63
December 2015 CG-PRC037A-GB Option Guide Conquest Air-cooled Liquid Chillers with Scroll compressors Models CGAX & CXAX 015 to 060

Option Guide - ComfortSite · Option Guide Conquest Air-cooled ... the basis is similar to the principle of a frequency inverter; ... 2.3.2 Performance curves Figure 4 EC fans Pressure

Embed Size (px)

Citation preview

December 2015 CG-PRC037A-GB

Option Guide

Conquest Air-cooled Liquid Chillers with

Scroll compressors

Models CGAX & CXAX 015 to 060

Table of contents . 1 CONQUEST™ Range Overview ........................................................................... 1

1.1 CGAX Range ............................................................................................................... 1 1.2 CXAX Range ................................................................................................................ 2 1.3 Coil’s distribution .......................................................................................................... 3 1.4 Unit Appearance .......................................................................................................... 4

2 Efficiency level, Digit 12 ....................................................................................... 6 2.1 Standard efficiency, Digit 12 = 1 .................................................................................. 6 2.2 High efficiency, Digit 12 = 2 ......................................................................................... 6 2.3 AC & EC fans Characteristics. ..................................................................................... 6

3 Operating map – airside, Digit 15 ...................................................................... 10 3.1 Standard Ambient temperature, Digit 15 = A ............................................................. 10 3.2 Low ambient temperature, Digit 15 = C ..................................................................... 11

4 Freeze protection, Digit 18 ................................................................................. 12 4.1 None, Digit 18 = X ...................................................................................................... 12 4.2 With electric heaters, Digit 18 = 2 .............................................................................. 12 4.3 With pump activation, Digit 18 = 3 ............................................................................. 13

5 Operating map water side, Digit 21 ................................................................... 15 5.1 Comfort cooling, Digit 21 = A ..................................................................................... 15 5.2 Process cooling, Digit 21 = B ..................................................................................... 15

6 Water connection, Digit 22 ................................................................................. 16 6.1 Grooved pipe connection (standard) digit 22 = 1 ....................................................... 16 6.2 Grooved pipe connection with coupling and pipe stub digit 22 = 3 ............................ 16

7 Condenser coating, Digit 23 ............................................................................... 18 7.1 Standard aluminum fins, Digit 23 = B ......................................................................... 18 7.2 Epoxy aluminum fins Digit 23 = E. ............................................................................. 19 7.3 Aluminum Micro Channel, Digit 23 = H. ..................................................................... 19 7.4 E-coated Micro Channel, Digit 23 = J ........................................................................ 22

8 Heat Recovery, Digit 24 ...................................................................................... 23 8.1 None Heat Recovery, Digit 24 = X ............................................................................. 23 8.2 Partial Heat Recovery (PHR), Digit 24 = 2 ................................................................. 23

9 Starter type, Digit 26 ........................................................................................... 25 9.1 Across the Line Starter/Direct on Line Digit 26= A ..................................................... 25 9.2 Solid-state Soft Starter Digit 26 = B ........................................................................... 25

10 Human interface, Digit 30 ................................................................................... 26 10.1 Without interface, Digit 30= X .................................................................................... 26 10.2 Interface PGD1, Digit 30= A ....................................................................................... 26 10.3 Interface PGDTouch , Digit 30 = B ............................................................................. 26

11 Smart Com protocol, Digit 31 ............................................................................. 28 11.1 No remote digital communication, Digit 31 = X .......................................................... 28 11.2 Modbus interface, Digit 31 = 1 ................................................................................... 28 11.3 LonTalk® interface, Digit 31 = 2 ................................................................................ 28 11.4 BACNet™ Interface; Digit 31= 4 ................................................................................ 29

12 External customer input/output option, Digit 32 .............................................. 30 12.1 Without, Digit 32 = X .................................................................................................. 30 12.2 With, Digit 32 = A ....................................................................................................... 30

13 Smart Sequencer, Digit 33 .................................................................................. 32 13.1 Without, Digit 33 = X .................................................................................................. 32 13.2 With Smart Sequencer, Digit 33 = 1 ........................................................................... 32

14 Hydraulic module, Digit 35 ................................................................................. 34 14.1 No pumps and no contactors, Digit 35 = X ................................................................ 35 14.2 Contactors single pump, Digit 35 = 2 ......................................................................... 35 14.3 Contactors dual pump, Digit 35 = 4 ............................................................................ 35 14.4 Single pump standard pressure, Digit 35 = 5 ............................................................. 36

Table of contents .

14.5 Single pump high pressure, Digit 35 = 6 .................................................................... 38 14.6 Dual pump standard pressure, Digit 35 = 7 ............................................................... 39

15 Smart Flow Control, Digit 36 .............................................................................. 40 15.1 No pump flow control; Digit 36 = X ............................................................................. 40 15.2 Manual flow control, Digit 36 = B ............................................................................... 40 15.3 Variable primary flow (Constant ΔT), Digit 36 = C ..................................................... 41 15.4 Variable primary flow (Constant ΔP), Digit 36 = D ..................................................... 41

16 Buffer tank, Digit 37 ............................................................................................ 43 16.1 Without Buffer tank; Digit 37 = X ................................................................................ 43 16.2 Buffer Tank, Digit 37 = 1 ............................................................................................ 43

17 Installation accessory, Digit 39 .......................................................................... 45 17.1 None, Digit 39 = 1 ...................................................................................................... 45 17.2 Neoprene Pads, Digit 39 = 4 ...................................................................................... 45

18 Acoustic level, Digit 41 ....................................................................................... 47 18.1 Standard Noise (SN), digit 15 = X .............................................................................. 47 18.2 Low Noise (LN), digit 15 = L ....................................................................................... 47 18.3 HESP, Digit 41 = 2 ..................................................................................................... 49

19 Condenser protection, Digit 42 .......................................................................... 50 19.1 No option, Digit 42 = X ............................................................................................... 50 19.2 Condenser guard grill, Digit 42 = A ............................................................................ 50

20 Literature Language, Digit 44 ............................................................................. 51

21 Under/over voltage protection, Digit 45 ............................................................ 52 21.1 None, Digit 45 = X ...................................................................................................... 52 21.2 Included, Digit 45 = 1 ................................................................................................. 52

22 Suplemental Heat Control, Digit 49 ................................................................... 53 22.1 Without, Digit 49 = X .................................................................................................. 53 22.2 With, Digit 49 = 1........................................................................................................ 53

23 Design Special, Digit 50 ...................................................................................... 54

1 | P a g e

1 CONQUEST™ Range Overview

Before explaining the different options and accessories available, let’s first take a look at the

current range and review the definition of CONQUEST™ Air-cooled heat pumps and chillers.

The CONQUEST Air-cooled heat pumps and chillers family covers a capacity range between

40 kW and 165 kW, which includes Cooling only and Heat pump units. For the “Cooling only”

unit, it is called CGAX and the Heat pump is named CXAX. The units come divided by its

efficiency and their acoustic level which won’t comprise the efficiencies.

