10.001]

PATEL,R.,Longini,I.M.,Jr.&Halloran,M.E.(2005).Findingoptimalvaccinationstrategiesforpandemicinfluenzausinggeneticalgorithms.J.Theoret.Biol.234(2),201–212.[doi:10.1016/j.jtbi.2004.11.032]

PENNISI,M.,Catanuto,R.,Pappalardo,F.&Motta,S.(2008).Optimalvaccinationschedulesusingsimulatedannealing.Bioinformatics24,1740–1742.[doi:10.1093/bioinformatics/btn260]

RAHMAN,A.,Setayeshi,S.&Shamsaei,M.(2007).Ananalysistowealthdistributionbasedonsugarscapemodelinanartificialsociety.InternationalJournalofEngineering20(3),211–224.

RAPIN,N.,Lund,O.,Bernaschi,M.&Castiglione,F.(2010).Computationalimmunologymeetsbioinformatics:theuseofpredictiontoolsformolecularbindinginthesimulationoftheimmunesystem.PLoSONE5,e9862.[doi:10.1371/journal.pone.0009862]

ROOS,A.M.D.,Mccauley,E.&Wilson,W.G.(1991).Mobilityversusdensity-limitedpredator–preydynamicsondifferentspatialscales.Proceedings:BiologicalSciences246(1316),pp.117–122.[doi:10.1098/rspb.1991.0132]

SIM,J.&Wright,C.C.(2005).Thekappastatisticinreliabilitystudies:use,interpretation,andsamplesizerequirements.PhysTher85(3),257–268.

SWIERNIAK,A.,Kimmel,M.&Smieja,J.(2009).Mathematicalmodelingasatoolforplanninganticancertherapy.Eur.J.Pharmacol.625(1-3),108–121.[doi:10.1016/j.ejphar.2009.08.041]

VELIZ-CUBA,A.,Jarrah,A.S.&Laubenbacher,R.(2010).Polynomialalgebraofdiscretemodelsinsystemsbiology.Bioinformatics26(13),1637–1643.[doi:10.1093/bioinformatics/btq240]

WANG,T.&Zhang,X.(2009).3Dproteinstructurepredictionwithgenetictabusearchalgorithminoff-latticeABmodel.In:Proceedingsofthe2009SecondInternationalSymposiumonKnowledgeAcquisitionandModeling-Volume01,KAM'09.Washington,DC,USA:IEEEComputerSociety.[doi:10.1109/KAM.2009.2]

WANG,Z.,Bordas,V.&Deisboeck,T.(2011).IdentificationofCriticalMolecularComponentsinaMultiscaleCancerModelBasedontheIntegrationofMonteCarlo,Resampling,andANOVA.FrontiersinPhysiology2(0).[doi:10.3389/fphys.2011.00035]

WILENSKY,U.(2009).Netlogo.CenterforConnectedLearningandComputer-BasedModeling,NorthwesternUniversity,Evanston,IL.http://ccl.northwestern.edu/netlogo/.

WILSON,W.,Deroos,A.&Mccauley,E.(1993).Spatialinstabilitieswithinthediffusivelotka-volterrasystem:Individual-basedsimulationresults.TheoreticalPopulationBiology43(1),91–127.[doi:10.1006/tpbi.1993.1005]

WILSON,W.,McCauley,E.&Roos,A.(1995).Effectofdimensionalityonlotka-volterrapredator-preydynamics:Individualbasedsimulationresults.BulletinofMathematicalBiology57,507–526.[doi:10.1007/BF02460780]

WOELKE,A.L.,vonEichborn,J.,Murgueitio,M.S.,Worth,C.L.,Castiglione,F.&Preissner,R.(2011).Developmentofimmune-specificinteractionpotentialsandtheirapplicationinthemultiagent-systemVaccImm.PLoSONE6,e23257.[doi:10.1371/journal.pone.0023257]

YANG,Y.,Atkinson,P.M.&Ettema,D.(2011).AnalysisofCDCsocialcontrolmeasuresusinganagent-basedsimulationofaninfluenzaepidemicinacity.BMCInfect.Dis.11,199.[doi:10.1186/1471-2334-11-199]

YESILYURT,S.&Patera,A.T.(1995).Surrogatesfornumericalsimulations;optimizationofeddy-promoterheatexchangers.ComputerMethodsinAppliedMechanicsandEngineering121(14),231–257.[doi:10.1016/0045-7825(94)00684-F]

ZOU,Y.,Fonoberov,V.A.,Fonoberova,M.,Mezic,I.&Kevrekidis,I.G.(2012).Modelreductionforagent-basedsocialsimulation:coarse-grainingacivilviolencemodel.PhysRevEStatNonlinSoftMatterPhys85(6Pt2),066106.[doi:10.1103/PhysRevE.85.066106]

http://jasss.soc.surrey.ac.uk/17/2/6.html 16 16/10/2015