106
OPTIMIZING PERFORMANCE OF THE HESKETT STATION Final Report Test Burn Report for the period July 31, 1997, through November 29, 1998 Prepared for: U.S. Department of Energy Federal Energy Technology Center PO Box 10940, MS 921-143 Pittsburgh, PA 15236-0940 Contract No. DE-FC21-93MC30098--60 Prepared by: Michael D. Mann Ann K. Henderson Energy & Environmental Research Center University of North Dakota PO Box 9018 Grand Forks, ND 58202-9018 99-EERC-03-04 March 1999

OPTIMIZING PERFORMANCE OF THE HESKETT STATION

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Final ReportTest Burn Report

for the period July 31, 1997, through November 29, 1998

Prepared for:

U.S. Department of EnergyFederal Energy Technology CenterPO Box 10940, MS 921-143Pittsburgh, PA 15236-0940

Contract No. DE-FC21-93MC30098--60

Prepared by:

Michael D. MannAnn K. Henderson

Energy & Environmental Research CenterUniversity of North Dakota

PO Box 9018Grand Forks, ND 58202-9018

99-EERC-03-04 March 1999

Page 2: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the UnitedStates Government. Neither the United States Government, nor any agency thereof, nor any oftheir employees makes any warranty, express or implied, or assumes any legal liability orresponsibility for the accuracy, completeness, or usefulness of any information, apparatus,product, or process disclosed or represents that its use would not infringe privately owned rights.Reference herein to any specific commercial product, process, or service by trade name,trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,recommendation, or favoring by the United States Government or any agency thereof. The viewsand opinions of authors expressed herein do not necessarily state or reflect those of the UnitedStates Government or any agency thereof.

This report is available to the public from the National Technical Information Service, U.S.Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders acceptedat (703) 487-4650.

EERC DISCLAIMER

LEGAL NOTICE This research report was prepared by the Energy & EnvironmentalResearch Center (EERC), an agency of the University of North Dakota, as an account of worksponsored by the U.S. Department of Energy. Because of the research nature of the workperformed, neither the EERC nor any of its employees makes any warranty, express or implied, orassumes any legal liability or responsibility for the accuracy, completeness, or usefulness of anyinformation, apparatus, product, or process disclosed, or represents that its use would not infringeprivately owned rights. Reference herein to any specific commercial product, process, or serviceby trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply itsendorsement or recommendation by the EERC.

ACKNOWLEDGMENT

This report was prepared with the support of the U.S. Department of Energy (DOE)Federal Energy Technology Center Cooperative Agreement No. DE-FC21-93MC30098. However, any opinions, findings, conclusions, or recommendations expressed herein are those ofthe authors and do not necessarily reflect the views of DOE.

Page 3: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

i

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

REVIEW OF PILOT-SCALE TESTING AT THE EERC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

FULL-SCALE TEST MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

RESULTS OF THE FULL-SCALE TEST BURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Bed Turnover and Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Sodium Buildup and Agglomeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Sulfur Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10NOx Emissions and Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Impact on Boiler Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Ash Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

EXTRACTIVE TEMPERATURE AND GAS SAMPLING . . . . . . . . . . . . . . . . . . . . . . . . . . 14

ECONOMIC IMPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

REPORT FROM PILOT TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A

TEST PLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix B

AVERAGE VALUES FROM TEST BURN JUNE 15–JULY 2, 1998 . . . . . . . . . Appendix C

PROCESS DATA FROM PREVIOUS OPERATION, CLEAN AND DIRTYJULY 10, 1997 (DIRTY), JULY 17, 1997 (CLEAN) . . . . . . . . . . . . . . . . . . . . . . Appendix D

Page 4: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

ii

LIST OF FIGURES

1 Schematic of MDU FBC showing locations where solid samples were collected . . . . . . . 5

2 Change in bed ash chemistry resulting from the switch from sand to limestone bed material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Variation of average bed particle size over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Temperature differential between upper and lower thermocouples at various positions in the bed for June 29, 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Bed composition of one center cell and two end cells after 7 days of operation on limestone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Contribution of bed drain from coal ash decreases for higher fresh limestone rates, reducing agglomeration potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Change in bed particle size and bed sodium content for Heskett test burn . . . . . . . . . . . . 22

8 Impact of varying fresh limestone feed rate on bed particle size and sodium concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Correlation of material retained on 8-mesh screen to bed particle size, showing a quick and dirty tool for tracking sodium buildup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Emission profile for typical day of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

11 Emission profile for low-load testing on July 2, 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

12 On-line SO2 emissions for June 26, showing impact of load and limestone feed rate on emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

13 Average daily SO2 emissions for high- and low-load operation on a ppm basis . . . . . . . . 27

14 Average daily SO2 emissions for high- and low-load operation on a lb/µmBtu basis . . . . 28

15 SO2 emission of full load as a function of limestone feed rate . . . . . . . . . . . . . . . . . . . . . 29

16 Average sulfur retention for high- and low-load operation . . . . . . . . . . . . . . . . . . . . . . . 30

17 Impact of excess oxygen on NOx emissions as measured during optimization tests . . . . . 31

Continued . . .

Page 5: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

iii

LIST OF FIGURES (Cont.)

18 Average NOx emission as a function of excess oxygen for high-load test periods . . . . . . . 31

19 Average NOx emission as a function of excess oxygen for low-load operation . . . . . . . . . 32

20 Stack opacity as a function of flue gas flow rate (velocity) for both high- and low-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

21 Measured impact of oxygen concentration on overall efficiency because of unburned carbon and dry gas losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

22 Calculated efficiency losses based on measured values . . . . . . . . . . . . . . . . . . . . . . . . . . 33

23 Comparison of system temperatures from test burn to those from operation of boiler prior to cleaning (July 1, 1997) and after cleaning (July 16–22, 1997) . . . . . . . . . . 34

24 Impact of load on heat rate during test burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

25 Total ash generation rate showing contributions from sand, limestone, and coal . . . . . . . 35

26 Volume of solid waste generated at varying add rates of sand and limestone . . . . . . . . . . 35

27 Direct cost of purchasing bed material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

28 Bed material costs for a limestone at 2.75% coal feed rate and sand at 5.41% coal feed rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

29 Potential gross annual revenue for sale of SO2 allowances . . . . . . . . . . . . . . . . . . . . . . . . 37

30 Costs associated with efficiency loss at various excess oxygen levels . . . . . . . . . . . . . . . 37

Page 6: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

iv

LIST OF TABLES

1 MDU Heskett Station Test Burn Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Solid Samples Collected by MDU Personnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Chronology of Events for Full-Scale Test Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Coal and Limestone Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Average Readings from On-Line Probe Samples Taken During Test Burn . . . . . . . . . . . 14

6 Plant Data for Economic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Page 7: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

1

OPTIMIZING PERFORMANCE OF THE HESKETT STATION

INTRODUCTION

Montana–Dakota Utilities (MDU) Co. Unit 2 at the R.M. Heskett Station is a bubblingfluidized-bed combustor (FBC) designed to operate with river sand as its bed material. This,coupled with the quality of the coal available from the Beulah mine, has resulted in severaloperational problems that ultimately reduce the overall boiler efficiency and plant economics.Therefore, the unit currently operates in the middle to low end of the dispatch curve and hasmarginal economics. Because the FBC at the Heskett Station uses river sand as its bed materialand has no back-end sulfur control, the current regulations for SO2 control can be met only withlower-sulfur coal. Coal with an acceptable sulfur content is available from the Beulah mine and iscurrently being burned. While allowing the emission criteria to be met, this coal presentsoperational problems in the form of agglomeration of the bed material, which results in ashutdown approximately every 6 to 12 weeks to clean out the bed. These problems are related tothe high sodium content in this fuel. Lower-sodium lignite is available from the Beulah mine andhas been shown to reduce the problems associated with agglomeration; however, this coal has ahigher sulfur content, and the current emission standards cannot be met with this coal.

Secondary problems are encountered in the FBC at the Heskett Station due primarily to theriver sand bed material. Because of the size and density of the river sand, a relatively highfluidization velocity is required to maintain good fluidization. At lower-load conditions, operationat this “minimum” velocity forces operation at very high excess air levels, with flue gas oxygenlevels running as high as 10%. In addition, this high velocity results in high levels of unburnedcarbon in the fly ash because of carryover of unburned coal, and the low bed temperature(1250EF) results in a greatly reduced unit efficiency. Attempts are made to keep the velocity andexcess air levels as low as possible; however, this has resulted in fluidization problems, leading tosevere agglomeration of the bed. Adequate control of NOx is another problem related to operationat high excess air levels.

In light of these problems, if the Heskett Station is to continue to burn the Beulah lignite,some operational changes must be implemented. A switch of bed material from river sand tolimestone is proposed. The use of the limestone will allow the SO2 emission standards to be metusing the higher-sulfur, lower-sodium lignite. The lower sodium level, coupled with the limestone,should greatly reduce the problems associated with agglomeration, as indicated by other workperformed at the Energy & Environmental Research Center (EERC) for the North DakotaIndustrial Commission (NDIC) and MDU. Switching bed materials is expected to producesecondary benefits with respect to boiler efficiency by allowing the operation to follow load atoptimal excess air levels while maintaining good fluidization qualities. These benefits will berealized by the combined effects of the proper selection of limestone size and the lower density oflimestone when compared to river sand.

The first phase of the project involved testing several candidate limestones in one of theEERC’s pilot-scale bubbling FBCs. Proper limestone selection is critical. Because the HeskettStation operates at a relatively high bed velocity at full load (8–9 ft/sec), a friable limestone

Page 8: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2

would be expected to generate a significant quantity of fines and overload the fly ash removalsystems. In addition, the particle size of the limestone will be important and should be such thatlow-load conditions can be met at reasonable excess air levels while maintaining good fluidizationquality. The pilot-scale testing allowed these criteria to be evaluated at a relatively low costcompared to full scale. A full-scale test burn was performed over the entire load range ofoperation using the limestone selected from the pilot-scale screening.

The expected benefits of changing from sand to limestone as the primary bed material thatwere evaluated by the test burn are as follows:

• The higher-sulfur, lower-sodium lignite can be used while still meeting SO2 regulations.The use of the lower-sodium lignite should also reduce the problems associated withagglomeration.

• MDU will be able to generate SO2 credits. The current market price is approximately$180–$200/ton of SO2. Assuming a coal with 1.2% sulfur and an expected SO2

reduction of 50%, the value of the SO2 credits would approximate $150/hr at full loadoperation.

• The tendency to agglomerate, even with the higher-sodium fuel, will be reduced, and thebed turnover rate will also be substantially reduced. This will result in lower fresh bedmakeup rates and less material for disposal.

• Boiler efficiency will be improved, especially at the lower-load conditions, by allowingthe unit to be operated at lower velocities and higher bed temperatures during turndown.

• The unit will be able to operate at higher bed temperatures during full-load operation tofacilitate better carbon burnout and increase boiler efficiency.

• NOx will be controlled over the full range of loads by the unit operating closer tooptimum conditions.

REVIEW OF PILOT-SCALE TESTING AT THE EERC

The EERC has excellent pilot-scale FBC equipment and many years of experience burningNorth Dakota lignite. The goal of the pilot-scale testing was to choose the best limestone for thefull-scale testing. Limestone selection was based on the following criteria:

• Limestone attrition and change in fly ash-to-bed drain ratio• SO2 emissions (credits to be generated)• NOx emissions• Particulates (anticipated changes in electrostatic precipitator [ESP] performance)• Agglomeration (anticipated reduction or elimination)• Deposition (may not run long enough to evaluate)

Page 9: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

3

Three tests were run at similar operating conditions to evaluate the sulfur captureperformance of each candidate sorbent. The sorbents tested were Fisher and Montana limestonesand Camas dolomite, all sized to approximately –¼ inch. This selection of sorbents was based onan availability and cost screening performed by MDU. The operating conditions for the screeningtests were a 1500EF bed temperature, 20% excess air, 8 ft/sec superficial velocity, and a Ca/Smolar ratio of 2.

A second matrix used two sizes of Montana limestone to assess fluidization characteristicsunder various load conditions. These tests used fresh limestone as the start-up bed material, andadditional limestone was added as necessary to maintain a uniform bed depth. Baseline (100%load) conditions matched the temperature, excess air, and velocity of the screening tests and weremaintained for 8 hours. For the low-load tests, the coal feed rate was half the full-load rate, andvelocity was decreased in a stepwise fashion. Temperature and excess air were allowed to driftwith each velocity change.

The results of the pilot-scale testing at the EERC indicated that:

• The three different sorbents are all acceptable candidates as bed material for the HeskettStation Unit 2. While sulfur capture performance varied among the three, the differencewas small enough to be outweighed by significant differences in cost.

• The use of a limestone or dolomite sorbent will lower the sulfur emissions of Unit 2substantially, providing for the potential sale of SO2 credits.

• Lowering velocity to reduce loads will dramatically reduce NOx emissions during low-load operation.

• Because limestone and dolomite tend to inhibit bed agglomeration compared to riversand, bed turnover rate can be reduced. Makeup sorbent will be required to maintain bedinventory and/or to achieve the desired sulfur retention.

• Reducing the top size of the fresh bed material will reduce the potential foragglomeration.

• Sorbent use may result in greater fines production, increasing the ESP loading. However,the resistivity of the ash is similar to that of ash produced with a sand bed, so ESPperformance should not be compromised. The ESP has sufficient capacity to handle areasonable increase in ash loading.

• Reducing the top size of the bed material will allow the unit to be operated at lowervelocity and higher temperature during low-load conditions.

Based upon these test results, the EERC recommended that MDU 1) contact all threesorbent suppliers to obtain pricing information and 2) proceed with full-scale testing of alimestone or dolomite sorbent as bed material, with a wide range of test conditions designed toassess sulfur capture performance, optimum calcium-to-sulfur molar ratio, load-following

Page 10: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

4

capabilities, temperature effects, ESP performance, and opacity. The results of the pilot-scaletesting are reported in detail in Appendix A.

FULL-SCALE TEST MATRIX

To quantify the extent to which expected benefits could be realized and to allow acost–benefit analysis to be performed, a full-scale test burn was performed at the Heskett Station.Table 1 summarizes the test matrix for the full-scale test burn. A full copy of the test plan isincluded as Appendix B.

TABLE 1

MDU Heskett Station Test Burn Matrix

Test Description DayMaterialBalance1

MDUOn-LinePackage2

IndividualBed DrainSamples3

EERCESP4

EERCTemp.Profile5

EERCGas

Profile6Entrained

Ash7

1. Full-Load Baseline with Sand Bed x x 2. Bed Turnover (load can vary) – 4+ Days 3. Baseline Test with 6 × 20 Limestone – Set Up Sampling Equipment

– Baseline Full-Load TestWTh x x x x x x x

4. Begin Limestone Recycle F 5. Full-Load Baseline with Recycle M x x x x x x x 6. Full-Load Optimization

– OFA Setting (more air to upper port) – OFA Setting (decrease bed velocity)

TT

xx

xx

xx

7. 75% Load Optimization– Lower Feed Rate (current method)– Lower Velocity to 4% O2

WW

xx

xx

xx

8. 50% Load Optimization– Lower Feed Rate (current method)– Lower Velocity to 4% O2

ThTh

xx

xx

xx

9. Full-Load Temperature Optimization – Return to Baseline

– 1600E Temp., 3.5% O2

– OFA Setting (use Test 6 as guide)

FFS

xxx

xxx

xxx

10. Switch Limestone (Optional) – Full load with !¼" limestone T x x x x x x x11. Long-Term Evaluation

– Weekly Sampling/Analysis x x x1 Material balance – weights of coal feed, sand or limestone feed, bed material drain, mechanical collection, and ESP (MDU)(see Figure 1 and Table 2 for the location and descriptions of solid samples).

2 MDU on-line package – data log of selected points (gas analysis, selected temperatures, air/gas flows, cleanliness factors, heatrate calculations (MDU).

3 Individual bed drain samples – collect separate samples from each bed drain rather than just the combined stream (MDU).4 ESP – inlet and outlet dust loadings to ESP ! not by standard EPA methods (EERC).5 Temperature profile – temperature profiles above the bed and at the furnace exit (EERC).6 Gas profile – O2, CO, CO2, SO2, and NOx concentrations above the bed and at the furnace exit (EERC).7 Entrained ash – sample of ash in flue gas at furnace exit (EERC).

Page 11: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

5

Figure 1. Schematic of MDU FBC showing locations where solid samples were collected.

TABLE 2

Solid Samples Collected by MDU PersonnelLocation

A1 Composite coal ash sampleB Bed material (sand) sampleC Bed drain material, Compartments B and CD Bed drain material, Compartment AE Bed drain material, Compartment DF Cyclone dust from hopperG ESP dust – 1st-row precipitatorH ESP dust – 2nd-row precipitatorI ESP dust – 3rd-row precipitator1 Letters refer to sampling location shown in Figure 2.

Page 12: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

6

RESULTS OF THE FULL-SCALE TEST BURN

The test burn was completed over the period June 15 through July 2. The order of the testswas changed based on when dispatch would allow operation at low load. The optional test on the!¼-in. limestone was canceled because of the high quantity of fines present in the sampleavailable from the quarry. In general, the test burn went well, and the test objectives were met. Abrief chronology is provided as Table 3. Analyses of the fuel and limestone are presented in Table4. Results from the testing are summarized in the remainder of this report.

Bed Turnover and Mixing

Bed material is added to the Heskett FBC through two separately metered feed ports,spaced at approximately one-third and two-thirds of the way across the back of the boiler andabout 4 feet above the bed level. On June 16, sand feed was stopped and limestone feed initiated.Limestone was fed through both feed ports until June 23. On June 24, both fresh limestone andrecycled bed material were fed into the system, one each from the two bed material feed ports.Figure 2 (this and all subsequent figures can be found at the end of the report) shows theelemental composition of the ash over the test period. As the fresh limestone was added, thepercentage of calcium and sulfur increased, while the other components, including sodium,decreased in composition. The small incremental change in element levels between June 23 andJune 24 suggests that bed turnover from sand to limestone was essentially complete by the timebed material recycle was initiated. Once recycle was started and the amount of fresh limestoneaddition reduced to about 40% of the total bed material feed, the ash from the coal started tomore directly impact the bed material composition. This can be seen by the decrease in thecalcium content and increase in the other components of the bed material. While mostcomponents of the ash increased only slightly (10% to 15% above the level prior to the initiationof recycle), the sodium level almost doubled over a very short period of time. On June 30, thefresh limestone feed rate was significantly increased, resulting in an increase in calcium anddecrease in the other components which are associated with the coal ash. A substantial reductionin the bed sodium level was realized over this period of time.

It is important to note that on-line chemical analysis of the bed was not performed; theanalyses presented in Figure 2 were performed at the conclusion of the run. Changes in bedmaterial feed rates (the ratio of fresh limestone to recycled bed material) were made strictly basedon operability of the unit. The recycle of bed material allowed for the development of coating onindividual bed material particles, a phenomenon not as apparent with a high bed turnover.Figure 3 shows how the average bed material particle size increased after the start of recycle onJune 24, and the subsequent decrease in particle size on July 2, when the ratio of fresh limestonewas increased. As the coating builds up, the minimum velocity required to maintain fluidization ofthese larger particles increases, resulting in poor fluidization quality or increased flue gas oxygencontent if velocity is increased. One way to identify poor fluidization is to observe the temperaturedifferential across the bed in Sections B and C, where paired thermocouples measure the bedtemperature at two elevations. A large (greater than about 400°F) difference between the upperand lower temperatures often suggests a “dead zone,” or region of poor fluidization.

Page 13: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

7

TABLE 3

Chronology of Events for Full-Scale Test BurnDate Time Activity6-15-98 Baseline with sand6-16-98 Begin limestone feed6-22-98 10:00–18:00 Baseline with limestone6-23-98 10:00–20:00 Baseline with limestone

20:00 Start recycle6-24-98 10:00–20:00 Recycle test6-25-98 Optimization test

10:00–13:25 Move air from upper to lower OFA13:45 Reduce underbed air14:05 Reduce underbed air

Reduce underbed air14:42 Reduce underbed air14:57 Increase underbed air

6-26-98 10:00–17:00 Full-load test at “optimum” air settings17:30 Reduced limestone feed rate22:00 Increased limestone feed rate

7-2-98 9:20 ¾ load testing9:30 Lower bed air9:45 Bias B2 cell9:50 Low bed air

10:15 Bias C1 cell10:55 Reduce air to C and D11:15 Lower bias to C111:20 Up bias to B211:25 Up bias to B213:03 Add OFA13:43 Increase OFA14:48 Increase B air15:15 Increase B air16:42 Start to drop bed level/load18:11 Load testing at 40 MW18:23 Bias on B and C back at 018:37 B air from 77 to 7618:40 B air from 76 to 7518:44 B air from 75 to 7418:48 B air from 74 to 6818:54 B air from 68 to 7220:12 Dropped A cell off-line

Page 14: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

8

TABLE 4

Coal and Limestone Analyses

Coal AnalysisAsh Analysis

Oxides, wt% Coal LimestoneProximate Analysis, as-received, wt% SiO2

Al2O3

Fe2O3

TiO2

P2O5

CaOMgONa2OK2OSO3

15.310.39.40.30.518.97.69.90.027.9

16.10.00.00.00.046.60.30.00.20.3

Moisture 36.60 Volatile Matter 29.47 Fixed Carbon (ind.) 27.30 Ash 6.63Ultimate Analysis, as-received, wt% Hydrogen 6.55 Carbon 37.95 Nitrogen 0.65 Sulfur 0.76 Oxygen (ind.) 47.45 Ash 6.63Heating Value, as-received, Btu/lb 6644

Figure 4 shows the temperature differentials for Sections B (top) and C (bottom) for June 29,1998. Fluidization in Section C was pretty good throughout the day, except for a bit of an upsetduring the load change at about 19:00. Section B, however, appeared to have poor fluidization inthe middle of the compartment for most of the day, and the rear region started developingproblems at about 16:00. On June 30, the rate of fresh limestone feed was increased substantiallyin an effort to reduce the bed particle size and improve fluidization quality, and by July 1, thatgoal had been achieved.

The data presented in Figure 2 represent the composition of the bed material removed fromCompartment C1. A comparison of the bed composition of this compartment to that from A1 andD1 is given in Figure 5 and shows that the lateral mixing of the limestone to the end cells isoccurring, with the calcium concentration only slightly less for A1 and D1 as compared to C1.Even though lateral mixing is occurring, the data indicate that the fresh limestone is not making itto the end cells as rapidly as it is being fed. This imperfect mixing will result in slightly bettersulfur capture from the center of the bed versus the end cells (note higher bed sulfur level [SO3]for Cell C1). More important, however, is the ability of the fresh limestone to control the sodiumlevel in the bed. This imperfect mixing, including the buildup of sodium in the end cell, willincrease the likelihood for localized agglomeration. Better mixing could be encouraged by biasingthe bed drain rates for the end cells and forcing more fresh material to pass through them.

Another way to demonstrate the impact of limestone addition on agglomeration potential isto look at the percentage of bed material derived from coal ash. An elemental balance wasperformed, and the results are shown in Figure 6. With a sand bed on June 16, over 70% of theelemental composition of the bed drain came from the coal ash; as the bed turned over from sandto limestone, this percentage gradually decreased to less than 40%, with the remaining 60%consisting of fresh limestone and CaSO4. After recycle was initiated, the coal ash again

Page 15: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

9

dominated and began to cause fluidization problems, as discussed above. Increasing the ratio offresh limestone to recycled bed material on June 30 quickly shifted the bed drain compositionaway from coal ash and toward a limestone–CaSO4 bed.

Sodium Buildup and Agglomeration

The data presented in Figure 2 showed a decrease in the level of sodium in the bed whenfresh limestone alone was added. When the limestone rate was decreased and recycle initiated,there was a significant increase in the bed sodium content. This was also accompanied by adramatic increase in the average size of the bed material as shown in Figure 7. The impact ofincreasing the fresh limestone feed rate is seen by the reduction in both sodium content and sizefor the July 2 sample. An examination of the data indicates that increase in sodium content andbed particle size are directly impacted by the feed rate of fresh limestone, independent of therecycle rate. Figure 8 shows this relationship. Based on the operation of the unit during the testburn, it is recommended that a fresh limestone feed rate of at least 2% of the coal feed rate bemaintained to control sodium buildup and potential agglomeration. Operation in the range of2.5% to 3% of the coal feed rate would offer a more comfortable margin.

The limestone feed rates and subsequent measurements of sodium buildup and bedparticle-size increase are based on the particular coal used for the test burn (9.9% Na2O in theash). For coal with higher or lower sodium levels, the optimum limestone feed rate will change.Ideally, the limestone feed rate should be changed to match the coal. While on-line sodiumanalysis is not practical, a quick and dirty method of monitoring sodium buildup was identifiedwhen examining the data from the test. Figure 9 plots the percentage of bed material retained onan 8-mesh screen, with the sodium content and bed particle size showing a good correlation. Ifthe use of fresh limestone is to be pushed to a minimum, this test should be performed on a dailybasis, with the results logged to show the trends. Assuming that MDU decides to utilize the 6 ×20 limestone, the limestone feed rate should be increased when more than 25% of the bed isretained on the 8-mesh screen.

Higher limestone feed rates, similar to the current sand feed rates of over 5% of the coalfeed rate, would allow the FBC to operate free of agglomeration while minimizing the bed particlesize. This would improve the flexibility for operating at lower-load conditions. The active cellscould be operated at lower velocities, reducing the excess oxygen levels and improving the overallboiler efficiency.

Emissions

Emissions from Unit 2 tend to correlate quite closely with load. At low-load conditions, thehigh fluidizing air requirement results in an oxygen content of 9% to 10% in the flue gas. Becausethis high excess air serves to dilute all other emissions, emissions will be reported on both an as-measured basis, to demonstrate the actual emissions released as lb/MMBtu, and, occasionally, ona corrected basis (corrected to 3% O2), to allow for more direct comparisons between full- andlow-load conditions.

Page 16: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

10

Figure 10 shows the measured emissions for a typical day. The top graph shows themeasured emissions, with very distinct increases in CO2 and SO2 and little change in NOx as O2

decreases with load. The bottom graph shows the same data on a lb/MMBtu basis. Now we see afairly significant decrease in NOx, which is contrary to what one would expect based on atemperature change alone. This comparison demonstrates the changes in emissions that can beexpected to result from a change in operating parameters other than oxygen and suggests thatNOx emissions, while influenced by changes in Ca/S and temperature, are dominated by oxygencontent.

Figure 11 shows the measured emissions for July 2, 1998, during which air distribution wasadjusted to observe the effects on fluidization and emissions. An increase in OFA at 13:00resulted in a 10-ppm increase in NOx; a second OFA increase at 13:43 yielded an additional10 ppm. When load was dropped to 40 MW at 18:00, measured NOx stabilized at about 125 ppm;corrected NOx reached about 180 ppm at low load, demonstrating again how NOx emissionsincrease with a decrease in load.

Sulfur Capture

SO2 emissions tracked limestone feed rate quite closely. During the testing, the limestonefeed rate and recycle feed rate were kept constant even during low load to protect against sodiumbuildup and subsequent agglomeration of the bed. As a result, the equivalent Ca/S molar ratio wasapproximately twice as high at low load as at high load. As load and, consequently, coal feed ratewere changed, SO2 emissions followed the change, as can be seen in Figure 12. SO2 remainedrelatively constant at approximately 20 ppm during the low-load operation on June 26. When loadwas increased to full, SO2 emissions likewise increased to an average of 164 ppm. Atapproximately 17:30, the limestone feed rate was cut back by a factor of 4 and the recycleincreased to maintain the same total solids input. SO2 emissions increased as a result of loweringthe available Ca/S ratio. When load was reduced at 22:00, SO2 emissions also dropped.

Figure 13 shows the average SO2 emissions for high- and low-load conditions for each day,starting with the baseline conditions with sand bed material on June 15. SO2 emissions on a ppmbasis at 40 MW are typically half the emissions at full load, though the corrected values suggestthat much of this decrease is due to the diluting effect of excess air. This trend is clearly seen inFigure 14, where emissions are compared on a lb/MMBtu basis. Some of the decrease betweenhigh and low load is due to the improvement in sulfur capture at lower temperature; previouswork at the EERC1 suggests that sulfur capture is optimized for this fuel at a temperature ofabout 1425°F.

Figures 13 and 14 clearly show a general decrease in SO2 emissions as the bed is turnedover from sand to limestone between June 17 and 23. Starting June 24, spent bed material wasrecycled back to the boiler through one of the two bed material feeders. The purpose of recyclingbed material was to minimize the use of fresh limestone while maintaining bed inventory. Recycleinitially decreased the SO2 emission rate. The total limestone plus available calcium in the recyclewas the highest for June 24. As the fresh limestone feed rate was decreased on June 25 and againon June 26, the SO2 emissions increased dramatically.

Page 17: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

11

The relationship between added calcium and sulfur emissions is shown for each of the full-load test periods, as a function of limestone/coal ratio in Figure 15. The data have thecharacteristic shape, with SO2 decreasing asymptomatically with increasing Ca/S ratio. Previouswork at the EERC1 suggests diminished incremental SO2 reduction beyond a Ca/S ratio of about1.5, corresponding in this case to a limestone/coal ratio of 5. The total limestone/coal ratio wasused here instead of the more common Ca/S, since it represents actual field data and is directlyproportional to the Ca/S ratio. The total limestone is the fresh limestone plus the unsulfatedportion of the recycle bed material. Based on the limestone feed rate recommended to avoidagglomeration (2.5% to 3% of the coal feed rate), SO2 emissions of approximately 260 ppm (0.75lb/MMBtu) could be expected. This corresponds to a 56% sulfur retention at an approximateCa/S ratio of 0.76 (1.7 including the alkali in the coal).

Overall, calcium utilization increased from an average of 35% without recycle to 47% withrecycle. This translates into lower limestone cost. However, sodium concentration builds up withrecycle, and while large agglomerates did not develop during the test burn, the average bedmaterial particle size increased to the point where low-load fluidization quality diminisheddramatically. The change in chemical analysis during recycle was discussed above. When thepercentage of fresh limestone was increased on June 30 to reduce the bed particle size,fluidization quality improved and SO2 emissions decreased as expected. SO2 emissions at low loadwere consistently half of the full-load values.

Figure 16 shows average sulfur retention for low and full load. Ninety percent sulfurcapture was obtained at the higher limestone feed rates (> 5% of the coal feed rate). Even at thevery low feed rates of June 26–30 (~1.5% of the coal feed rate), the sulfur retention ranged from35% to 50%. This high sulfur removal efficiency for those days with low limestone feed rate canbe attributed to sulfur capture from the sodium and calcium in the coal.

Because a limestone sorbent will allow MDU to operate Heskett Unit 2 at lower sulfur emissions than allowed by permit, sale of SO2 allowances could provide additional revenue forMDU. The cost of additional limestone to generate 1 ton of SO2 credit is about $60, compared toan SO2 allowance price of nearly $200/ton SO2. However, because the amount of sulfur removedper ton of limestone diminishes with increased Ca/S, the incremental cost of additional SO2

allowances will increase with increasing limestone feed rate past 5% of the coal feed. Very highlimestone feed rates may not generate enough allowance revenue to offset the cost of freshlimestone, higher waste disposal costs, and higher solids loadings in the back end.