The best value chiller of the market

Optimized efficiencies

Lowest sound levels

High quality finish

Smart and versatile

1.1 CGAX Range

CGAX EUROVENT COMPRESSOR FAN UNIT DIMENSIONS (SN)

Size Net Cooling

Capacity

(kW)

Efficiency

class

Compressor

Number per

Circuits

Model Circuit1 /

Circuit 2 #

Unit

Length

(mm)

Unit

Width

(mm)

Unit

Height

(mm)

015 43 B 2 7,5+7,5 1 2346 1285 1524

017 50 C 2 7,5+10 1 2346 1285 1524

020 60 A 2 10+10 2 2346 1285 1524

023 66 B 2 10+13 2 2346 1285 1524

026 76 B 2 13+13 2 2346 1285 1524

030 84 B 2 15+15 2 2346 1285 1724

036 97 B 3 12+12+12 2 2327 2250 1524

039 110 B 3 13+13+13 3 2327 2250 1524

045 126 B 3 15+15+15 3 2327 2250 1524

035 98 C 2 7,5+10 / 7,5+10 2 2327 2250 1524

040 117 B 2 10+10 / 10+10 4 2327 2250 1524

046 130 C 2 10+13 /10+13 4 2327 2250 1524

052 146 C 2 13+13 / 13+13 4 2327 2250 1524

060 164 B 2 15+15 / 15+15 4 2327 2250 1724

Table 1 CGAX Range

2 | P a g e

1.2 CXAX Range

CXAX EUROVENT EFFICIENCY

CLASS COMPRESSOR FAN UNIT DIMENSIONS (SN)

Size

Net Cooling Capacity

(kW)

Net Heating Capacity

(kW) Co

olin

g

He

ating

Compressor Number per

Circuits

Model Circuit1 / Circuit 2

# Unit

Length (mm)

Unit Width (mm)

Unit Height (mm)

15 42 43 B B 2 7,5+7,5 1 2346 1285 1524

17 48 51 C B 2 7,5+10 1 2346 1285 1524

20 56 57 B C 2 10+10 2 2346 1285 1524

23 65 63 B B 2 10+13 2 2346 1285 1524

26 72 69 C B 2 13+13 2 2346 1285 1524

30 79 78 C B 2 15+15 2 2346 1285 1724

36 94 96 B B 3 12+12+12 2 2327 2250 1524

39 108 110 B B 3 13+13+13 3 2327 2250 1524

45 118 120 C B 3 15+15+15 3 2327 2250 1524

35 94 101 C B 2 7,5+10 / 7,5+10 2 2327 2250 1524

40 114 114 B B 2 10+10 / 10+10 4 2327 2250 1524

46 127 127 B B 2 10+13 /10+13 4 2327 2250 1524

52 146 139 B B 2 13+13 / 13+13 4 2327 2250 1524

60 162 162 B B 2 15+15 / 15+15 4 2327 2250 1724

Table 2 CXAX Range

Figure 1 CGAX & CXAX comparison

43 50 60 66 76 84 97 110 126

98 117 130

146 164

42 48 56 65 72 79 94 108 118

94 114 127

146 162

15 17 20 23 26 30 36 39 45 35 40 46 52 60

Ne

t c

oo

lin

g C

ap

ac

ity k

W

Size

CGAX CXAX

3 | P a g e

1.3 Coil’s distribution

CGAX CXAX

Size Frame # Cricuits Right Side

Left Side

Right Side

Left Side 015 Simplex 1

017 Simplex 1

020 Simplex 1

023 Simplex 1

026 Simplex 1

030 Simplex 1

036 Simplex Large 1 039 Simplex Large 1

045 Simplex Large 1

035 Duplex 2 040 Duplex 2

046 Duplex 2

052 Duplex 2

060 Duplex 2 Table 3 Frame & Coil's type

Note: Coil dimensions available on Submital Drawing

Figure 2 Frames' configuration

4 | P a g e

1.4 Unit Appearance

1.4.1 External appearance

The color of the unit will change to RAL 9002 but fan’s ducts will rest RAL 7016

Image 1 CONQUEST - Duplex frame - HESP

Image 2 CONQUEST - Duplex frame - STD Noise

Image 3 Unit Number plate sample

5 | P a g e

1.4.2 Inside apparence

Image 4 Unit w/o hydraulic module

Image 5 Unit with hydraulic module

Image 6 Electrical panel

6 | P a g e

2 Efficiency level, Digit 12

2.1 Standard efficiency, Digit 12 = 1

2.1.1 Description

EER at 12/7 OAT=35°C: SE is class B or C (Eurovent efficiency) when operating at full load.

Standard efficiency, units use AC fan motors with three-phase on the condenser. The motor

and the ball bearings are permanently lubricated and overload protection is provided.

However, if the unit has Low Ambient (Digit 15= C) then it will have one EC fan per circuit.

2.2 High efficiency, Digit 12 = 2

2.2.1 Description

HE version remains with the same compressors, exchangers and airflow of SE version.

The EER in High efficiency unit is the same value of a standard unit, but the ESEER is much

higher because it counts with an adaptive control that improves the efficiency in partial load

operation. Best compromise between number of compressors in operation and airflow (fans’

rotation)

High efficiency units are always equipped EC fan brushless motor, operating with direct

current. EC Fan: the basis is similar to the principle of a frequency inverter; the motor speed

depends on the voltage provided by the integrated module. All fans will be driven at the same

speed.

2.2.2 Benefits

High efficiency and a significant reduction of energy consumption at partial load.

2.3 AC & EC fans Characteristics.

The motors of both fans are Insulation class F and Ingress protection marking IP54.

Image 7 AC fans model

Image 8 EC fans model

AC Motor Number of poles: 8

Nominal Speed: 680 RPM

Same grid design as AC fan With EC motor

7 | P a g e

2.3.1 Fan’s type

Figure 3 Fans' distribution

FAN CKT 1 FAN CKT 2

1A 1B 1C 2A 2B

Simplex

SE - Std Ambient

High/Low Speed (AC fan)

High Speed (AC fan) if any

SE - Low Ambient

Variable Speed (EC fan)

High Speed (AC fan) if any

HE/HESP Variable Speed

(EC fan) Variable Speed (EC fan) if any

Simplex Large

SE - Std Ambient

High/Low Speed (AC fan)

High Speed (AC fan)

High Speed (AC fan)

SE - Low Ambient

Variable Speed (EC fan)

High Speed (AC fan)

High Speed (AC fan)

HE/HESP Variable Speed

(EC fan) Variable Speed

(EC fan)

Variable Speed

(EC fan)

Duplex

SE - Std Ambient

High/Low Speed (AC fan)

High Speed (AC fan) if any

High/Low Speed (AC fan)

High Speed (AC fan) if any

SE - Low Ambient

Variable Speed (EC fan)

High Speed (AC fan) if any

Variable Speed (EC fan)

High Speed (AC fan) if any

HE/HESP Variable Speed

(EC fan) Variable Speed (EC fan) if any

Variable Speed (EC fan)

