24
Technical note June 2018 ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU

ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

  • Upload
    lehuong

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

Technical noteJune 2018

ORCA-Flash4.0 V3Digital CMOS camera C13440-20CU

Page 2: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

1. Spec Chart

2

Table of contents

1. Spec Chart ···································· P2

2. ORCA-Flash4.0 V2/V3 Comparison Chart ·· P3

3. Key Features ································· P33-1. Readout noise3-2. Quantumefficiency3-3. Speed/Connectivity3-4. Sub-arrayreadoutorRegionofInterest(ROI)3-5. Binning readout3-6. Real-timedefectpixelcorrection3-7. PhotoResponseNon-Uniformity(PRNU)

andDarkSignalNon-Uniformity(DSNU)3-8. High Contrast Mode

4. Readout Modes ····························· P74-1. Diagramofsensorshowingtwohalves4-2. Explanationofwhatreadoutis4-3. W-VIEWMode4-4. LightsheetReadoutMode(Patented)4-5. Dual Lightsheet Readout Mode

5. Data Management (Exclusive to ORCA-Flash4.0 V3) ··· P105-1. 8 bit/12 bit LUT5-2. Dataextraction(ORCA-Flash4.0V3

ExclusiveFeature)

6. Triggering ··································· P116-1. Master Pulse6-2. Trigger output

7. Various Timing Charts ·················· P137-1. Explanationoftimingcharts7-2. Normal area mode7-3. Light sheet mode

8. Software Support ························· P188-1. DCAM-API8-2. DCAM-SDK&DCIMG-SDK8-3. GPUs8-4. Thirdpartysoftwaresupport/options

9. Understanding SNR ····················· P199-1. SNR and rSNR chart

10. Application Examples ·················· P2010-1.SuperResolutionMicroscopy10-2.LightsheetMicroscopy

11. Diagrams ···································· P2111-1. Dimensional Outlines11-2.SystemConfiguration11-3. Options

1. Spec Chart

Product number C13440-20CUImagingdevice sCMOSCell(pixel)Size(μm2) 6.5×6.5PixelArray(horizontalbyvertical) 2048×2048EffectiveArea(horizontalbyverticalinmm) 13.312×13.312

PeakQuantumEfficiency(QE)*1 82 % @ 560 nm DynamicRange*1 37 000 : 1

USB 3.0With Optional Camera Link BoardforPC

ReadoutNoise(Nr)medianinelectronsslowscan*1 0.8@30fps 0.8@30fps

ReadoutNoise(Nr)rmsinelectronsslowscan*1 1.4@30fps 1.4@30fps

ReadoutNoise(Nr)medianinelectronsstandardscan*1 1.0@40fps 1.0@100fps

ReadoutNoise(Nr)rmsinelectronsstandardscan*1 1.6@40fps 1.6@100fps

MaximumFullResolutionFrameRate(fps) 40 100

Cooling Temperature Readout YesDarkCurrent(electrons/pixel/s)–AirCooledto-10°C 0.06

DarkCurrent(electrons/pixel/s)–WaterCooledto-10°C 0.06

DarkCurrent(electrons/pixel/s)–WaterCooledto-30°C 0.006

FullWellCapacityinelectrons*1 30 000

Digital Outputs (withprogrammableLUT) 16, 12, 8 bit

Readout Modes NormalArea,Lightsheet,W-VIEWMode,DualLightsheet

Binning 2×2/4×4

MasterPulseGenerator (PulseModes)

Freerunning,StartTrigger,Burst

MasterPulseGenerator(PulseIntervalin1µsincrements) 10µsto10s

HotPixelCorrection Off,Low,Medium,HighDarkSignalNon-Uniformity(DSNU)*1 0.3 electrons rmsPhotoResponseNon-Uniformity(PRNU)athalfleveloffulllightrange(15000electrons)*1