NOx Emissions and Opacity

Over a given load range, NOx emissions essentially tracked the excess oxygen as can beseen by the data from June 25 shown in Figure 17. Daily averages for high-load operation areshown in Figure 18. The NOx emissions decreased from approximately 150 ppm(0.264 lb/MMBtu) at 3.5% excess oxygen to 120 ppm (0.210 lb/MMBtu) at 2.5% excess oxygen.However, unburned carbon losses were high at the low oxygen levels. At 3% excess oxygen, amore reasonable operational range, NOx emissions of 132 ppm or 0.232 lb/MMBtu could beexpected.

Page 18: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

12

Operation at low load resulted in similar NOx levels on a ppm basis, higher on a lb/MMBtubasis, as shown in Figure 19. NOx emissions ranged from 145 ppm (0.360 lb/MMBtu) at 10%excess oxygen to 100 ppm (0.248 lb/MMBtu) at 8.5% excess oxygen. Unlike the high-load case,efficiency improvements also accompany the decrease in NOx emissions at low load. Both Figures18 and 19 indicate an increase in NOx emissions with increasing levels of oxygen, suggesting thatthe low-load, very high-oxygen operation would result in much higher levels of NOx. Two factorsseemed to keep the NOx emissions stable regardless of load: the lower temperature at low load,which is known to result in lower NOx emissions1, and the dilution effect of high excess air level.

The opacity did not appear to be affected by the limestone addition. Figure 20 shows thatopacity varied from 11.5% to 14% for full-load (high flue gas flow rate) operation during the testburn. At low load, opacity ranged from 6% to 10%. Note that the opacity during operation with asand bed on June 6 and 15 did not differ substantially from the limestone bed; in fact, at low fluegas flow rates, the limestone bed seemed to produce a somewhat lower opacity than the sand bed.The stack dust loading for full-load operation on June 26 was 0.0236 grains/wet scf(0.0742 lb/MMBtu).

Impact on Boiler Efficiency

The switch from a sand bed to limestone was anticipated to affect boiler efficiency in threedifferent ways. Firstly, by allowing a smaller bed size to be utilized, good fluidization could bemaintained at lower velocities, resulting in operation at lower excess oxygen levels, therebyreducing dry gas losses. Secondly, unburned carbon losses were expected to be improved byallowing the boiler to be optimized with respect to total air addition and distribution. Thirdly, itwas expected that the limestone would generate more fines which could potentially reduce theheat transfer in the economizer and air heater sections of the boiler and increase dry gas losses.

Figure 21 shows data on both dry gas losses and unburned carbon for the range of high-loadconditions. The unburned carbon losses increase significantly as the oxygen dips below 3%. Thepoint at approximately 3.2% oxygen represents a test where more air was biased to the loweroverfire air ports. Shifting more air to the lower ports increased carbon carryover. Dry gas lossessaw little change over this small range of operation. It is apparent from these data that when lowexcess oxygen is used, minimizing unburned carbon should be the primary operational focus. Thedata from this test indicate that the excess oxygen should be maintained at a level between 2.8%and 3% to minimize efficiency losses. While this results in higher NOx emissions than operation ata lower oxygen level, the difference in NOx is small compared to the difference in boiler efficiency.

Operation over the full-load range is shown in Figure 22. To maintain good fluidizationquality with sand, the bed velocity was kept high, resulting in high excess oxygen levels. If thevelocity can be reduced and still maintain good fluidization, significant cost savings should result.For example, a reduction in excess oxygen by 1% will result in a 0.84% gain in efficiency, whichequates to an annual coal savings of approximately $45,000. As previously mentioned, during thetest burn, one goal was to determine the lower level of limestone addition that would still allowoperation without agglomeration. This led to a significant increase in bed particle size

Page 19: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

13

and, subsequently, did not allow the bed velocity to be reduced to the level anticipated based onthe pilot-scale testing. Because of these limitations, the oxygen level was reduced by only 0.75%during the low-load optimization tests. While this still resulted in an increase in boiler efficiency of0.65%, it does not represent the improvement that is possible at the Heskett Station. At a higherlimestone feed rate and lower bed particle size, it is expected that excess oxygen could be reducedby at least 1.5% (down to 8%–8.5%), resulting in an efficiency gain of over 1.2%.

The fines in the limestone did not appear to have an impact on back-end boiler temperaturesas shown in Figure 23. As the test progressed, temperatures increased on an almost daily basis,but this is a function of operating time and not specifically attributed to the limestone bed. Forcomparison, Figure 23 includes Unit 2 temperature data from July of 1997; the heavy linesbetween 6-17 and 6-25 represent July 16–22, 1997 (“clean” boiler conditions, while the solidsquare shown for July 1 is July 1, 1997 (“dirty” boiler conditions). The temperature increaseobserved during the 1998 test burn appears comparable to that observed over a similar timeperiod on a sand bed. The approximately 30°F rise in the air heat gas outlet temperature equatesto an efficiency loss of approximately 0.6%.

The boiler heat rate for the week of June 22 through June 29 is presented in Figure 24. Thedata show the change in heat rate as a function of load. No measurable change in heat rate wasnoted for the different high-load test periods.

Ash Generation

Under the current mode of operation, approximately 70 tons/day of ash material isgenerated from the mineral matter in the coal. Another 40 to 50 tons/day is generated from thesand used as the bed material. If limestone is used to replace the sand as bed material at the rate of2.5% of the coal feed rate, the total ash generated will be reduced by approximately 25 tons/day.Figure 25 shows the ash generated from the limestone and sand as a function of the bed materialfeed rate over the full range of conditions tested. The ash generation rates on a weight basis arealmost identical for both the sand and limestone. Using a coal feed rate of 44 tons/hr with 6.63%ash, an additional 70 tons/day of ash would be generated from the coal. The upper curve showsthe total ash generated for this case. The contribution from the coal will need to be adjusted asboth the coal feed rate and coal ash content vary.

Even though the weights of ash generated are similar when either limestone or sand is usedas a bed material, measurable differences exist in volume due to differences in the bulk density ofthe two materials. The bulk density of the bed material on June 15, prior to the addition oflimestone was 152 lb/ft3. When the bed was replaced with limestone, the bulk density of the beddrain decreased to 104 lb/ft3 on June 26. The bulk density of the fly ash was fairly consistent forboth cases at 82 lb/ft3. Based on the expected mix of bed material and fly ash, the average bulkdensity for the mixed fly ash and bed material when sand was used as bed material isapproximately 105 lb/ft3 while that generated when limestone is used is approximately 91 lb/ft3.Figure 26 gives the approximate volume of total ash material (bed drain plus fly ash) that wouldbe generated as a function of bed material add rate. This assumes a coal feed rate of 44 tons/hrand a coal ash content of 6.63%.

Page 20: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

14

The split between bottom ash and fly ash will be approximately the same for the limestoneas it had been with sand based on the results from the test burn.

EXTRACTIVE TEMPERATURE AND GAS SAMPLING

During the course of the test burn, several temperature and gas composition measurementswere taken using a high-velocity thermocouple (HVT). The HVT sits at the end of a 12-foot-longprobe. Gases are sucked into the probe where they pass over a shielded thermocouple (shieldedfrom radiation) to give an accurate measurement of the gas. These gases are then cooled andpulled through a gas analyzer to analyze the major gas constituents. Measurements were made atLevel 3 and Level 6 through existing access ports. Measurements were taken at locations between1 and 9 feet from the inside of the boiler wall at 1-foot increments. With the exception of themeasurements close to the boiler wall (1- and 2-foot measurements), there was little variation inreadings. Therefore, the averages of the readings between 3 and 9 feet were taken and arepresented in Table 5.

TABLE 5

Average Readings from On-Line Probe Samples Taken During Test Burn

Date PortTimeStart

TimeEnd O2 ,%

CO,ppm

NO,ppm

SO2,ppm

Temperature,°F

Baseline, Full Load6/22/98 3 S 04:40 05:15 4.0 3176 201 251 17816/22/98 3 N 05:50 06:15 4.1 1512 143 72 1816

Baseline, Low Load6/22/98 6 S 19:25 19:45 8.0 98 206 NA 14176/22/98 6 N 20:07 20:25 6.4 86 195 NA 1439

Baseline, Full Load6/23/98 3 N 17:30 17:45 3.8 1545+ 212 95 17866/23/98 6 N 15:48 16:10 4.9 143 221 NA 1607

Baseline, Recycle Test6/24/98 3 S 18:00 18:12 2.9 1545+ 260 317 18246/24/98 6 S 16:25 16:43 5.9 502 213 22 1634

Lower OFA test6/25/98 3 S 11:35 11:55 3.3 1545+ 226 125 18786/25/98 6 S 12:03 12:11 5.5 267 243 NA 1684

Lower Excess O2 Test6/25/98 3 S 15:15 15:27 4.5 2733 183 131 19326/25/98 6 S 15:45 16:00 3.8 68 195 NA 1740

Generally, there were high CO levels at Level 3, but also a significant level of oxygen. Thisindicates that even when making adjustments to air splits, there is still enough oxygen present toalleviate concerns of having a reducing gas present in the combustor. This is an important safety

Page 21: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

15

consideration. By the time the gases reached Level 6, combustion was more complete, and COlevels were low. The other important point to note from these data is the high gas temperaturesmeasured with the extractive probe. These temperatures are 200E to 400EF higher than any of theprocess temperatures measured and recorded, including the bed temperature and furnace exittemperature.

ECONOMIC IMPLICATIONS

The potential economic implications of switching bed material from sand to limestone weredetermined. Plant data were obtained for the last 4 years of operation and are summarized inTable 6. The average of 1996, 1997, and 1998 was used. Data from 1995 were not consideredbecause of a low capacity factor for that year. The switch from the sand bed to limestone impactsthe overall plant economics in three primary ways. First is the direct savings due to the lower cost andlower usage rate of the limestone. If limestone were to replace sand at the current feed rate,

TABLE 6

Plant Data for Economic Analysis1995 1996 1997 1998 Avg. 96–98

Gross Generation, MWh 250,476 386,006 385,774 417,728 396,503Net Generation, MWh 221,579 345,463 352,149 372,973 356,862Gross Heat Rate, Btu/kWh 11,771 11,478 11,363 11,506 11,449Net Heat Rate, Btu/kWh 13,306 12,825 12,696 12,890 12,804Forced Outage Hours 338 485 351 358 398Number of Start-Ups 9 14 10 4 9Net C.F. 34.65 53.87 53.8 58.41 55.4Coal, tons/yr 209,609 315,528 311,911 340,998 322,812Avg. HHV 7030 7019 7002 7000 7007Coal Cost, $/MMBtu 1.07 1.09 1.12 1.13 1.11Coal Cost, $/ton 15.02 15.36 15.74 15.88 15.7Gas for Drying, Mcf 3943 4227 4567 6022 4939Cost of Gas, $/Mcf 5.04 3.14 3.47 3.52 3.38Sand Used, tons 12,363 15,598 17,160 19,610 17,456Sand Used, tons/service day 59.6 53.5 57.5 61.6 57.5Sand Used, lb/MWh 111.3 90.3 99.8 106 99Sand Cost, $/MWh 1.18 0.92 1.03 1.11 1.02Sand Cost, $/ton $21.20 $20.38 $20.64 $20.94 $20.65Sand-Drying Cost, $/ton $1.61 $0.85 $0.92 $1.08 $0.95Dry Sand Cost, $/ton $22.81 $21.23 $21.56 $22.02 $21.61Limestone Cost, $/ton NA NA NA NA $19.40Service Hours 4982 7003 7165 7644 7271

Page 22: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

16

an annual savings of $35,000 would be realized (see Figure 27). If limestone were to replace thesand at the lower feed rate of 2.5% of the coal feed rate compared to 5.41% for the sand, thesavings would be more substantial. Figure 28 makes this comparison and shows a $200,000annual savings due to the lower usage rate and lower cost of the limestone.

A second factor to be considered is the value of the SO2 allowances that will be generatedby the use of limestone. Over the past year, the price of allowances has risen from under $100 tonear $200/ton SO2. Figure 29 shows the potential revenues that could be generated from the saleof SO2 allowances as a function of limestone add rate and allowance price. At an allowance priceof $200/ton SO2, gross annual revenues ranging from $390,000 to $650,000 ($275,000 to$455,000 net [gross revenues minus limestone cost]) could be realized. Since the cost of thelimestone required to generate 1 ton of SO2 credit is $60, and provided MDU can market thecredits generated from the plant, the most economical approach is to add limestone at a muchhigher feed rate than is necessary to avoid agglomeration. As mentioned previously, however, theeffectiveness of additional limestone feed to capture sulfur diminishes after a limestone/coal ratioof about 5; care must be taken to optimize SO2 emissions without increasing limestone feed pastthe point of minimal return.

The third factor that affects bottom-line economics is the overall plant efficiency. One of thegoals of the test burn was to reduce operating costs by determining the optimum excess oxygenfor the boiler. The main contributors to efficiency loss that were affected by the switch wereshown in Figure 22. These data are related to cost in Figure 30. Significant cost savings can berealized by avoiding the high unburned carbon losses when operating below 3% excess oxygen.For low-load operation, reducing the excess oxygen by 1.5% would reduce the annual operatingcost by $64,000 times the fraction of the time the unit is operated at low load, or approximately$25,000 to $30,000 per year. The costs associated with efficiency loss were based only on thepotential fuel savings.

Finally, overall unit availability can be improved with a switch from sand to limestone bedmaterial. The test burn clearly showed that the potential for agglomeration is greatly reduced withthe addition of limestone; reducing the number of forced outages caused by bed agglomerationwill significantly improve availability.

SUMMARY

The overall conclusion from this work is that a switch from river sand bed material tolimestone at the R.M. Heskett Station would provide substantial benefits to MDU. A switch tolimestone would increase the fuel flexibility of the unit, allowing fuels higher in both sodium andsulfur to be burned. The limestone bed can tolerate a much higher buildup of sodium in the bedwithout agglomeration, allowing either the bed turnover rate to be reduced to half the currentsand feed rate for a fuel with equivalent sodium or allow a higher sodium fuel to be burned withlimestone feed rates equivalent to the current sand feed rate. Both stack and ambient SO2

emissions can be controlled. A small improvement in boiler efficiency should be achievable byoperating at lower excess oxygen levels at low load. This reduction in oxygen will also lower NOx

emissions, providing a margin of safety for meeting emission standards. No detrimental

Page 23: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

17

effects of using limestone at the Heskett Station were uncovered as a result of the test burn. Somespecific conclusions from this work include the following:

The bed material feed rate can be reduced from the current rate of 5.4% of the coal feedrate (57.4 tons of sand/day) to 2.5% of the coal feed rate (27 tons of limestone/day). This willresult in an annual savings of approximately $200,000.

C SO2 emissions at the recommended feed rate would be approximately 250 ppm(0.82 lb/MMBtu) using a similar lignite. Based on the cost of the limestones, SO2

allowances could be generated at a cost of $60/ton SO2, leaving a large profit margin forthe sale of allowances. The addition of limestone at the same rate currently used for sandfeed could generate $455,000 net income if allowances are sold at $200/ton SO2.

C At full-load operation, unburned carbon losses increase significantly at excess oxygenlevels below 2.8%. No efficiency gains are expected at high-load operation by switchingfrom sand to limestone. By reducing the oxygen level at low load to 8.5%, an efficiencygain of approximately 1.2% could be realized, equating to $25,000 to $30,000 in annualsavings.

C A reduction of 25 tons/day total ash (bed material plus fly ash) will be realized by usinglimestone at the recommended feed rate compared to the current sand feed rate. Nomeasurable change in volume would be realized because of the lower bulk density of thelimestone-derived material.

RECOMMENDATIONS

Based upon the results from this program, the EERC recommends the following actions betaken by MDU:

• Bed material should be switched from river sand to limestone. A minimum add rate of2.5% of the coal feed rate should be maintained. A double-screened limestone, 6 × 20mesh, is recommended. Single-screened limestones are not recommended because of thehigh quantity of fines that they carry.

• If MDU’s policy is to market its SO2 allowances, a high limestone feed rate should beused: 5% to 7% of the coal feed rate.

• During full- and ¾-load operation, the control system should be set up to maintain theexcess oxygen between 2.8% and 3.2%. At low load, operation at 8.5% excess oxygenshould be attempted.

• An additional operating tool should be added to help ensure fluidization at lowervelocities. The use of the temperature difference between the upper- and lower-bedthermocouples will provide the operator with a simple indicator of fluidization quality.

Page 24: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

18

• Alternative fuels should be explored to reduce the overall fuel cost for the unit. Fuelswith higher alkali and sodium than currently being utilized are candidates.

• If sand is continued to be used as bed material, a sand size of !6 x +20 mesh isrecommended to allow operation at a longer bed velocity.

REFERENCES

1. Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A. “EERC Pilot-Scale CFBCEvaluation Facility: Project CFB Test Results,” EERC publication, Sept. 1992.

Page 25: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

19

Figure 2. Change in bed ash chemistry resulting from the switch from sand to limestone bedmaterial.

Figure 3. Variation of average bed particle size over time.

Page 26: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

20

Figure 4. Temperature differential between upper and lower thermocouples at various positions inthe bed for June 29, 1998.

Page 27: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

21

Figure 5. Bed composition of one center cell and two end cells after 7 days of operation onlimestone.

Figure 6. Contribution of bed drain from coal ash decreases for higher fresh limestone rates,reducing agglomeration potential.

Page 28: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

22

Figure 7. Change in bed particle size and bed sodium content for Heskett test burn.

Figure 8. Impact of varying fresh limestone feed rate on bed particle size and sodiumconcentration.

Page 29: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

23

Figure 9. Correlation of material retained on 8-mesh screen to bed particle size, showing a quickand dirty tool for tracking sodium buildup.

Page 30: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

24

Figure 10. Emission profile for typical day of operation (June 18, 1998).

Page 31: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

25

Figure 11. Emission profile for low-load testing on July 2, 1998.

Page 32: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

26

Figure 12. On-line SO2 emissions for June 26, showing impact of load and limestone feed rate on emissions.

Page 33: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

27

Figure 13. Average daily SO2 emissions for high- and low-load operation on a ppm basis.

Page 34: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

28

Figure 14. Average daily SO2 emissions for high- and low-load operation on a lb/µmBtu basis.

Page 35: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

29

Figure 15. SO2 emission of full load as a function of limestone feed rate (fresh plus unsulfatedportion of recycle).

Page 36: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

30

Figure 16. Average sulfur retention for high- and low-load operation.

Page 37: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

31

Figure 17. Impact of excess oxygen on NOx emissions as measured duringoptimization tests.

Figure 18. Average NOx emission as a function of excess oxygen for high-load test periods.

Page 38: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

32

Figure 20. Stack opacity as a function of flue gas flow rate (velocity) for both high- and low-load operation.

Figure 19. Average NOx emission as a function of excess oxygen for low-load operation.

Page 39: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

33

Figure 22. Calculated efficiency losses based on measured values.

Figure 21. Measured impact of oxygen concentration on overall efficiency because of unburnedcarbon and dry gas losses.

Page 40: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

34

Figure 23. Comparison of system temperatures from test burn to those from operation of boilerprior to cleaning (July 1, 1997) and after cleaning (July 16–22, 1997).

Figure 24. Impact of load on heat rate during test burn.

Page 41: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

35

Figure 26. Volume of solid waste generated at varying add rates of sand and limestone. A coalfeed rate of 44 ton/hr and 6.63% ash was assumed.

Figure 25. Total ash generation rate showing contributions from sand, limestone, and coal. A coal feed rate of 44 ton/day at 6.63% was assumed.

Page 42: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

36

Figure 27. Direct cost of purchasing bed material. The sand cost includes the material plus drying costs.

Figure 28. Bed material costs for a limestone at 2.75% coal feed rate and sand at 5.41% coal feed rate.

Page 43: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

37

Figure 30. Costs associated with efficiency loss at various excess oxygen levels. Both unburnedcarbon and dry gas losses are included.

Figure 29. Potential gross annual revenue for sale of SO2 allowances.

Page 44: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

APPENDIX A

REPORT FROM PILOT TESTS

Page 45: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

March 9, 1998

Mr. Paul EslingerResults EngineerMontana–Dakota Utilities Co.PO Box 40Mandan, ND 58554

Dear Mr. Eslinger:

Please find enclosed a progress report entitled “Optimizing Performance of the HeskettStation.”

If you have any questions, please feel free to call me at (701) 777-5193, fax at (701) 777-5181, or e-mail at [email protected].

Sincerely,

Michael D. MannSenior Research Manager

MDM/mro

Enclosure

Page 46: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

OPTIMIZING PERFORMANCE OF THE HESKETT STATION – PHASE I

Progress Report: Pilot-Scale Testing

Submitted to:

Dr. Clifford Porter

North Dakota Industrial CommissionPO Box 22771016 East Owens Avenue, Suite 200Bismarck, ND 58501Attn: Lignite Research Program

Submitted by:

Michael D. MannAnn K. Henderson

Energy & Environmental Research CenterUniversity of North Dakota

PO Box 9018Grand Forks, ND 58202-9018

March 1998

Page 47: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

i

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1.0 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 PROJECT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.1 Pilot-Scale Testing at the EERC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Pilot-Scale Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3 Full-Scale Test Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.0 PILOT-SCALE TEST BURN RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.1 Coal and Sorbent Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2 Operational Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Shakedown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2.2 Screening Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2.3 Load and Velocity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3.1 Screening Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3.2 Load and Velocity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Page 48: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

ii

LIST OF FIGURES

1 Size analysis of test materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LIST OF TABLES

1 Screening Test Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Size and Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Coal Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Summary of Process Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Summary of Process Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Page 49: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

1

OPTIMIZING PERFORMANCE OF THE HESKETT STATION – PHASE I

1.0 SUMMARY

Montana–Dakota Utilities (MDU) Co. Unit 2 at the R.M. Heskett Station is a bubblingfluidized-bed combustor (FBC) designed to operate with river sand as its bed material. This,coupled with the quality of the coal available from the Beulah mine, has resulted in severaloperational problems that ultimately reduce the overall boiler efficiency and plant economics.Therefore, the unit currently operates in the middle to low end of the dispatch curve and hasmarginal economics. Because the FBC at the Heskett Station uses river sand as its bed materialand has no back-end sulfur control, the current regulations for SO2 control can be met only withlower-sulfur coal. Coal with an acceptable sulfur content is available from the Beulah mine and iscurrently being burned. While allowing the emission criteria to be met, this coal presentsoperational problems in the form of agglomeration of the bed material, which results in ashutdown approximately every 6 weeks to clean out the bed. These problems are related to thehigh sodium content in this fuel. Lower-sodium lignite is available from the Beulah mine and hasbeen shown to reduce the problems associated with agglomeration; however, this coal has ahigher sulfur content, and the current emission standards cannot be met with this coal.

Secondary problems are encountered in the FBC at the Heskett Station due primarily to theriver sand bed material. Because of the size and density of the river sand, a relatively highfluidization velocity is required to maintain good fluidization. At lower-load conditions, operationat this “minimum” velocity forces operation at very high excess air levels, with flue gas oxygenlevels running as high as 9%. In addition, this high velocity results in high levels of unburnedcarbon in the fly ash because of carryover of unburned coal, and the low bed temperature(1250EF) results in a greatly reduced unit efficiency. Attempts are made to keep the velocity andexcess air levels as low as possible; however, this has resulted in fluidization problems, leading tosevere agglomeration of the bed. Adequate control of NOx is another problem related to operationat high excess air levels.

In light of these problems, if the Heskett Station is to continue to burn the Beulah lignite,some operational changes must be implemented. A switch of bed material from river sand tolimestone is proposed. The use of the limestone will allow the SO2 emission standards to be metusing the higher-sulfur, lower-sodium lignite. The lower sodium level, coupled with the limestone,should greatly reduce the problems associated with agglomeration, as indicated by other workperformed at the Energy & Environmental Research Center (EERC) for the North DakotaIndustrial Commission (NDIC) and MDU. Switching bed materials is expected to producesecondary benefits with respect to boiler efficiency by allowing the operation to follow load atoptimal excess air levels while maintaining good fluidization qualities. These benefits will berealized by the combined effects of the proper selection of limestone size and the lower density oflimestone when compared to river sand.

The first phase of the project involved testing several candidate limestones in one of theEERC’s pilot-scale bubbling FBCs. Proper limestone selection is critical. Because the Heskett

Page 50: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2

Station operates at a relatively high velocity at full load (12 ft/sec), a friable limestone would beexpected to generate a significant quantity of fines and overload the fly ash removal systems. Inaddition, the particle size of the limestone will be important and should be such that low loadconditions can be met at reasonable excess air levels while maintaining good fluidization quality.The pilot-scale testing allowed these criteria to be evaluated at a relatively low cost compared tofull scale. Phase I has been completed, and the results are reported here. A full-scale test burn isbeing planned as Phase II. Testing will be performed over the entire load range and will include alonger-duration (30-day) test to quantify the expected improvements in agglomeration anddeposition.

The expected benefits of changing from sand to limestone as the primary bed material thatwill be verified by the test burn are as follows:

• The higher-sulfur, lower-sodium lignite can be used while still meeting SO2 regulations.The use of the lower-sodium lignite should also reduce the problems associated withagglomeration.

• MDU will be able to generate SO2 credits. The current market price is approximately$90/ton of SO2. Assuming a coal with 1.2% sulfur and an expected SO2 reduction of90%, the value of the SO2 credits would approximate $40/hr at full load operation.

• The tendency to agglomerate, even with the higher-sodium fuel, will be reduced, and thebed turnover rate will also be substantially reduced. This would result in lower fresh bedmakeup rates and less material for disposal.

• Boiler efficiency will be improved, especially at the lower-load conditions, by allowingthe unit to be operated at lower velocities and higher bed temperatures during turndown.

• The unit will be able to operate at higher bed temperatures during full-load operation tofacilitate better carbon burnout and increase boiler efficiency.

• NOx will be controlled over the full-load range by the unit operating closer to optimumconditions.

2.0 PROJECT DESCRIPTION

To determine the extent to which these benefits are realized and to allow a cost–benefitanalysis to be performed, a full-scale test burn is recommended at the Heskett Station. Thefollowing section outlines the proposed test conditions and the rationale for each. Some pilot-scale tests were also recommended to help define the conditions for testing on the full scale.

Page 51: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

3

2.1 Pilot-Scale Testing at the EERC

The EERC has excellent pilot-scale FBC equipment and many years of experience burningNorth Dakota lignite. Pilot-scale testing is recommended prior to implementing the full-scale testburn. The goal of the pilot-scale testing is to choose the best limestone for the full-scale testing.Limestone selection will be based on the following criteria:

• Limestone attrition and change in fly ash-to-bed drain ratio• SO2 emissions (credits to be generated)• NOx emissions (impact on NOx – could be increased)• Particulates (anticipated changes in electrostatic precipitator [ESP] performance)• Agglomeration (anticipated reduction or elimination)• Deposition (may not run long enough to evaluate)

2.2 Pilot-Scale Test Matrix

Pilot-scale testing at the EERC took place in October and November 1997. The first threetests were run at similar operating conditions to evaluate the sulfur capture performance of eachcandidate sorbent. The sorbents tested were Fisher and Montana limestones and Camas dolomite,all sized to approximately –¼ inch. The desired operating conditions for the screening tests areshown in Table 1. Each test used No. 10 silica sand as start-up bed material; when the desiredoperating conditions were reached, the sorbent was added at a feed rate to provide a calcium-to-sulfur molar ratio of about 2.

TABLE 1

Screening Test Operating Conditions

Parameter Set Point

TemperatureExcess AirVelocity

1500EF20%

8 ft/sec

The second matrix, outlined in Table 2, used two sizes of Montana limestone to assessfluidization characteristics under various load conditions. These tests used fresh limestone as thestart-up bed material, and additional limestone was added as necessary to maintain a uniform beddepth. Baseline (100% load) conditions matched the temperature, excess air, and velocity of thescreening tests and were maintained for 8 hours. For the 50% load tests (T1 through T3), coalfeed rate was half the full load rate, and velocity was decreased according to Table 2.Temperature and excess air were allowed to drift with each velocity change.

Page 52: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

4

TABLE 2

Size and Load TestsSize Load, % Run Number Velocity, ft/sec Temp., EF Excess Air, %

Montana 6 × 20 100 MDU-0597 8 1500 20

50

MDU-0697 T1 6 Very low Very high

MDU-0697 T2 5 Low High

MDU-0697 T3 4 Low Low

Montana 4 × 10 100 MDU-0797 8 1500 20

50MDU-0897 T1 6 Very low Very high

MDU-0897 T2 5 Low High

MDU-8097 T3 4 Low Low

2.3 Full-Scale Test Burn

The full-scale test burn is designed to evaluate the impact of replacing the sand bed withlimestone. The selection and sizing of limestone for use in the full-scale testing have beendetermined from the pilot-scale testing. The expected benefits of changing from sand to limestoneas the primary bed material discussed in Section 1.0 will be verified by the test burn.

The EERC will assist MDU in several areas of the planning, performance, and analysis of afull-scale test burn. The areas are listed below:

• Assistance in developing the test plan for the test burn at the Heskett Station will beprovided. This will involve helping choose operating conditions for the burn. Animportant part of this effort will include a review of previous data from the HeskettStation and the EERC pilot plants to determine the baseline prior to adding thelimestone. Existing data will be used to note changes in NOx, SO2, and particulateemissions, combustion efficiency, and other operating parameters without limestone, sothat when the test burn is performed the differences due to the limestone can beseparated from the other process variables. This will allow MDU to better quantify thechanges that occur because of the switch to limestone and those that are a result ofchanging operating conditions or of previous design changes.

• A sample and analysis plan will be designed to ensure that once the test is completed,MDU will be able to generate the data required to make an informed decision. TheEERC can also help collect and prepare the samples for analysis.

• The EERC will observe the test and assist in making "on-the-fly" changes to the testmatrix based on the results that are being obtained during the test burn.

Page 53: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

5

• On-line extractive samples of ash will be taken and deposits collected on speciallydesigned in situ probes to evaluate changes in convective fouling (optional).

• The data collected during the test burn will be analyzed and interpreted. The data shouldbe correlated graphically through simple models so that MDU can easily determine theimpacts of switching to limestone and changing operating conditions on the overallperformance of all major emission and operational parameters.

Details of the full-scale test burn will be presented in the final project report.

3.0 PILOT-SCALE TEST BURN RESULTS

3.1 Coal and Sorbent Properties

The coal was supplied by the R.M. Heskett Station, representative of what is currentlyburned in Unit 2. Coal samples were collected during every test, and the analysis of a compositecoal sample is shown in Table 3. The analyses of the sorbents tested are also shown in Table 3.For purposes of these tests, it was assumed that the double-screened Montana limestone wouldhave the same analysis as the !¼-inch, so additional analyses were not performed on the 6 × 20and 4 × 10 size distributions.