Variable Speed (EC fan) if any

Table 4 Fans operation

8 | P a g e

2.3.2 Performance curves

Figure 4 EC fans Pressure vs Airflow

Figure 5 AC fans Pressure vs Airflow

10

119

197 208

228

243 252 256 257

53

0

33

53

90

136

173

199

217

2 2

21 31

40

89

129

158

183

45

3

45

60

86

109

127 138

147

37

3

37

52

78

101

120 131

140

0

20

40

60

80

100

120

140

160

180

200

220

240

260

2804

,00

0

5,0

00

6,0

00

7,0

00

8,0

00

9,0

00

10,0

00

11,0

00

12,0

00

13,0

00

14,0

00

15,0

00

16,0

00

17,0

00

18,0

00

19,0

00

20,0

00

21,0

00

22,0

00

23,0

00

24,0

00

25,0

00

26,0

00

27,0

00

To

tal

pre

ss

ure

(P

a)

qv (m3/h)

EC fan

Airflow1020RPM

Airflow 910RPM

Airflow 810RPM

Airflow 710RPM

Airflow 690RPM

0

13

27

39

51

62

71

79

89

99

0

8

16

25

30 35

39 43

49 53

0

10

20

30

40

50

60

70

80

90

100

400

0

500

0

600

0

700

0

800

0

900

0

100

00

110

00

120

00

130

00

140

00

150

00

160

00

170

00

180

00

190

00

To

tal

pre

ss

ure

(P

a)

qv (m3/h)

AC fan

High speed680 RPM

Low speed500 RPM

9 | P a g e

2.3.3 Power input/Airflow curves

Figure 6 EC fans Power input vs Airflow

Figure 7 AC fans Power input vs Airflow

1764

2219

2434 2425 2376

2287 2193

2077

1401

1192

1323 1401

1534

1675 1745 1746

1638

861 861 963

1,151 1,255

1,306 1,294

725

605

725 838

895 937 958 971

654 562

654 766

824 869 893 911

0

250

500

750

1000

1250

1500

1750

2000

2250

25004

,00

0

5,0

00

6,0

00

7,0

00

8,0

00

9,0

00

10,0

00

11,0

00

12,0

00

13,0

00

14,0

00

15,0

00

16,0

00

17,0

00

18,0

00

19,0

00

20,0

00

21,0

00

22,0

00

23,0

00

24,0

00

25,0

00

26,0

00

27,0

00

Po

wer

inp

ut

(W)

qv (m3/h)

EC fan

Input 1020RPM

Input 910RPM

Input 810RPM

Input 710RPM

Input 690RPM

722 752

778 804

839 870

911 938 945

971

480 490 504 514 523 532 543 552 553 564

0

100

200

300

400

500

600

700

800

900

1000

400

0

500

0

600

0

700

0

800

0

900

0

100

00

110

00

120

00

130

00

140

00

150

00

160

00

170

00

180

00

190

00

Po

wer

Inp

ut[

W]

qv [m3/s]

AC fan

High speed

Low speed

10 | P a g e

3 Operating map – airside, Digit 15

3.1 Standard Ambient temperature, Digit 15 = A

The operating range as Standard ambient option is the same for both, Chiller (CGAX) and

heat pump (CXAX), in cooling mode:

5°C ≤ Air temperature ≤ 46°C

Figure 8 Operating map (air side) CGAX & CXAX SA Cooling mode

Standard ambient

OM

Low Ambient OM

(Requires 1 EC fan/circuit

minimum)

Standard ambient

OM

Low Ambient OM

(Requires 1 EC

fan/circuit minimum) LWT EAT LWT EAT LWT EAT LWT EAT

-12 40 -12 5 -10 40 -10 5

4 46 -12 -18 5 46 -10 -10

16 46 20 -18 20 46 20 -10

20 41 20 5 20 5 20 5

Table 5 CGAX & CXAX Operating points airside

For the heating mode of the heat pump (CXAX); the operation range changes as shown

below:

-15°C≤ Air temperature ≤ 20°C

STANDARD OM

LWT EAT

20 -15

20 15

27 20

60 20

60 5

40 -15

Table 6 CXAX Heating mode operational points

11 | P a g e

Figure 9 Operating map CXAX SA Heating mode

3.2 Low ambient temperature, Digit 15 = C

- Low ambient Chiller (CGAX): -18°C ≤ Air temperature ≤ 46°C

- Low ambient Heat pump (CXAX): -10°C ≤ Air temperature ≤ 46°C

- With Low ambient option, EC fans are mounted on the unit. EC fans allow operation

with air temperature down to -18/-10 ° C by reducing the air flow when necessary.

Figure 10 Operating map CGAX & CXAX LA cooling mode

12 | P a g e

4 Freeze protection, Digit 18

4.1 None, Digit 18 = X

Glycol in the water loop in charge of the freeze protection.

4.2 With electric heaters, Digit 18 = 2

4.2.1 Application

- When the unit is exposed to ambient temperature between 0°C and -18°C.

- When the unit needs to be protected from freezing (no glycol in the water loop).

4.2.2 Description

These freeze protection consist in electrical heaters that could be placed in different parts

depending the modules that have been chosen for the unit:

Unit without hydraulic module:

On the evaporator a blanket heater is installed at the bottom of the brazed plate heat

exchanger (BPHE).

Image 9 BPHE's heater

Unit with hydraulic module:

- Same as above plus hydraulic module protection

- Antifreeze heater on the expansion tank plus flexible pipe and antifreeze heater with

water pipe between the pump and the brazed plate heater exchanger (BPHE).

- Image 10 Hydraulic module's heaters

Unit with hydraulic module plus buffer tank:

Same as above but there are also immersion heaters on the buffer tank.

13 | P a g e

Image 11 Buffer tank's heaters

CGAX CXAX

Sizes Pump package anti-freeze heater power (W)

Buffer tank anti-freeze heater power (W)

Sizes Pump package anti-freeze heater power (W)

Buffer tank anti-freeze heater power (W)

15

280 780

15

280 780

17 17

20 20

23 23

26 26

30 30

36 340 1180

36 340 1180 39 39

45 45

35 280 1120

35 280 1120

40 40 340 1180

46 46 280 1120

52 340 1180

52 340 1180

60 60 Table 7 CGAX & CXAX Heaters' power (W) on buffer tanks

Note: The water piping between the chiller and the building has to be protected

against freezing by installing heating cable

4.2.3 Operation

Freeze protection via the CH535 control turns on the heaters based on ambient

temperature (below 3°C).

4.2.4 Benefits

- All the components are protected.

- No additional or dedicated electrical connection when installing.

4.2.5 Incompatibilities

No incompatibility.

4.3 With pump activation, Digit 18 = 3

4.3.1 Application

14 | P a g e

No heaters are provided but the anti-freeze protection is possible with the pump activation

using external temperature sensor. This system allows reducing the price and consumption

of the unit.

4.3.2 Description

As no heaters are provided, the system will make water flows so it heats by friction. The

system counts with a 3 way valve that will let the water flows throw the system or make it flow

in a loop without entering to customer water circuit.

Figure 11 Pump activation Option’s system diagram

4.3.3 Operation

While the unit is OFF, the pumps are controlled by the CH535 control depending on the

temperature read by the external temperature sensor. The pumps will start when the ambient

temperature is less than 2°C AND the leaving water temperature is less than 15°C; if

conditions both conditions are valid, the operation of the pump will be 5 min ON / 10 min

OFF.