0.06 % rms

PhotoResponseNon-Uniformity(PRNU)atlowlightlevel (700electrons)*1

0.3 % rms

Linearityerror,fulllightrange(EMVA1288standard)*1 0.5 %

Linearityerror,lowlightrange (<500electronssignal)*1

0.2%/Lessthanapprox.1e-absolute error

On-cameraConnectivity Both USB 3.0 and Camera Link*2

V2CompatibilityMode (forusewithlegacysoftware) Yes

Lens mount C-mount*1Typicalvalue*2EnabledwithoptionalCameraLinkboardforPC

Page 3: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

2.ORCA-Flash4.0V2/V3ComparisonChart

3

2. ORCA-Flash4.0 V2/V3 Comparison Chart

ModelTypenumber ORCA-Flash4.0V3C13440-20CU

ORCA-Flash4.0V2C11440-22CU(SN/100001–)

ORCA-Flash4.0V2C11440-22C/-22CU(–SN/009999)

QE 82 % 82 % 72 %

Readout noise Slow:0.8(med)/1.4(rms)Fast:1.0(med)/1.6(rms)

Cooling temperature

-10°C(Air)/-10°C(Water)/-30°C(Max)

-10°C(Air)/-20°C(Water)/-30°C(Max)

Dark current 0.06electrons/pixels(-10°C)0.006electrons/pixels(-30°C)

Linearity

Linearityerror,fulllightrange(EMVA1288

standard)0.5%Linearityerror,lowlightrange(<500e-signal)

0.2 %/Less thanapprox.1 e- absolute

error

<3%

Framerate 100(CL)/40(USB) 100(CL)/30(USB)

Slowscan

Light sheet mode (CL/USB) (CLonly)Globalresettrigger

W-VIEWMode —V2 compatible mode —Dataextraction —8 bit/12 bit output —High contrast mode —Hotpixelcorrection (Multi-level) (ON/OFF)Master pulse —Dual light sheet mode —

Temperature readout —

3. Key Features

3-1. Readout noise3-1-1. Readout noiseThe main factors that determine the detection limit of theimagesensorarethedarkcurrentandreadoutnoiseofthesensor,importantparametersthatdeterminetheperformanceofthecamera.Of the two, Dark current can be reduced by cooling thesensor, making readout noise the most important parameter.

3-1-2. What is readout noise?Itistherandomnoisegeneratedwithinthecharge-to-voltageconversionamplifierwhenreadingoutthecharge.

3-1-3. Readout noise reduction method for CMOS image sensor

Cameras using the latest CMOS technology have greatlyreducedthevariationsintheamplifierforeachpixel.By optimizing the pixel amplifier, increasing the gain andimplementing CDS (Correlated Double Sampling) on thesensor,noiseisdramaticallyreduced.

3-1-4. Readout noise measurement methodTheCCDimagesensorhasonereadoutamplifierpersensor.Therefore,thereadoutnoisemeasuredbyperformingseveralreadouts in each pixel and the readout noisemeasured inmultiple pixels of one image are essentially equivalent.Therefore,thereadoutnoisecanbeevaluatedfromasingleimage.As CMOS image sensor has an amplifier for each pixel,the readoutnoise isdifferent foreachpixel.Therefore, thereadoutnoiseisfirstmeasuredforeachpixel.Thecentralvaluewhenthepixelsarearrangedfromlowtohigh noise is called the median. Compared to the average value,itrepresentsthetypicalnoisevalueunaffectedbythemaximumandminimumvalues.Thermsnoiseiscalculatedfromboththepositiveandnegativeerrorswithrespecttotheaveragevalue. It statistically represents thenoisevariationforeachpixel.

Page 4: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

3.KeyFeatures

4

3-1-5. Readout noise performance of ORCA-Flash4.0 V3

Fig.1showsthefrequencydistributionofthereadoutnoiseineachpixelofORCA-Flash4.0V3.Itcanbeseenfromthereadoutnoiseof1.0electron(median)and1.6electrons(rms)thatthemajorityofpixelshaveverylownoise.Thisachieveslow readoutnoiseascompared to thecommercializedanyother scientific CMOS image sensor. Moreover, this valueis the performance for high-speed readout of 100 frames/secondat4megapixels,whichcannotbeachievedbytheoldgeneration CMOS image sensor. The noise can be reduced further by using the slow scanmode lowering the readoutnoiseto0.8electrons(median)or1.4electrons(rms).