3.2 Operational Performance

3.2.1 Shakedown

Shakedown testing was performed on the EERC pilot-scale FBC prior to beginning the testmatrix. Sand from the Heskett Station was used as the start-up bed material for shakedowntesting, and agglomeration problems were encountered after a few hours of operation. It wasdetermined that the agglomeration was caused by poor fluidization quality at the operatingvelocity, as mean particle size in the bed increased due to elutriation of fines and coating buildupon the sand particles. Since start-up bed material size was not a key parameter in these tests, theHeskett sand was replaced by No. 10 silica sand, purchased locally. The smaller top size of theNo. 10 sand improved the fluidization significantly and eliminated agglomeration problems. Thiswas used for start-up material for the three screening tests. The size distributions of the Heskettsand, the No. 10 silica sand, and the three sizes of Montana limestone are shown in Figure 1.

3.2.2 Screening Tests

The unit performed well during the screening and load tests. Coal is transferred from astorage hopper to a feed hopper through a rotary valve and fed to the combustor with a variable-speed screw. While coal feed rate could not be measured on-line, the storage hopper weight wasmeasured before and after each run to determine coal feed rates. Sorbents were fed overbed witha screw feeder. Again, while on-line feed rates were not available, the feeder was calibrated prior

Page 54: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

6

TABLE 3

Coal AnalysesCoal MT !¼ in. Camus 89 Fisher

Proximate Analysis, as received, wt%

Moisture Volatile Matter Fixed Carbon Ash

28.1031.5031.42 8.98

NA NA NA

Ultimate Analysis, as received, wt%

Carbon Hydrogen Nitrogen Sulfur Oxygen Ash Moisture

45.89 3.56 0.71 1.5011.26 8.9828.10

NA NA NA

Ash Composition, % as oxides

Calcium, CaO Magnesium, MgO Sodium, Na2O Silica, SiO2

Aluminum, Al2O3

Ferric, Fe2O3

Titanium, TiO2

Phosphorus, P2O5

Potassium, K2O Sulfur, SO3

Barium, BaO

15.40 5.20 5.3025.60 9.8011.80 0.60 0.10 0.3025.10 0.6

46.62 0.25 0.0016.05 0.00 0.00 0.00 0.00 0.19 0.25 0.00

29.1315.56 0.0014.84 0.00 0.00 0.00 0.00 0.30 0.18 0.00

48.23 0.44 0.0013.07 0.00 0.00 0.00 0.00 0.12 0.25 0.00

High Heating Value Moisture-Free, Btu/lb As-Received, Btu/lb

11,8088,490

NA NA NA

to each test to approach the desired feed rate. Actual feed rates were calculated posttest, based onthe total amount fed. Flue gas emissions (SO2, O2, CO2, O2, and NOx) were continuouslymonitored. Numerous thermocouples throughout the system measure bed and flue gastemperatures. In-bed water-cooled coils were used to adjust bed temperature independent of coaland air feed rates. Periodically during each 8-hour test period baghouse ash, cyclone ash, and bedmaterial samples were taken, and bed material was drained to maintain a uniform pressure dropacross the bed.

Page 55: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

7

Figure 1. Size analysis of test materials.

3.2.3 Load and Velocity Tests

Unit operation during the 100% load tests with both sizes of double-screened Montanalimestone (6 × 20 and 4 × 10) was excellent, as expected. As load went from 100% to 50% withthe 6 × 20 limestone (Test 06), the temperature decreased from 1520E to 1330EF, and the excessair rose from 20% to 81%. When velocity was lowered from 6 to 5 ft/sec during 06-T2, theexcess air dropped to 50%, and the bed temperature increased to 1450EF. During 06-T3, thevelocity was lowered to 4 ft/sec; the bed temperature remained fairly constant, while the excessair dropped to 17%. Fluidization during each of these periods was excellent, and a relatively smallamount of makeup sorbent was required to maintain the desired bed pressure drop.

The unit also operated very well at full load with the larger 4 × 10 limestone (Test 07).However, when the coal feed and air flow rates were reduced to 50% load conditions (Test08-T1), the unit operated well for 2.5 hours, then suddenly the bed slumped, causing drastictemperature fluctuations. The 50% load test was repeated, and the bed slumped in just over2 hours. Because of the inability to operate with this bed material at a velocity of 6 ft/sec, thelower-velocity tests were not performed.

Because the limestone was not conditioned in any way prior to the tests, the limestone bedunderwent some chemical changes initially. As the bed heated up, calcination took place first,converting CaCO2 to CaO. This causes the limestone to lose some mass, and the lighter particles

Page 56: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

8

are more readily elutriated from the bed. As the CaO reacts with SO2 generated duringcombustion, however, it forms CaSO4, and the bed particles gradually increase in mass. It is thisphenomenon which is believed to be the cause of the change in fluidization quality observed overthe 2 to 2.5 hours of operation in the 50% load tests with the large 4 × 10 limestone. It alsoindicates that the 4 × 10 limestone is too large to allow good fluidization over the range ofvelocities tested.

3.3 Summary of Results

Upon completion of each run, data for each steady-state test period were averaged. Asummary of the process data for the screening tests is presented in Table 4. The test periodscorrespond to those described in the test matrix.

3.3.1 Screening Tests

One way to judge sorbent performance is by calcium utilization; that is, the ratio of sulfurretention to calcium-to-sulfur molar ratio. In the case of the three sorbents tested here, the Camasdolomite demonstrated the highest calcium utilization at 56%, and the Montana limestone thelowest at 39%. However, because of the different calcium concentrations in each sorbent, theCamas dolomite actually requires 226 pounds per ton of coal to achieve 70% sulfur retention,compared to 159 pounds per ton of Fisher limestone and 201 pounds per ton of Montanalimestone.

Consequently, the most efficient sorbent is not necessarily the most economical, because ofthe greater quantities of sorbent and ash involved.

Another aspect of sorbent performance is its effect on the rest of the system, particularlyemissions. The Fisher limestone produced the highest NOx emissions of the three, while theMontana limestone and Camas dolomite produced virtually identical NOx emissions. An importantpoint to note is that the small size of the pilot-scale furnace tends to drive up NOx emissionscompared to full scale; while the trends described are believed to be valid, the actual values arenot representative of a full-scale boiler.

From an operating standpoint, any of the three sorbents tested would be an acceptable bedmaterial for Heskett Unit 2; the sorbent price, ash disposal costs, and availability will be thecritical selection criteria.

3.3.2 Load and Velocity Tests

Two sizes of double-screened Montana limestone were used for these tests: 6 × 20 mesh(850 to 2250 microns) and 4 × 10 mesh (2000 to 4750 microns). The test matrix for the load andvelocity tests is shown in Table 2. The goal of these tests was to observe the fluidizationcharacteristics of each sorbent size, as well as to determine the minimum velocity at which eachbed size could operate. Limestone was used for start-up, then added as required during the run tomaintain bed inventory. For each limestone size, a baseline 100% load test was conducted for8 hours; the bed was then slumped, and the 50% load tests were performed the next day.

Page 57: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

9

TABLE 4

Summary of Process DataTest No.:Test Type:Date:

MDU-0297ScreeningOct. 28

MDU-0397ScreeningOct. 29

MDU-0497ScreeningOct. 30

Fuel Feed Rate, lb/hrSorbent Feed Rate, lb/hrBed MaterialSorbent

30.02.55

No. 10 silicaFisher

30.03.06

No. 10 silicaMT !1/4"

30.03.31

No. 10 silicaCamas

Fluidizing Air, scfmFG SGV1, ft/sec

487.8

47.57.7

48.47.9

Temperature, EF Bed 1 Bed 2 Bed 3 Bed 4 Bed 5 Bed 6 Average

1489151615201524158915871538

1481151115111518158915071520

1508153415391544161415261544

O2, %Excess Air, %

3.520.1

3.520.1

3.822.5

CO Content, ppmCO Content3, ppmCO, lb/MMBtu

ND2 ND ND

CO2 Content, %CO2 Content3, %

16.517.0

17.217.7

17.218.0

NOx Content, ppmNOx Content3, ppmNOx, lb/MMBtu

520536

0.654

513528

0.616

514539

0.618SO2 Content, ppmSO2 Content3, ppmSO2, lb/MMBtuSO2 Retention, %

612631

1.07269.6

600617

1.00371.6

660692

1.10568.7

Ca/S Ratio (sorbent only)Ca Utilization

1.644.6

1.839.5

1.256.1

1 Flue gas superficial gas velocity.2 Not determined.3 Corrected to 3% O2.

A summary of the process data is presented in Table 5. The test periods correspond to thosedescribed in the test matrix, with the exception of MDU-0897 T2 and T3. These two tests werenot performed since defluidization occurred at the higher-velocity test of 0897 T1. Because thelimestone was not preconditioned in any way prior to the test, the relatively high level of

Page 58: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

10

TABLE 5

Summary of Process Data

Test No.:Test Type:Date:

MDU-0597Baseline

Nov. 5

MDU-069750% – T1

Nov. 6

MDU-069750% – T2

Nov. 6

MDU-069750% – T3

Nov. 6

MDU-0797BaselineNov. 12

MDU-089750% – T1

Nov. 13

Fuel Feed Rate, lb/hrSorbent Feed Rate, lb/hrBed MaterialSorbent

31.87.32

MT 6 × 20Bed mat'l

17.81.37

MT 6 × 20Bed mat'l

17.81.37

MT 6 × 20Bed mat'l

17.81.37

MT 6 × 20Bed mat'l

38.95.39

MT 4 × 10Bed mat'l

23.40.00

MT 4 × 10Bed mat'l

Fluidizing Air, scfmFG SGV, ft/sec

47.27.6

42.76.0

33.35.1

25.54.0

47.97.8

42.05.8

Temperature, EF Bed 1 Bed 2 Bed 3 Bed 4 Bed 5 Bed 6 Average

1491151015131519158615131522

1278129513151361141313151330

1414144414581462150713921446

1415144814471442154914471458

1506153415341522157415161531

1243127613341349134212481299

O2, %Excess Air, %

3.520.0

9.180.6

6.749.4

3.016.6

3.822.2

9.7100.5

CO Content, ppmCO Content2, ppmCO, lb/MM Btu

204210

0.149

1726

0.016

1519

0.011

4040

0.028

ND1 ND

CO2 Content, %CO2 Content2, %

17.317.7

13.520.5

16.721.0

17.717.7

17.618.4

17.027.1

NOx Content, ppmNOx Content2, ppmNOx, lb/MMBtu

390401

0.467

565856

0.866

525660

0.652

200200

0.234

530554

0.624

625996

0.761

SO2 Content, ppmSO2 Content2, ppmSO2, lb/MMBtuSO2 Retention, %

303

310.05098.6

3004

4550.64081.9

250314

0.43287.8

100100

0.16395.4

303

310.04998.6

75119

0.12796.4

Ca/S Ratio (sorbent only)Ca Utilization

4.124.1

1.459.9

1.464.2

1.469.8

2.540.1

0NA

1 Not determined.2 Corrected to 3% O2.3 Fresh limestone bed resulted in minimal SO2 emissions.4 SO2 steadily increased as bed became sulfated; not equilibrium.

Page 59: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

11

calcium in the bed resulted in virtually no sulfur emissions during the baseline tests. During the50% load tests, however, the bed became sulfated, resulting in a steady increase in SO2 emissions.However, these tests were not long enough to reach an equilibrium in the bed, so the SO2 valuespresented in the table are artificially low and not representative of a steady-state condition.Characterization of SO2 was not an objective of these tests, since SO2 was characterized duringthe screening tests.

The first set of tests were performed with the 6 × 20 Montana limestone (MDU-0597 andMDU-0697). The baseline test results were very similar to those with the –1/4-inch limestone andsand bed, with a fairly uniform temperature distribution in the bed. When the coal feed rate wasdropped to 50% for Test 06-T1, the air flow rate was reduced from 8 to 6 ft/sec. The excess airlevel increased to about 80% (9.1% O2) and the temperature in the bed to dropped from about1522E to 1330EF; NOx emissions increased dramatically. A steady limestone feed rate wasrequired to maintain a consistent bed pressure drop. Test 06-T1 lasted 3.67 hours.

As the velocity was lowered to 5 ft/sec for Test 06-T2, the excess air dropped to about49% (6.7% O2), and the bed temperature rose to 1450EF. Good temperature distribution andsteady air flow rates indicated that the bed still had good fluidization at this velocity, for the 2.92-hour duration of the test. NOx emissions decreased from T1 levels.

Finally, the velocity was lowered to 4 ft/sec for Test 06-T3, which lasted 2 hours. Theexcess air dropped to about 17% (3.0% O2), the temperature stayed about the same, and the COincreased slightly, although it was still much lower than the baseline CO emissions, probably as aresult of good mixing at the lower coal feed rate. NOx emissions showed a further reduction fromT2 values to a level below baseline 100% load conditions. Fluidization characteristics remainedgood, and postrun inspection of the bed material showed no evidence of the onset ofagglomeration.

The baseline test with the 4 × 10 Montana limestone differed from the 6 × 20 baseline testin one important respect: the amount of makeup limestone required to maintain a consistent bedpressure drop was somewhat lower. Excellent fluidization was observed at 8 ft/sec.

Initially, the unit ran very well at the 50% load condition of Test 08-T1. The temperaturedistribution was good, and the air flows remained steady. As with the comparable test using 6 ×20 limestone, the temperature decreased to about 1300EF with the high level of excess air.However, 2.5 hours into the test, the bed appeared to slump, with the lowest temperatures in thebed dropping dramatically and the splash zone temperatures rising 200EF. The test was ended,and the bed material drained. Examination of the bed material revealed no agglomerates as such; itis assumed that the composition of the bed changed, either in size or density, to the point wherethe bed velocity no longer exceeded the minimum fluidization velocity of the material.

The 50% load test was repeated to verify the poor fluidization at that velocity. Fresh 4 × 10limestone bed material was used for the start-up. Fluidization was acceptable for about 2 hours,then the bed slumped suddenly. Inspection of the bed again revealed the absence ofagglomeration.

Page 60: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

12

3.4 Conclusions and Recommendations

The following conclusions can be made regarding the results of the pilot-scale testing at theEERC:

1. The three different sorbents are all acceptable candidates as bed material for the HeskettStation Unit 2. While sulfur capture performance varied among the three, the differencewas small enough to be outweighed by significant differences in cost.

2. Use of a limestone or dolomite sorbent will lower the sulfur emissions of Unit 2substantially, providing for the potential sale of SO2 credits.

3. Lowering velocity to reduce loads will dramatically reduce NOx emissions during low-load operation.

4. Because limestone and dolomite tend to inhibit bed agglomeration compared to riversand, bed turnover rate can be reduced. Makeup sorbent will be required to maintain bedinventory and/or to achieve the desired sulfur retention.

5. Reducing the top size of the fresh bed material will reduce the potential foragglomeration.

6. The sorbent use may result in greater fines production, increasing the ESP loading.However, the resistivity of the ash is similar to that of ash produced with a sand bed, soESP performance should not be compromised. The ESP has sufficient capacity to handlea reasonable increase in ash loading.

7. Reducing the top size of the bed material will allow the unit to be operated at lowervelocity and higher temperature during low-load conditions.

The EERC makes the following recommendations, based on the results of the pilot-scaletests:

1. Proceed with full-scale testing of a limestone or dolomite sorbent as bed material, with awide range of test conditions designed to assess sulfur capture performance, optimumcalcium-to-sulfur molar ratio, load-following capabilities, temperature effects, ESPperformance, and opacity.

2. Contact all three sorbent suppliers to obtain pricing information.

Page 61: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

APPENDIX B

TEST PLAN

Page 62: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

June 28, 1999

Mr. Paul EslingerResults EngineerMontana–Dakota Utilities Co.PO Box 40Mandan, ND 58554

Dear Mr. Eslinger:

Please find enclosed a test plan entitled “Optimizing Performance of the Heskett Station –Test Burn.”

If you have any questions, please feel free to call me at (701) 777-5193, fax at (701) 777-5181, or e-mail at [email protected].

Sincerely,

Michael D. MannSenior Research Manager

MDM/csd

Enclosure

c/enc: Cliff Porter, NDIC

Page 63: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

OPTIMIZING PERFORMANCE OF THE HESKETT STATION – TEST BURN

Test Plan

Prepared for:

Mr. Paul Eslinger

Results EngineerMontana–Dakota Utilities Co.PO Box 40Mandan, ND 58554Attn: Lignite Research Program

Prepared by:

Michael D. MannAnn K. Henderson

Energy & Environmental Research CenterUniversity of North Dakota

PO Box 9018Grand Forks, ND 58202-9018

April 1998

Page 64: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

i

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1.0 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 FULL-SCALE TEST BURN PLAN OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.0 SAMPLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.0 RATIONALE FOR SELECTION OF FULL-SCALE TEST PARAMETERS . . . . . . . . . 84.1 Bed Turnover and Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84.2 Fly Ash Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94.3 Limestone Feed Rate – SO2 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94.4 Limestone Type and Feed Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.5 Low-Load Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.6 High-Load Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.0 REPORTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

LIST OF FIGURES

1 Location of solid samples to be collected by MDU personnel . . . . . . . . . . . . . . . . . . . . . . 5

LIST OF TABLES

1 MDU Heskett Station Test Burn Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Solid Samples to Be Collected by MDU Personnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Page 65: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

1

OPTIMIZING PERFORMANCE OF THE HESKETT STATION – TEST BURN

1.0 SUMMARY

Montana–Dakota Utilities (MDU) Co. Unit 2 at the R.M. Heskett Station is a bubblingfluidized-bed combustor (FBC) designed to operate with river sand as its bed material. This,coupled with the quality of the coal available from the Beulah mine, has resulted in severaloperational problems that ultimately reduce the overall boiler efficiency and plant economics.Therefore, the unit currently operates in the middle to low end of the dispatch curve and hasmarginal economics. Because the FBC at the Heskett Station uses river sand as its bed materialand has no back-end sulfur control, the current regulations for SO2 control can be met only withlower-sulfur coal. Coal with an acceptable sulfur content is available from the Beulah mine and iscurrently being burned. While allowing the emission criteria to be met, this coal presentsoperational problems in the form of agglomeration of the bed material, which results in a shutdownapproximately every 6 weeks to clean out the bed. These problems are related to the high sodiumcontent in this fuel. Lower-sodium lignite is available from the Beulah mine and has been shown toreduce the problems associated with agglomeration; however, this coal has a higher sulfur content,and the current emission standards cannot be met with this coal.

Secondary problems are encountered in the FBC at the Heskett Station due primarily to theriver sand bed material. Because of the size and density of the river sand, a relatively highfluidization velocity is required to maintain good fluidization. At lower-load conditions, operationat this “minimum” velocity forces operation at very high excess air levels, with flue gas oxygenlevels running as high as 9%. In addition, this high velocity results in high levels of unburnedcarbon in the fly ash because of carryover of unburned coal, and the low bed temperature (1250EF)results in a greatly reduced unit efficiency. Attempts are made to keep the velocity and excess airlevels as low as possible; however, this has resulted in fluidization problems, leading to severeagglomeration of the bed. Adequate control of NOx is another problem related to operation at highexcess air levels.

In light of these problems, if the Heskett Station is to continue to burn the Beulah lignite,some operational changes must be implemented. A switch of bed material from river sand tolimestone is proposed. The use of the limestone will allow the SO2 emission standards to be metusing the higher-sulfur, lower-sodium lignite. The lower sodium level, coupled with the limestone,should greatly reduce the problems associated with agglomeration, as indicated by other workperformed at the Energy & Environmental Research Center (EERC) for the North DakotaIndustrial Commission (NDIC) and MDU. Switching bed materials is expected to producesecondary benefits with respect to boiler efficiency by allowing the operation to follow load atoptimal excess air levels while maintaining good fluidization qualities. These benefits will berealized by the combined effects of the proper selection of limestone size and the lower density oflimestone when compared to river sand.

The first phase of the project involved testing several candidate limestones in one of theEERC’s pilot-scale bubbling FBCs. Proper limestone selection is critical. Because the Heskett

Page 66: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2

Station operates at a relatively high velocity at full load (8–9 ft/sec), a friable limestone would beexpected to generate a significant quantity of fines and overload the fly ash removal systems. Inaddition, the particle size of the limestone will be important and should be such that low loadconditions can be met at reasonable excess air levels while maintaining good fluidization quality.The pilot-scale testing allowed these criteria to be evaluated at a relatively low cost compared tofull scale. Phase I has been completed, and the results are reported here. A full-scale test burn isbeing planned as Phase II. Testing will be performed over the entire load range and will include alonger-duration (30-day) test to quantify the expected improvements in agglomeration anddeposition.

The expected benefits of changing from sand to limestone as the primary bed material thatwill be verified by the test burn are as follows:

• The higher-sulfur, lower-sodium lignite can be used while still meeting SO2 regulations.The use of the lower-sodium lignite should also reduce the problems associated withagglomeration.

• MDU will be able to generate SO2 credits. The current market price is approximately$90/ton of SO2. If we assume a coal with 1.2% sulfur and an expected SO2 reduction of90%, the value of the SO2 credits would approximate $40/hr at full load operation.

• The tendency to agglomerate, even with the higher-sodium fuel, will be reduced, and thebed turnover rate will also be substantially reduced. This would result in lower fresh bedmakeup rates and less material for disposal.

• Boiler efficiency will be improved, especially at the lower-load conditions, by allowing theunit to be operated at lower velocities and higher bed temperatures during turndown.

• The unit will be able to operate at higher bed temperatures during full-load operation tofacilitate better carbon burnout and increase boiler efficiency.

• NOx will be controlled over the full-load range by the unit operating closer to optimumconditions.

2.0 FULL-SCALE TEST BURN PLAN OUTLINE

To determine the extent to which these benefits are realized and to allow a cost–benefitanalysis to be performed, a full-scale test burn is recommended at the Heskett Station. Thefollowing section outlines the proposed test conditions and the rationale for each. Table 1summarizes the test burn matrix for the full-scale test burn.

Page 67: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

3

TABLE 1

MDU Heskett Station Test Burn Matrix

Test Description DayMaterialBalance1

MDUOn-LinePackage2

IndividualBed DrainSamples3

EERCESP4

EERCTemp.Profile5

EERCGas

Profile6Entrained

Ash7

1. Full-Load Baseline with Sand Bed x x

2. Bed Turnover (Load Can Vary) – 4+Days

3. Baseline Test with 6 × 20 Limestone – Set up Sampling Equipment– Baseline Full-Load Test

WTh x x x x x x x

4. Begin Limestone Recycle F

5. Full-Load Baseline with Recycle M x x x x x x x

6. Full-Load Optimization – OFA Setting (More Air to Upper Port) – OFA Setting (Decrease Bed Velocity)

TT

xx

xx

xx

7. 75% Load Optimization– Lower Feed Rate (Current Method)– Lower Velocity to 4% O2

WW

xx

xx

xx

8. 50% Load Optimization– Lower Feed Rate (Current Method)– Lower Velocity to 4% O2

ThTh

xx

xx

xx

9. Full-Load Temperature Optimization – Return to Baseline– 1600E Temp., 3.5% O2

– OFA Setting (Use Test 6 as Guide)

FFS

xxx

xxx

xxx

10. Switch Limestone (Optional) – Full load with !1/4" limestone T x x x x x x x

11. Long-Term Evaluation– Weekly Sampling/Analysis x x x

1 Material Balance – Weights of coal feed, sand or limestone feed, bed material drain, mechanical collection, and ESP(MDU).

2 MDU On-Line Package – Data log of selected points (gas analysis, selected temperatures, air/gas flows, cleanlinessfactors, heat rate calculations (MDU).

3 Individual Bed Drain Samples – Collect separate samples from each bed drain rather than just the combined stream(MDU).

4 ESP – Inlet and outlet dust loadings to ESP ! not by standard EPA methods (EERC).5 Temperature Profile – Temperature profiles above the bed and at the furnace exit (EERC).6 Gas Profile – O2, CO, CO2, SO2, NOx concentrations above the bed and at the furnace exit (EERC).7 Entrained Ash – Sample of ash in flue gas at furnace exit (EERC).

1. Start-up and full-load testing on sand. The unit should be started up on sand and slowlyturned over to a limestone bed. Prior to starting, limestone feed baseline data at full-loadwith sand will be established.

Page 68: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

4

2. Turn over bed to a limestone (6 × 20) bed and stabilize unit. This operation will takeapproximately 4 days. The goals are to turn the bed over to limestone and to evaluate theimpact of increased fly ash on cyclone and ESP performance. The slow turnover shouldpreclude any rapid upsets of the unit. Specific activities are listed below.

a. Set bed drain rate to 50 tons/day. Initiate limestone feed rate at 50 tons/day. Operate for4 days to allow the bed to turnover from sand to limestone. The actual limestone feed ratewill need to be slightly higher than 50 tons/day to account for the loss in weight due tocalcination. This feed rate can be adjusted to keep the bed pressure drop at the desiredrate. The unit need not run at full load during the changeover.

b. Monitor changes in cyclone and ESP performance. Once per shift, or in whatever timeframe is practical, perform a rough material balance to determine how much material isbeing removed by each device. Continuously monitor opacity to ensure we do notapproach the emission limits.

c. Monitor the stability of the unit and fluidization quality by looking at temperature profiles.

d. Monitor SO2 emissions.

e. Collect solid samples at least every 8 hours for off-line analysis at a later date. Thesesamples may or may not be analyzed, depending upon how the transition to limestonegoes. Figure 1 and Table 2 show the sample locations.

f. Monitor ash buildup and sootblower effectiveness.

3. Full-load baseline with limestone bed. A baseline will be established for the limestone bedwithout any bed recycle. Limestone feed should have been on for at least 4 days prior to thebaseline sampling being performed.

4. Begin recycle of spent bed material. The goal is to get the unit to steady state under thedesired operating mode, that is with recycle, and to establish a balance between bed drainand fresh limestone makeup.

a. Add only as much fresh limestone as required to maintain bed height.

b. Operate in this mode until the SO2 concentration reaches a stable value. It should start outclose to zero and increase as the limestone in the bed recycle becomes fully sulfated.

Page 69: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

5

Figure 1. Location of solid samples to be collected by MDU personnel.

TABLE 2

Solid Samples to Be Collected by MDU PersonnelLocation

A1 Composite coal ash sampleB Bed material (sand) sampleC Bed drain material, Compartments B and CD Bed drain material, Compartment AE Bed drain material, Compartment DF Cyclone dust from hopperG ESP dust – 1st row precipitatorH ESP dust – 2nd row precipitatorI ESP dust – 3rd row precipitator1 Letters refer to sampling locations shown in Figure 2.

Page 70: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

6

c. If the steady-state SO2 level is higher than the target level, increase the fresh limestonefeed rate to bring the SO2 to the targeted rate. The target SO2 can be set at compliancelevel or, if MDU wants to sell credits, at a low rate. The cost of limestone versus the priceof credits will determine which is the most economically favorable.

5. Full-load baseline test with limestone recycle to determine if recycling the limestone has anyeffect on boiler performance or emissions.

6. Optimize performance at high load by varying overfire air (OFA). The goal of this set oftests would be to determine whether boiler efficiency can be increased and fines carryovercan be minimized by optimizing OFA. These tests will be performed at the same O2 and willlook only at how the air is distributed.

a. Increase the amount of OFA (amount to be determined) to the upper OFA port whiledecreasing the lower OFA. Collect data for heat rate calculation. Observe changes intemperature distribution (heat flux) and in gas composition above the bed and at thestack. Look for changes in opacity

b. Increase the amount of OFA by a second increment. For this test, decrease the amount ofair going into the bed to lower the gas velocity to approximately 6 ft/sec. Collect data forheat rate calculation, observe changes in temperature distribution, and monitor gases.

7. Optimize performance at middle load primarily by varying velocity, bed depth, and bedtemperature. The goal of this set of tests is to determine whether the already efficientoperation at middle loads can be increased. Conditions for testing will be selected based onperformance from the low- and high-load tests.

a. Bring unit to 60 MW under normal operating procedures. Collect data from heat ratecalculation.

b. Decrease velocity to obtain an O2 concentration of 3%. Set OFA split to the optimumlevel from the high-load tests. Adjust bed height to maximize bed temperature (1500EF ifpossible). Collect data for heat rate calculation. Monitor changes in gas composition.

8. Optimize operation of the unit at low load by varying the bed depth, temperature, andvelocity. The goal of this set of tests is to determine the minimum velocity and maximumtemperature at which the unit can operate at low-load conditions.

a. Reduce load by one-half using standard operating procedures. Collect data for heat ratecalculations.

b. Lower velocity to an equivalent of 4% O2 in the flue gas. Fluidization will need to bemonitored. It may be necessary to experiment with one cell to determine how low the

Page 71: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

7

velocity can be reduced while still maintaining fluidization. Collect data for heat ratecalculations.

c. At each of these conditions, reduce bed depth to lowest practical limits to maximize bedtemperature.

9. Optimize temperature at high load by varying bed temperature, bed depth, and OFA. Thegoal of this set of tests would be to determine whether boiler efficiency can be increased bymaximizing the bed temperature and optimizing OFA.

a. Bring unit to full load under normal operating procedures. Collect data for heat ratecalculation. This data point will be compared with Test Point 5 to provide an indicationof the consistency of the data.

b. Increase bed temperature to 1600EF. Collect data for heat rate calculation.

c. Increase the amount of OFA and the amount going to the upper OFA port. Lower thevelocity in the bed to 6 ft/sec. Optimal settings can be determined using results fromTest 6 as a guide. Collect data for heat rate calculation. Observe changes in temperaturedistribution (heat flux) and in gas composition above the bed and at the stack.

10. Switch to !¼” limestone. The goal is to determine the impact of the small overall sizedlimestone on fluidization quality and cyclone and ESP performance. The unit should beoperated for a day or more prior to sampling.

a. Switch to the !¼” limestone. This feed rate can be adjusted to keep the bed pressuredrop at the desired rate. The unit need not run at full load during the changeover.

b. Establish full-load conditions. This should be the same set of conditions (temperature,velocity, OFA, etc.) as was used during Tests 1, 3, and 4. Perform full sampling routine.

11. Perform a long-term recycle test to determine the impacts of limestone on long-term boilerperformance. The goals of this task would be to better determine the relationship betweenfresh limestone add rate and SO2 emissions for use in economic calculations, impacts of thelimestone on deposition rates, and whether the steady-state sodium concentration will bemaintained at a level low enough to eliminate agglomeration problems.

a. Operate the unit for 30 days with recycle of bed material and a makeup of fresh limestoneat rates determined from the first set of tests.

b. Collect solid samples on a daily basis for sodium analysis.

c. Monitor the rates of flow to the cyclone and ESP and their collection efficiency.

Page 72: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

8

d. Determine whether fouling of heat-transfer surfaces is occurring. This could be done bymonitoring changes in steam temperature or the amount of at temperating spray required.

e. Observe bed drain for evidence of agglomeration.

