46
Confidentiality Label November 6, 2012 1 CAG Presented by Mark Fisher Applications Engineer November 6, 2012 Optimizing Your Absorption or Fluorescence Thermal Melt Run

Optimizing Your Absorption or Fluorescence Thermal Melt Run

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Confidentiality Label

November 6, 2012 1

CAG

Presented by Mark Fisher

Applications Engineer

November 6, 2012

Optimizing Your Absorption or

Fluorescence Thermal Melt Run

Page 2: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Thermal Melt Application

• Typically used to follow a change in signal as temperature is

changed

• Absorption or Fluorescent Intensity can be used to monitor

system as temperature is ramped

• Single Wavelength monitoring is generally done

• Scan of a Spectral Region may be desired

• How can you increase Sample throughput ?

Confidentiality Label

November 6, 2012 2

Page 3: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Cary 100

UV-Vis NIR Spectroscopy Solutions

The Agilent Cary Family

Cary 300

Cary 4000

8453

Cary 5000/6000i

Cary 60

Cary

Eclipse

Perf

orm

ance

Routine to Research

“A word from our sponsors”

Page 4: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Thermal Melts using UV-Vis Absorption

Confidentiality Label

November 6, 2012 4

Page 5: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Instrumentation Needed for a Thermal Melt

Collection

Instrument typically Cary 100 or 300 (8453 is a

possibility as well)

Multi-cell Changer with Temperature Control

Temperature Probe

Purge Gas if Initial or Final Temperature 15 deg C or less

Confidentiality Label

November 6, 2012 5

Page 6: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Typical Thermal Melt Curve

Confidentiality Label

November 6, 2012 6

Page 7: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Thermal Melt Curve Expanded

Confidentiality Label

November 6, 2012 7

Page 8: Optimizing Your Absorption or Fluorescence Thermal Melt Run

SetUp Dialog Box and Setting Up Simple Collection

Confidentiality Label

November 6, 2012 8

Page 9: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Using Multiple Wavelengths in a Single Melt

Confidentiality Label

November 6, 2012 9

Page 10: Optimizing Your Absorption or Fluorescence Thermal Melt Run

User Collect Function

Confidentiality Label

November 6, 2012 10

Page 11: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Typical Simple Single Ramp

• 0.1 degrees/minute

• Collect data every 0.1 degrees or 0.5 degrees

• 20-90 degrees C

• Time Required to Finish Data Collection on a Sample

70 deg / 0.1 deg per min = 700 minutes or 11

hours and 40 min

Confidentiality Label

November 6, 2012 11

Page 12: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Advance Collect using Multiple Temperature

Collection Stages

Confidentiality Label

November 6, 2012 12

Page 13: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Optimizing Data Collection Using Multi-Stage

Ramp • 20 to 50 degrees Ramp at 1.0 deg/min

• 50 to 70 degrees Ramp at 0.1 deg/min

• 70 to 90 degrees Ramp at 1.0 deg/min

• Collect Data every 0.1 deg or 0.5 deg

• Time Required to Finish Data Collection

20 to 50 deg 30 deg/ 1 deg per min = 30 min

50 to 70 deg 20 deg/ 0.1 deg per min = 200 min

70 to 90 deg 20 deg/ 1 deg per min = 20 min

Total Time 250 min or 4 hours and 10 min

Confidentiality Label

November 6, 2012 13

Page 14: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Double Beam SetUp

Confidentiality Label

November 6, 2012 14

Page 15: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Where and When Should the Temperature be

Measured

Choices for Monitoring Temperature

Block

Probe inserted into Cuvette

Can Sacrifice one cuvette for data collection if you do not want sample in

contact with probe

Temperature measured before each measurement

Confidentiality Label

November 6, 2012 15

Page 16: Optimizing Your Absorption or Fluorescence Thermal Melt Run

QNW T2 Single Cell Peltier Accessory

Confidentiality Label

November 6, 2012 16

Page 17: Optimizing Your Absorption or Fluorescence Thermal Melt Run

QNW T2 Temperature Controller

Confidentiality Label

November 6, 2012 17

Page 18: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Temperature Probe In Semi-Micro Cell

Confidentiality Label

November 6, 2012 18

Page 19: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Temperature Lag from Block to Solution Heating

Confidentiality Label

November 6, 2012 19

Page 20: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Temperature Lag from Block to Solution Cooling

Confidentiality Label

November 6, 2012 20

Page 21: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Effect of Signal Averaging Time on Noise

Confidentiality Label

November 6, 2012 21

Page 22: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Additional Capabilities for Collecting Temperature

Related Data

Possible to Collect a Scan at User Define Temperatures

While at each User Defined Temperature, it is possible to

collect a number of scans at a user define time interval

before going to the next temperature

These capabilities are possible through ADL, which is the

controlling language of the software. User have access to

an editor to able to write/edit macros

Confidentiality Label

November 6, 2012 22

Page 23: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Initial Screen after Program Started

Confidentiality Label

November 6, 2012 23

Page 24: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Temperature SetUp for Scans at Temperature