15 | P a g e

Leaving water temperature

5 Operating map water side, Digit 21

Figure 12 Conquest's operating map water side

The illustration above shows the application that can be adapted for evaporator. In standard,

the evaporator is provided with comfort cooling application which the evaporator leaving

temperature is in a range of 5°C to 20°C. Process cooling application with the range of

leaving water temperature between -12°C and 5°C is an option.

5.1 Comfort cooling, Digit 21 = A

- The range for the two units is the same [5/20]°C

- Glycol is mandatory for leaving water temperature below 6°C

5.2 Process cooling, Digit 21 = B

- The range of this option depends on the chosen unit; for the CGAX, it is [-12/5]°C and

for the CXAX it is [-10/5]°C.

- It’s mandatory to use Glycol.

Process cooling application

-12 °C -10°C

CGAX CXAX

0 °C +6°C +5°C +20°C

With glycol

Comfort cooling application

16 | P a g e

6 Water connection, Digit 22 There are 2 ways which are suggested by Trane for water pipe connections (cold water and

HR hot water (if any) connections).

6.1 Grooved pipe connection (standard) digit 22 = 1

Image 12 Grooved water connection

6.1.1 Description

- This type of pipe has a grooved end.

- This groove provides a gripping area for the coupling to engage around the full pipe

circumference.

- Easy piping connection.

6.2 Grooved pipe connection with coupling and pipe stub digit 22 = 3

17 | P a g e

Image 13 Coupling and pipe stub

6.2.1 Description

Used when costumer is not able to grove its own pipe.

18 | P a g e

7 Condenser coating, Digit 23

7.1 Standard aluminum fins, Digit 23 = B

Image 14 Aluminum fins

7.1.1 Application

- When the chiller is installed in standard condition

- Non polluted ambiance

- Non corrosive ambiance

7.1.2 Description

Aluminum fin is a standard fin used on all CXAX heat pumps.

7.1.3 Incompatibilities

CGAX.

19 | P a g e

7.2 Epoxy aluminum fins Digit 23 = E.

Image 15 Gold epoxy aluminum fins

7.2.1 Application

- When the heat pump is requested for coastal or salt mist environments.

- When the aluminum fin is exposed to hard weather conditions (acid rain, moisture,

pollution, salt …).

7.2.2 Description

- The fins are made out of aluminum coated sheets.

- Condenser epoxy coated; epoxy slows down the corrosion process on the aluminum

fins when the unit is installed on sea side or in a polluted area.

- Epoxy layer is between 2 to 3 µm thick per surface

7.2.3 Benefits

This option allows installation near the sea and avoids aluminum corrosion. The epoxy also

provides a barrier protection at the fin collar to stop galvanic corrosion action between the

aluminum fins and the copper tubes.

7.2.4 Incompatibilities

CGAX

7.2.5 More detail

For information, there are 192 fins per foot installed in the condenser.

See engineering bulletin PROD_PRB004_E4 on Litweb.

7.3 Aluminum Micro Channel, Digit 23 = H.

20 | P a g e

Image 16 Micro Channel Heat Exchanger

7.3.1 Application

Aluminum Micro Channel Heat Exchanger is standard for all CGAX chillers.

7.3.2 Description

- The fully-brazed construction micro channel coil increases the coil rigidity making

them more rugged to resist the rigors of job site handling and damage due to

shipping. The micro channel coil's headers, tubes and fins are assembled and then

sprayed with a powder flux bonding agent. The coil is then sent through a large

controlled air automated brazing furnace that completely joins these separate pieces

as one solid micro channel coil.

- The bottom and top tubes of each coil section are always inactive refrigerant paths,

this is done to prevent refrigerant leaks due to corrosion that may be present from

moisture resting between the top or bottom tube and the gasket material and also

serve as a buffer during the installation and removal of the coil section.

21 | P a g e

Image 17 MCHE's parts

7.3.3 Benefits

This process substantially decreases the chances of leaks due to improper brazing

techniques. Each fin surface is angled and louvered to create air turbulence through the coil

which provides more efficient and enhanced heat transfer without additional air pressure

drop through the coil.

7.3.4 Incompatibilities

CXAX

22 | P a g e

7.4 E-coated Micro Channel, Digit 23 = J

Image 18 E-Coated MCHE

7.4.1 Application

Refer to the following document to know when is necessary to apply the coating PROD_PRB

005 A, on LitWeb.

7.4.2 Description

The condenser is provided already coated before unit assembly.

7.4.3 Benefits

This option allows installation in high chemical concentrated or coastal environment and

avoids aluminum corrosion.

7.4.4 Incompatibilities

CXAX

23 | P a g e

8 Heat Recovery, Digit 24

8.1 None Heat Recovery, Digit 24 = X

All refrigerant’s heat is rejected to the atmosphere.

8.2 Partial Heat Recovery (PHR), Digit 24 = 2

8.2.1 Application

When part of the rejected heat needs to be recovered for heating water.

8.2.2 Description

One brazed plate heat exchanger per circuit is placed on the discharge line between the

compressor and the condenser coil as shown in the following picture (CXAX). The system

has neither freeze protection nor isolation on water side.

Figure 13 CXAX PHR diagram

Image 19 PHR's location

8.2.3 Operation

24 | P a g e

At the discharge line of the compressor, refrigerant is de-superheated by transferring its

sensible heat to the water which will rise its temperature. At full load conditions (PHR EWT=

40°C / LWT=45°C - OAT = 35°C - EVAP EWT= 12°C / LWT= 7°C), 20% of the cooling

capacity can be recovered.

Figure 14 PHR’s Operating map

Even if the heat exchanger has on site water connections, the customer shall provide the

water loop for partial heat recovery; that means: a circulation pump provides constant

water flow rate from the tank; three-way valve to adjust the water flow of PHR heat

exchanger based on the heat exchanger leaving water temperature (As the leaving water

temperature increases, the PHR water flow rate increases) and safety elements such as

expansion tanks and safety valves

Figure 15 Customer's connection diagram

8.2.4 Benefits

- Recuperation of part of the heating rejected capacity.

- Energy saving

25 | P a g e

9 Starter type, Digit 26 Starters installed have an IP-54 gasketed enclosure. It is a protection index which is able to

protect the starters against dust deposit and splash water projection from all directions.

9.1 Across the Line Starter/Direct on Line Digit 26= A

This is the standard starter located in electrical panel of the unit.

Image 20 Direct on Line starter

9.2 Solid-state Soft Starter Digit 26 = B

Image 21 Soft starter

9.2.1 Application

To reduce inrush current when the compressors start.

26 | P a g e

9.2.2 Description

Factory-installed, located in electrical panel of the unit.

9.2.3 Operation

- In this circuit, the soft starter replaces the direct on line starter.

- It controls the current flow which will generate the compressors to start gradually.

9.2.4 Benefits

- With the soft starter, the starting current drops down to 2.5 - 3 IN (IN: nominal

intensity).

- The compressor can start smoothly as the starting current is reduced.

- Smooth starting reduces motor and compressor wear.

- Less stress on the power supply.

9.2.5 Incompatibilities

Direct on Line.