Freq

uenc

y (p

ixel

cou

nt)

Readout noise (electrons)0

0

600 000

400 000

200 000

1 000 000

800 000

1 200 000

1 2 3 4 5 6

RMS: 1.4 electrons

Median: 0.8 electrons

RMS: 1.6 electrons

Median: 1.0 electrons

Standard scan mode

Slow scan mode

Fig.1 ORCA-Flash4.0V3readoutnoisedistribution

3-2. Quantum efficiencyWithcarefullydesignedpixelsandon-chiplenstechnology,itsGenIIsCMOSsensorprovideshighQEacrosstherangeofwavelengthsandoffersgreatersensitivitythanconventionalsCMOS cameras, even EM-CCDs.In low-light fluorescent imaging, the ORCA-Flash4.0 V3enablesnotonlyexcellentsensitivitybutalsostableimagingacquisition capabilities compared to EMCCDs which havelowerrelativeSNRduetomultiplicativenoiseintheon-chipgain.(SeeFig.2)

Incident light

On-chip microlens

Sensor Sensor

Fig.2 Structuraldiagramoftheon-chipmicrolens

80

70

60

50

40

30

20

10

0400 500 600 700 800 900 1000

90

Wavelength (nm)

QE

(%)

ORCA-Flash4.0 (Conventional)

ORCA-Flash4.0 V3 (New)

First-generation sCMOS

Fig.3 Spectral response

3-3. Speed/Connectivity3-3-1. Frame rate (readout speed)The frame rate (readout speed) refers to the number ofimagesthatcanbecontinuouslyproducedandisspecifiedinframespersecond(fps).Themaximum full frame rate of theORCA-Flash4.0 V3 is100frames/s(at2048×2048pixels)andisachievedusingasimultaneoustwo-lineparallelreadoutusingthecolumnA/D.

CDS CDS CDS

Photodiode

CDS

A/D

CDS

A/D

CDS

A/D

CDS

CDS

A/D

CDS

CDS

A/D

CDS

CDS

A/D

CDS

CDS

A/D

A/D A/D A/D A/D A/D A/D A/D

Data output

Data output

Amplifier

Fig.4 Readout circuit in a CMOS image sensor

Page 5: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

3.KeyFeatures

5

3-3-2. Output/control interfaceORCA-Flash4.0seriescamerasareequippedwithaCameraLinkinterfaceandUSB3.0interfaceastheimageoutputandcontrolinterfaces.Notethatsincetheinterfaceconnectedtothecameraisautomaticallyenabled,manualswitchingisnotrequired.

3-3-3. Camera Link interfaceWhenconnectingwiththeCameraLinkinterface,imagesof4megapixeland16biteachcanbetransferredtoacomputerin100frames/s(fullframe).

Standards CameraLink80bitconfigurationequivalentPixelclock 85MHzPixeloutput 16bit×5pixels/clock

3-3-4. USB 3.0 interfaceTheUSB3.0interfaceisageneral-purposeinterfacewithamaximumspeedof500MB/sec.Itcomesstandardwithmanycomputers and is equipped in many notebook computers.The ORCA-Flash4.0 V3 offers user-controllable Look UpTables(LUT)for8bitor12bitdatainordertorecordonlythenecessaryrangeofdigitaloutput.Withthiscapability,userscan not only reduce image data volume but also improvethe camera frame rates by eliminating the need to recordunnecessaryimagedata.