3.0 SAMPLING

Sampling and measurements to be taken during the test program are listed in the test matrixand include the following:

• Air flows

• O2, SO2, CO, and NOX, at the stack for all tests and at the top of the bed and at thecombustor exit for selected tests

• Opacity

• Temperatures and heat flux above the bed and at the combustor outlet

• Fly ash and bed drain quantities and chemical analysis for loss on ignition (LOI), sodiumand calcium, and carbonate

Evaluation criteria utilized will include, to some extent, all of the following:

• Heat rate• Temperature distributions• CO, SO2, and NOx concentrations• LOI of the fly ash• Visual observation of the bed and fireball

4.0 RATIONALE FOR SELECTION OF FULL-SCALE TEST PARAMETERS

4.1 Bed Turnover and Stabilization

The first task is to facilitate a changeover of the bed from sand to limestone. One option is toreplace the entire bed with fresh limestone after a shutdown. This can cause operational problems,especially with limestone breakup and blow-over as the limestone first calcines and then starts tosulfate. Calcination will occur rapidly, producing a “lightweight” calcine. The limestone becomesheavier once it is sulfated. It takes a relatively long time to sulfate the bed, however, since sulfur isslowly introduced with the coal.

The recommended method of turning over the bed is, after the initial charge of sand, toreplace the fresh sand feed with fresh limestone. This will allow the changeover to occur gradually

Page 73: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

9

and will allow any changes that occur to the system to occur at a slow enough rate that they can bemonitored. Changing the bed from sand to limestone in this way will take several days, dependingupon the drain rate of the spent bed and add rate of the fresh limestone. For example, it iscalculated that at a bed drain rate and corresponding fresh limestone feed rate of50 ton/day, 75% of the bed would be replaced with limestone after 3 days and 85% after 4 days.The changeover rate would be less if the spent bed material were recycled.

4.2 Fly Ash Distribution

The main change that is expected from the switchover to limestone is higher fly ash loadingsin both the mechanical collectors and the ESP. Any limestone will be more friable than sand andresult in more fly ash. Also, the limestone will be sized smaller than the sand so that the bed can befluidized at lower velocities. By implementing a slow transition from sand to limestone, it can bedetermined whether increases in fly ash will become a problem and, if so, at what level of limestoneto sand in the bed.

Because of the higher ash loadings, some changes in heat-transfer rates may be seen.Deposition rates on the heat-transfer surfaces are expected to change. Deposits may form at afaster rate, but should be much easier to remove with existing sootblowers. We should be able tosee short-term effects during these tests, but not long-term effects.

4.3 Limestone Feed Rate – SO2 Emissions

To optimize the add rate of limestone, it will be important to determine the level of freshlimestone required to get the desired SO2 emission reductions. It is expected that at steady state,some of the limestone will break up and be carried out of the bed as fly ash. There is no intent torecover or recycle the fly ash. The bed drain, on the other hand, would be collected and recycled.Ideally, the amount of fresh limestone required to get the desired SO2 reduction will be less thanthe amount lost in the fly ash. In this case, the control point for adding fresh limestone is tomaintain bed inventory.

A more likely case is that more fresh limestone will need to be added than is removed as flyash. In this case, the limestone feed rate will be set by the desired SO2 removal, and some of thebed material drain will not be recycled. This is acceptable, since a small fraction of the bed materialshould not be recycled to serve as a purge to keep the sodium from building up too high.

The amount of fly ash generated will be a function of the limestone chosen, since some aremuch more friable than others. One of the primary purposes of the pilot-scale tests will be to find alimestone that has a low attrition index and is not very friable.

There will be two criteria for choosing the amount of fresh limestone to add based oneconomics. Limestone could be added at a rate to bring SO2 into compliance and no lower. Asecond scenario is to bring SO2 to a very low level and generate credits for sale. A trade-offbetween limestone cost and the price of credits will determine which is the best from a purelyeconomic standpoint. From an operational standpoint, the optimal limestone add rate may favor

Page 74: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

10

one or the other, or the operations may be good over the entire range of SO2 emissions, allowingMDU to choose an add rate based on bottom line.

4.4 Limestone Type and Feed Size

The critical parameters for limestone selection will be good physical strength and not easy tobreak up. This will be important for the operation scenario where the bed material is drained andrecycled. If the limestone is too friable, it will leave the system as fly ash and could overload themechanical dust collectors and ESP. A friable limestone would probably result in a higher add ratethan a less friable one (a number of factors other than friability determine this). A friable limestonemay not generate enough bed material to facilitate the drain-and-recycle mode of operation thatwas discussed for minimizing the limestone feed rate.

The size of the limestone selected for testing will be set to fall within a range that can easilybe fluidized over the entire load range (velocity ranging from 6 to 12 ft/sec) while still being largeenough not to dramatically increase carryover. The size will be calculated based on theory andverified in pilot-scale testing.

4.5 Low-Load Operation

Under the current mode of operation, the size of the sand dictates high velocities at low-loadoperation to ensure that fluidization is not lost. The consequences of this are high excess air (O2 ashigh as 9%) and low bed temperature (as low as 1250EF), which result in low boiler efficiency andhigh NOx. If the low-load conditions could be accomplished at reduced velocity, excess air levelsand bed temperatures more closely approaching normal operation could be maintained. This wouldincrease overall efficiency at the low loads and reduce NOx. The desired change is, therefore, toselect a bed material with a smaller particle size that can be fluidized at lower velocities. Theinteraction between bed height, velocity, and bed temperature would need to be optimized.

4.6 High-Load Performance

A review of the data from the Heskett Station indicates that the unit efficiency tops out atabout 60 MW and decreases as load is further increased. The data show a significant increase inunburned carbon in the fly ash as the load increases from 60 to 80 MW. Assuming that thisaccounts for the loss in efficiency, then changes to improve carbon burnout should be investigated.The higher gas velocities at the higher load are, undoubtedly, carrying over more fine, unburnedcarbon. Higher temperatures typically favor better burnout; however, Heskett may already be fullyrealizing the benefits of higher temperatures. Increasing the OFA, which should decrease the bedvelocity, should reduce the amount of carryover, assuming that the fines currently being carriedover are not being introduced above the OFA ports. Increasing the bed depth, as a general rule,also improves carbon burnout, assuming good fluidization is maintained.

Page 75: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

11

5.0 REPORTING

After completion of the test burn, the EERC will analyze and interpret the data collectedduring the test burn. The data will be correlated graphically through simple models to allow easydetermination of the impacts of switching to limestone and changing operating conditions on theoverall performance of all major emission and operational parameters. The degree of success ofthis program will be measured by improvements in overall plant efficiency, reduction in SO2 andNOx emissions, increased run time between outages, generation of SO2 credits and, mostimportantly, an increase in the overall profitability of the plant.

Page 76: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

APPENDIX C

AVERAGE VALUES FROM TEST BURNJUNE 15–JULY 2, 1998

Page 77: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Avgs Only 2FAT4812PCEM17M2PCEM18M2PCEM19M PN004102PCEM23M2PCEM02M Calc Calc Calc CalcLoad Theor. Theor Excess O2 FG CO2 FG NOx FG SO2 Coal Feed FG Flow opacity Coal/MW FG/MW Lwr OF Air Upr OF Air A1 Bed Air A2 Bed

Start Stop MW FG/AirReq Air, scfm FG, scfh % % ppm ppm klb/hr flow scfh opacity Flow flow Flow Flow6-6 0000 0310 41.0 9.95 8.26 139 149 6,175,803 8.316-17 0000 0647 40.9 1.122 104,325 7,023,159 9.52 8.3 125 126 52.6 6,119,685 7.4 1.287 149,595 7.72 0.00 305,440 397,8226-18 0000 0557 40.5 1.122 106,821 7,191,190 9.42 8.4 137 28 54.3 6,118,320 6.2 1.338 150,903 8.83 0.00 286,659 382,3456-19 0000 0505 41.0 1.117 113,513 7,607,641 10.02 8.3 137 100 54.6 6,216,537 6.6 1.330 151,580 10.10 5.53 270,999 361,3266-20 0000 2400 40.9 1.119 110,950 7,449,183 9.82 8.3 141 39 54.4 6,147,399 6.2 1.329 150,320 8.34 0.00 290,508 387,2666-21 0000 1805 40.8 1.122 104,953 7,065,436 9.40 8.3 125 60 53.4 6,174,105 6.5 1.308 151,212 8.36 0.00 290,896 387,7506-22 0000 0745 40.9 1.122 104,325 7,023,159 9.55 8.3 126 76 52.5 6,182,002 5.7 1.283 150,970 7.79 0.00 296,529 393,0716-23 0111 0701 40.8 1.122 108,203 7,284,226 9.42 8.6 168 18 54.9 6,140,440 8.2 1.345 150,442 7.70 0.00 291,055 388,6816-24 0000 0554 41.0 1.117 112,893 7,566,089 9.90 8.7 137 46 54.6 6,139,040 5.8 1.333 149,838 8.97 0.00 287,952 387,3416-26 0111 0540 40.8 1.117 115,127 7,715,812 10.00 8.6 169 17 55.2 6,112,727 8.2 1.354 149,786 7.92 0.00 289,921 386,6796-27 0000 0544 40.5 1.119 109,583 7,357,403 9.78 7.8 146 251 54.0 6,305,132 9.8 1.333 155,622 7.92 0.00 287,526 387,3906-28 0132 0836 41.2 1.114 117,445 7,850,024 10.40 7.8 149 300 54.6 6,341,220 8.8 1.325 153,940 6.94 0.00 279,116 372,3706-28 1204 1444 41.0 1.118 113,336 7,602,579 9.92 8.2 144 374 55.1 6,166,235 8.5 1.344 150,369 7.46 0.00 288,838 385,0026-28 1644 2150 41.0 1.117 115,020 7,708,640 10.01 8.0 145 320 55.5 6,360,868 8.3 1.354 155,120 7.12 0.00 280,937 374,5336-29 0427 0800 41.0 1.115 115,172 7,705,007 10.20 8.0 149 224 54.5 6,313,533 7.7 1.330 153,957 7.08 0.00 284,424 379,0226-29 2209 2358 41.0 1.116 111,547 7,469,187 10.17 7.8 139 126 52.9 6,397,223 9.1 1.292 156,146 6.80 0.00 275,659 368,4836-30 0000 0927 41.0 1.116 114,289 7,652,791 10.17 7.8 133 131 54.2 6,546,271 8.5 1.322 159,641 6.66 0.00 277,080 369,4237-1 1830 2358 41.0 1.128 103,574 7,009,888 8.84 8.6 131 68 55.4 6,128,927 7.5 1.352 149,432 7.47 0.00 289,965 386,7587-2 0000 0706 41.0 1.126 105,562 7,131,769 9.04 8.6 115 108 55.5 6,148,580 7.8 1.354 150,083 7.49 0.00 309,167 405,2807-2 1817 2358 40.2 1.123 108,587 7,316,592 9.42 8.2 120 108 55.3 6,301,876 6.6 1.377 156,763 7.12 0.00 433,709 489,7727-3 0000 1432 40.7 1.124 107,148 7,226,061 9.23 8.3 112 106 55.5 6,263,046 6.8 1.363 153,850 7.31 0.00 289,384 385,8137-3 1947 2358 40.7 1.123 109,079 7,349,743 9.31 8.3 124 88 56.0 6,169,155 6.1 1.375 151,503 7.56 0.00 308,179 390,4177-4 0000 2358 40.5 1.124 106,471 7,180,404 9.22 8.4 117 101 55.1 6,164,896 6.2 1.362 152,287 7.65 0.00 292,224 389,5917-4 0000 1200 40.6 1.123 108,203 7,290,718 9.33 8.4 120 63 55.5 6,208,710 6.3 1.369 153,072 7.68 0.00 294,484 392,695

6-19 0714 0913 52.0 1.150 110,422 7,619,118 6.18 9.0 150 27 71.6 6,829,150 8.1 1.377 131,258 7.63 0.00 686,215 685,0246-21 1834 2210 55.0 1.141 123,387 8,447,074 7.25 10.1 129 105 74.1 6,819,338 7.6 1.347 123,911 12.80 10.94 259,174 345,3847-2 1558 1802 48.0 1.142 110,860 7,596,127 7.17 8.9 140 98 67.1 6,666,261 6.4 1.397 138,863 6.61 0.00 682,550 680,325

6-19 1719 1805 62.9 1.178 109,502 7,739,601 2.83 10.4 159 28 86.2 7,296,322 7.9 1.370 115,933 7.77 4.52 675,244 673,1286-19 1924 2106 57.5 1.160 111,054 7,729,358 4.97 10.0 173 23 77.4 6,901,206 6.9 1.345 119,939 7.30 0.00 689,605 689,3256-22 0801 0905 58.3 1.157 114,713 7,963,376 5.43 10.0 144 94 78.0 6,931,117 9.4 1.338 118,945 8.43 4.37 651,876 653,4006-24 2036 2142 58.0 1.121 109,952 7,395,372 9.33 10.3 159 4 55.4 7,003,350 7.4 0.955 120,697 7.44 0.00 334,294 445,0496-29 1900 2151 58.1 1.152 118,962 8,222,653 5.91 9.8 162 139 78.4 7,189,327 8.5 1.350 123,805 6.03 0.00 690,600 688,9017-2 1033 1542 63.0 1.174 112,672 7,936,616 3.22 11.4 126 159 86.7 6,951,419 7.0 1.376 110,301 7.39 2.78 672,667 673,5557-3 1529 1716 58.0 1.157 118,557 8,230,227 5.26 10.4 135 138 81.0 7,136,745 7.4 1.396 123,042 7.02 0.00 716,801 717,4707-3 1720 1828 63.1 1.167 119,080 8,337,982 4.13 10.8 135 194 87.3 7,376,114 8.0 1.385 116,962 7.69 3.73 700,518 699,5337-3 1829 1930 58.0 1.160 116,010 8,074,296 5.02 10.2 149 129 80.8 7,039,246 6.5 1.392 121,265 6.37 0.00 709,583 710,238

6-19 1823 1909 73.2 1.164 137,130 9,577,159 4.43 12.2 130 95 98.4 7,626,210 8.7 1.345 104,191 6.40 0.00 766,567 765,5416-22 1912 2048 67.0 1.174 118,222 8,327,558 3.19 11.8 138 79 90.9 7,123,440 7.2 1.355 106,253 6.29 0.00 711,119 710,0926-22 1126 1625 68.0 1.175 118,623 8,362,922 3.12 11.8 138 172 91.7 7,408,432 8.5 1.348 108,905 7.94 4.28 691,642 692,3186-30 1601 1759 68.3 1.175 121,659 8,576,960 3.09 11.5 133 266 94.1 7,519,948 10.2 1.377 110,035 7.10 3.24 717,640 717,049

6-06 1551 2300 73.4 ND ND NA 12.0 129 211 99 7908118 11 1.345 107,759 NA NA NA NA6-15 1525 2215 72.3 1.175 125,220 8,828,010 3.08 11.8 134 422 96.8 7,772,007 11.8 1.339 107,491 8.85 5.82 704,295 704,5346-17 0735 2202 78.2 1.178 134,303 9,492,536 2.79 11.7 139 188 105.5 8,785,059 13.5 1.349 112,407 9.25 7.14 756,010 755,8906-18 0830 2050 78.1 1.179 133,020 9,409,835 2.59 12.2 126 118 105.5 8,443,044 11.3 1.351 108,042 9.32 7.01 746,964 747,0536-19 1016 1700 78.2 1.174 139,104 9,795,147 3.36 11.8 135 117 105.8 8,684,309 12.5 1.352 111,027 10.02 8.04 757,697 757,1936-22 1635 1905 77.9 1.180 133,377 9,443,092 2.55 12.4 124 258 106.3 8,437,422 13.2 1.363 108,260 9.52 7.33 742,813 743,3516-23 1143 2008 78.5 1.179 134,617 9,522,807 2.59 12.0 113 172 106.8 8,377,502 13.3 1.360 106,742 9.49 7.49 723,569 723,4156-24 1200 2005 78.4 1.178 135,890 9,604,705 2.67 12.3 123 115 107.2 8,630,727 11.5 1.368 110,102 8.83 6.58 766,688 766,5106-25 0359 2205 77.7 1.178 134,665 9,518,122 2.69 12.5 145 93 106.2 8,062,937 12.8 1.367 103,730 9.76 7.96 676,648 676,7596-26 0902 1700 78.4 1.181 133,119 9,432,812 2.36 12.0 116 164 106.7 8,388,733 14.0 1.361 107,043 10.63 9.03 713,608 713,3706-27 1010 2057 78.5 1.179 133,357 9,433,674 2.56 12.0 145 521 105.8 8,353,553 11.8 1.348 106,385 9.40 7.09 740,024 739,3326-29 0951 1302 78.7 1.176 136,571 9,636,450 2.95 12.0 138 609 106.1 8,363,026 12.1 1.349 106,314 10.50 8.83 716,113 717,3376-29 1411 1806 78.5 1.177 136,219 9,619,786 2.91 11.4 147 476 106.5 8,763,838 14.0 1.357 111,679 9.09 7.20 735,844 736,6547-1 1115 1751 78.4 1.180 134,573 9,527,768 2.54 12.1 124 285 107.3 8,620,823 13.1 1.368 109,908 9.84 8.23 740,024 739,587

Page 78: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Calc Calc Calc Calc Calc Calc 2BTE710F 2BTE710R 2BTE720F 2BTE720M 2BTE720R 2BTE730F 2BTE730M 2BTE730RA Velocity B1 Bed B2 Bed B Velocity C1 Bed C2 Bed C Velocity D1 Bed D2 Bed D Velocity A1 front A1 rear A2 front A2 mid A2 rear B front B mid B rear

ft/sec Flow Flow ft/sec Flow Flow ft/sec Flow Flow ft/sec temp temp temp temp temp temp temp temp

1.2 721,580 721,341 6.9 721,459 722,430 7.3 731,927 711,174 4.7 515 500 515 509 502 1354 1353 13201.2 717,294 717,197 6.9 717,134 717,369 7.4 716,800 716,930 4.7 479 465 760 469 532 1305 1379 13441.0 677,045 677,227 6.6 677,275 677,454 7.2 676,841 677,476 4.6 483 466 466 470 460 1339 1427 13761.1 726,396 726,281 7.1 726,340 726,274 7.6 726,134 726,271 4.9 478 463 464 468 458 1344 1416 13761.1 727,311 727,597 7.0 727,140 727,388 7.4 727,326 727,250 4.8 470 455 456 460 450 1350 1361 13151.1 731,872 731,683 7.0 731,573 731,985 7.4 732,084 731,564 4.8 467 452 454 459 450 1330 1339 13221.1 728,508 728,677 7.1 728,530 729,107 7.5 728,033 728,508 4.8 481 465 466 471 460 1337 1376 13621.2 726,212 719,828 7.0 720,283 720,604 7.4 720,548 720,003 4.7 482 466 1009 471 461 1298 1392 13801.2 724,531 724,909 7.0 729,081 733,658 7.8 725,341 724,739 4.9 522 509 523 515 507 1353 1465 14141.1 758,218 780,169 6.7 766,874 770,046 7.6 719,117 718,873 4.7 488 471 483 483 467 1366 1446 13951.1 855,595 757,267 7.7 749,982 794,277 7.9 722,658 766,042 5.0 489 472 484 484 467 1417 1473 14221.1 819,252 721,954 6.7 722,408 722,426 6.4 721,545 722,271 4.5 489 474 485 486 470 1374 1461 13321.1 748,650 840,645 7.6 747,746 840,228 7.9 741,298 715,285 4.8 490 474 484 486 469 1389 1383 13201.1 787,013 817,062 8.0 754,750 754,572 7.9 725,058 759,660 5.0 490 472 482 483 467 1411 1465 14631.2 824,783 824,738 7.8 778,047 788,011 7.8 715,580 767,081 4.8 601 602 612 599 562 1373 1366 12871.1 788,237 911,037 8.2 782,238 782,621 7.9 736,343 828,298 5.2 490 475 483 488 470 1378 1359 12971.2 724,935 725,163 7.0 724,940 725,693 7.4 724,860 725,161 4.8 544 530 521 531 512 1381 1394 13361.2 723,263 722,638 6.9 723,083 722,685 7.3 723,539 722,157 4.8 491 477 482 489 481 1349 1357 13122.0 741,092 751,725 6.9 703,335 707,744 6.8 692,365 692,550 4.5 805 820 815 805 797 1370 1380 13331.1 775,669 775,649 7.5 747,568 747,473 7.5 721,479 721,543 4.8 483 469 472 477 465 1355 1353 13091.2 729,664 730,039 7.0 729,735 730,112 7.4 730,029 730,245 4.9 542 525 558 535 516 1365 1381 13151.1 730,427 730,566 7.1 730,532 730,547 7.4 730,577 730,582 4.9 484 470 472 477 465 1364 1390 13451.1 736,099 736,217 7.2 736,136 736,205 7.5 736,007 736,332 4.9 484 471 473 478 467 1367 1402 1363

4.4 686,011 684,981 7.0 685,608 686,130 7.1 685,901 685,153 4.5 1396 1358 1388 1374 1340 1418 1426 14191.0 659,290 658,940 6.6 658,785 658,784 6.8 658,924 658,817 4.5 482 469 493 482 474 1430 1392 13394.4 702,346 739,058 6.6 656,674 648,028 6.4 671,138 671,530 4.4 1383 1376 1385 1353 1334 1421 1404 1302

4.7 690,559 689,156 7.6 672,603 673,640 7.5 679,034 678,914 4.7 1506 1538 1491 1505 1527 1528 1581 15884.6 689,258 689,671 7.3 688,808 689,836 7.4 689,280 689,177 4.6 1411 1467 1401 1423 1447 1470 1518 15164.3 652,969 652,225 6.7 652,932 653,985 6.8 652,767 654,043 4.3 1459 1386 1445 1395 1379 1448 1450 14401.5 832,256 834,292 8.0 834,645 833,392 8.6 835,065 833,623 5.4 646 643 694 682 687 1324 1379 13374.5 736,004 827,199 7.7 730,167 811,970 7.8 689,786 689,652 4.6 1444 1435 1434 1386 1387 1456 1409 13584.5 632,417 718,560 6.5 656,989 635,219 6.7 664,660 665,044 4.5 1503 1454 1477 1435 1403 1486 1471 13514.8 717,168 716,762 7.3 717,130 716,540 7.5 716,456 717,279 4.8 1482 1439 1471 1414 1403 1486 1454 14164.7 700,160 699,333 7.2 699,913 699,262 7.4 699,542 700,069 4.7 1522 1465 1507 1451 1423 1507 1483 14334.7 710,930 710,443 7.2 710,384 709,709 7.4 709,882 710,518 4.8 1504 1437 1483 1424 1398 1495 1461 1416

5.1 765,981 766,697 8.2 766,302 767,197 8.3 767,124 766,730 5.1 1406 1456 1400 1419 1446 1465 1519 15254.8 711,321 710,923 7.6 710,863 710,784 7.6 710,693 710,389 4.8 1463 1484 1454 1446 1455 1477 1513 15044.7 691,613 691,793 7.3 692,121 691,848 7.4 691,196 691,842 4.7 1503 1450 1491 1454 1415 1498 1499 14674.9 717,384 716,771 7.3 716,955 717,650 7.8 717,207 717,439 5.0 1534 1493 1506 1483 1460 1534 1561 1479

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA4.8 704,520 704,366 7.2 704,519 704,593 7.6 708,765 708,428 4.8 1550 1500 1527 1484 1438 1523 1542 14755.2 755,825 756,290 8.1 755,834 755,659 8.2 827,073 872,728 5.8 1529 1510 1522 1491 1477 1526 1539 15185.1 751,156 752,438 8.2 747,005 747,027 8.2 749,185 750,765 5.2 1503 1543 1486 1500 1519 1515 1572 15735.2 757,357 757,158 8.2 757,306 757,655 8.3 759,086 760,179 5.3 1492 1495 1480 1482 1476 1508 1547 15415.2 742,912 743,223 8.1 743,028 743,643 8.2 743,687 742,715 5.2 1527 1545 1520 1511 1513 1525 1568 15605.0 748,266 747,977 8.2 726,678 726,591 8.0 751,466 751,219 5.2 1508 1542 1497 1494 1521 1522 1564 15665.3 801,115 800,998 8.8 764,855 764,783 8.5 766,545 766,196 5.3 1521 1567 1511 1518 1537 1533 1579 15784.7 722,756 724,744 7.9 717,680 728,645 8.0 688,057 696,645 4.8 1509 1565 1485 1506 1526 1525 1581 15774.9 713,259 713,472 7.7 713,401 713,117 7.8 713,369 713,063 4.9 1529 1509 1495 1497 1471 1514 1575 15465.1 740,210 739,423 7.7 739,185 739,461 7.9 739,444 739,437 5.1 1555 1521 1515 1494 1474 1520 1543 14955.0 717,158 717,761 7.6 717,331 716,517 7.8 717,340 717,819 5.0 1551 1526 1523 1506 1482 1534 1561 15055.1 735,899 735,990 7.6 736,043 735,838 8.0 909,481 907,588 6.3 1572 1546 1554 1519 1490 1559 1574 14735.1 739,419 739,159 7.9 739,240 739,327 8.0 774,374 774,522 5.4 1541 1536 1531 1508 1484 1532 1530 1488

Page 79: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2BTE740F 2BTE740M 2BTE740R 2BTE750F 2BTE750M 2BTE750R 2BTE760F 2BTE760M 2BTE760R 2BTE770F 2BTE770M 2BTE770R 2BTE780F 2BTE780M 2BTE780R Average 2BTE810B low front B low mid B low rear C front C mid C rear C low front C low mid C low rear D1 front D1 mid D1 rear D2 front D2 mid D2 rear Bed duct brnr out

temp temp temp temp temp temp temp temp temp temp temp temp temp temp temp Temp temp1386

1196 1152 1319 1407 1385 1427 1356 1367 1404 1429 1403 1319 1470 1397 1432 1391 4831148 1211 1337 1358 1436 1475 1319 1418 1469 1393 1401 1437 1408 1405 1465 1401 4791160 1235 1370 1390 1500 1539 1348 1478 1530 1418 1450 1504 1451 1481 1532 1451 4781171 1248 1370 1394 1474 1508 1354 1455 1501 1415 1432 1476 1437 1456 1506 1436 4801212 1192 1311 1398 1392 1407 1362 1380 1397 1423 1411 1413 1454 1436 1468 1402 4761221 1203 1318 1383 1363 1384 1353 1354 1379 1418 1394 1407 1455 1423 1456 1390 4771214 1236 1356 1386 1417 1451 1354 1401 1444 1422 1419 1440 1455 1445 1485 1416 4841108 1285 1372 1350 1422 1453 1318 1405 1452 1403 1400 1440 1415 1419 1469 1403 4781136 992 1414 1404 1532 1569 1331 1482 1565 1402 1433 1469 1426 1482 1526 1456 507

686 600 1197 1386 1427 1493 1209 1157 1329 1387 1405 1382 1409 1426 1467 1418 4871208 786 1382 1412 1446 1488 1307 1387 1364 1436 1443 1420 1465 1452 1491 1447 4921070 521 979 1387 1310 1408 1190 539 1031 1401 1415 1327 1442 1364 1104 1358 4961153 1095 1322 1399 1370 1387 1296 1372 1342 1420 1422 1294 1467 1454 1465 1398 4951234 1100 1455 1431 1468 1509 1366 1457 1450 1443 1456 1473 1458 1470 1515 1464 4911218 1032 1289 1399 1380 1347 1281 1372 1313 1429 1410 1384 1428 1389 1372 1380 5011270 1132 1296 1412 1391 1372 1364 1379 1344 1442 1428 1406 1465 1449 1469 1406 4941273 1013 1337 1426 1415 1411 1371 1395 1379 1425 1417 1419 1465 1448 1490 1419 4951262 1114 1310 1404 1382 1377 1355 1372 1350 1425 1402 1392 1468 1431 1464 1397 4891124 871 1312 1399 1387 1354 1302 1217 1172 1406 1391 1383 1414 1400 1446 1389 4931278 1133 1306 1406 1378 1364 1364 1370 1339 1430 1402 1425 1465 1436 1480 1400 4861240 1066 1313 1423 1408 1394 1373 1380 1364 1449 1425 1430 1488 1454 1510 1420 4921264 1110 1342 1413 1417 1406 1367 1391 1378 1442 1419 1408 1482 1409 1496 1416 4851267 1101 1361 1417 1429 1422 1372 1399 1393 1448 1428 1437 1493 1409 1519 1428 486

1386 1297 1416 1423 1412 1425 1396 1403 1423 1394 1370 1398 1416 1396 1431 1399 5081356 1252 1335 1459 1410 1407 1430 1400 1398 1471 1461 1468 1510 1499 1540 1449 508

981 891 1221 1439 1396 1313 1326 1337 1163 1424 1386 1364 1436 1394 1425 1384 514

1491 1503 1578 1533 1571 1585 1508 1561 1583 1506 1516 1553 1539 1542 1585 1541 5741426 1429 1509 1479 1512 1527 1449 1502 1524 1439 1445 1488 1449 1452 1505 1468 5411407 1294 1437 1459 1440 1436 1436 1434 1429 1447 1411 1424 1481 1434 1467 1435 5081149 1252 1327 1368 1429 1465 1329 1413 1464 1367 1379 1442 1385 1404 1464 1182 5061250 1129 1366 1473 1401 1357 1360 1390 1271 1465 1432 1397 1480 1407 1430 1421 5311279 1077 1145 1496 1478 1388 1449 1449 1279 1484 1459 1423 1522 1481 1516 1460 5461426 1179 1418 1499 1457 1425 1464 1446 1387 1483 1426 1390 1511 1440 1464 1451 5261453 1166 1441 1515 1484 1451 1476 1473 1398 1504 1451 1417 1534 1476 1501 1478 5301415 1131 1422 1511 1460 1427 1474 1431 1383 1489 1430 1396 1518 1449 1477 1457 526

1419 1432 1515 1474 1514 1539 1444 1504 1538 1427 1435 1503 1439 1448 1510 1466 5391445 1404 1498 1482 1496 1497 1457 1485 1494 1452 1438 1471 1485 1471 1516 1477 5461464 1366 1462 1502 1490 1469 1475 1480 1459 1490 1461 1452 1526 1491 1517 1481 5531452 971 1314 1545 1557 1504 1500 1526 1420 1534 1520 1484 1569 1536 1556 1521 553

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA1397 1075 1458 1526 1532 1506 1491 1517 1457 1517 1490 1434 1554 1451 1527 1504 5521497 1416 1513 1529 1529 1510 1500 1517 1496 1519 1470 1445 1562 1488 1519 1511 5701476 1472 1564 1519 1560 1572 1495 1551 1569 1494 1502 1541 1525 1527 1573 1531 5681473 1446 1533 1513 1536 1542 1487 1526 1538 1493 1494 1522 1525 1524 1567 1514 5631495 1459 1552 1528 1557 1546 1501 1543 1539 1521 1507 1511 1551 1539 1575 1535 5731483 1458 1558 1529 1556 1559 1507 1545 1554 1525 1508 1519 1555 1540 1575 1534 5751501 1480 1571 1539 1565 1571 1510 1555 1569 1515 1511 1531 1545 1539 1576 1543 5761481 1472 1569 1529 1571 1586 1495 1559 1584 1502 1514 1557 1527 1536 1584 1540 5851423 1363 1539 1521 1579 1562 1471 1564 1529 1506 1514 1482 1547 1532 1542 1525 6041415 1097 1501 1536 1529 1495 1484 1487 1365 1524 1513 1484 1565 1524 1530 1519 5811479 1201 1503 1542 1527 1512 1505 1529 1435 1538 1533 1494 1575 1544 1560 1530 5761504 1121 1239 1569 1545 1512 1532 1530 1401 1566 1520 1430 1610 1527 1513 1534 5861497 1317 1487 1538 1537 1489 1505 1522 1452 1540 1507 1453 1577 1539 1556 1523 586