9.2.6 More detail

There is a device called Silicon Controlled Rectifier (SCR) that soft starter works with. The

SCR is an electronic switch which allows current to flow through it only when electronic signal

is applied to its gate.

Comparison between across line starter and soft starter:

By installing soft starter in the circuit, it will reduce the starting current. There are 5 different

sizes of compressor.

1 | P a g e

Compressor size

7,5 10 12 13 15

Across Line (A) (()Starter (A)

98 142 147 158 197

Soft Starter (A) 59 85 88 95 118

% current reduction

39 40 40 40 40 Table 8 Inrush currents

Compressor size

7,5 10 12 13 15

Across (Line Starter (ms)

70 70 100 100 68

Soft Starter (ms)

<500 <500 <500 <500 <500

Table 9 Starting times

25 | P a g e

As shown in table 8, inrush current is reduced by installing soft starter to the electrical

circuit. Thus, the compressor will be started up with small quantity of current and it improves

the stability of the power supply. In table 9, it shows that the compressor with soft starter will

take more time to run than with across the line starter. It means that the compressor starts

progressively.

Figure 16 Inrush current vs time (Left DoL starter - Right Soft starter)

0 200 400 600

Am

ps

Time (ms) 0 200 400 600

Am

ps

Time (ms)

26 | P a g e

10 Human interface, Digit 30

The human interface will let the operator control chiller’s water set points, scheduling,

enable/disable options, etc…

Figure 17 Control architecture

10.1 Without interface, Digit 30= X For starting the chiller it’s necessary to have an interface even if the chiller was ordered

without it. The customer won’t have any information of chiller’s operation except if it’s

connected to BMS. Also only remote ON/OFF would be possible.

10.2 Interface PGD1, Digit 30= A

10.2.1 Description

This panel has a greyscale display, for programing the chiller and view operation values.

For details, see CH535 user guide.

Image 22 PGD1 Interface

10.3 Interface PGDTouch , Digit 30 = B

10.3.1 Description

Hum

an inte

rface

PD

G1 o

r P

DG

Touch

27 | P a g e

This interface counts with a full color touch display to ease chiller’s controlling. Besides

showing the operation values and letting control the chiller, it is also possible view an

historical report of the operation.

Image 23 PDG Touch interface

Image 24 PDG Touch sample interface

10.3.2 Benefits

Friendly user interface.

28 | P a g e

11 Smart Com protocol, Digit 31

Image 25 CH535 Controller

Figure 18 CH535 Communication terminal

11.1 No remote digital communication, Digit 31 = X

11.2 Modbus interface, Digit 31 = 1

Image 26 RS485 Serial card

11.2.1 Application

When the unit needs to communicate with a Modbus network at the unit level.

11.2.2 Description

- BMS RS485 serial card. , allows direct interfacing with an RS485 network.

- Modbus index are in file CGAX-CXAXProtocole_datalists.xls available on Litweb.

11.2.3 Incompatibility:

- Other communication cards

11.3 LonTalk® interface, Digit 31 = 2

29 | P a g e

Image 27 LonTalk® interface card

11.3.1 Application

Allows CH535 controller to communicate on a LonTalk® network at the unit level.

11.3.2 Description

- Inputs and outputs for LonTalk® communication with Trane or LonTalk® BMS.

- Allows connecting to a LonTalk® TP/FT 10 network.

- LonTalk NV and names are in file CGAX-CXAXProtocale_datalists.xls available on

Litweb

11.3.3 Incompatibility:

- Other communication cards

11.4 BACNet™ Interface; Digit 31= 4

Image 28 BACnet™ interface card

11.4.1 Application

Allows CH535 controller to communicate on BACnet network at the unit level.

11.4.2 Description

- Allows connecting the controller to a BACnet MS/TP (Master/Slave Token pass) net-

work.

- BACnet object ID are in file CGAX-CXAXProtocale_datalists.xls available on Litweb

11.4.3 Incompatibility:

- Other communication cards

30 | P a g e

12 External customer input/output option, Digit 32

12.1 Without, Digit 32 = X

12.2 With, Digit 32 = A

12.2.1 Package included:

Customer inputs:

Auxiliary Set point validation.

External water Set point*.

External current demand limit Set point

Customer outputs:

Programmable relays (x4)

12.2.2 Relay costumer information

For more details, Refer to table 22 of the IOM

12.2.3 Wiring diagram:

Figure 19 CH535 Extension terminal

LEGEND

31 | P a g e

Device

Designation Description

6F1 Fuse, customer supplied, programmable relays

6K1 Relays, customer provided, unit status, unit is running

6K2

Relays, customer provided, unit status (Programmable), default is latching alarm -

circuit 1

6K3

Relays, customer provided, unit status (Programmable), default is latching alarm -

circuit 2

6K4 Relays, customer provided, unit status (Programmable), default is chiller limit mode

Table 10 Components' description

12.2.4 Description

- Auxiliary water Set point: It’s another set point for leaving water temperature that can

be switched with the front panel set point.

- External water Set point: Based on an external signal input (0-20mA or 4-20mA), it

will be possible to offset the active set point from 0°C to 20°C.

- External current demand limit set point: limits the maximum number of running

compressors in order to control chiller power consumption.

- % Capacity output: Indicates the percentage of load in which the unit is operating.

12.2.5 More detail

More information in User Guide CG-SVU007 available on LitWeb.

*Note: Automatic water reset based on the outside ambient temperature is a STD possibility:

Active cold water set point based on outside air temperature could be configured on CGAX or

CXAX cooling mode and also active hot water set point based on outside air temperature for

CXAX heating mode.

32 | P a g e

13 Smart Sequencer, Digit 33

13.1 Without, Digit 33 = X

13.2 With Smart Sequencer, Digit 33 = 1

13.2.1 Application

To control up to 3 chillers of equal capacity in parallel configuration.

Figure 20 Parallel Units configuration

13.2.2 Description

The system will activate in cascade each of the chillers, it means that the chiller will be

activated once the previous have reached its full charge. The chillers communicate between

them by pLan Link.

Figure 21 Operating representation

13.2.3 Operation

33 | P a g e

One of the chillers must have PGD touch interface, and it will be the master chiller; all

configurations must be made on master chiller and they will be applied in the others. The

sequence of the cascade could be programed to rotate the compressor’s sequence.

13.2.4 Chiller’s configuration

Figure 22 Communication diagram

- Chiller with Deluxe display has to be configured as the master (address #1).

- This unit has to be entered with digit 33 = 1 (with Smart Sequencer) and digit 30 = B

(PDGTouch Interface)

- Master Chiller must remain powered on to allow Sequencer working.

- Other(s) Conquest unit(s) must be entered with digit 33 = X (without Smart

Sequencer) and digit 30 = A (PDG1 Interface)

13.2.5 Incompatibilities

- Without Interface

- PDG1 Interface for master chiller

34 | P a g e

14 Hydraulic module, Digit 35 The hydraulic module will be factory mounted as shown, pending the chosen option.

The picture below shows its components:

Figure 23 Hydraulic module diagram

1 VALVE FOR PRESSURE POINT 1/4" Gas NPT

2 WATER STRAINER 1,6 mm Staintless Steel 304

3 EXPANSION TANK

4 SAFETY RELIEF VALVE 4 Bar

5 WATER PUMP

6 CHECK VALVE

7 AIR RELEASE VALVE

8 TEMP. SENSOR

9 FLOW SWITCH

10 DRAIN VALVE 1/2" Gas NPT

35 | P a g e

14.1 No pumps and no contactors, Digit 35 = X

Hydraulic module is not integrated in the unit; the costumer provides pump and pump’s

electrical systems.