Confidentiality Label

November 6, 2012 24

Page 25: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Trace Preferences Dialogbox Showing Trace

Names

Confidentiality Label

November 6, 2012 25

Page 26: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Scanning at Temperatures

Confidentiality Label

November 6, 2012 26

Page 27: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Thermal Melts using Fluorescence

Confidentiality Label

November 6, 2012 27

Page 28: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Cary Eclipse Fluorescence Spectrometer

The Power of Xenon…

• Unique Xe flashlamp technology

• Measure small volume samples

• Fiber optics

• Room light immunity: unique,

Varian patented technology

• Eliminates photo-degradation

• Long lamp lifetime

Application focus

• Biochemical applications

• Academia

• Industrial chemistry

Page 29: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Fluorescent Thermal Melt Curve

Confidentiality Label

November 6, 2012 29

20 40 60 80

20

40

60

80

100

Temperature (°C)

Inte

nsity (

a.u

.)

DABCYL Labelled PNA and

Fluoreceine Labelled DNA

Two Ramps Each

Page 30: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Simple Single Ramp Collection

Confidentiality Label

November 6, 2012 30

Page 31: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Sample Cell Selection and Temperature Monitoring

Choice

Confidentiality Label

November 6, 2012 31

Page 32: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Advance Collection Choices

Confidentiality Label

November 6, 2012 32

Page 33: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Multiple Wavelength Pairs

Confidentiality Label

November 6, 2012 33

Page 34: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Advance Collection SetUp for Fluorescence

Thermal going from High to Low Intensity

Confidentiality Label

November 6, 2012 34

Page 35: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Example of Fluorescence Thermal Melt going from

High to Low Intensity

Confidentiality Label

November 6, 2012 35

50 60 70 80 90

0

100

200

300

400

Temperature (°C)

Inte

nsity (

a.u

.)

Page 36: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Importance of Choice of Cuvette

Confidentiality Label

November 6, 2012 36

40 60 80

0

20

40

60

80

100

Temperature (°C)

Inte

nsity (

a.u

.)

40 60 80

0

20

40

60

80

100

Temperature (°C)

Inte

nsity (

a.u

.)

Plastic Cuvette Black

Quartz Cuvette Red

Temperature Monitor Block

Page 37: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Importance of Choice of where Temperature is

Monitored

Confidentiality Label

November 6, 2012 37

20 40 60 800

20

40

60

80

100

120

Temperature (°C)

Inte

nsity (

a.u

.)

Quartz Cuvette Block Monitor RedQuartz Cuvette Probe Monitor Purple

Page 38: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Overlay of Cuvette and Temperature Monitor

Choices

Confidentiality Label

November 6, 2012 38

40 60 800

20

40

60

80

100

120

Temperature (°C)

Inte

nsity (

a.u

.)

Black Plastic CuvetteBlue Quartz Cuvette Block as monitor

Red Quartz Cuvette Probe as monitor

Page 39: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Determination of Tm

Confidentiality Label

November 6, 2012 39

40 60 80

0

2

4

6

Temperature (°C)

Deriv1

Ist Derivative Tm Calculation RedOriginal Data Black

Page 40: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Calculated Tm’s

Cuvette Type Calculated Tm (deg C)

Plastic 72.34

Quartz (Block used as Temperature

Monitor)

67.00

Quartz (Probe used as Temperature

Monitor

64.00

Confidentiality Label

November 6, 2012 40

Page 41: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Effect of Noise on Tm Calculation

Confidentiality Label

November 6, 2012 41

40 60 80

0

2

4

6

Temperature (°C)

Deriv1

Tm Calculation with and without Smoothing

Purple Original Temperature Data

Olive Green 1st derivative no smoothing

Red 1st derivative with smoothing

Page 42: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Effect of Noise on Tm Calculation

Cuvette Type and Calculation

Conditions

Calculated Tm (deg C)

Quartz Cuvette using Probe as monitor

no smoothing

64.00

Quartz Cuvette using Probe as monitor

with smoothing

65.00

Confidentiality Label

November 6, 2012 42

Page 43: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Example of Optimization of Temperature Ramp and

Data Interval

Confidentiality Label

November 6, 2012 43

40 60 80

20

40

60

80

100

Temperature (°C)

Inte

nsity (

a.u

.)

40 60 80

50

100

Temperature (°C)

Inte

nsity (

a.u

.)

Probe Monitor Red

Block Monitor Black

Page 44: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Additional Capabilities in Collecting Temperature

Related Data

Like UV-Vis, it is possible to Collect a Scan at a series of

user define temperatures with a user define equilibration

time

While not yet available, it is possible to control the

autopolarizers in addition to the temperature to

automatically collect data for anisotropy calculations for a

set of user define temperatures

Confidentiality Label

November 6, 2012 44

Page 45: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Questions

Confidentiality Label

November 6, 2012 45

Page 46: Optimizing Your Absorption or Fluorescence Thermal Melt Run

Confidentiality Label

November 6, 2012 46

Thanks For Your Patience And Good Humor

Shortly You Will Receive A Link

To Down Load The Presentation

My Contact is [email protected]

Thanks Again