Page 80: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2FAT482 2FPT100 2FPT260 2FPT400A 2FPT400B 2FPT400C 2FPT405 2FPT440 2FPT480 2FPT820 2FPT900 2FTE260A 2FTE260B 2FTE260C 2FTE260D 2FTE400 2FTE480Acombustibles FD Fan outair htr air out furn drft A furn drft B furn drft C windbox dust collect furn out econ gas out ID fan in air htr air out air htr air out air htr air out air htr air out furnace furn gas out

ppm press press press press press dP press press press press temp a temp b temp c temp d temp temp a

364 77.7 75.0 -0.39 -0.46 -0.40 75.3 -5.35 -1.53 -2.78 -8.58 479 510 520 528 1039 628290 76.9 74.2 -0.39 -0.45 -0.39 74.4 -5.43 -1.55 -2.81 -8.68 474 503 516 524 1046 620455 77.9 75.0 -0.39 -0.47 -0.39 75.3 -5.65 -1.61 -2.91 -8.98 475 502 516 525 1069 624364 77.5 74.8 -0.38 -0.47 -0.40 75.0 -5.44 -1.54 -2.80 -8.90 476 510 522 531 1063 638361 77.4 74.7 -0.39 -0.46 -0.39 75.0 -5.32 -1.53 -2.77 -8.85 469 508 517 526 1036 631361 77.7 75.0 -0.40 -0.46 -0.39 75.3 -5.32 -1.52 -2.76 -8.85 467 508 516 526 1002 630290 77.7 75.0 -0.39 -0.46 -0.40 75.3 -5.65 -1.60 -2.95 -9.19 501 536 551 558 1123 661460 77.8 75.0 -0.39 -0.46 -0.40 75.3 -5.30 -1.52 -2.75 -8.57 476 511 520 527 1034 629281 77.9 75.0 -0.39 -0.45 -0.40 75.3 -5.59 -1.59 -2.92 -9.08 501 536 551 558 1122 659313 77.0 74.1 -0.38 -0.47 -0.40 74.4 -5.63 -1.62 -2.94 -9.07 478 512 527 535 1073 632316 78.1 75.0 -0.38 -0.48 -0.40 75.2 -5.98 -1.70 -3.09 -9.57 484 517 533 542 1046 638223 77.9 75.0 -0.38 -0.48 -0.40 75.2 -5.46 -1.57 -2.84 -8.79 488 521 535 539 1084 647257 78.1 75.0 -0.39 -0.47 -0.40 75.3 -5.91 -1.69 -3.07 -9.56 489 522 535 541 1087 645283 78.0 75.0 -0.39 -0.48 -0.40 75.2 -5.80 -1.65 -3.00 -9.34 486 518 533 540 1044 640254 78.1 75.0 -0.40 -0.47 -0.40 75.2 -6.06 -1.73 -3.14 -9.61 495 528 538 541 1086 643297 78.3 75.0 -0.40 -0.46 -0.40 75.2 -6.36 -1.80 -3.27 -10.15 488 522 535 541 1094 644138 77.7 75.0 -0.38 -0.46 -0.40 75.3 -5.19 -1.50 -2.73 -8.33 492 520 529 530 1097 638255 77.8 75.0 -0.39 -0.46 -0.40 75.2 -5.45 -1.57 -2.86 -8.78 486 517 526 529 1064 643189 78.0 75.0 -0.40 -0.45 -0.39 75.3 -5.72 -1.64 -2.98 -9.17 494 523 529 531 1053 648285 77.5 74.7 -0.40 -0.46 -0.39 74.9 -5.55 -1.60 -2.89 -8.94 482 514 523 527 1038 636242 77.7 75.0 -0.40 -0.46 -0.40 75.2 -5.42 -1.56 -2.84 -8.73 490 521 530 533 1055 641251 77.6 74.8 -0.39 -0.47 -0.40 75.1 -5.39 -1.55 -2.83 -8.81 484 515 524 528 1044 640290 77.8 75.0 -0.39 -0.47 -0.40 75.3 -5.46 -1.57 -2.86 -8.90 484 516 525 530 1041 640

176 78.7 75.0 -0.40 -0.46 -0.38 75.2 -7.18 -2.01 -3.64 -11.39 514 543 539 539 1118 684200 78.3 75.0 -0.40 -0.46 -0.38 75.3 -6.84 -1.92 -3.49 -11.31 499 542 549 556 1166 665

66 78.4 75.0 -0.40 -0.45 -0.39 75.2 -6.48 -1.82 -3.35 -10.40 524 550 549 545 1117 680

152 80.4 75.0 -0.45 -0.51 -0.40 75.3 -7.80 -2.20 -3.96 -12.43 545 575 574 572 1214 691124 79.0 75.0 -0.41 -0.47 -0.39 75.2 -7.39 -2.06 -3.75 -11.74 531 562 560 559 1172 688117 78.9 75.0 -0.40 -0.44 -0.37 75.2 -7.82 -2.18 -3.95 -12.86 509 554 549 554 1184 710215 77.7 75.0 -0.39 -0.46 -0.39 75.3 -7.47 -2.09 -3.82 -11.88 532 557 553 552 1181 680

97 79.2 75.0 -0.40 -0.45 -0.39 75.2 -7.92 -2.25 -4.05 -12.52 536 567 567 565 1192 694385 78.7 75.0 -0.40 -0.45 -0.38 75.3 -7.47 -2.13 -3.88 -11.90 555 585 582 576 1318 725116 78.8 75.0 -0.40 -0.45 -0.38 75.2 -7.68 -2.18 -3.96 -12.36 531 565 564 562 1241 699105 79.0 75.0 -0.41 -0.45 -0.39 75.2 -8.00 -2.29 -4.12 -12.79 540 569 567 566 1297 713

90 78.7 75.0 -0.40 -0.44 -0.38 75.2 -7.41 -2.12 -3.81 -11.88 537 566 563 561 1212 705

113 78.9 75.0 -0.41 -0.47 -0.42 75.3 -8.76 -2.47 -4.45 -13.79 556 587 584 583 1320 72398 78.8 75.0 -0.40 -0.46 -0.39 75.3 -7.79 -2.18 -3.99 -12.47 551 582 577 577 1245 714

129 79.2 75.0 -0.40 -0.44 -0.37 75.3 -8.38 -2.37 -4.28 -13.58 551 595 589 587 1316 738129 79.1 75.0 -0.40 -0.44 -0.37 75.2 -8.30 -2.36 -4.27 -13.21 561 590 587 587 1353 729

NA NA NA NA NA -0.39 75 -9.22 -2.59 -4.70 -14.58 570 597 596 596 1353 743142 78.7 74.3 -0.39 -0.43 -0.37 74.5 -8.91 -2.49 -4.54 -14.16 560 589 587 589 1337 731138 80.8 75.0 -0.40 -0.45 -0.39 75.3 -11.26 -3.14 -5.68 -17.62 580 609 606 604 1366 762

93 80.2 75.0 -0.41 -0.46 -0.40 75.3 -10.27 -2.89 -5.21 -16.13 576 605 604 604 1349 747122 80.4 75.0 -0.40 -0.46 -0.39 75.2 -10.66 -2.98 -5.37 -16.78 575 608 607 607 1343 752

95 80.0 75.0 -0.41 -0.46 -0.40 75.3 -9.99 -2.78 -5.10 -15.97 575 611 607 609 1370 75499 80.4 75.0 -0.40 -0.46 -0.37 75.3 -10.03 -2.84 -5.16 -16.06 618 652 649 647 1406 80395 80.4 75.0 -0.40 -0.45 -0.39 75.3 -10.68 -2.98 -5.44 -16.86 583 615 612 612 1350 75846 80.5 75.1 -0.39 -0.44 -0.38 75.3 -10.38 -2.89 -5.27 -16.50 599 628 624 624 1370 776

163 80.1 75.0 -0.41 -0.45 -0.38 75.3 -10.13 -2.87 -5.20 -16.20 618 653 649 647 1407 804106 80.3 75.0 -0.39 -0.47 -0.40 75.3 -10.30 -2.93 -5.27 -16.31 594 621 618 617 1405 773119 80.1 75.0 -0.40 -0.47 -0.40 75.2 -10.00 -2.86 -5.12 -15.82 586 614 614 613 1381 763150 81.3 75.0 -0.39 -0.45 -0.38 75.3 -11.42 -3.23 -5.79 -17.95 594 624 623 619 1406 775

89 80.5 75.0 -0.40 -0.45 -0.39 75.3 -10.51 -2.95 -5.38 -16.63 596 624 621 617 1408 776

Page 81: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2FTE480B 2FTE480C 2FTE480D 2FTE480E Avg 2FTE510 2FTE511 2FTE512 2FTE513 2FTE514 2FTE515 2FTE520 2FTE521 2FTE522 2FTE523 2FTE524 2FTE525furn gas out furn gas out furn gas out furn gas out Furn Bed - furn pri tube 4 pri tube 12 pri tube 20 pri tube 28 pri tube 36 pri tube 44 ht tube 5 ht tube 9 ht tube 13 ht tube 17 ht tube 21 ht tube 26

temp b temp c temp d temp e gas out gas out temp temp temp temp temp temp temp temp temp temp temp temp

641 663 669 679 656 735 646 680 737 770 736 759 742 762 751 739 761 792634 656 665 671 649 751 640 674 729 768 753 760 740 762 750 736 758 791635 660 676 685 656 794 645 672 725 778 775 806 748 769 756 743 762 799649 676 680 687 666 770 645 674 738 785 754 786 749 769 756 744 768 803647 669 671 679 660 743 642 679 736 769 738 777 741 763 753 741 761 791645 665 670 680 658 731 641 680 729 753 729 770 733 754 746 733 752 778676 714 717 730 699 717 653 676 740 802 764 794 767 783 769 752 783 820643 663 672 682 658 746 645 683 736 766 736 772 742 764 753 739 761 789674 712 715 729 698 758 653 676 739 802 765 794 767 783 769 752 784 820645 677 686 695 667 751 654 683 751 821 779 795 768 791 776 762 789 831653 685 694 706 675 772 656 687 754 817 779 811 767 789 777 764 787 827660 691 693 699 678 680 658 694 765 833 777 796 774 797 786 773 795 836661 686 690 701 677 721 659 701 765 814 768 809 770 795 784 769 792 829656 685 691 700 674 789 652 686 748 803 764 796 759 779 769 755 777 811663 690 688 695 676 705 659 702 756 795 747 778 760 782 772 756 778 809664 689 691 701 678 728 658 700 750 788 758 804 760 784 774 757 779 811657 675 671 674 663 756 653 699 749 786 730 749 753 776 765 748 769 803662 679 677 683 669 728 647 695 739 778 733 770 747 770 763 745 766 796666 681 678 681 671 718 665 699 734 760 721 736 751 767 753 739 755 785655 672 671 678 662 738 647 696 742 777 733 767 746 770 763 747 766 798661 680 679 684 669 751 649 696 742 773 731 760 748 771 761 744 764 796657 676 675 681 666 750 646 693 742 778 734 766 747 770 762 746 766 798657 676 676 682 667 761 648 694 743 779 735 771 748 771 763 746 767 799

687 686 681 682 684 715 719 715 736 723 691 700 775 776 755 744 753 771685 710 716 717 699 750 654 705 739 786 755 762 755 778 770 755 773 802690 697 687 684 688 697 700 711 732 740 693 696 766 771 752 739 749 772

693 695 696 697 695 846 723 728 764 745 709 715 793 794 774 763 773 788692 698 699 696 695 773 710 719 758 743 706 708 781 784 766 756 765 784713 719 706 705 710 725 715 720 737 735 698 711 778 784 763 751 761 775684 682 679 679 681 501 724 730 760 738 701 699 786 791 770 759 767 778706 715 707 708 706 715 714 729 762 786 713 728 797 803 784 769 780 810734 739 727 721 729 731 733 740 772 785 709 718 806 816 795 781 789 815712 722 710 708 710 741 703 721 760 776 709 728 789 797 780 769 783 805718 717 710 711 714 764 732 739 772 780 712 738 810 818 798 782 790 817708 707 701 701 705 753 726 724 758 765 697 719 795 800 779 763 774 798

731 733 741 738 733 733 723 742 776 775 730 732 804 816 796 785 790 815713 713 712 712 713 764 731 730 764 762 700 714 797 802 778 765 773 794746 754 740 736 743 738 732 737 768 766 708 720 799 809 787 777 784 809733 730 729 733 731 790 738 751 771 776 724 738 819 827 806 789 794 818

746 743 747 748 745 741 752 778 781 729 725 814 825 801 790 796 824737 734 737 739 736 769 730 741 767 765 720 716 803 813 791 781 785 811767 760 762 761 763 748 757 765 778 776 726 720 821 831 803 791 796 820754 750 758 760 754 777 741 754 771 770 736 736 814 824 800 788 793 818761 760 768 768 762 752 734 748 765 773 739 740 807 820 797 786 789 818760 763 767 768 762 773 743 756 768 773 736 738 816 829 802 790 794 822818 815 823 823 816 718 737 755 763 774 738 730 815 822 800 789 795 820767 767 771 771 767 777 741 754 766 773 736 735 815 823 798 787 791 820782 780 784 785 781 759 745 758 762 765 734 734 814 822 798 787 790 813820 817 824 822 818 707 736 754 764 775 738 730 815 822 800 788 794 821781 772 777 778 776 743 762 774 789 798 747 742 835 849 822 808 814 842773 771 778 778 772 758 748 765 775 806 764 747 830 843 819 804 810 845785 784 783 779 781 753 755 768 790 809 739 735 830 843 818 804 812 842783 779 778 779 779 744 759 771 773 795 744 746 831 843 817 802 807 838

Page 82: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2FTE526 2FTE527 2FTE528 2FTE529 2FTE820A 2FTE820B 2FTE820C 2FTE820D Avg bed - 2FTE860A 2FTE860B 2FTE860C 2FTE860D 2FTE870A 2FTE870B 2FTE870Cht tube 30 ht tube 34 ht tube 38 ht tube 42 econ out econ out econ out econ out Avg econ avg econ air htr gas in air htr gas in air htr gas in air htr gas in air htr gas out air htr gas out air htr gas out

temp temp temp temp temp a temp b temp c temp d out out temp a temp b temp c temp d temp a temp b temp c

800 802 794 820 522 552 570 566 553 839 532 558 576 558 262 272 263804 806 796 817 518 548 568 563 549 852 524 555 572 559 264 273 266814 815 807 838 520 548 573 572 553 897 527 555 575 563 259 269 261814 810 806 831 530 559 581 574 561 875 535 565 585 567 267 277 266801 799 795 822 528 556 574 568 556 846 530 563 578 559 269 278 267789 789 787 813 527 555 573 568 556 834 529 564 578 558 268 275 264834 830 826 850 547 581 609 603 585 831 558 592 615 593 280 289 281801 800 796 823 525 555 571 570 555 848 531 562 576 560 267 276 267834 831 827 851 545 579 607 602 583 873 557 591 614 593 280 289 281851 844 832 859 528 558 583 580 562 855 534 568 589 570 262 271 262848 843 835 865 533 565 592 588 570 878 541 572 596 579 263 273 262856 848 837 862 535 567 590 581 568 790 543 576 596 574 272 281 271844 838 831 864 537 570 590 585 571 827 545 580 597 578 275 284 274832 827 819 845 534 567 590 584 569 895 541 575 596 576 264 274 263824 818 810 832 536 570 589 581 569 811 548 581 597 576 272 279 272827 824 821 846 540 572 591 587 573 833 549 580 597 579 268 277 267811 804 793 813 529 559 574 563 556 863 539 570 582 558 277 284 277809 800 798 822 533 563 578 571 561 836 541 571 584 563 267 276 267796 790 786 804 537 566 580 573 564 825 545 573 586 564 274 284 276808 803 798 822 529 560 575 569 558 842 536 568 582 561 267 277 268807 800 794 815 532 563 579 573 562 858 540 572 586 567 271 280 272808 802 797 820 532 561 577 571 560 856 538 569 583 563 270 280 270811 805 799 822 533 563 578 573 561 866 539 570 585 565 266 277 266

777 772 768 778 567 589 593 581 582 817 577 598 600 575 273 283 276820 818 809 821 563 597 619 608 597 852 567 608 623 599 288 297 285782 768 766 776 563 586 592 582 581 803 575 599 604 578 287 295 289

802 797 787 799 579 603 609 596 597 944 597 621 621 600 301 310 303795 791 783 795 574 601 607 595 594 874 589 616 617 594 288 297 291785 776 768 779 594 615 619 605 608 827 595 623 626 596 285 292 282796 789 779 791 570 590 592 582 583 599 586 605 603 585 289 296 292821 806 792 809 581 609 618 604 603 818 593 623 629 604 291 298 291836 811 801 812 600 626 631 615 618 843 611 640 644 613 303 311 305815 798 790 807 586 614 621 607 607 844 592 624 631 603 294 303 294829 809 802 818 596 619 623 612 613 865 602 630 634 608 296 306 298806 788 786 800 587 608 613 601 602 855 595 620 625 599 293 302 295

828 828 812 820 606 635 645 630 629 837 621 649 651 625 301 311 305810 791 784 800 596 616 619 610 610 866 609 633 630 609 304 313 308822 803 794 807 617 641 647 631 634 847 624 658 658 626 309 318 312836 823 814 826 608 631 635 625 625 896 619 644 647 625 309 318 311

841 829 814 819 620 646 653 639 640 635 658 665 637 305 316 307826 820 804 811 610 636 642 632 630 874 622 648 653 629 306 315 309839 829 811 815 638 663 670 652 656 855 652 678 682 651 306 315 307832 831 818 823 625 651 662 648 647 884 639 668 671 648 312 321 315830 826 816 820 630 659 671 655 653 861 645 676 679 653 312 322 314837 829 819 825 633 656 662 656 652 884 643 672 671 651 320 329 322836 830 821 825 663 701 710 701 694 840 683 722 723 695 331 341 332834 828 817 824 637 663 669 658 657 887 653 680 682 657 316 325 317829 823 814 819 646 674 683 671 668 871 666 697 695 672 324 334 325836 829 820 824 665 703 712 701 695 830 685 724 725 695 331 342 332861 849 835 842 646 672 677 665 665 854 658 686 688 662 317 326 317860 853 837 843 639 666 674 664 661 869 652 680 685 662 318 325 317859 839 825 831 649 677 683 666 669 865 664 694 697 668 322 329 321854 843 832 837 645 671 677 663 664 859 659 688 691 662 325 333 324

Page 83: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

2FTE870D Avg bed -2PCEM04M2PCEM05M 2SJT100 PN00684 PN00685 PN00689 PN00690 PN00752 PN00847 PN00851 PN00867 PN00880 PN00891air htr gas out Avg air htr avg air htr Temp F PAMB Net Power Gross turb ht rt Net turb ht rt Gross unit ht rt Net unit ht rt Net unit ht rt Vol FG/lbm fuel boiler eff calc blr eff dry gas loss

temp d gas out gas out temp psia MW BT/KWH BT/KWH BT/KWH BT/KWH BT/KWH CF/#FU % ????????? % %

264 265 1126 298 13.6 34.9 8591 10077 10768 12631 12631 76.1 80.7 536967.5 79.8 7.31265 267 1134 298 13.3 34.5 8845 10386 11093 13025 13026 76.4 79.8 553884.7 78.9 7.36261 262 1188 293 13.5 34.9 8891 10448 11158 13113 13113 76.2 80.7 580515.5 79.7 7.50271 271 1166 293 13.5 34.9 8857 10382 11151 13071 13071 76.4 80.5 568148.2 79.2 7.69272 272 1131 293 13.5 34.8 8706 10209 10938 12826 12825 75.8 80.4 540353.2 79.3 7.48268 269 1121 293 13.7 34.9 8572 10052 10763 12621 12621 76.7 80.7 535163.7 79.6 7.43282 283 1133 322 13.5 34.7 8946 10472 11205 13117 13117 76.3 80.7 553753.8 79.8 7.34268 269 1134 299 13.6 35.0 8983 10551 11277 13245 13244 76.4 80.7 572384.3 79.7 7.51281 283 1173 323 13.5 34.7 9042 10638 11464 13488 13488 75.9 80.7 584571.7 78.9 8.27263 265 1153 293 13.4 34.3 8805 10410 11069 13086 13085 76.7 79.8 567218.8 78.6 7.52262 265 1182 294 13.6 34.8 8852 10462 11157 13187 13187 76.3 80.7 596533.5 79.3 7.83272 274 1084 299 13.6 34.8 8978 10582 11313 13334 13335 75.0 80.7 578605.6 79.4 7.83276 277 1120 306 13.6 34.7 9041 10691 11418 13501 13501 77.1 80.7 587428.3 79.2 8.02265 267 1197 294 13.6 34.7 8889 10502 11196 13228 13228 76.3 80.7 586048.6 79.4 7.76269 273 1107 309 13.6 34.6 8623 10216 10899 12914 12913 75.7 80.7 568693.5 79.1 8.00267 270 1136 300 13.7 34.6 8831 10463 11137 13196 13195 76.7 80.7 580859.4 79.3 7.87274 278 1141 311 13.7 34.8 9029 10627 11308 13310 13310 75.7 80.7 536395.4 79.8 7.36268 269 1127 298 13.6 34.9 9045 10645 11300 13299 13297 76.9 80.7 543292.2 80.0 7.16275 277 1112 311 13.7 34.0 9194 10867 11556 13660 13660 75.8 80.7 558694.7 79.6 7.65270 271 1130 299 13.6 34.6 9066 10673 11357 13369 13369 76.2 80.4 554532.5 79.5 7.34272 274 1146 304 13.7 34.8 9177 10733 11512 13464 13465 75.7 80.7 561848.2 79.7 7.49273 273 1143 300 13.7 34.6 9077 10613 11381 13307 13307 76.4 80.5 549352.6 79.5 7.41269 269 1158 296 13.7 34.7 9147 10701 11455 13400 13400 76.5 80.7 556428.0 79.9 7.33

279 278 1121 299 13.5 44.8 9190 10668 11346 13170 13169 75.0 80.7 589895.1 81.0 6.31290 290 1159 307 13.7 47.9 9001 10344 11211 12883 12884 75.4 80.7 640466.6 80.3 7.00288 290 1095 325 13.6 40.9 9323 10923 11599 13589 13590 75.6 80.7 577004.8 80.4 6.94

302 304 1237 334 13.5 55.4 9135 10381 11306 12847 12847 74.5 80.6 643023.8 80.8 6.47292 292 1176 321 13.5 50.3 8971 10273 11118 12731 12731 74.9 80.7 622751.1 80.7 6.61287 287 1149 296 13.7 50.8 8957 10263 11043 12653 12651 74.5 80.7 604011.8 81.1 6.19289 292 890 328 13.5 50.7 9011 10547 11382 13323 13324 75.2 80.7 555558.8 79.2 7.99289 292 1128 323 13.6 50.4 9016 10376 11162 12847 12846 74.9 80.7 624532.3 80.8 6.55305 306 1154 330 13.6 55.4 9195 10464 11314 12874 12875 74.0 80.6 598650.3 81.3 6.02297 297 1154 318 13.7 50.7 9325 10660 11529 13180 13180 74.6 80.7 621787.7 80.9 6.43299 300 1178 320 13.7 55.5 9269 10531 11418 12973 12972 74.0 80.6 631009.7 81.2 6.13296 296 1161 320 13.7 50.8 9264 10582 11439 13066 13064 74.2 80.7 611159.7 81.0 6.31

306 306 1160 326 13.5 65.1 8992 10090 11058 12408 12406 73.8 80.5 677475.9 81.3 6.00305 308 1169 334 13.7 59.2 9041 10222 11130 12584 12584 73.9 80.6 625758.6 81.2 6.06313 313 1168 330 13.7 60.3 9008 10166 11111 12541 12541 74.0 80.5 630716.4 81.1 6.20310 312 1209 334 13.7 60.4 9161 10370 11288 12777 12777 74.0 80.5 644903.1 81.2 6.13

308 309 331 14 65.3 8990 10098 11065 12429 12429 73.9 80.5 671247.0 81.2 6.04310 310 1194 330 13.4 64.4 8863 9956 10930 12277 12277 73.2 79.7 667012.2 80.3 6.13307 309 1202 329 13.6 69.7 9017 10114 11095 12445 12445 73.9 80.4 713549.7 81.3 6.03314 316 1215 338 13.4 69.8 9023 10103 11116 12447 12447 73.8 80.4 707371.1 81.2 6.13315 316 1198 332 13.5 69.8 9035 10125 11161 12507 12507 74.0 80.4 733093.9 81.0 6.34321 323 1212 343 13.7 69.6 9113 10207 11252 12603 12602 73.9 80.4 710686.7 81.0 6.29334 335 1199 356 13.5 70.2 9094 10179 11217 12554 12554 73.8 80.4 715114.9 81.1 6.20317 319 1224 336 13.6 70.0 9152 10239 11308 12651 12651 73.9 80.4 721218.4 80.9 6.36325 327 1213 354 13.5 69.4 9131 10222 11299 12650 12649 73.9 80.4 715470.4 80.8 6.45335 335 1190 355 13.5 70.1 9094 10165 11278 12606 12606 73.8 80.4 707686.6 80.6 6.59317 319 1199 341 13.5 70.0 9007 10104 11112 12466 12465 73.8 80.4 708525.1 81.1 6.23317 319 1211 334 13.6 70.1 9017 10110 11136 12486 12486 73.9 80.4 723322.0 81.0 6.32320 323 1211 346 13.6 69.8 9066 10196 11211 12608 12609 73.9 80.4 724893.1 80.9 6.42323 326 1197 346 13.7 69.9 9140 10254 11297 12674 12673 73.8 80.4 717253.5 80.9 6.37

Page 84: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

PN00892 PN00893 PN00894 PN00895 PN00896 PN00897 PN00898 PN00900 PN00922 PN00927 PN00932 PN00937 PN00947unb C fuel H2O loss H2 loss air H2O loss atomizng st rad loss misc loss heat duty flbed 2 hpsh2 psh2 econ2 bed sh2

% % % % % % % Mbtu/h clean factr cleanliness cleanliness cleanliness cleanliness

0.47 6.31 4.21 0.08 0.00 0.84 0.97 352 1.07 1.19 1.04 0.81 1.180.47 6.24 4.17 0.08 0.00 0.76 0.96 363 1.04 1.28 1.04 0.79 1.290.47 6.30 4.21 0.09 0.00 0.78 0.97 364 1.01 1.50 1.02 0.82 1.500.47 6.31 4.21 0.09 0.00 0.78 0.97 363 1.01 1.32 1.00 0.77 1.370.47 6.31 4.21 0.09 0.00 0.81 0.97 357 1.05 1.19 1.03 0.78 1.380.47 6.32 4.22 0.09 0.00 0.85 0.97 351 1.11 1.15 1.03 0.78 1.330.47 6.32 4.21 0.08 0.00 0.77 0.97 367 1.09 1.21 1.03 0.78 1.260.47 6.31 4.21 0.09 0.00 0.77 0.97 365 1.04 1.41 1.05 0.80 1.320.47 6.33 4.23 0.10 0.00 0.75 0.97 369 0.91 1.28 0.84 0.77 1.040.47 6.25 4.17 0.09 0.00 0.77 0.96 361 0.91 1.38 1.00 0.77 0.820.47 6.31 4.21 0.09 0.00 0.78 0.97 364 0.90 1.41 0.98 0.79 1.000.47 6.31 4.21 0.09 0.00 0.76 0.97 368 0.92 1.33 1.03 0.78 0.890.47 6.31 4.21 0.09 0.00 0.74 0.97 371 0.92 1.29 1.03 0.78 0.950.47 6.32 4.21 0.09 0.00 0.78 0.97 364 0.95 1.31 0.98 0.78 1.190.47 6.31 4.21 0.09 0.00 0.83 0.97 354 0.97 1.05 0.98 0.82 0.900.47 6.31 4.21 0.09 0.00 0.79 0.97 362 0.94 1.17 0.96 0.79 0.830.47 6.32 4.21 0.08 0.00 0.74 0.97 370 1.06 1.03 1.08 0.82 1.020.47 6.32 4.21 0.08 0.00 0.75 0.97 370 1.06 1.08 1.03 0.80 1.060.47 6.31 4.21 0.09 0.00 0.75 0.97 370 1.06 0.94 1.02 0.80 1.250.47 6.29 4.19 0.08 0.00 0.73 0.97 371 1.04 1.12 1.06 0.78 0.980.47 6.32 4.22 0.09 0.00 0.73 0.97 374 1.06 1.09 1.03 0.79 1.140.47 6.30 4.20 0.09 0.00 0.75 0.97 368 1.05 1.13 1.05 0.77 1.010.47 6.32 4.22 0.08 0.00 0.74 0.97 371 1.05 1.15 1.05 0.77 1.05

0.48 6.37 4.25 0.07 0.00 0.54 0.98 479 1.06 0.56 1.06 0.87 1.450.48 6.39 4.26 0.08 0.00 0.53 0.97 495 0.92 1.03 0.96 0.82 1.130.47 6.36 4.24 0.08 0.00 0.56 0.97 448 1.08 0.61 1.01 0.84 1.24

0.48 6.43 4.29 0.07 0.00 0.48 0.98 576 0.97 0.61 1.09 0.91 1.240.48 6.39 4.27 0.07 0.00 0.52 0.97 517 0.98 0.61 1.04 0.88 1.280.48 6.40 4.27 0.07 0.00 0.52 0.98 521 1.00 0.56 1.00 0.81 1.040.47 6.33 4.23 0.09 0.00 0.74 0.97 370 1.05 1.17 1.18 0.83 1.250.47 6.39 4.26 0.07 0.00 0.51 0.97 524 0.92 0.65 1.01 0.89 0.960.48 6.43 4.29 0.07 0.00 0.48 0.97 579 0.94 0.55 1.06 0.86 0.710.48 6.40 4.27 0.07 0.00 0.50 0.97 541 0.94 0.70 1.03 0.83 0.900.48 6.41 4.28 0.07 0.00 0.48 0.98 583 0.91 0.62 1.11 0.84 0.760.48 6.40 4.27 0.07 0.00 0.50 0.97 540 0.97 0.60 1.06 0.85 0.93

0.48 6.44 4.30 0.07 0.00 0.43 0.98 658 0.90 0.64 0.95 0.91 0.930.48 6.44 4.30 0.07 0.00 0.46 0.98 607 0.97 0.54 1.08 0.90 1.040.48 6.45 4.31 0.07 0.00 0.46 0.98 612 0.90 0.53 1.00 0.85 0.870.48 6.44 4.30 0.07 0.00 0.45 0.97 629 0.87 0.61 1.07 0.88 0.75