14.2 Contactors single pump, Digit 35 = 2 Hydraulic module is not integrated in the unit, the customer provides the pump but there will

be power and control supply from the unit, on the electrical panel.

Size (Ton) Pump Current (A)

015 4-6,3

017 4-6,3

020 4-6,3

023 4-6,3

026 4-6,3

030 4-6,3

036 6-10

039 6-10

045 6-10

035 6-10

040 6-10

046 6-10

052 6-10

060 6-10

Table 11 Contactors operating current

14.3 Contactors dual pump, Digit 35 = 4 The costumer provides dual pump, but there will be power and control supply from the unit.

(NOTE: Redundancy pump operation) Two contactors from Table 12, will be provided.

36 | P a g e

14.4 Single pump standard pressure, Digit 35 = 5

14.4.1 Application

Simplifies installation of the unit.

14.4.2 Description

Image 29 Single pump hydraulic module

- The supplier is Grundfos.

- The pump is integrated into unit’s hydraulic module.

14.4.3 Pump reference:

Pumps available:

CGAX / CXAX STD Pressure Sizes Pump

015 AC 25-109

017 AC 25-109

020 AC 25-109

023 AC 25-116

026 AC 25-116

030 AC 25-116

036 AC 25-116

039 AC 25-125

045 AC 25-125

035 AC 25-116

040 AC 25-125

046 AC 25-125

052 AC 25-125

060 AC 25-125 Table 12 Standard head available pumps

14.4.4 Operation / Benefits

AC 25 - 109 Size of the pump

case Diameter of the impeller

(mm)

37 | P a g e

- Compact design: Pump and motor are integrated in a compact and user-friendly

design, the pump is fitted to a low-profile base plate, making it ideal for installation in

systems.

- High reliability: State-of-the-art mechanical shaft seal design and materials offering

high wear resistance and long operative life. Also the pumps are less sensitive to

impurities in the pumped liquid.

- Low noise level: The AC pumps offer very silent operation.

14.4.5 Material specification

Description Material Material

EN ISO/AISI/ASTM

Pump housing Composite PP 30 % GF

Impeller Composite, brass Table 13 Material specification

14.4.6 Performance curves

Figure 24 Standard head pumps performance

0

20

40

60

80

100

120

140

160

180

200

220

0 1 2 3 4 5 6 7 8 9 10 11

P [

kP

a]

Q [lps]

AC 25-109

AC 25-116

AC 25-125

38 | P a g e

14.4.7 Electrical data

Pump type P1 [kW] P2 [kW] IN [A] Cos ϕ1/1 n1/1 [min-1]

AC 25-109 1,20 0,87 2,44 0,75 2838

AC 25-116 1,50 1,26 3,5 0,72 2892

AC 25-125 2,30 1,90 5,03 0,78 2863

Table 14 Standard head pumps electrical data

14.5 Single pump high pressure, Digit 35 = 6

14.5.1 Application

When the requested available pressure is not archived by the standard pressure pumps.

14.5.2 Description

Pumps available:

CGAX / CXAX High Pressure Sizes Pump

015 AC 25-125

017 AC 25-125

020 AC 25-125

023 AC 25-125

026 AC 25-125

030 AC 25-125

036 AC 30-142

039 AC 30-142

045 AC 30-142

035 AC 30-142

040 AC 30-142

046 AC 30-142

052 AC 30-142

060 AC 30-142 Table 15 High head available pumps

14.5.3 Operation / Benefits

Same as single pump standard pressure.

14.5.4 Material specification

Same as single pump standard pressure.

39 | P a g e

14.5.5 Performance curves

Figure 25 High head pumps performance

14.5.6 Electrical data

Pump type P1 [kW] P2 [kW] IN [A] Cos ϕ1/1 n1/1 [min-1] AC 30 3,00 2,56 6,20 0,78 2865

Table 16 High head pumps electrical data

14.6 Dual pump standard pressure, Digit 35 = 7

Image 30 Dual pump hydraulic module

14.6.1 Application

Guard pump for increasing reliability of the water circulation

14.6.2 Description

Just one of the pumps works at the time, the other is in stand-by but in case there is a failure

on the active pump the other will take the place automatically.

14.6.3 Dual pump high pressure, Digit 35 = 8

It’s the same but uses the high pressure single pump.

0

30

60

90

120

150

180

210

240

270

0 1 2 3 4 5 6 7 8 9 10 11

P [

kP

a]

Q [lps]

A…AC 30-142

40 | P a g e

15 Smart Flow Control, Digit 36

15.1 No pump flow control; Digit 36 = X

The pump will always work at its nominal speed and the customer will have to use balancing

valves to adjust the operation point.

15.2 Manual flow control, Digit 36 = B

15.2.1 Application

The goal of this alternative is to provide appropriate flow rate and hydraulic balance, without

the need of mechanical balancing valve, but, taking advantage of the energy consumption

optimization of the pump.

15.2.2 Description

Unit is equipped with a pump package driven by a speed inverter, but without providing

continuous modulation of the speed, the water flow is fixed during the commissioning.

Image 31 VFD Interface representation

15.2.3 Operation

The pump speed limits must be set during the chiller commissioning, and in accordance with

below rules:

Pump speed high limit should be referenced to the Nominal Water Flow Rate

Pump speed low limit should be referenced to the Minimum Water Flow Rate

Figure 26 Frequency vs Speed behavior

Important note: When VPF works at 30 Hz, the absorbed power of the pump get reduced by

80% compared to 50Hz pump operation.

15.2.4 Incompatibilities

No pumps and no contactors option; Digit 35 = X

41 | P a g e

15.3 Variable primary flow (Constant ΔT), Digit 36 = C

15.3.1 Application

The goal of this alternative is to provide a flow rate in order to maintain constant the delta

between the inlet and outlet temperatures in the evaporator. This solution can be applied on

water loops with 2 or 3 ways valves, and can deliver higher energy saving than constant DP

in the majority of the comfort applications.

15.3.2 Description

With this option, Conquest chillers will be equipped with a pump package driven by a speed

inverter, the modulation of the pump speed is handle to ensure that chiller DT keeps

constant. At minimum system partial load, minimum flow rate must be ensured through the

chiller evaporator.

Figure 27 Contant ΔT Control diagram

15.3.3 Operation

Entering and Leaving temperatures at the evaporator will be measured directly by the chiller

controller, through the sensors factory supplied. A Delta T set point will be preset on the unit

controller.