Effectivenumberofpixels

ORCA-Flash4.0V2 ORCA-Flash4.0V3

Digital output Framerate Digital output Framerate

2048×2048 16 bit 30frames/s 16 bit12 bit8 bit

40frames/s53frames/s80frames/s

1920×1080 16 bit 60frames/s 16 bit12 bit8 bit

75frames/s100frames/s151frames/s

Table 1 ReadoutspeedcomparisonwhenusingUSB3.0

3-4. Sub-array readout or Region of Interest (ROI)

Sub-arrayreadoutisamethodofreadingthesensorinwhichtheoutputimagesarecomprisedofonlythepixelsintheuserselectableregionof interest(ROI).Sincelessdataisbeingreadoutandtransferredthismethodcanofferincreasedframerateswithnoincreaseinreadnoise.UnlikeCCDsensorsinwhich the areas outside of theROI need to be transferedanddiscarded,thearchitectureofCMOSsensorsallowthereadoutofonlytheROIitself.Becauseofthisscheme,frameratesincreaseinverselytothenumberofpixelsreadout.Themaximumsub-arrayedreadoutspeedoftheORCA-Flash4.0 V3is25600frames/secondwhenan8pixel(vertical)regionissetonthecenter-lineofthesensor.Theconfigurableareaistwoverticallysymmetricalpositionscenteringonthecenterofthescreen.Whenasingletargetarea isused, the fastest readout ispossiblebysetting thecenterof thescreen.Further, theconfigurablepositionandsizearein4-lineincrements.

Numberofpixelsinvertical

direction

NumberofpixelsinhorizontaldirectionStandard

scanSlowscan

USB 3.0 Standard scan (16bit)

2048 512 1024/1536/20482048 100 30 100 401024 200 60 200 80512 400 120 400 160256 801 240 801 320128 1603 481 1603 64164 3206 962 3206 12828 25 655 7696 25 655 9329

Table 2 Readoutmethod,numberofpixelsandreadoutspeed

3-5. Binning readoutBinning isamethodofadding thesignalofadjacentpixelstogethertoachievehighsensitivityatthecostofresolution.Binningcan improvethesignal tonoiseandframeratesofimages. The ORCA-Flash4.0 V3 does in-camera binningofeither2×2or4×4pixelswitharesultant increase inS/Nof 2× and 4×, respectively.As an illustration, a 2×2 bin oftheentiresensor(2048×2048)wouldresultinaquadruplingof thesignal ineachpixel,a2 fold increase inS/Nandanimage that is 1024×1024 pixels. The resultant increase inspeedwoulddependontheoutputinterfacebeingusedandisillustratedbelowinTable3.

Numberofpixelsin vertical direction

Binning 2×2, 4×4Camera Link USB 3.0

(Slowscan)Standard scan Slowscan2048 100 30 301024 200 60 60512 400 120 120256 801 240 240128 1603 481 48164 3206 962 9628 25 655 7696 7696

*Thereadoutspeediswhenthecenterofthescreenismeasured(frames/s)

Table 3 Readoutspeedofbinningreadoutmethod

Page 6: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

3.KeyFeatures

6

3-6. Real-time defect pixel correctionThere are a fewpixels inCMOS image sensors that haveslightly higher readout noise performance compared tosurrounding pixels. The camera has real-time variant pixelcorrectionfeaturestoimproveimagequality.Thiscorrection isperformed in real-timewithno impactonimagereadoutspeed.Thecorrectionfunctioncanbeturnedon or off in software and the camera defaults to the ONconditionwhenpoweredup.User selectable correction levels and associated exposuretimeexamplesarelistedbelow.

Correction levelforwhitespots

ExposuretimeRatioofthenumberofpixelstobecorrectedtothenumberofallpixels

High 1 second or longer exposuretime Approximately0.1%

Medium(Default) 1 second or shorter exposuretime Approximately0.05%

Low 10ms(default)orshorterexposuretime Less than 0.001 %

3-7. Photo Response Non-Uniformity (PRNU) and Dark Signal Non-Uniformity (DSNU)

Quantitativeaccuracyisarequirementforscientificcameras.In order to achieve excellent quantitative performance,goodlinearity,reducedfixedpatternnoiseandminimalpixeldifferencesareneeded,allowingtheusertoacquireuniformbackground images.Especially, important for super resolution imaging, suchas localization methods, since pixel differences generatea controversial impact on the precision of singlemoleculeposition. Hamamatsu builds in outstanding uniform imagequalityusingofourmanyyearsofknowledgeandexperiencewithdigitalcircuittechnology.