0.48 6.45 4.31 0.07 0.00 0.43 0.98 660 0.88 0.57 0.96 0.89 0.740.47 6.39 4.27 0.07 0.00 0.43 0.97 647 0.88 0.58 0.95 0.87 0.770.48 6.46 4.31 0.07 0.00 0.40 0.98 705 0.88 0.50 0.83 0.90 0.710.48 6.47 4.32 0.07 0.00 0.40 0.98 705 0.90 0.59 0.84 0.91 0.820.48 6.47 4.32 0.07 0.00 0.40 0.98 707 0.87 0.63 0.79 0.89 0.810.48 6.48 4.32 0.07 0.00 0.40 0.98 710 0.89 0.60 0.84 0.89 0.760.48 6.48 4.32 0.07 0.00 0.40 0.98 713 0.88 0.58 0.80 0.90 0.760.48 6.47 4.32 0.07 0.00 0.39 0.97 716 0.88 0.60 0.81 0.91 0.780.48 6.49 4.33 0.07 0.00 0.40 0.98 710 0.88 0.55 0.77 0.86 0.760.48 6.51 4.35 0.07 0.00 0.40 0.98 713 0.84 0.55 0.70 0.82 0.610.48 6.48 4.32 0.07 0.00 0.40 0.98 707 0.84 0.56 0.84 0.87 0.550.48 6.47 4.32 0.07 0.00 0.40 0.98 709 0.84 0.66 0.83 0.86 0.570.48 6.48 4.32 0.07 0.00 0.40 0.98 711 0.83 0.55 0.80 0.88 0.530.48 6.48 4.32 0.07 0.00 0.39 0.98 717 0.84 0.59 0.82 0.88 0.54

Page 85: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

APPENDIX D

PROCESS DATA FROM PREVIOUS OPERATION,CLEAN AND DIRTY

JULY 10, 1997 (DIRTY)JULY 17, 1997 (CLEAN)

Page 86: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Load Coal Feed FG FlowMW FG O2 FG CO2 FG NOx FG SO2 klb/hr flow scfm opacity Lower OF air Upper OF air A1 Flow A2 Flow A Velocity B1 Flow B2 Flow

PCEM06M FAT481PCEM17MPCEM18MPCEM19M PN00410PCEM23MPCEM02M Coal/MW FG/MW scfh scfh scfh scfh ft/sec scfh scfh 7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

42.7 12.5 7.6 133 129 62.4 6,464,462 4.62 1.463 151,407 439,715 151,861 523,532 820,300 3.4 803,773 810,30340.7 9.1 9.2 144 191 53.8 5,767,027 4.27 1.322 141,685 443,292 147,333 312,424 424,274 1.2 779,328 783,05139.4 9.3 9.1 142 193 55.3 6,080,580 5.03 1.405 154,505 820,133 752,333 275,382 375,324 1.1 705,675 687,91040.1 9.7 8.8 132 179 53.0 6,168,492 4.71 1.320 153,650 750,881 537,732 300,810 398,336 1.1 737,421 745,69137.5 9.9 8.7 134 170 54.4 5,966,294 4.64 1.451 159,062 507,552 216,860 315,798 428,037 1.2 786,593 791,58537.7 10.1 8.6 135 162 53.9 5,887,174 4.84 1.429 156,099 481,127 186,547 314,903 415,713 1.2 797,810 790,66738.2 10.2 8.8 137 167 53.6 5,872,522 5.79 1.403 153,799 554,920 303,971 308,178 418,839 1.2 762,497 765,75138.0 10.4 9.0 139 174 54.1 5,919,408 4.71 1.422 155,624 458,637 149,449 323,345 429,598 1.2 819,300 802,60052.9 8.0 16.9 18 13 72.2 6,962,630 12.77 1.365 131,634 713,749 621,265 572,895 677,089 3.1 791,676 802,64577.4 3.2 12.4 151 541 106.6 8,671,053 8.72 1.376 111,998 937,717 816,571 882,607 892,416 6.0 888,048 886,32271.2 2.5 11.5 154 322 104.5 8,128,930 7.03 1.469 114,203 587,712 301,947 926,205 931,280 6.3 924,890 923,80454.2 5.4 17.0 -1 2 75.7 7,000,726 5.64 1.396 129,065 454,823 146,549 843,520 829,655 5.3 833,473 833,15278.2 3.6 12.2 138 574 107.7 9,028,562 13.77 1.378 115,480 828,226 593,124 968,214 977,241 6.7 1,025,981 1,025,25577.5 3.0 12.4 140 445 105.4 8,216,842 7.50 1.360 106,092 926,782 809,438 844,941 846,513 5.7 846,255 840,70077.0 4.5 12.2 142 453 106.6 8,398,526 8.28 1.383 109,015 868,304 677,547 896,958 897,541 6.1 888,888 894,37476.7 3.6 12.2 145 483 105.4 8,433,691 8.06 1.374 109,889 933,149 816,753 894,634 898,277 6.1 866,479 862,00378.0 4.0 12.3 149 421 106.0 8,495,229 8.45 1.359 108,903 905,382 829,864 893,744 869,155 6.0 885,701 880,47678.4 3.3 12.5 137 464 109.0 8,703,288 9.11 1.390 110,987 948,987 827,922 913,658 900,364 6.2 917,773 906,80078.8 4.0 12.4 155 424 108.2 8,430,761 8.30 1.373 106,952 917,567 800,715 861,580 848,913 5.9 881,654 875,55077.9 2.9 12.1 159 398 110.1 8,342,849 7.86 1.414 107,151 832,784 753,900 876,840 866,248 5.9 881,092 883,25577.6 2.6 12.1 153 416 106.7 8,594,863 8.52 1.375 110,763 496,737 244,526 955,261 981,973 6.7 1,047,214 1,067,61175.0 4.2 11.6 161 359 108.0 7,997,062 8.16 1.439 106,602 468,752 175,200 903,886 895,519 6.1 994,447 1,001,95876.8 2.8 12.8 137 475 106.3 7,953,106 7.52 1.384 103,548 893,441 777,625 825,509 815,590 5.6 818,673 819,96578.0 3.2 12.7 147 465 106.6 8,087,904 7.50 1.366 103,643 895,001 781,599 845,898 840,993 5.8 847,865 831,73262.0 7.5 10.3 194 185 89.5 6,906,953 5.57 1.444 111,442 432,945 147,382 829,682 811,192 5.4 824,450 827,92140.3 10.3 8.5 151 181 54.6 6,271,056 5.20 1.353 155,523 433,153 141,696 310,206 410,429 1.2 873,792 878,24840.7 10.4 8.3 147 178 56.2 6,373,620 7.30 1.381 156,700 443,095 143,899 316,414 414,443 1.2 889,501 892,34039.4 10.0 7.2 109 175 55.8 6,203,657 5.47 1.419 157,632 434,937 136,674 307,379 408,248 1.2 870,269 865,06640.6 10.5 8.8 147 188 54.0 6,247,613 5.98 1.328 153,713 506,196 247,011 299,431 405,260 1.1 838,942 851,64339.5 10.7 8.6 146 188 55.6 6,587,539 5.54 1.408 166,889 448,827 139,946 312,576 424,316 1.2 990,688 1,001,37539.6 10.4 8.5 148 178 55.9 6,382,411 6.18 1.409 160,976 433,666 134,148 306,334 396,546 1.1 972,512 967,38739.3 10.2 8.2 146 178 55.8 6,438,089 5.98 1.421 163,833 439,215 127,063 309,704 410,432 1.2 982,545 977,01557.9 2.8 16.8 19 20 79.9 7,027,099 20.37 1.378 121,295 761,296 657,836 702,941 707,783 3.8 788,806 792,25977.0 3.1 11.2 174 451 108.6 9,550,173 10.79 1.409 123,963 883,299 780,965 914,695 905,380 6.3 1,041,210 1,040,27368.0 3.0 11.5 149 320 95.2 7,894,498 8.18 1.400 116,171 531,183 229,471 902,490 901,256 6.1 899,559 903,38876.4 3.4 12.4 127 436 106.3 8,539,185 8.99 1.391 111,733 902,322 832,817 885,427 887,986 6.1 886,280 887,00477.3 2.6 12.4 130 488 105.3 8,477,647 9.26 1.363 109,708 467,982 137,445 929,947 932,304 6.4 1,102,648 1,102,48476.5 3.4 11.8 158 394 108.9 8,624,167 7.91 1.424 112,802 916,732 800,479 880,229 873,784 6.0 951,912 959,46176.9 3.2 12.1 158 432 106.6 8,694,497 8.16 1.387 113,072 790,609 619,011 886,214 882,785 6.1 1,027,361 1,011,12376.6 3.4 12.3 142 397 107.6 8,295,962 8.23 1.404 108,260 912,182 793,933 857,599 864,277 5.9 863,591 880,12178.4 4.0 3.6 1 0 108.5 8,243,215 1.384 105,159 904,100 788,400 847,019 843,748 5.8 881,937 876,60478.7 2.7 11.7 144 468 109.5 9,019,771 8.08 1.392 114,680 561,308 312,049 980,987 965,133 6.7 1,105,343 1,106,41978.4 2.9 11.6 143 453 108.7 9,213,177 11.04 1.386 117,445 737,725 518,466 956,942 953,029 6.6 1,094,027 1,089,37977.9 2.2 12.2 133 412 109.6 8,372,153 7.77 1.408 107,487 798,734 636,637 827,399 824,047 5.6 943,270 942,55978.3 2.6 12.2 152 387 107.6 8,545,046 6.11 1.374 109,132 787,454 583,860 878,598 874,582 5.9 996,833 986,40278.9 2.7 12.6 146 363 108.6 8,509,881 6.01 1.376 107,875 866,713 724,744 879,927 887,942 5.9 926,585 924,20479.1 2.8 12.5 153 345 107.2 8,630,028 6.20 1.355 109,114 666,207 402,921 966,289 977,146 6.5 997,301 998,21978.5 3.4 12.2 156 321 109.5 8,761,896 6.20 1.395 111,609 525,613 152,229 1,037,393 1,042,393 6.9 1,058,629 1,060,42053.9 8.4 8.9 178 97 80.5 7,349,443 4.64 1.492 136,230 417,171 125,180 798,306 778,013 4.9 1,003,556 1,001,62739.8 10.4 8.2 155 116 54.1 6,546,514 3.47 1.360 164,628 440,025 119,753 313,860 424,651 1.2 1,007,565 994,61339.3 10.3 7.5 154 111 53.2 6,947,978 3.88 1.354 176,808 443,230 120,851 316,431 423,413 1.2 999,776 989,26340.1 10.5 7.9 155 113 57.1 7,006,586 4.37 1.423 174,653 446,741 121,956 317,877 420,465 1.2 1,001,760 1,008,32239.8 10.7 7.9 157 118 56.1 6,877,649 3.15 1.410 172,828 456,120 125,206 321,739 431,044 1.2 1,012,895 1,005,30142.1 10.2 8.7 154 157 57.7 6,505,488 3.47 1.371 154,596 452,482 115,904 322,696 428,750 1.2 914,681 913,62941.8 9.9 8.5 134 165 58.7 6,657,869 4.35 1.402 159,104 750,423 553,855 299,505 384,382 1.1 834,970 827,14040.5 10.3 8.6 146 160 55.9 6,569,957 4.71 1.379 162,111 459,597 117,996 328,648 440,733 1.2 929,354 918,524

Page 87: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

B Velocity C1 Flow C2 Flow C Velocity D1 Flow D2 Flow D Velocity A1 front A1 mid A1 rear A2 front A2 mid A2 rear B1 front B1 mid B1 rear B low front B low midft/sec scfh scfh ft/sec scfh scfh ft/sec BTE710F BTE710M BTE710R BTE720F BTE720M BTE720R BTE730F BTE730M BTE730R BTE740F BTE740M

7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

7.3 806,850 798,411 7.6 806,746 813,186 5.2 893 915 971 1007 1030 1053 1275 1325 1348 875 10106.6 787,406 790,380 7.4 793,511 782,775 5.2 516 511 508 491 491 474 1310 1256 1484 902 5195.8 683,843 682,058 6.4 688,965 700,750 4.5 502 486 475 474 476 460 1311 1290 1439 873 5046.0 745,065 756,500 7.0 746,279 745,791 4.8 492 469 458 465 468 452 1302 1414 1403 920 4926.3 796,979 806,493 7.4 806,412 796,295 5.1 486 465 453 461 464 448 1291 1404 1377 888 4906.4 793,150 800,054 7.3 802,524 787,189 5.1 485 465 452 459 463 447 1281 1404 1348 1028 4906.2 759,205 761,232 6.9 757,681 762,058 4.8 485 465 453 460 464 449 1287 1396 1344 1033 5306.7 809,816 801,513 7.2 803,946 805,264 5.2 486 466 454 461 465 450 1298 1396 1337 1042 6757.5 805,402 802,407 8.0 760,297 749,328 4.9 854 869 818 1102 1016 998 1289 1314 1309 1145 12129.7 926,421 920,352 9.8 962,911 973,792 6.7 1550 1486 1436 1526 1456 1428 1539 1568 1577 1501 1431

10.1 962,389 977,000 10.5 993,068 990,724 6.9 1535 1495 1449 1495 1446 1430 1529 1574 1584 1481 14638.2 862,047 867,460 8.2 834,143 831,852 5.4 1388 1371 1333 1359 1328 1327 1389 1416 1438 1185 1152

11.3 994,401 976,794 10.8 1,046,299 1,026,289 7.2 1561 1525 1470 1542 1480 1445 1557 1591 1578 1520 14919.1 870,772 886,447 9.3 873,273 866,029 6.1 1543 1508 1422 1504 1452 1400 1523 1567 1564 1456 13929.6 916,638 926,610 9.8 917,610 917,083 6.4 1543 1505 1419 1496 1446 1404 1529 1571 1575 1424 13389.1 909,778 896,975 9.3 879,854 880,504 6.1 1549 1510 1422 1497 1443 1406 1527 1566 1566 1373 11419.6 920,817 917,769 9.8 898,252 901,735 6.3 1549 1510 1427 1516 1451 1409 1536 1569 1568 1442 13989.9 937,767 926,398 9.9 918,538 922,732 6.4 1567 1526 1445 1533 1457 1428 1546 1579 1579 1405 14459.4 900,834 894,117 9.5 923,027 931,378 6.5 1558 1530 1463 1523 1461 1443 1541 1581 1584 1235 13479.4 922,838 916,349 9.7 895,737 914,161 6.3 1559 1499 1443 1517 1451 1433 1533 1561 1551 1374 1310

11.7 971,354 973,850 10.7 1,124,118 1,144,668 8.0 1520 1540 1487 1567 1497 1496 1575 1594 1582 1523 150811.0 944,935 945,956 10.3 1,037,746 1,012,424 7.1 1466 1513 1472 1520 1462 1468 1548 1574 1574 1486 14908.3 853,006 858,873 9.1 831,476 840,600 5.8 1554 1505 1448 1511 1450 1416 1528 1582 1585 810 11748.8 856,504 875,848 9.2 846,446 854,139 5.9 1566 1519 1458 1518 1460 1430 1545 1587 1587 1161 11877.6 855,841 847,113 8.1 830,141 831,736 5.5 1469 1442 1392 1412 1381 1370 1437 1466 1553 571 6757.9 981,966 986,704 9.3 779,729 776,067 5.0 500 504 507 500 494 478 1332 1421 1325 1234 5377.6 1,000,981 1,000,298 9.4 788,220 790,284 5.2 503 485 473 483 479 462 1372 1470 1334 1274 5077.1 967,976 967,281 9.1 776,388 767,140 5.1 497 476 462 473 470 451 1365 1455 1096 1280 4976.9 952,575 942,967 8.9 745,480 757,917 5.0 496 475 460 471 468 450 1371 1459 1077 1283 496

10.1 998,253 1,004,814 9.8 790,500 792,365 5.2 496 475 459 470 467 449 1362 1419 1452 1275 12849.9 972,924 977,044 9.7 762,384 765,744 5.0 494 473 459 471 468 450 1379 1434 1466 1286 13029.9 969,804 989,213 9.8 770,338 771,708 5.1 490 471 458 471 469 452 1359 1411 1438 1254 13197.9 779,207 789,354 8.0 685,848 698,984 4.7 964 967 940 1251 1141 1191 1375 1385 1414 1275 1294

11.4 1,099,367 1,067,986 11.9 1,130,905 1,144,384 7.9 1555 1553 1512 1558 1509 1489 1548 1584 1573 1498 14739.6 918,855 929,260 10.0 1,029,779 1,028,096 7.0 1462 1510 1466 1477 1434 1439 1513 1568 1595 1335 12939.5 887,857 891,994 9.4 937,187 950,088 6.5 1546 1545 1491 1503 1448 1432 1520 1568 1559 1463 1293

12.2 1,051,887 1,046,241 11.5 1,061,152 1,052,381 7.4 1536 1540 1493 1540 1487 1492 1559 1587 1584 1502 146910.5 906,776 914,094 9.9 903,541 931,013 6.4 1541 1529 1501 1529 1473 1500 1550 1594 1594 1500 145911.2 910,621 911,428 10.0 1,038,102 1,034,471 7.2 1508 1549 1526 1556 1498 1525 1570 1591 1568 1531 14379.5 848,585 843,126 8.8 919,021 911,632 6.3 1468 1532 1483 1507 1459 1493 1529 1580 1579 1490 13749.5 848,931 848,478 8.5 898,742 900,830 6.2 1507 1533 1481 1515 1456 1475 1534 1578 1580 1491 1308

12.2 1,021,981 1,026,826 11.2 1,188,462 1,184,102 8.3 1493 1541 1507 1560 1494 1514 1572 1586 1574 1528 147412.1 1,000,694 1,027,244 11.1 1,147,653 1,130,137 8.0 1510 1536 1515 1573 1502 1506 1580 1598 1577 1546 149410.3 896,546 906,703 9.8 1,004,469 993,549 6.9 1453 1529 1465 1537 1485 1472 1546 1579 1587 1488 140610.9 937,950 934,091 10.2 986,923 988,410 6.9 1428 1523 1452 1538 1476 1462 1549 1581 1591 1482 146210.1 890,904 886,566 9.2 964,090 966,577 6.7 1380 1498 1410 1516 1456 1424 1535 1558 1580 1468 142010.8 954,068 968,349 10.1 1,052,921 1,060,744 7.3 1383 1497 1410 1524 1454 1417 1543 1567 1556 1486 140111.5 999,534 1,023,533 10.3 1,141,292 1,141,323 7.9 1385 1492 1417 1512 1441 1414 1539 1555 1555 1465 13759.8 999,772 1,002,146 9.6 791,195 785,160 5.2 1285 1384 1329 1342 1290 1315 1350 1334 1340 1268 1247

10.0 993,229 995,762 9.4 784,324 786,883 4.7 492 495 492 496 492 473 1356 1406 1401 1263 126310.0 1,000,722 1,000,617 9.4 1,003,271 983,822 6.2 478 478 467 480 477 459 1366 1420 1417 1284 127410.1 1,000,411 1,011,365 9.9 1,004,803 1,009,116 6.5 488 474 462 475 473 454 1364 1422 1418 1296 129910.1 1,018,645 1,029,900 10.1 904,004 902,837 6.0 485 473 461 474 473 455 1342 1400 1420 1262 13098.9 920,179 915,058 8.8 918,157 916,136 6.1 473 472 460 473 473 456 1377 1510 1583 1286 5687.2 837,208 831,225 8.0 829,499 829,158 5.5 483 471 458 474 474 457 1383 1494 1466 1304 5127.9 923,434 935,328 8.9 913,450 918,170 6.0 479 468 455 470 469 451 1388 1495 1372 1301 505

Page 88: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Averageduct brnr out combustibles FD Fan outB low rear C front C mid C rear C low front C low mid C low rear D1 front D1 mid D1 rear D2 front D2 mid D2 rear Bed temp ppm pressBTE740R BTE750F BTE750M BTE750R BTE760F BTE760M BTE760R BTE770F BTE770M BTE770R BTE780F BTE780M BTE780R Temp BTE810 FAT482 FPT100

7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

1328 1331 1378 1257 1308 948 1375 1306 1342 1362 1340 1408 1416 1341 527 453 78.81013 1363 1411 1338 1317 532 1492 1350 1377 1395 1362 1479 1506 1386 488 267 77.0889 1374 1419 1379 1326 527 1515 1353 1387 1397 1367 1455 1395 1380 483 278 77.5546 1361 1434 1342 1312 516 1488 1343 1378 1421 1350 1432 1261 1370 470 282 77.8555 1345 1404 1319 1309 517 1425 1331 1363 1428 1345 1417 1314 1361 470 284 77.5554 1332 1430 1301 1301 533 1283 1336 1361 1429 1353 1428 1305 1359 473 298 77.1526 1344 1413 1262 1306 581 1277 1352 1361 1435 1359 1425 1260 1353 475 313 77.8532 1344 1409 1119 1308 598 1244 1348 1370 1422 1368 1437 1291 1345 477 298 77.5

1296 1376 1405 1257 1339 1353 1378 1424 1415 1412 1366 1406 1441 1368 496 432 81.11573 1543 1570 1405 1529 1306 1496 1519 1494 1489 1518 1562 1597 1532 563 2 79.71583 1535 1580 1454 1518 1498 1513 1482 1467 1506 1517 1563 1586 1531 577 328 79.21455 1414 1421 1284 1346 749 1338 1369 1358 1385 1362 1448 1443 1394 529 17 78.61574 1562 1586 1413 1539 1566 1502 1544 1508 1484 1541 1574 1579 1543 566 4 80.81570 1526 1567 1388 1513 1350 1475 1501 1494 1504 1535 1585 1586 1528 564 0 80.11580 1537 1570 1398 1514 1349 1480 1507 1494 1495 1538 1588 1585 1532 565 -25 78.91571 1532 1558 1319 1510 1136 1443 1512 1487 1494 1519 1588 1592 1522 557 2 79.71568 1538 1562 1388 1518 1430 1445 1515 1494 1474 1546 1588 1576 1529 574 -26 80.51580 1553 1564 1347 1532 1428 1442 1529 1498 1474 1559 1588 1572 1532 575 1 80.11592 1548 1567 1363 1528 1311 1451 1519 1494 1476 1557 1589 1585 1534 571 2 80.41561 1546 1549 1315 1527 1360 1449 1518 1495 1482 1549 1591 1590 1523 570 55 80.31582 1578 1589 1415 1561 1563 1530 1554 1498 1484 1563 1588 1596 1551 574 198 81.81575 1560 1584 1429 1549 1542 1489 1497 1481 1475 1540 1579 1570 1534 577 2 79.91583 1528 1562 1367 1505 1364 1462 1507 1486 1425 1503 1585 1542 1517 562 1 79.81587 1549 1554 1391 1534 1322 1442 1519 1492 1448 1546 1588 1553 1530 571 -14 80.01559 1467 1482 1313 1431 622 1359 1408 1421 1312 1425 1539 1476 1442 556 43 78.81185 1373 1396 1194 1340 950 1305 1354 1357 1347 1306 1508 1495 1367 497 260 78.0543 1408 1469 1245 1342 619 1370 1393 1407 1369 1337 1523 1541 1406 489 252 78.1490 1393 1468 1241 1359 688 1370 1387 1407 1328 1299 1533 1551 1377 479 267 77.5492 1407 1467 1221 1376 646 1377 1392 1401 1365 1290 1535 1562 1379 480 286 78.3

1468 1393 1432 1202 1370 1144 1331 1390 1396 1330 1320 1549 1545 1399 480 313 78.01475 1403 1449 1230 1380 1229 1364 1391 1402 1319 1291 1518 1547 1402 482 267 77.81439 1391 1435 1249 1362 1321 1375 1393 1395 1312 1345 1549 1560 1403 481 236 78.61416 1440 1466 1250 1406 1410 1387 1476 1464 1512 1308 1563 1590 1437 499 14 80.51569 1569 1580 1430 1555 1552 1522 1526 1491 1490 1533 1589 1598 1543 562 2 81.61596 1526 1578 1412 1508 1542 1520 1469 1457 1430 1434 1582 1589 1513 547 66 79.51564 1528 1562 1361 1512 1337 1490 1497 1481 1438 1502 1587 1590 1516 561 -14 80.11581 1568 1593 1411 1554 1546 1519 1527 1504 1452 1534 1590 1584 1541 567 48 80.21589 1556 1590 1422 1539 1490 1542 1519 1499 1480 1522 1586 1593 1542 565 -30 79.61574 1573 1586 1404 1561 1554 1512 1532 1490 1467 1532 1582 1588 1540 571 2 81.21578 1528 1580 1369 1504 1175 1496 1501 1489 1449 1520 1588 1586 1525 573 8 80.41578 1531 1580 1379 1511 762 1467 1512 1494 1454 1528 1590 1577 1528 575 18 80.51572 1576 1592 1417 1560 1561 1513 1540 1493 1466 1541 1588 1592 1545 578 392 81.01573 1585 1590 1396 1567 1561 1536 1556 1507 1480 1550 1593 1605 1551 577 380 81.31582 1552 1591 1407 1538 1520 1524 1506 1483 1467 1522 1587 1590 1535 571 197 79.81588 1556 1591 1373 1543 1521 1532 1518 1488 1484 1526 1587 1589 1536 572 2 80.91578 1540 1582 1341 1524 1078 1516 1507 1482 1463 1527 1589 1584 1524 571 2 80.81554 1548 1568 1335 1530 1225 1508 1519 1487 1464 1520 1591 1582 1523 575 144 79.81557 1547 1560 1369 1526 849 1498 1508 1485 1461 1523 1588 1572 1522 579 107 80.31331 1365 1366 1145 1332 1259 1281 1369 1373 1335 1356 1579 1450 1363 546 125 78.81406 1381 1425 1231 1293 841 1356 1375 1383 555 1236 1509 1437 1308 494 344 77.51428 1402 1432 1200 1358 768 1364 1333 1321 1357 1207 1372 1424 1354 482 344 78.51421 1400 1447 1253 1368 1066 1405 1352 1355 1383 1324 1460 1475 1388 485 361 78.41429 1384 1444 1245 1359 1115 1413 1378 1374 1447 1331 1490 1528 1399 486 359 77.51494 1413 1530 1357 1322 599 1518 1395 1420 1430 1282 1538 1574 1451 487 344 78.0497 1423 1537 1332 1370 581 1494 1415 1417 1364 1312 1540 1568 1437 485 360 78.0496 1423 1526 1348 1377 558 1482 1382 1395 1406 1360 1467 1490 1421 483 383 77.9

Page 89: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

air htr air out furn drft A furn drft B furn drft C windbox dust collect furn out econ gas out ID fan in air htr air outair htr air outair htr air outair htr air out furnace furn gas out furn gas outpress press press press dP press press press press temp a temp b temp c temp d temp temp a temp bFPT260 FPT400A FPT400B FPT400C FPT405 FPT440 FPT480 FPT820 FPT900 FTE260A FTE260B FTE260C FTE260D FTE400 FTE480A FTE480B

7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

75.8 -0.27 -0.34 -0.27 75.9 -5.26 -1.34 -2.59 -8.25 526 557 558 549 1010 641 66574.7 -0.55 -0.62 -0.55 75.0 -4.69 -1.38 -2.49 -7.14 481 513 521 521 1052 620 63774.7 -0.50 -0.59 -0.49 75.3 -5.54 -1.52 -2.78 -8.54 477 507 516 516 1065 623 63575.0 -0.41 -0.48 -0.40 75.3 -5.17 -1.40 -2.62 -7.96 469 496 505 505 1057 621 63474.7 -0.44 -0.51 -0.43 74.9 -4.75 -1.31 -2.45 -7.31 465 496 506 510 1016 621 63474.6 -0.45 -0.52 -0.45 75.0 -4.86 -1.35 -2.51 -7.47 466 498 509 514 997 624 63875.5 -0.34 -0.40 -0.33 75.7 -4.83 -1.26 -2.44 -7.53 468 500 510 513 1004 626 63975.0 -0.41 -0.48 -0.39 75.2 -4.70 -1.26 -2.43 -7.30 468 502 513 518 996 626 63974.9 -0.19 -0.22 -0.13 74.8 -10.20 -2.48 -4.89 -15.61 485 524 532 537 1116 671 69374.5 -0.45 -0.49 -0.41 74.7 -10.18 -2.69 -5.01 -15.45 566 603 597 593 1328 770 77875.0 -0.43 -0.49 -0.41 75.2 -8.07 -2.17 -4.03 -12.38 577 616 607 593 1343 747 76275.1 -0.38 -0.42 -0.36 75.2 -6.92 -1.84 -3.41 -10.71 528 560 558 546 1162 676 69075.4 -0.70 -0.75 -0.68 76.0 -10.62 -3.00 -5.34 -15.94 568 603 597 592 1396 759 76575.0 -0.38 -0.45 -0.38 75.3 -9.20 -2.44 -4.53 -14.00 568 599 593 586 1337 751 75774.7 -0.42 -0.47 -0.40 74.9 -8.41 -2.22 -4.18 -12.78 570 600 595 590 1323 754 76174.7 -0.26 -0.33 -0.24 74.9 -9.43 -2.41 -4.60 -14.39 564 596 589 586 1320 757 76675.1 -0.37 -0.44 -0.36 75.1 -9.81 -2.57 -4.80 -14.93 577 610 605 599 1344 765 77674.8 -0.52 -0.58 -0.50 75.1 -10.29 -2.82 -5.11 -15.61 576 609 604 601 1409 751 75774.9 -0.42 -0.48 -0.40 75.2 -9.83 -2.61 -4.85 -14.96 573 604 600 596 1348 747 75574.7 -0.23 -0.29 -0.21 74.5 -9.73 -2.47 -4.74 -14.91 573 605 602 598 1340 756 76375.5 -0.38 -0.42 -0.34 75.5 -11.05 -2.92 -5.45 -16.81 576 611 605 599 1367 769 77575.3 -0.39 -0.43 -0.36 75.9 -8.20 -2.19 -4.03 -12.60 579 615 608 597 1332 746 75874.9 -0.21 -0.27 -0.19 74.8 -9.26 -2.20 -4.48 -14.22 567 599 593 589 1329 755 76474.7 -0.49 -0.55 -0.48 75.3 -9.71 -2.63 -4.81 -14.62 575 607 602 598 1337 764 77374.9 -0.41 -0.46 -0.39 75.5 -6.91 -1.86 -3.45 -10.69 558 590 586 577 1224 710 72175.0 -0.32 -0.38 -0.33 75.1 -5.47 -1.46 -2.74 -8.53 492 520 529 529 1045 629 64875.0 -0.36 -0.43 -0.36 75.4 -5.30 -1.40 -2.65 -8.22 482 512 522 524 1041 626 64574.8 -0.43 -0.51 -0.44 75.1 -5.39 -1.49 -2.76 -8.29 472 503 513 520 1006 624 63975.3 -0.42 -0.50 -0.42 75.7 -5.47 -1.50 -2.79 -8.42 471 504 515 521 1008 627 64275.1 -0.32 -0.40 -0.32 75.2 -5.51 -1.43 -2.75 -8.56 470 505 517 524 1012 629 64474.8 -0.40 -0.48 -0.40 75.2 -5.67 -1.53 -2.87 -8.75 472 508 518 525 1008 632 64975.4 -0.38 -0.46 -0.38 75.7 -5.61 -1.51 -2.83 -8.70 470 506 516 522 1003 631 64975.0 -0.28 -0.35 -0.27 75.2 -10.17 -2.62 -4.96 -15.43 488 528 535 541 1139 696 70474.7 -0.32 -0.38 -0.31 74.9 -11.94 -3.07 -5.76 -18.22 570 602 592 589 1356 771 77675.3 -0.31 -0.39 -0.32 75.2 -8.42 -2.18 -4.16 -12.97 550 581 574 566 1351 713 72774.8 -0.38 -0.43 -0.36 75.0 -9.92 -2.62 -4.89 -15.08 566 597 592 587 1353 750 75975.2 -0.57 -0.62 -0.56 75.5 -9.97 -2.79 -5.01 -15.05 572 605 599 595 1364 759 76774.1 -0.30 -0.35 -0.28 74.1 -10.07 -2.61 -4.93 -15.40 569 602 597 592 1323 744 75774.9 -0.26 -0.31 -0.24 74.9 -10.70 -2.76 -5.20 -16.34 572 609 602 597 1362 757 77275.2 -0.40 -0.45 -0.39 75.3 -9.78 -2.60 -4.85 -14.85 573 608 605 600 1323 745 76175.0 -0.33 -0.40 -0.34 75.4 -9.68 -2.53 -4.73 -14.80 575 610 608 605 1331 750 76874.7 -0.42 -0.45 -0.41 75.7 -11.08 -2.94 -5.41 -16.90 574 613 608 604 1412 751 77174.9 -0.35 -0.40 -0.33 75.1 -11.51 -2.88 -5.55 -17.68 575 612 607 600 1386 756 77274.3 -0.39 -0.45 -0.37 74.6 -10.02 -2.66 -4.94 -15.24 578 608 600 592 1365 759 77075.4 -0.46 -0.53 -0.45 75.9 -10.19 -2.79 -5.07 -15.40 582 612 601 595 1371 766 77675.6 -0.35 -0.42 -0.33 75.8 -9.73 -2.58 -4.78 -14.77 580 610 602 597 1362 765 77774.9 -0.68 -0.74 -0.66 75.1 -10.27 -2.97 -5.19 -15.34 583 615 608 603 1372 772 78776.1 -0.63 -0.69 -0.61 76.5 -9.12 -2.61 -4.64 -13.71 585 617 612 608 1351 768 78474.8 -0.47 -0.55 -0.46 75.0 -7.99 -2.20 -3.99 -12.30 548 578 577 566 1153 691 70174.9 -0.31 -0.39 -0.32 75.0 -5.84 -1.56 -2.92 -9.11 490 519 527 532 1014 624 64674.9 -0.45 -0.53 -0.45 75.2 -6.49 -1.80 -3.28 -9.93 476 509 518 524 1015 632 65474.9 -0.50 -0.57 -0.48 75.2 -6.54 -1.82 -3.30 -10.03 476 513 522 526 1029 639 66074.8 -0.42 -0.50 -0.42 74.9 -6.11 -1.66 -3.08 -9.42 477 514 523 528 1012 637 65874.9 -0.38 -0.47 -0.39 75.2 -5.75 -1.56 -2.90 -8.86 476 514 525 531 1026 635 65174.6 -0.45 -0.52 -0.43 74.7 -6.53 -1.77 -3.29 -10.09 475 512 525 529 1055 636 65175.1 -0.38 -0.46 -0.37 75.6 -5.75 -1.51 -2.88 -8.91 470 511 521 527 1019 635 651