Figure 28 Control’s logic

15.3.4 Incompatibilities

- No pumps and no contactors option; Digit 35 = X

- Multiple units on primary loop (Means that Smart sequencer is also incompatible)

15.4 Variable primary flow (Constant ΔP), Digit 36 = D

15.4.1 Application

42 | P a g e

This solution is recommendable on installations with 2 ways valves on the water coils. This

method ensures that each branch of the water loop has an uniform supply, without

unnecessary energy consumption.

15.4.2 Description

Unit is equipped with a pump package driven by a speed inverter; the modulation of the

pump speed is made in order to ensure that the Differential Pressure (DP) remains constant

within the system. At minimum system partial load, minimum flow rate must be ensured

through the chiller evaporator.

Figure 29 Contant ΔP Control diagram

15.4.3 Operation

Delta pressure is measured by 2 ratiometric pressure sensors factory mounted. The

modulation control logic, PI, of the pump speed starts as soon as pump is in operation, in

accordance with DP set point fixed on the unit controller. If the load decreases, the control

valves are closed and that increases the Delta P, then the speed of the pump is decreased in

order to decrease de Delta P until the setpoint. (Decreasing the speed to the half, decreases

consumption in to 1/8)

Figure 30 Control’s logic

15.4.4 Incompatibilities

- No pumps and no contactors option

- Multiple units on primary loop (Means that Smart sequencer is also incompatible)

43 | P a g e

16 Buffer tank, Digit 37

16.1 Without Buffer tank; Digit 37 = X

16.2 Buffer Tank, Digit 37 = 1

16.2.1 Application

- Used to increase water chiller inertia

- Allows to meet the two minutes water loop circulation

- Stable water temperature operation

16.2.2 Description/Operation

- Consists in a tank of water placed before the pump, Factory-installed

- Placed below the unit structure

- It doesn’t modifies unit dimensions but the height increases +330mm

Image 32 Unit w/o buffer tank & with it

Image 33 Buffer tank & Hydraulic module

16.2.3 Volumes

44 | P a g e

Size Buffer Tank Volume (L)

015

324

017

020

023

026

030

036

444

039

045

035

040

046

052

060

Table 17 Buffer tank Volumes

16.2.4 Incompatibilities

No contactors and no pumps hydraulic module option.

45 | P a g e

17 Installation accessory, Digit 39

17.1 None, Digit 39 = 1

17.2 Neoprene Pads, Digit 39 = 4

17.2.1 Application

Used to avoid direct contact of the chiller and the ground.

17.2.2 Description

They are installed under the chiller.

Figure 31 Location of the pads

Shipped on the hanging eyes.

Image 34 Neoprene pads

A 90 mm

46 | P a g e

Figure 32 Neoprene pads dimensions

17.2.3 Operation/Benefits

Avoid direct contact of the base frame with the ground.

17.2.4 Inconvenience

Neoprene pad do not filter effectively the vibrations.

17.2.5 More detail

The vibration level of the scroll chiller is 1 mm/s at a fundamental frequency of 49 Hz and

harmonics at 97 145.5 194 242.5 and 291 Hz

B 225 mm

Thickness 8 mm

47 | P a g e

18 Acoustic level, Digit 41

CGAX/CXAX

Noise Level

Digit 41

SIMPLEX

015/017/020/023/026/030

SIMPLEX LARGE

036/039/045

DUPLEX

035/040/046/052/060

SN (D41=3)

LN (D41=4)

HESP

(D41=2)

Table 18 CONQUEST's aspect depending on acoustic level

18.1 Standard Noise (SN), digit 15 = X

18.1.1 Application

When the unit is requested for a non-noise sensitive area.

18.1.2 Description

The fans are placed below the roof.

18.1.3 Operation

The chiller operates with a sound power level in between 83 to 89 dB(A)

18.2 Low Noise (LN), digit 15 = L

18.2.1 Application

When the unit is requested for a noise sensitive area.

48 | P a g e

18.2.2 Description

- Compressors are insulated with sound jacket attenuator.

- Diffusor on condenser’s fans to avoid turbulent flow of the air through the fans so fans area

above the roof. - Even with the reduction of the

sound level, the other unit performances are same as Standard noise version.

18.2.3 Operation/Benefits

Low noise units are equipped with a pre-formed ’sound box’ encapsulating each compressor,

as a consequence it will attenuate acoustical diffusion. It’s sound level will be in between 77

to 83 dB(A).

Figure 33 Low noise differences from Std

49 | P a g e

Figure 34 Sound levels

18.3 HESP, Digit 41 = 2

18.3.1 Application

When the air flow will be ducted.

18.3.2 Description

EC fans will be used to provide available static pressure up to 100 Pa

Image 35 HESP fans dimensions

18.3.3 Operation

- Provide airflow similar to standard/low noise unit but the sound level increases.

- Sound level is given by Iris software.

50 | P a g e

19 Condenser protection, Digit 42

19.1 No option, Digit 42 = X

19.2 Condenser guard grill, Digit 42 = A

19.2.1 Application

The unit is requested for polluted, susceptible to be damaged or a persons’ high frequency

areas.

19.2.2 Description

The guard grill can be mounted on costumer’s site.

Image 36 Condenser guard grill

Image 37 Guard grill structure

19.2.3 Benefits

- Grill shall prevent any user from injury that can be causes by contact with fins.

- Grill shall limit coil clogging due to dust and other external objects.

- Grill shall protect the coil from the hail

c = 0,5 mm

W = 2 mm

P = 2,5 mm

Vacuum coef. = 64%

51 | P a g e

20 Literature Language, Digit 44

Literature language, Digit 44

A Bulgarian

B Spanish

C German

D English

E French

H Dutch SI (Netherland)

J Italian

K Finish

L Danish

M Swedish

N Turkish

P Polish

R Russian

T Czech

U Greek

V Portuguese

W Slovene

Y Romanian

Z Norwegian

1 Slovak

2 Croatian

3 Hungarian

Table 19 Languages Codes

52 | P a g e

21 Under/over voltage protection, Digit 45

21.1 None, Digit 45 = X

21.2 Included, Digit 45 = 1

21.2.1 Application

A RM4 TR relay is used to control unit phase sequence and under/over voltage protection.

21.2.2 Description

- Factory installed, located in the control panel.

- Only one relay for each unit.

Image 38 RM4 TR Relay

21.2.3 Operation

- If any fault linked is detected, the compressor is stopped.

- Overvoltage and undervoltage detection (RM4TR):

o In normal operation, the relay is energized and LEDs U and R are lit.

o If the average of the three voltages between phases fluctuates outside the

range to be monitored, the output relay is de-energized.

- Overvoltage: the Red LED “> U” on

- Undervoltage: the Red LED “< U” on

21.2.4 Benefits

- All motors are fully protected.

- Relay RM4 TR provides a phase reversal protection and under/over voltage

protection

21.2.5 Summary

Phase reveral protection Under/over voltage protection

Compressors Fans (and pump) Compressors Fans (and pump)

CGAX - CXAX Digit 45 = X YES YES NO NO

CGAX - CXAX Digit 45 = 1 YES YES YES YES

Image 39 Available protections

R Yellow LED: Indicates the relay state. U Green LED: Indicates that the relay power supply is on. > U Red LED: Overvoltage fault. < U Red LED: Under voltage fault. P Red LED: Phase failure or phase

reversal.