Page 90: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

furn gas out furn gas out furn gas out Avg pri tube 4 pri tube 12 pri tube 20 pri tube 28 pri tube 36pri tube 44 ht tube 5 ht tube 9 ht tube 13 ht tube 17 ht tube 21 ht tube 26temp c temp d temp e Furn Bed - furn temp temp temp temp temp temp temp temp temp temp temp tempFTE480C FTE480D FTE480E gas out gas out FTE510 FTE511 FTE512 FTE513 FTE514 FTE515 FTE520 FTE521 FTE522 FTE523 FTE524 FTE525

7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

672 689 688 671 736 648 673 743 779 751 716 723 736 737 740 748 781650 668 672 649 830 656 693 751 793 776 751 744 766 768 768 777 825651 669 675 651 804 656 683 747 815 796 770 750 761 767 750 778 835651 669 679 651 781 643 666 727 790 775 767 731 739 750 733 757 808649 672 680 651 766 649 670 734 790 781 767 739 743 753 738 764 813652 678 687 656 772 650 673 740 786 783 772 740 745 754 740 765 807654 679 689 657 767 645 667 730 778 776 768 734 738 749 735 760 802655 682 692 659 778 645 667 731 780 777 770 735 739 748 736 760 800724 751 762 720 686 658 712 753 842 829 808 763 773 791 772 788 845761 772 773 771 791 755 756 748 774 744 720 800 799 801 790 780 808747 749 738 748 815 730 729 764 768 720 686 784 785 786 777 779 788682 683 674 681 767 721 749 769 763 711 677 772 781 778 781 774 793752 766 764 761 813 777 774 774 798 762 731 833 830 830 820 811 839740 756 753 751 834 763 764 765 800 769 728 810 810 816 806 796 830745 761 763 757 831 745 747 749 787 764 732 797 795 801 795 785 817750 767 769 762 826 750 748 750 794 770 735 800 799 806 798 788 822758 773 774 769 819 750 754 756 793 768 734 801 803 807 800 789 820745 765 769 758 831 765 797 773 785 769 746 820 843 839 827 807 835741 758 756 752 838 747 752 770 802 766 727 802 806 811 806 796 824749 767 767 760 831 739 750 759 794 762 727 791 799 801 798 787 817758 768 766 767 820 763 764 768 794 751 722 802 806 809 799 792 815743 753 745 749 829 724 725 750 775 728 693 777 782 782 775 776 789747 766 768 760 824 755 758 758 794 769 735 805 806 810 803 791 824755 774 778 769 819 754 755 756 793 769 736 804 807 807 800 789 821705 718 711 713 827 713 711 733 747 716 680 758 759 761 756 752 765655 675 681 658 850 669 705 749 793 774 748 755 772 769 766 770 809654 675 682 657 867 668 697 762 813 803 773 759 775 776 772 786 829654 680 690 657 875 659 682 751 800 799 782 749 762 763 755 777 821658 683 693 661 874 656 678 749 801 797 780 747 753 761 749 774 819661 688 700 664 885 654 682 740 789 795 783 743 750 760 748 769 807662 688 698 666 852 656 687 741 788 787 768 746 758 761 754 768 806661 686 699 665 884 652 685 736 777 777 778 738 746 754 746 761 795725 748 757 726 837 735 756 764 821 814 793 809 805 818 800 797 841750 752 754 761 828 796 797 766 754 723 708 820 826 809 803 787 798715 719 711 717 865 754 763 785 793 741 707 812 817 824 813 806 821746 762 757 755 832 756 764 772 810 773 734 806 811 817 808 800 833752 765 766 762 828 760 751 766 793 754 729 808 808 810 800 794 816745 762 762 754 832 729 742 760 787 755 721 787 795 799 792 785 804759 768 764 764 818 740 758 776 803 751 717 794 802 807 800 795 816755 775 773 762 826 735 749 759 813 781 737 795 799 806 801 789 828759 780 781 768 822 733 741 756 809 774 740 795 801 804 800 789 827759 767 763 762 826 739 756 776 801 743 716 797 807 814 809 798 821755 764 760 761 832 766 772 786 810 761 732 815 821 825 814 807 834747 757 750 757 830 770 780 770 793 749 717 812 819 817 806 797 821751 761 758 762 825 774 777 769 791 752 721 813 820 817 802 797 820755 770 771 768 822 773 775 767 797 764 733 817 816 820 808 800 829764 779 777 776 815 765 777 770 804 764 733 816 820 821 810 802 831763 781 783 776 812 752 758 759 796 763 732 804 808 808 798 792 822690 706 712 700 878 731 711 732 734 730 721 771 763 766 760 756 773653 677 690 658 851 667 711 749 787 787 790 744 763 767 768 770 813663 683 693 665 707 670 705 768 828 794 779 760 772 778 776 786 829672 689 697 671 789 668 704 770 825 790 768 760 771 778 778 788 830671 691 699 671 819 663 694 757 811 792 770 752 764 770 768 778 819671 692 701 670 867 655 679 753 810 794 783 749 755 762 754 777 822676 693 703 672 869 646 674 736 807 791 780 738 745 758 744 769 816670 689 695 668 799 655 680 756 817 787 768 747 751 760 752 774 821

Page 91: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

ht tube 30 ht tube 34 ht tube 38 ht tube 42 econ out econ out econ out econ out Avg bed - air htr gas inair htr gas inair htr gas outair htr gas out Avg bed -temp temp temp temp temp a temp b temp c temp d Avg econ avg econ temp a temp b temp a temp b Avg air htr avg air htr Temp FFTE526 FTE527 FTE528 FTE529 FTE820A FTE820B FTE820C FTE820D out out FTE860A FTE860B FTE870A FTE870B gas out gas outPCEM04M

7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

789 790 796 810 538 579 590 582 572 768 555 588 285 289 287 1054 331840 831 841 859 514 546 563 559 545 841 518 546 268 274 271 1115 312850 845 847 870 518 548 566 564 549 832 518 544 267 272 269 1111 308827 817 816 838 513 542 564 562 545 825 512 536 259 264 262 1109 295830 823 832 858 510 540 561 561 543 819 510 535 257 262 260 1102 291823 823 841 868 513 544 565 565 547 812 513 538 259 263 261 1098 289820 819 832 857 515 546 567 567 549 804 514 538 262 265 263 1090 292819 818 832 864 515 546 569 569 550 795 514 539 267 272 270 1075 297868 866 872 891 564 604 636 636 610 758 548 583 275 280 277 1091 295826 817 826 821 635 665 668 660 657 875 634 660 307 313 310 1221 319804 793 791 786 617 654 654 633 640 892 627 661 312 318 315 1216 335801 793 783 780 560 592 594 580 582 812 566 595 295 299 297 1097 329856 850 844 840 631 659 665 657 653 890 629 657 315 322 318 1225 338848 836 843 838 618 647 649 642 639 889 621 646 312 317 315 1213 338836 826 836 834 619 649 651 647 642 890 624 648 315 320 318 1215 339843 832 842 840 623 654 659 653 647 875 624 648 311 317 314 1208 335840 832 840 837 631 662 664 659 654 876 634 661 320 327 323 1206 343848 838 838 844 625 652 660 656 648 884 629 656 322 328 325 1207 351845 833 841 834 617 648 649 642 639 895 624 650 320 325 322 1211 349836 826 833 826 625 656 659 651 648 876 630 656 318 323 321 1202 349835 824 825 826 637 666 666 654 655 896 638 665 318 322 320 1231 350803 794 797 790 618 653 654 637 641 893 631 660 316 321 319 1215 350841 833 843 838 623 653 657 651 646 871 625 650 308 312 310 1207 338839 831 843 839 628 658 661 658 651 879 632 657 311 316 313 1216 341775 772 777 770 587 618 620 607 608 834 600 626 301 306 303 1138 339821 816 826 843 523 554 570 568 554 814 529 555 274 279 276 1091 323845 850 852 878 520 550 564 564 550 856 524 549 271 275 273 1133 316837 842 846 878 516 547 566 569 549 827 518 542 264 269 266 1111 303838 843 842 874 518 551 570 573 553 826 520 545 263 269 266 1113 300826 837 839 872 521 554 574 578 557 842 521 547 262 266 264 1135 299824 837 835 862 523 557 575 578 558 844 524 550 263 267 265 1138 297812 828 829 864 520 552 566 572 552 851 521 547 262 267 264 1139 297863 863 861 873 579 609 631 632 613 824 560 590 270 276 273 1164 295810 812 808 809 640 665 657 651 653 889 644 662 304 309 307 1236 326841 824 818 818 594 624 626 612 614 898 599 623 301 307 304 1208 333852 842 845 841 619 650 653 645 642 874 623 647 309 315 312 1204 335839 826 831 836 627 657 659 651 649 893 632 656 313 318 316 1226 339823 819 827 827 616 650 654 646 641 901 623 650 312 317 315 1228 339837 824 824 823 629 664 665 651 652 888 634 663 314 319 317 1223 344847 840 845 841 620 655 663 656 649 876 628 656 317 324 321 1204 348847 843 847 842 624 659 667 663 653 875 632 660 319 324 321 1207 345839 828 819 820 631 666 668 655 655 890 638 666 321 325 323 1222 350854 842 839 839 634 665 663 653 654 898 640 666 321 325 323 1228 355837 825 825 819 630 655 655 642 645 890 639 660 316 321 319 1216 347837 829 829 825 634 660 658 646 650 886 645 664 315 319 317 1219 342846 836 841 839 631 659 660 653 651 873 641 661 314 320 317 1207 344850 840 844 838 639 669 671 660 660 863 647 670 314 317 316 1208 341841 830 836 831 636 668 672 664 660 862 647 670 315 320 317 1204 342791 788 793 805 577 604 610 606 599 764 591 614 299 302 300 1063 341831 833 851 878 521 555 570 573 555 753 530 555 271 274 273 1035 316845 845 846 874 525 558 576 573 558 796 528 552 266 268 267 1087 305845 849 846 870 529 566 583 577 564 824 531 558 268 273 270 1118 302835 847 844 868 529 566 584 580 565 834 533 560 265 268 267 1132 299839 850 848 876 527 562 583 581 563 888 529 555 267 270 269 1182 297837 834 839 856 529 563 586 583 565 872 529 555 265 267 266 1172 297836 838 842 860 526 562 581 576 561 860 524 550 266 271 268 1153 294

Page 92: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

PAMB Net Power Gross turb ht rate Net turb ht rate Gross unit ht rate Net unit ht rate Net unit ht rate Vol FG/lbm fuel boiler eff calc blr eff dry gas loss unb C fuel H2O loss H2 losspsia MW BT/KWH BT/KWH BT/KWH BT/KWH BT/KWH CF/#FU % % % % % %

PCEM05M SJT100 PN00684 PN00685 PN00689 PN00690 PN00752 PN00847 PN00851 PN00880 PN00891 PN00892 PN00893 PN00894 7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

13.7 33.8 9,683 11,425 12,603 14,871 14,871 73.83 80.73 76.82 10.52 0.47 6.31 4.2113.7 34.4 8,904 10,347 11,112 12,913 12,913 73.83 80.73 80.13 7.02 0.47 6.31 4.2113.7 34.8 9,237 10,817 11,557 13,534 13,648 73.83 80.73 79.91 7.30 0.47 6.30 4.2113.7 34.2 8,880 10,417 11,112 13,035 13,025 73.83 80.73 79.93 7.23 0.47 6.29 4.1913.7 32.1 9,596 11,281 11,993 14,099 14,099 73.83 80.73 80.01 7.21 0.47 6.28 4.1913.7 32.8 9,477 11,145 11,863 13,951 13,951 73.83 80.73 79.89 7.31 0.47 6.28 4.1913.7 32.1 9,468 11,187 11,866 14,020 13,985 73.83 80.73 79.79 7.42 0.47 6.27 4.1813.7 32.2 9,466 11,115 11,924 14,001 14,001 73.83 80.73 79.39 7.82 0.47 6.28 4.1913.7 47.6 9,142 10,669 11,401 13,305 13,305 73.83 80.73 80.20 7.19 0.47 6.32 4.2213.7 68.7 9,192 10,330 11,325 12,727 12,727 73.83 80.44 81.17 6.17 0.48 6.44 4.3013.7 63.1 9,642 10,861 11,904 13,409 13,409 73.83 80.50 81.01 6.30 0.48 6.46 4.3113.7 46.3 9,411 10,875 11,679 13,495 13,495 73.83 80.73 80.60 6.71 0.47 6.38 4.2613.7 69.9 9,234 10,364 11,387 12,782 12,782 73.83 80.43 81.07 6.26 0.48 6.46 4.3113.7 69.2 9,093 10,190 11,210 12,562 12,565 73.83 80.44 81.12 6.21 0.48 6.45 4.3013.7 68.2 9,232 10,350 11,407 12,788 12,788 73.83 80.44 80.91 6.42 0.48 6.45 4.3013.7 68.2 9,210 10,334 11,376 12,764 12,764 73.83 80.44 80.95 6.40 0.47 6.44 4.2913.7 69.5 9,094 10,203 11,264 12,637 12,637 73.83 80.43 80.72 6.60 0.47 6.45 4.3113.7 69.8 9,281 10,410 11,486 12,884 12,884 73.83 80.42 80.80 6.52 0.47 6.46 4.3113.7 69.9 9,205 10,300 11,393 12,748 12,748 73.83 80.42 80.79 6.54 0.47 6.46 4.3113.7 68.3 9,473 10,614 11,717 13,128 13,128 73.83 80.43 80.87 6.49 0.47 6.45 4.3013.6 69.9 9,182 10,315 11,326 12,724 12,724 73.83 80.43 81.06 6.26 0.48 6.46 4.3113.7 62.8 9,695 10,888 12,005 13,482 13,446 73.83 80.46 80.76 6.57 0.47 6.45 4.3113.7 68.1 9,259 10,374 11,389 12,760 12,763 73.83 80.43 81.30 6.06 0.48 6.44 4.2913.7 69.7 9,118 10,215 11,251 12,604 12,604 73.83 80.42 81.05 6.28 0.48 6.45 4.3113.7 51.7 9,594 10,928 11,959 13,622 13,622 73.83 80.62 80.19 7.12 0.47 6.42 4.2813.7 32.8 9,133 10,790 11,556 13,651 13,651 73.83 80.73 79.03 8.14 0.47 6.31 4.2113.7 34.4 9,331 10,997 11,751 13,847 13,847 73.83 80.73 79.39 7.87 0.47 6.29 4.2013.7 34.2 9,419 11,143 11,852 14,022 14,056 73.83 80.73 79.47 7.80 0.47 6.28 4.1913.7 34.7 8,963 10,583 11,277 13,316 13,378 73.83 80.73 79.48 7.72 0.47 6.29 4.1913.7 33.9 9,424 11,164 11,860 14,050 14,050 73.83 80.73 79.44 7.80 0.47 6.29 4.1913.7 33.4 9,386 11,115 11,821 13,998 13,998 73.83 80.73 79.41 7.84 0.47 6.29 4.2013.7 34.4 9,348 11,064 11,792 13,956 13,956 73.83 80.73 79.29 7.94 0.47 6.30 4.2013.7 54.4 9,272 10,752 11,384 13,201 13,201 89.34 80.70 81.45 5.95 0.48 6.34 4.2313.7 67.5 9,430 10,626 11,613 13,086 13,076 73.83 80.44 81.20 6.15 0.48 6.44 4.3013.7 60.2 9,358 10,601 11,489 13,016 13,016 73.83 80.55 81.45 5.88 0.48 6.43 4.2913.7 68.5 9,269 10,413 11,416 12,825 12,825 73.83 80.44 81.18 6.16 0.48 6.44 4.3013.7 68.8 9,114 10,227 11,226 12,598 12,598 73.83 80.44 81.18 6.14 0.48 6.45 4.3113.7 67.7 9,506 10,664 11,724 13,153 13,152 73.83 80.44 81.08 6.27 0.48 6.44 4.3013.7 68.8 9,240 10,385 11,398 12,809 12,809 73.83 80.44 81.07 6.27 0.48 6.45 4.3013.7 68.6 9,351 10,494 11,585 13,000 13,000 79.46 80.44 80.74 6.60 0.47 6.45 4.3113.7 69.8 9,249 10,364 11,462 12,843 12,843 73.83 80.42 80.69 6.65 0.47 6.45 4.3013.6 69.4 9,344 10,502 11,545 12,975 12,975 73.83 80.42 80.94 6.39 0.47 6.46 4.3113.6 69.9 9,261 10,419 11,436 12,866 12,908 73.83 80.42 80.98 6.35 0.47 6.46 4.3113.6 68.7 9,402 10,543 11,579 12,984 12,984 73.83 80.42 81.20 6.14 0.48 6.45 4.3113.6 70.0 9,174 10,277 11,292 12,649 12,649 74.18 80.42 81.25 6.09 0.48 6.45 4.3013.6 70.4 9,201 10,307 11,332 12,695 12,695 73.83 80.41 81.19 6.14 0.48 6.46 4.3113.7 70.5 9,075 10,177 11,186 12,544 12,544 73.83 80.41 81.13 6.20 0.48 6.46 4.3113.7 69.0 9,350 10,485 11,559 12,962 12,962 73.83 80.42 80.89 6.43 0.48 6.46 4.3113.6 44.5 9,831 11,388 12,352 14,307 14,307 73.83 80.72 79.57 7.72 0.47 6.40 4.2713.6 32.7 9,057 10,750 11,486 13,632 13,681 73.83 80.73 78.86 8.33 0.47 6.29 4.2013.6 34.1 8,930 10,617 11,284 13,416 13,416 73.83 80.73 79.16 8.02 0.47 6.28 4.1913.6 33.7 9,563 11,376 12,060 14,347 14,347 73.83 80.73 79.28 8.00 0.47 6.29 4.2013.6 33.7 9,387 11,157 11,857 14,093 14,093 73.83 80.73 79.18 8.09 0.47 6.28 4.1913.7 35.6 9,226 10,882 11,588 13,668 13,668 73.83 80.73 79.63 7.70 0.47 6.29 4.2013.7 34.9 9,419 11,112 11,803 13,925 13,925 73.83 80.73 79.83 7.54 0.47 6.28 4.1913.6 34.1 9,315 11,017 11,712 13,852 13,843 73.83 80.73 79.53 7.70 0.47 6.30 4.20

Page 93: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

air H2O loss atomizng st rad loss misc loss heat duty flbed 2 hpsh2 psh2 econ2 bed sh2% % % % Mbtu/h clean factr clean clean clean clean

PN00895 PN00896 PN00897PN00898 PN00900 PN00922PN00927PN00932PN00937PN00947 7/16/97 0:00 7/16/97 1:00 7/16/97 2:00 7/16/97 3:00 7/16/97 4:00 7/16/97 5:00 7/16/97 6:00 7/16/97 7:00 7/16/97 8:00 7/16/97 9:00 7/16/97 10:00 7/16/97 11:00 7/16/97 12:00 7/16/97 13:00 7/16/97 14:00 7/16/97 15:00 7/16/97 16:00 7/16/97 17:00 7/16/97 18:00 7/16/97 19:00 7/16/97 20:00 7/16/97 21:00 7/16/97 22:00 7/16/97 23:00 7/17/97 0:00 7/17/97 1:00 7/17/97 2:00 7/17/97 3:00 7/17/97 4:00 7/17/97 5:00 7/17/97 6:00 7/17/97 7:00 7/17/97 8:00 7/17/97 9:00 7/17/97 10:00 7/17/97 11:00 7/17/97 12:00 7/17/97 13:00 7/17/97 14:00 7/17/97 15:00 7/17/97 16:00 7/17/97 17:00 7/17/97 18:00 7/17/97 19:00 7/17/97 20:00 7/17/97 21:00 7/17/97 22:00 7/17/97 23:00 7/18/97 0:00 7/18/97 1:00 7/18/97 2:00 7/18/97 3:00 7/18/97 4:00 7/18/97 5:00 7/18/97 6:00 7/18/97 7:00

0.12 0.00 0.58 0.97 417.1 0.85 1.36 0.68 0.90 2.930.08 0.00 0.80 0.97 359.4 1.01 1.31 1.12 0.84 1.800.08 0.00 0.75 0.97 369.5 0.99 1.53 1.12 0.84 1.910.08 0.00 0.83 0.97 353.9 1.06 1.42 0.98 0.90 1.970.08 0.00 0.78 0.97 363.5 1.01 1.56 1.02 0.88 2.270.08 0.00 0.80 0.97 360.1 1.00 1.55 1.01 0.86 2.280.09 0.00 0.81 0.97 357.8 1.00 1.56 0.96 0.85 2.390.09 0.00 0.79 0.97 361.3 1.00 1.57 0.97 0.84 2.410.08 0.00 0.54 0.97 482.2 0.86 1.38 0.75 0.83 1.150.07 0.00 0.40 0.98 711.8 0.86 0.62 0.76 0.89 1.150.07 0.00 0.40 0.98 698.4 0.91 0.60 0.75 0.92 1.270.08 0.00 0.52 0.97 506.0 1.00 0.64 1.08 0.89 1.830.07 0.00 0.39 0.97 719.7 0.83 0.66 0.84 0.87 1.080.07 0.00 0.40 0.98 703.7 0.86 0.67 0.84 0.95 1.060.07 0.00 0.39 0.97 711.8 0.84 0.72 0.78 0.95 1.110.07 0.00 0.40 0.97 704.3 0.81 0.76 0.76 0.93 1.070.07 0.00 0.40 0.97 708.3 0.83 0.68 0.76 0.91 1.040.07 0.00 0.38 0.97 727.9 0.84 0.72 0.80 0.90 1.030.07 0.00 0.39 0.97 722.8 0.82 0.74 0.79 0.97 1.070.07 0.00 0.38 0.97 735.3 0.81 0.75 0.75 0.94 1.080.07 0.00 0.39 0.97 712.7 0.87 0.59 0.76 0.93 1.080.07 0.00 0.39 0.97 721.2 0.86 0.68 0.72 0.93 1.230.07 0.00 0.40 0.97 709.9 0.86 0.70 0.80 0.92 1.000.07 0.00 0.40 0.98 712.3 0.85 0.68 0.77 0.94 1.000.08 0.00 0.47 0.97 597.8 0.96 0.70 0.74 0.93 1.490.09 0.00 0.77 0.97 364.4 0.96 1.31 1.05 0.87 1.770.09 0.00 0.72 0.97 375.3 0.90 1.47 1.08 0.90 1.860.09 0.00 0.73 0.97 373.8 0.91 1.63 1.01 0.91 2.100.09 0.00 0.79 0.97 360.7 0.95 1.50 0.99 0.87 2.050.09 0.00 0.74 0.97 371.2 0.92 1.51 0.93 0.88 2.120.09 0.00 0.73 0.97 373.2 0.90 1.49 0.95 0.87 2.220.09 0.00 0.73 0.97 372.9 0.92 1.46 0.91 0.94 2.310.07 0.00 0.51 0.98 533.5 0.82 1.03 0.88 0.93 1.360.07 0.00 0.39 0.98 725.3 0.84 0.47 0.77 0.94 1.170.06 0.00 0.44 0.98 635.7 0.86 0.61 1.10 0.93 1.420.07 0.00 0.40 0.98 710.1 0.85 0.67 0.81 0.95 1.030.07 0.00 0.40 0.97 703.7 0.88 0.64 0.79 0.93 1.040.07 0.00 0.39 0.97 727.1 0.85 0.74 0.74 0.97 1.130.07 0.00 0.39 0.97 712.4 0.85 0.62 0.75 0.95 1.070.07 0.00 0.39 0.97 718.8 0.83 0.79 0.74 0.92 1.070.07 0.00 0.39 0.97 724.6 0.81 0.82 0.73 0.91 1.060.07 0.00 0.38 0.97 731.4 0.83 0.69 0.76 0.92 1.060.07 0.00 0.38 0.97 726.0 0.82 0.61 0.81 0.91 1.060.07 0.00 0.38 0.97 732.4 0.85 0.54 0.83 0.97 1.020.07 0.00 0.39 0.97 718.9 0.87 0.50 0.83 0.94 0.970.07 0.00 0.39 0.98 725.3 0.84 0.59 0.81 0.95 0.920.07 0.00 0.39 0.98 715.8 0.82 0.60 0.78 0.93 0.880.07 0.00 0.38 0.98 731.3 0.80 0.68 0.73 0.92 0.940.09 0.00 0.50 0.97 537.6 0.92 0.81 0.72 0.94 1.470.10 0.00 0.78 0.97 361.2 0.91 1.49 1.02 0.87 1.920.09 0.00 0.82 0.97 355.3 0.87 1.32 1.00 0.92 1.500.09 0.00 0.69 0.97 381.3 0.85 1.33 0.96 0.91 1.720.09 0.00 0.72 0.97 374.8 0.84 1.39 0.91 0.90 1.920.09 0.00 0.66 0.97 385.4 0.89 1.46 0.92 0.88 2.000.09 0.00 0.63 0.97 392.0 0.89 1.48 0.87 0.88 1.990.09 0.00 0.73 0.97 372.8 0.92 1.38 0.93 0.86 1.96

Page 94: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Load Coal Feed FG FlowMW FG O2 FG CO2 FG NOx FG SO2 klb/hr flow scfm opacity

PCEM06M FAT481 PCEM17M PCEM18M PCEM19M PN00410 PCEM23M PCEM02M Coal/MW FG/MW 7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

79 3 13 117 469 146 8,709,149 9 1.838 109,95280 3 12 116 556 150 9,113,544 9 1.872 113,75378 2 12 115 523 153 8,917,207 9 1.955 113,92772 2 11 120 480 151 8,767,757 8 2.109 122,22258 4 11 137 310 75 7,217,575 6 1.293 124,26878 3 13 111 389 150 9,043,214 12 1.925 116,27747 12 8 97 214 91 6,681,312 11 1.948 143,66740 9 9 108 192 91 6,068,858 5 2.276 152,50436 9 8 108 138 91 6,271,056 6 2.495 172,72038 9 9 111 199 91 6,118,675 5 2.365 159,75540 9 9 105 207 91 6,312,082 6 2.238 155,97440 10 9 102 194 91 6,200,726 6 2.261 154,79239 10 9 100 184 91 6,209,518 6 2.317 158,84638 10 8 95 177 91 6,247,613 9 2.398 165,40040 10 9 101 189 91 6,262,265 6 2.260 156,21340 10 9 107 191 91 6,121,606 6 2.240 151,37740 10 9 110 205 91 5,998,529 5 2.248 148,87341 10 9 110 207 91 5,966,294 6 2.206 145,32539 10 9 115 185 91 6,139,188 19 2.307 156,34340 9 9 96 203 91 6,332,594 8 2.238 156,48140 9 9 102 193 91 6,402,924 9 2.291 161,97258 5 11 133 317 97 7,539,919 11 1.667 128,90862 5 11 129 410 102 7,531,128 10 1.657 121,80164 4 11 119 426 104 7,419,773 8 1.633 116,41463 3 12 116 390 103 7,334,791 8 1.620 115,61263 5 11 128 362 88 7,378,747 7 1.408 117,49963 3 11 127 351 88 7,328,930 8 1.403 117,08862 4 11 132 339 88 7,475,450 7 1.413 119,93464 3 12 133 382 92 7,419,773 7 1.439 116,46757 6 11 134 281 79 7,156,037 7 1.376 124,84756 6 11 143 292 79 7,220,506 6 1.412 128,40068 3 12 129 557 93 7,572,154 7 1.372 111,62068 4 13 119 444 93 7,542,850 6 1.377 111,71940 9 9 121 118 59 5,916,478 6 1.474 147,15740 9 9 118 148 57 6,013,181 6 1.441 151,10540 9 9 115 143 57 6,027,833 6 1.445 152,596

Page 95: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Lower OF air Upper OF air A1 Flow A2 Flow A Velocity B1 Flow B2 Flow B Velocity C1 Flow C2 Flowscfh scfh scfh scfh ft/sec scfh scfh ft/sec scfh scfh

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

685,871 506,178 771,095 767,238 5.3 773,224 775,042 8.3 780,918 785,042772,127 641,348 775,046 762,360 5.3 789,707 781,505 8.5 786,640 786,385796,633 683,285 757,454 746,804 5.2 764,772 759,566 8.2 763,922 767,516767,794 659,605 757,998 765,295 5.3 747,603 754,328 8.1 745,715 750,276399,677 120,637 738,011 728,735 5.0 729,768 730,870 7.7 730,204 717,323785,888 675,035 817,152 822,301 5.6 815,730 818,768 8.6 817,734 805,970484,013 99,769 643,630 644,061 3.6 677,942 684,581 6.4 685,720 671,059493,273 92,596 280,479 367,936 1.1 696,339 698,680 6.7 697,115 696,663539,335 157,440 277,243 371,998 1.1 706,772 708,792 6.8 703,454 692,719665,962 312,493 254,995 344,046 1.0 641,454 638,745 6.2 638,799 644,606714,805 529,315 251,164 336,445 1.0 635,078 626,065 6.2 625,833 630,429685,630 327,252 262,083 344,825 1.0 642,188 645,017 6.3 653,332 646,503682,432 330,522 262,702 343,689 1.0 650,525 652,005 6.4 651,624 648,338709,606 442,644 255,419 337,105 1.0 617,763 628,782 6.0 633,023 641,633653,878 261,063 264,013 362,113 1.0 674,232 670,713 6.6 673,897 655,798591,727 201,044 264,668 354,155 1.0 680,802 670,418 6.8 671,318 663,446501,077 76,942 269,347 367,476 1.0 685,106 683,361 6.9 681,329 689,252499,890 70,335 272,550 365,661 1.0 683,122 682,431 7.0 689,019 688,155703,299 518,699 252,398 335,269 0.9 605,435 614,090 6.3 608,905 616,857520,344 75,356 290,919 382,485 1.1 730,103 727,198 7.3 742,153 736,656687,882 303,683 274,007 364,440 1.0 678,356 677,019 6.8 679,659 684,883677,584 277,334 710,138 715,403 4.8 715,574 707,139 7.4 708,913 712,198725,590 480,372 679,154 676,262 4.6 675,742 679,707 7.1 676,370 674,734504,909 84,824 741,411 737,494 5.0 750,083 739,157 7.7 738,933 740,396503,285 76,038 736,854 729,977 4.9 742,882 733,218 7.7 732,800 733,834703,089 405,941 679,740 671,288 4.5 677,011 671,714 7.0 672,844 676,713627,855 247,653 697,952 695,578 4.7 701,624 690,396 7.3 698,196 704,875623,538 226,834 719,177 722,062 4.9 719,804 711,492 7.5 715,312 714,240517,577 123,443 733,376 730,732 5.0 742,657 736,648 7.8 744,707 736,275493,176 88,759 716,476 718,784 4.8 715,649 713,537 7.4 708,509 716,430507,833 82,195 736,717 735,632 5.0 731,775 729,239 7.6 733,013 733,509529,514 82,478 746,925 762,475 5.2 748,783 752,752 8.1 755,707 764,429522,280 89,223 763,591 751,762 5.2 752,690 750,203 8.0 747,525 754,546478,941 83,953 274,687 362,621 1.8 677,088 678,445 6.6 680,913 685,117495,237 103,727 274,652 367,072 1.1 694,079 692,823 6.9 693,318 677,221497,029 90,977 279,930 369,988 1.1 692,341 693,138 6.9 690,341 690,052

Page 96: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

C Velocity D1 Flow D2 Flow D Velocity A1 front A1 mid A1 rear A2 front A2 mid A2 rearft/sec scfh scfh ft/sec BTE710F BTE710M BTE710R BTE720F BTE720M BTE720R

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

7.9 967,450 963,969 6.3 1552 1544 1507 1549 1506 14778.0 1,019,779 1,022,195 6.6 1549 1543 1487 1553 1517 14627.8 957,086 964,753 6.2 1547 1538 1500 1545 1520 14717.6 941,621 938,121 6.1 1570 1552 1527 1559 1529 15017.0 776,287 772,751 4.9 1500 1465 1451 1498 1461 14538.1 852,830 862,891 5.5 1524 1527 1519 1509 1475 14766.4 685,610 689,073 4.3 1130 1041 1023 1282 1142 10886.3 693,859 701,682 4.3 522 490 502 491 498 4706.3 720,342 721,062 4.5 487 471 467 472 479 4615.9 653,780 668,222 4.1 482 467 460 469 474 4585.9 646,115 640,538 4.0 484 468 459 470 475 4596.2 661,526 668,005 4.1 485 469 458 470 474 4576.3 662,363 660,013 4.0 482 467 457 470 474 4586.0 663,180 649,071 4.0 481 464 456 469 473 4576.3 686,499 689,102 4.2 479 461 453 466 470 4546.5 685,728 682,414 4.2 477 459 451 461 465 4506.7 698,093 703,846 4.4 477 460 451 463 467 4526.7 690,701 685,184 4.3 477 460 451 462 466 4516.0 608,182 618,283 3.9 477 461 452 463 467 4517.2 696,808 752,079 4.5 478 462 454 464 468 4536.6 660,193 706,773 4.2 478 461 453 465 469 4547.0 757,213 750,575 4.7 1488 1447 1440 1478 1434 14366.8 730,669 725,620 4.6 1503 1478 1468 1490 1459 14567.4 796,025 791,565 5.0 1518 1468 1398 1499 1451 13967.3 782,757 777,275 5.0 1517 1466 1415 1497 1464 14136.7 715,158 714,668 4.5 1509 1463 1421 1492 1448 14227.0 738,759 740,800 4.7 1505 1482 1445 1496 1474 14477.2 757,319 764,731 4.8 1514 1481 1468 1497 1464 14677.5 783,569 775,813 5.0 1524 1498 1477 1508 1494 14746.9 767,736 750,263 4.8 1503 1464 1431 1488 1452 14276.9 732,081 724,886 4.6 1498 1483 1445 1485 1459 14557.5 800,233 817,556 5.2 1539 1518 1470 1524 1514 14797.6 805,516 797,352 5.2 1542 1519 1475 1526 1498 14756.3 681,392 679,412 4.2 1025 992 970 1288 1204 12526.5 684,077 686,704 4.3 495 485 487 482 489 4726.5 689,162 689,035 4.3 472 474 469 471 477 462

Page 97: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

B1 front B1 mid B1 rear B low front B low mid B low rear C front C mid C rear C low front C low midBTE730F BTE730M BTE730R BTE740F BTE740M BTE740R BTE750F BTE750M BTE750R BTE760F BTE760M

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

1552 1499 1473 1531 1401 1470 1548 1485 1120 1526 13311567 1512 1477 1542 1435 1475 1562 1511 1114 1544 13761564 1517 1484 1535 1429 1482 1561 1510 1084 1541 13781571 1515 1501 1544 1404 1503 1571 1528 1115 1551 13561504 1456 1445 1480 1359 1454 1518 1451 1086 1490 11221502 1459 1457 1470 1382 1459 1510 1459 1126 1486 12721390 1241 1190 1302 1155 1196 1458 1333 1049 1415 10891382 1359 1318 1173 1202 1323 1423 1391 1063 1375 6621382 1353 1307 1138 1222 1309 1421 1378 1064 1374 6751379 1357 1303 1236 1218 1306 1411 1380 1123 1373 7221387 1367 1311 1332 1244 1316 1417 1402 1117 1382 9641372 1372 1335 1332 1245 1337 1402 1395 1098 1369 12051364 1362 1326 1324 1246 1326 1396 1389 1116 1364 12831331 1343 1308 1295 1219 1308 1360 1364 1110 1330 11801371 1365 1331 1337 1252 1332 1405 1385 1113 1372 11351381 1401 1389 1354 1281 1389 1410 1421 1163 1381 11981388 1420 1429 1355 1304 1430 1423 1437 1188 1392 11211398 1441 1465 1365 1319 1475 1427 1453 1207 1396 10121415 1453 1493 1382 1281 1493 1443 1458 1197 1410 11611382 1409 1435 1341 1223 1440 1415 1423 1125 1384 12581385 1407 1409 1349 1272 1412 1416 1422 1111 1385 12251477 1438 1436 1454 1322 1441 1487 1438 1153 1464 12541489 1446 1448 1470 1349 1454 1497 1454 1168 1475 12951497 1428 1411 1471 1316 1418 1510 1448 1175 1488 12721496 1438 1420 1474 1315 1426 1508 1451 1174 1487 12741493 1435 1414 1472 1338 1423 1509 1454 1182 1486 11831499 1456 1447 1479 1339 1456 1511 1472 1192 1488 11981498 1460 1467 1479 1347 1472 1512 1470 1197 1487 12191512 1480 1484 1490 1360 1489 1517 1488 1202 1497 12231474 1431 1433 1459 1325 1441 1496 1438 1180 1472 10151473 1445 1465 1466 1316 1471 1488 1449 1180 1460 7451538 1518 1521 1514 1360 1524 1535 1523 1214 1515 9581539 1498 1488 1513 1350 1491 1540 1511 1176 1516 12121377 1335 1268 1325 1230 1265 1421 1379 1082 1384 8931404 1401 1362 1353 1229 1363 1436 1434 1176 1401 8331399 1402 1362 1365 1259 1363 1433 1435 1175 1399 910

Page 98: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Average duct brnr out combustiblesC low rear D1 front D1 mid D1 rear D2 front D2 mid D2 rear Bed temp ppmBTE760R BTE770F BTE770M BTE770R BTE780F BTE780M BTE780R Temp BTE810 FAT482

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

1304 1566 1509 576 1593 1559 1546 1533 574 621291 1583 1526 580 1607 1557 1544 1545 579 21275 1581 1525 586 1601 1552 1534 1543 584 1351279 1585 1529 588 1597 1546 1527 1547 586 321187 1515 1498 544 1529 1493 1510 1492 541 1101306 1525 1489 575 1552 1546 1549 1505 568 1321147 1478 1450 521 1512 1477 1484 1299 512 4531200 1452 1464 498 1487 1496 1441 1315 481 1891187 1448 1449 498 1466 1497 1498 1313 478 1731187 1449 1459 497 1471 1506 1499 1320 477 2641202 1455 1463 502 1472 1492 1482 1322 481 2201198 1447 1448 504 1480 1471 1412 1311 481 2981215 1442 1443 505 1474 1459 1333 1301 483 2681192 1428 1427 501 1476 1459 1329 1286 479 3431215 1446 1443 496 1477 1468 1472 1314 473 4221242 1449 1458 494 1483 1489 1514 1338 471 3441275 1460 1471 497 1504 1515 1538 1356 475 2981299 1461 1482 494 1500 1524 1563 1368 472 2521319 1465 1482 495 1497 1530 1594 1377 475 3131266 1443 1459 497 1475 1511 1583 1346 477 2691266 1445 1451 499 1475 1482 1518 1335 477 2941254 1490 1465 525 1508 1479 1504 1367 515 541264 1501 1482 525 1530 1511 1522 1381 519 21271 1513 1481 537 1544 1506 1514 1380 532 951269 1515 1490 539 1548 1514 1528 1385 535 1101266 1516 1485 543 1552 1521 1523 1385 537 1501281 1518 1493 540 1553 1524 1529 1394 534 1731287 1514 1485 541 1554 1521 1523 1395 535 2941302 1520 1492 542 1559 1526 1523 1404 538 851247 1499 1467 531 1529 1487 1488 1371 526 781256 1493 1484 518 1529 1524 1531 1381 511 631298 1531 1529 533 1573 1572 1581 1431 526 1101277 1538 1523 545 1575 1556 1573 1422 540 821163 1451 1449 520 1477 1479 1489 1311 511 1421240 1459 1475 502 1487 1494 1507 1345 487 1631242 1462 1472 504 1499 1506 1514 1347 487 218

Page 99: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

FD Fan out air htr air out furn drft A furn drft B furn drft C windbox dust collect furn out econ gas out ID fan inpress press press press press dP press press press pressFPT100 FPT260 FPT400A FPT400B FPT400C FPT405 FPT440 FPT480 FPT820 FPT900

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

82 76 -0.5 -0.6 -0.5 77 -11.3 -3.2 -5.7 -17.981 75 -0.6 -0.7 -0.6 76 -11.0 -3.2 -5.6 -17.582 75 -0.4 -0.5 -0.4 76 -11.2 -3.1 -5.6 -17.980 74 -0.3 -0.4 -0.3 74 -10.9 -2.8 -5.4 -17.578 74 -0.4 -0.4 -0.4 75 -7.2 -2.0 -3.6 -11.782 75 -0.4 -0.5 -0.4 75 -11.8 -3.3 -6.0 -18.879 75 -0.4 -0.5 -0.4 75 -6.2 -1.9 -3.1 -9.978 75 -0.4 -0.4 -0.4 76 -5.0 -1.4 -2.6 -8.078 75 -0.3 -0.4 -0.3 75 -5.0 -1.4 -2.6 -8.278 75 -0.4 -0.4 -0.3 75 -5.4 -1.5 -2.8 -8.878 75 -0.4 -0.5 -0.4 75 -5.7 -1.6 -2.9 -9.178 75 -0.3 -0.4 -0.3 75 -5.3 -1.4 -2.7 -8.778 75 -0.4 -0.5 -0.4 75 -5.6 -1.5 -2.8 -9.278 75 -0.5 -0.6 -0.5 75 -6.0 -1.7 -3.1 -9.779 75 -0.4 -0.5 -0.4 76 -5.4 -1.4 -2.7 -8.778 75 -0.1 -0.2 -0.1 76 -4.8 -1.1 -2.3 -7.978 75 -0.3 -0.4 -0.3 76 -5.0 -1.3 -2.5 -8.278 76 -0.3 -0.3 -0.3 76 -4.8 -1.2 -2.4 -8.078 75 -0.3 -0.4 -0.3 75 -5.5 -1.5 -2.8 -9.078 75 -0.4 -0.5 -0.4 75 -5.2 -1.5 -2.6 -8.478 75 -0.3 -0.4 -0.3 75 -5.6 -1.6 -2.8 -9.279 75 -0.4 -0.5 -0.4 75 -8.1 -2.3 -4.0 -13.079 74 -0.5 -0.6 -0.5 75 -8.4 -2.4 -4.2 -13.579 75 -0.4 -0.5 -0.3 75 -7.6 -2.1 -3.8 -12.279 75 -0.5 -0.5 -0.4 75 -7.8 -2.2 -3.9 -12.479 74 -0.3 -0.4 -0.3 75 -8.3 -2.2 -4.1 -13.478 75 -0.4 -0.4 -0.3 75 -8.0 -2.2 -4.0 -12.978 74 -0.3 -0.4 -0.3 74 -7.9 -2.1 -3.9 -12.779 75 -0.4 -0.4 -0.4 75 -7.8 -2.2 -3.9 -12.578 75 -0.4 -0.5 -0.4 75 -7.5 -2.1 -3.7 -12.078 75 -0.4 -0.5 -0.4 75 -7.0 -1.9 -3.5 -11.279 76 -0.4 -0.5 -0.4 76 -7.7 -2.1 -3.8 -12.279 75 -0.4 -0.4 -0.3 75 -7.6 -2.1 -3.8 -12.277 75 -0.4 -0.5 -0.4 75 -5.1 -1.4 -2.6 -8.278 75 -0.5 -0.5 -0.4 76 -5.2 -1.4 -2.7 -8.377 75 -0.4 -0.4 -0.3 75 -5.2 -1.4 -2.7 -8.5

Page 100: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

air htr air out air htr air out air htr air out air htr air out furnace furn gas out furn gas out furn gas out furn gas outtemp a temp b temp c temp d temp temp a temp b temp c temp dFTE260A FTE260B FTE260C FTE260D FTE400 FTE480A FTE480B FTE480C FTE480D

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

585 617 609 593 1459 788 801 775 786591 622 614 597 1466 794 808 781 790594 625 618 603 1452 788 804 780 792595 628 620 605 1424 775 792 770 779546 575 573 560 1219 704 713 704 722578 612 606 601 1464 794 809 788 812510 544 545 541 1110 640 667 679 704475 507 515 511 1075 625 645 661 680473 505 513 510 1063 627 646 662 681473 505 513 509 1146 634 652 672 689477 508 517 513 1106 634 656 676 698475 508 518 515 1116 633 653 673 695475 510 520 516 1115 628 648 668 686471 504 515 512 1071 621 640 656 679468 500 509 506 1091 624 642 656 683467 498 508 504 1093 629 645 659 685468 502 512 509 1084 630 647 661 687467 499 508 505 1062 630 648 662 688469 503 512 507 1062 634 652 664 689470 504 514 510 1051 632 649 664 688470 504 513 509 1062 625 642 659 684514 551 551 543 1330 699 709 702 709521 557 554 543 1307 709 718 707 725534 571 566 556 1353 725 732 716 730538 575 569 558 1351 724 735 719 734537 574 572 562 1319 717 729 719 738535 570 568 558 1341 719 731 722 740538 573 570 560 1301 714 729 721 739540 574 571 560 1352 715 726 718 731528 560 558 549 1287 692 702 690 708520 549 546 537 1217 700 704 688 710534 567 561 553 1367 735 744 727 744543 578 573 562 1369 729 740 725 741507 537 542 530 1077 636 657 667 684481 513 523 515 1066 633 653 669 692477 513 524 517 1061 630 652 675 703

Page 101: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

furn gas out Avg pri tube 4 pri tube 12 pri tube 20 pri tube 28 pri tube 36 pri tube 44 ht tube 5temp e Furn Bed - furn temp temp temp temp temp temp tempFTE480E gas out gas out FTE510 FTE511 FTE512 FTE513 FTE514 FTE515 FTE520

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

784 787 772 806 814 803 821 772 753 851788 792 765 808 820 798 813 765 743 852790 791 762 803 820 798 819 773 749 847774 778 769 784 797 795 807 761 730 823712 711 782 735 729 765 793 767 705 790823 805 741 809 811 787 823 813 800 860700 678 799 650 686 737 805 805 743 734672 657 840 656 691 747 838 815 735 746676 658 838 652 687 737 817 802 738 740680 665 841 656 689 742 847 812 735 748697 672 820 643 686 741 833 807 768 736692 669 802 642 682 729 823 804 760 734682 662 797 655 691 748 829 806 750 743680 655 804 654 694 748 823 818 766 744682 657 811 645 679 731 830 810 759 735680 660 830 644 679 732 827 811 749 733681 661 854 645 678 730 821 800 741 731683 662 862 642 677 729 816 800 742 727679 664 866 643 679 728 814 802 726 730685 664 847 639 673 721 803 794 742 726679 658 824 655 687 738 821 800 742 732703 705 774 743 759 777 787 759 717 809715 715 796 746 757 769 806 768 719 805720 725 781 774 760 767 786 754 708 818721 726 788 767 770 776 805 758 704 817726 726 795 735 743 756 811 762 705 794728 728 796 747 758 762 819 763 706 803734 727 794 731 739 752 806 766 714 791726 723 802 752 759 763 813 763 720 812699 698 789 757 756 762 785 765 708 813697 700 825 753 735 744 771 760 693 792737 737 834 769 774 780 816 761 724 825729 733 823 749 757 772 808 760 710 809666 662 817 662 703 746 845 789 692 743673 664 830 657 696 751 857 826 712 750685 669 837 662 702 758 862 844 730 751

Page 102: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

ht tube 9 ht tube 13 ht tube 17 ht tube 21 ht tube 26 ht tube 30 ht tube 34 ht tube 38 ht tube 42 econ out econ outtemp temp temp temp temp temp temp temp temp temp a temp bFTE521 FTE522 FTE523 FTE524 FTE525 FTE526 FTE527 FTE528 FTE529 FTE820A FTE820B

7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

854 860 849 845 874 876 864 866 876 648 679855 859 849 844 869 871 859 860 868 653 685852 856 842 837 867 870 860 859 867 650 682830 832 821 819 846 852 842 837 841 640 676793 793 785 795 824 838 836 839 824 579 607865 862 848 846 881 891 890 892 914 654 684750 758 754 779 825 851 849 842 846 537 577764 769 757 793 850 863 858 851 846 514 547754 759 748 781 831 842 840 830 832 514 546762 767 757 790 852 862 847 837 830 521 554751 763 754 784 840 851 845 837 860 525 560747 758 748 779 830 847 839 835 851 523 557759 768 759 800 849 858 849 838 846 520 557756 772 756 794 836 860 843 845 856 516 550747 757 740 783 837 851 843 826 846 517 550744 755 740 778 830 846 839 824 842 519 551741 753 738 778 829 844 836 824 837 519 554739 749 738 773 820 836 834 822 835 518 551739 751 739 773 817 836 836 822 825 522 555736 746 736 769 812 828 834 820 831 520 554751 757 759 789 838 854 844 835 840 519 553812 811 801 822 830 849 832 826 825 579 610804 816 802 818 835 857 848 838 838 585 616807 818 805 817 828 848 839 830 832 595 625812 827 815 822 831 853 839 830 830 594 626792 803 795 811 831 851 844 842 832 591 624805 814 803 812 829 851 841 836 829 590 620791 800 793 805 827 848 838 838 835 589 622814 821 807 821 843 856 836 836 838 591 621811 820 805 817 830 851 838 832 825 573 600787 793 787 794 804 823 820 821 811 571 596826 833 820 837 851 867 850 847 850 602 631809 819 808 828 840 859 841 837 834 597 627760 768 759 792 837 847 835 827 801 524 558769 773 764 806 852 866 859 852 825 519 554764 775 771 822 868 883 877 866 845 521 557

Page 103: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

econ out econ out Avg bed - air htr gas in air htr gas in air htr gas out air htr gas outtemp c temp d Avg econ avg econ temp a temp b temp a temp b Avg air htr

FTE820C FTE820D out out FTE860A FTE860B FTE870A FTE870B gas out 7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

677 665 667 866 640 678 306 311 308684 669 673 872 648 685 309 313 311682 671 671 872 647 686 312 317 314674 659 662 885 642 684 313 318 315612 603 600 892 579 613 293 298 295691 690 680 825 640 676 307 312 309593 587 574 725 538 577 272 276 274568 559 547 768 504 541 257 261 259565 558 546 768 505 542 256 261 258576 565 554 766 509 546 255 259 257584 577 561 761 515 554 259 264 261581 575 559 752 512 552 257 263 260578 569 556 745 513 554 257 264 261571 567 551 735 508 546 256 262 259572 566 551 763 508 544 251 256 254576 566 553 785 508 544 250 256 253577 567 554 802 507 545 250 257 253574 565 552 816 507 544 250 256 253576 565 554 822 512 548 251 257 254577 568 555 792 513 549 251 257 254577 566 554 781 509 546 254 260 257614 601 601 766 568 603 273 281 277624 609 609 772 575 609 274 281 278628 613 615 765 586 620 281 287 284629 614 616 769 588 624 282 289 286633 618 617 769 585 622 285 291 288628 613 613 781 581 617 285 291 288629 618 615 781 584 620 286 293 289628 616 614 790 585 621 289 295 292605 595 593 778 570 601 284 290 287601 592 590 791 566 594 274 281 278636 624 623 807 587 622 282 289 285629 616 617 805 588 626 290 296 293575 558 554 757 529 568 271 277 274578 560 553 792 513 552 259 265 262584 569 558 789 514 554 258 265 261

Page 104: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Avg bed - PAMB Net Power Gross turb ht rate Net turb ht rate Gross unit ht rate Net unit ht rateavg air htr Temp F psia MW BT/KWH BT/KWH BT/KWH BT/KWH

gas out PCEM04M PCEM05M SJT100 PN00684 PN00685 PN00689 PN00690 7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

1225 330 13.5 71 12345 13841 14989 168041233 332 13.5 71 12620 14148 15325 171801228 334 13.5 70 13041 14606 16002 179231232 335 13.5 66 13163 14781 16008 179751197 325 13.5 51 11477 13165 13677 156881196 324 13.5 69 12883 14477 15789 177431025 305 13.5 37 10675 12188 13058 149101055 289 13.5 33 10675 12188 13058 149101055 285 13.4 32 10675 12188 13058 149101062 284 13.4 33 10675 12188 13058 149101061 286 13.5 35 10675 12188 13058 149101051 286 13.5 34 10675 12188 13058 149101040 288 13.5 33 10675 12188 13058 149101028 291 13.5 33 10675 12188 13058 149101061 279 13.5 33 10675 12188 13058 149101085 276 13.6 35 10675 12188 13058 149101103 276 13.6 34 10675 12188 13058 149101115 276 13.6 34 10675 12188 13058 149101123 275 13.6 35 10675 12188 13058 149101092 274 13.6 32 10675 12188 13058 149101078 279 13.7 34 10675 12188 13058 149101090 291 13.7 51 11173 12799 13659 156471104 290 13.7 55 11012 12525 13430 152741096 294 13.7 55 10939 12413 13347 151461099 298 13.7 56 10888 12335 13293 150601098 300 13.7 54 9440 10723 11589 131651106 302 13.7 56 9344 10613 11454 130091106 303 13.7 54 9415 10692 11561 131291112 308 13.7 56 9575 10848 11710 132671084 311 13.7 49 9288 10648 11423 130971104 296 13.7 48 9485 10876 11642 133491146 296 13.7 59 9299 10499 11342 128061129 307 13.7 58 9321 10515 11416 128781037 308 13.8 35 9789 11612 12225 145011083 290 13.8 34 9683 11349 12056 141311085 285 13.8 34 9606 11268 11890 13946

Page 105: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

Net unit ht rate Vol FG/lbm fuel boiler eff calc blr eff dry gas loss unb C fuel H2O loss H2 lossBT/KWH CF/#FU % ????????? % % % % %

PN00752 PN00847 PN00851 PN00867 PN00880 PN00891 PN00892 PN00893 PN00894 7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

0 73.8 80.4 -2719 82.36 5.11 0.48 6.47 4.320 73.8 80.4 -2719 82.34 5.13 0.48 6.47 4.32

17279 73.8 80.4 1006170 81.50 5.93 0.48 6.46 4.310 73.8 80.4 -2719 82.23 5.22 0.48 6.48 4.32

15216 73.8 80.7 500311 83.91 3.61 0.48 6.27 4.1813599 73.8 80.4 1009428 81.59 5.88 0.48 6.44 4.30

0 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.250 73.8 80.7 676235 81.74 5.66 0.48 6.37 4.25

15690 73.8 80.7 726434 81.80 5.61 0.48 6.38 4.2515690 73.8 80.6 736199 81.99 5.44 0.48 6.38 4.2615690 73.8 80.6 725915 81.96 5.46 0.48 6.40 4.2715690 73.8 80.6 714127 81.91 5.49 0.48 6.40 4.2715690 73.8 80.6 654629 81.45 5.90 0.48 6.39 4.2715690 73.8 80.6 632673 81.60 5.74 0.48 6.40 4.2715690 73.8 80.6 647159 81.45 5.89 0.48 6.39 4.2713380 73.8 80.6 628717 81.77 5.57 0.48 6.41 4.2813097 73.8 80.7 597937 81.29 6.03 0.48 6.39 4.2613339 73.8 80.7 81.47 5.89 0.48 6.36 4.2412806 73.8 80.6 641825 81.99 5.40 0.48 6.39 4.2612878 73.8 80.6 648506 81.64 5.70 0.48 6.41 4.2814501 73.8 80.7 575710 80.09 7.21 0.47 6.33 4.2214131 73.8 80.7 577154 80.32 6.97 0.47 6.30 4.2013946 73.8 80.7 536812 80.79 6.48 0.48 6.31 4.21

Page 106: OPTIMIZING PERFORMANCE OF THE HESKETT STATION

air H2O lossatomizng st rad loss misc loss heat duty flbed 2 hpsh2 psh2 econ2 bed sh2% % % % Mbtu/h clean factr cleanliness cleanliness cleanliness cleanliness

PN00895 PN00896 PN00897 PN00898 PN00900 PN00922 PN00927 PN00932 PN00937 PN00947 7/01/97 10:27 7/01/97 11:27 7/01/97 12:27 7/01/97 13:27 7/01/97 14:27 7/01/97 15:27 7/01/97 18:27 7/01/97 19:27 7/01/97 20:27 7/01/97 21:27 7/01/97 22:27 7/01/97 23:27 7/02/97 0:27 7/02/97 1:27 7/02/97 2:27 7/02/97 3:27 7/02/97 4:27 7/02/97 5:27 7/02/97 6:27 7/02/97 7:27 7/02/97 8:27 7/02/97 9:27 7/02/97 10:27 7/02/97 11:27 7/02/97 12:27 7/02/97 13:27 7/02/97 14:27 7/02/97 15:27 7/02/97 16:27 7/02/97 17:27 7/02/97 18:27 7/02/97 19:27 7/02/97 20:27 7/02/97 21:27 7/02/97 22:27 7/02/97 23:27

0.00 -0.00 0.28 0.98 971 0.00 0.00 0.00 0.00 0.000.00 -0.00 0.28 0.98 1002 0.00 0.00 0.00 0.00 0.000.06 0.00 0.28 0.98 1022 0.00 0.00 0.00 0.00 0.000.00 -0.00 0.28 0.98 1011 0.00 0.00 0.00 0.00 0.000.00 0.00 0.56 0.99 502 0.00 0.00 0.00 0.00 0.000.06 0.00 0.28 0.98 1000 0.00 0.00 0.00 0.00 0.000.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.47 0.98 605 1.26 1.02 1.32 0.27 0.710.06 0.00 0.44 0.98 651 1.17 0.85 1.18 0.26 0.580.06 0.00 0.41 0.98 685 1.15 0.86 1.15 0.27 0.630.06 0.00 0.41 0.98 695 1.16 0.75 1.14 0.26 0.510.06 0.00 0.41 0.98 687 1.18 0.74 1.13 0.26 0.510.07 0.00 0.47 0.98 591 1.13 0.75 1.25 0.27 0.530.06 0.00 0.48 0.98 587 1.17 0.72 1.30 0.28 0.550.07 0.00 0.47 0.98 588 1.14 0.76 1.26 0.27 0.590.06 0.00 0.46 0.98 612 1.14 0.68 1.31 0.32 0.540.07 0.00 0.51 0.98 527 1.13 0.74 1.36 0.31 0.540.07 0.00 0.51 0.98 531 0.94 0.69 1.06 0.93 0.720.06 0.00 0.45 0.98 622 0.83 0.64 1.08 0.93 0.540.06 0.00 0.45 0.98 621 0.84 0.65 1.04 0.97 0.580.08 0.00 0.61 0.97 396 1.02 1.03 0.96 0.92 0.520.08 0.00 0.68 0.97 383 0.99 1.34 1.03 0.88 0.500.07 0.00 0.69 0.97 381 1.00 1.25 0.97 0.87 0.35