53 | P a g e

22 Suplemental Heat Control, Digit 49

22.1 Without, Digit 49 = X

22.2 With, Digit 49 = 1

22.2.1 Application

When the heating capacity of the heating pump isn’t enough, supplemental heat is required

and so a controller.

Figure 35 Supplemental heat location & Control

22.2.2 Description

- The electric heaters for supplemental heat are provided by the customer.

- 3 stages of electric heaters (Maximum) can be controlled with 3 digital outputs (dry

contacts); the number of stages is configurable by the user.

- The control is based on LIFO logic (Last In First Out).

22.2.3 Inconvenient

- No possibility to disable electric heater on an outdoor temperature condition or

through digital input from customer.

- No modulating heat output.

54 | P a g e

22.2.4 Incompatibilities

CGAX

23 Design Special, Digit 50

Lists .

Figures: Figure 1 CGAX & CXAX comparison ............................................................................................ 2

Figure 2 Frames' configuration ...................................................................................................... 3

Figure 6 Fans' distribution ............................................................................................................. 7

Figure 7 EC fans Pressure vs Airflow ............................................................................................ 8

Figure 8 AC fans Pressure vs Airflow ............................................................................................ 8

Figure 9 EC fans Power input vs Airflow ....................................................................................... 9

Figure 10 AC fans Power input vs Airflow ..................................................................................... 9

Figure 11 Operating map (air side) CGAX & CXAX SA Cooling mode ....................................... 10

Figure 12 Operating map CXAX SA Heating mode .................................................................... 11

Figure 13 Operating map CGAX & CXAX LA cooling mode ....................................................... 11

Figure 14 Pump activation Option’s system diagram .................................................................. 14

Figure 15 Conquest's operating map water side ......................................................................... 15

Figure 16 CXAX PHR diagram .................................................................................................... 23

Figure 17 PHR’s Operating map ................................................................................................. 24

Figure 18 Customer's connection diagram .................................................................................. 24

Figure 19 Inrush current vs time (Left Direct starter - Right Soft starter)..................................... 25

Figure 20 Control architecture ..................................................................................................... 26

Figure 21 CH535 Communication terminal ................................................................................. 28

Figure 22 CH535 Extension terminal .......................................................................................... 30

Figure 23 Parallel Units configuration ......................................................................................... 32

Figure 24 Operating representation ............................................................................................ 32

Figure 25 Communication diagram ............................................................................................. 33

Figure 26 Hydraulic module diagram .......................................................................................... 34

Figure 27 Standard head pumps performance ............................................................................ 37

Figure 28 High head pumps performance ................................................................................... 39

Figure 29 Frequency vs Speed behavior .................................................................................... 40

Figure 30 Contant ΔT Control diagram ....................................................................................... 41

Figure 31 Control’s logic .............................................................................................................. 41

Figure 32 Contant ΔP Control diagram ....................................................................................... 42

Figure 33 Control’s logic .............................................................................................................. 42

Figure 34 Neoprene pads dimensions ........................................................................................ 46

Figure 35 Low noise differences from Std ................................................................................... 48

Figure 36 Sound levels ................................................................................................................ 49

Figure 37 Supplemental heat location & Control ......................................................................... 53

Lists .

Images: Image 1 CONQUEST - Duplex frame - HESP .............................................................................. 4

Image 2 CONQUEST - Duplex frame - STD Noise ....................................................................... 4

Image 3 Unit Number plate ........................................................................................................... 4

Image 4 Unit w/o hydraulic module ............................................................................................... 5

Image 5 Unit with hydraulic module .............................................................................................. 5

Image 6 Electrical panel ................................................................................................................ 5

Image 7 AC fans model ................................................................................................................. 6

Image 8 EC fans model ................................................................................................................. 6

Image 9 BPHE's heater ............................................................................................................... 12

Image 10 Hydraulic module's heaters ......................................................................................... 12

Image 11 Buffer tank's heaters.................................................................................................... 13

Image 12 Grooved water connection .......................................................................................... 16

Image 13 Coupling and pipe stub ................................................................................................ 17

Image 14 Aluminum fins .............................................................................................................. 18

Image 15 Gold epoxy aluminum fins ........................................................................................... 19

Image 16 Micro Channel Heat Exchanger .................................................................................. 20

Image 17 MCHE's parts .............................................................................................................. 21

Image 18 E-Coated MCHE .......................................................................................................... 22

Image 19 PHR's location ............................................................................................................. 23

Image 20 Direct starter ................................................................................................................ 25

Image 21 Soft starter ................................................................................................................... 25

Image 22 PGD1 Interface ............................................................................................................ 26

Image 23 PDG Touch interface ................................................................................................... 27

Image 24 PDG Touch sample interface ...................................................................................... 27

Image 25 CH535 Controller ......................................................................................................... 28

Image 26 RS485 Serial card ....................................................................................................... 28

Image 27 LonTalk® interface card .............................................................................................. 29

Image 28 BACnet™ interface card .............................................................................................. 29

Image 29 Single pump hydraulic module .................................................................................... 36

Image 30 Dual pump hydraulic module ....................................................................................... 39

Image 31 VFD Interface representation ...................................................................................... 40

Image 32 Unit w/o buffer tank & with it ........................................................................................ 43

Image 33 Buffer tank & Hydraulic module ................................................................................... 43

Image 34 Neoprene pads ............................................................................................................ 45

Image 35 HESP fans dimmensions ............................................................................................. 49

Image 36 Condenser guard grill .................................................................................................. 50

Image 37 Guard grill structure ..................................................................................................... 50

Image 38 RM4 TR Relay ............................................................................................................. 52

Image 39 Available protections ................................................................................................... 52

Lists .

Tables: Table 1 CGAX Range .................................................................................................................... 1

Table 2 CXAX Range .................................................................................................................... 2

Table 3 Frame & Coil's type .......................................................................................................... 3

Table 4 Fans operation ................................................................................................................. 7

Table 5 CGAX & CXAX Operating points airside ........................................................................ 10

Table 6 CXAX Heating mode operational points ......................................................................... 10

Table 8 CGAX & CXAX Heaters' power on buffer tanks ............................................................. 13

Table 9 Inrush currents ................................................................................................................. 1

Table 10 Starting times ................................................................................................................. 1

Table 11 Components' description .............................................................................................. 31

Table 12 Contactors operating current ........................................................................................ 35

Table 13 Standard head available pumps ................................................................................... 36

Table 14 Material specification .................................................................................................... 37

Table 15 Standard head pumps electrical data ........................................................................... 38

Table 16 High head available pumps .......................................................................................... 38

Table 17 High head pumps electrical data .................................................................................. 39

Table 18 Buffer tank Volumes ..................................................................................................... 44

Table 19 CONQUEST's aspect depending on acoustic level ...................................................... 47

Table 20 Languages Codes ........................................................................................................ 51

Trane optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand, the leader in

creating and sustaining safe, comfortable and energy efficient environments, Trane offers a broad portfolio of advanced

controls and HVAC systems, comprehensive building services, and parts.

For more information, visit www.Trane.com.

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without

notice.

© 2015 Trane All rights reserved

CG-PRC037-GB December 2015