Ourattentiontodetaildeliversoutstandinglinearity,especiallyat low light, and offers improved photon response non-uniformity(PRNU)anddarksignalnon-uniformity(DSNU)tominimizepixeldifferencesandreducefixedpatternnoise.

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

128×128

1500×1500 area used for statics

32686 DN= 15035.56 e- mean illumination (1500×1500)

Normalized averaged image from 1000 frames

1500×1500

2000×2000

Relative pixel responseFr

eque

ncy

Log-Linear Histogram of pixel response under uniform illumination

Photoelectron (e-) = 4560.5 e-SD = 0.0011PRNU = 0.11 %

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.0210 0

10 1

10 2

10 3

10 4

10 5

10 6 9914.2 DN in 1500×1500 ROI

Photoelectron (e-) = 15035.56 e-SD = 0.00062362PRNU = 0.062 %

32686 DN in 1500×1500 ROI

Photoelectron (e-) = 23023 e-SD = 0.00083367PRNU = 0.083 %

50050 DN in 1500×1500 ROI

Fig.5 Measurementexampleofphoto-responsenonuniformityunderuniformillumination

3-8. High Contrast ModeCMOScamerashavetheabilitytodetectrelativelylowsignalsinthepresenceofbackgroundsignal.However,sometimestheseimagespresentvisuallyaslowincontrastandlackingsharpness. Hamamatsu’s Enhanced Visualization Mode(High Contrast Mode) enriches the visual contrast of theimagewhilemaintainingtherawandquantitativedataintheimage stored to disk.

EM-CCD camera image Conventional CMOS camera image High contrast mode image

Fig.6 Highcontrastmodeimageandcomparisonoffieldofview(AllimagesbasedonLUT)

Page 7: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

4. Readout Modes

7

4. Readout Modes

4-1. Diagram of sensor showing two halvesThecamerareadsouttheimagesensorfromthecenterlinetothetopandfromthecenterlinetothebottomsimultaneously(centerlineisdepictedinredlineinthediagram).

Fig.7 Normal area mode readout direction

4-2. Explanation of what readout is4-2-1. Rolling shutter/Global shutterExposureandreadoutmethodsofCMOSimagesensorsareclassifiedintotwotypes.Theyarerollingshutterandglobalshutter.Rollingshutterexposureisachievedbyexposingverticallinesslightly offset in time compared to subsequent lines. (SeeFig. 8)While is possible to capture a segment of the rollingshutterexposureso thatall thepixels in the resultant imagearecollectedatthesameinstant(seeGlobalexposuretimingoutputbelow),mostbiologicalsamplesmoveatarelativelyslowenough speed that rolling shutter has become the preferredmethod of sensor reading in CMOS cameras. For someapplicationstherollingshuttercanbecustomizedtooptimizereadoutmethodssuchasLightsheetreadout(seebelow).

In contrast, global shutter readout exposes the light to allpixelsofthesensoratthesamemomentintime.Forsomeapplicationsthisisadvantageousbutcomesattheexpenseofslowerframeratesandincreasednoise.(Again,seeFig.8)

TheORCA-Flash4.0V3sensorusesrollingshutterreadout.

Rolling shutter

Rolling shutterExposure time: All lines are the same (arrow length is the same)Timing: Sequential time difference (position of the arrow is different)

Global shutter

Global shutterExposure time: All lines are the same (arrow length is the same)Timing: All lines are the same (position of the arrow is the same)

Fig.8 Readouttimingofrollingshutterandglobalshutter

Page 8: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

4. Readout Modes

8

4-3. W-VIEW Mode The exposure time and the position of sub-array readoutcan be set for the top half area and the bottom half areaindependentlyinW-VIEWMode.Thisfunctionisoptimizedforsimultaneousimageacquisitionofdualwavelengthimages.,especiallyusingW-VIEWGEMINImadebyHamamatsu.

4-3-1. Readout directionThereadoutdirectioncanbesetforthetophalfareaandthebottomhalfareaindependentlyinW-VIEWMode.(Fig.9,10,11,12)

Fig.9 Top: top to center/Bottom: center to bottom

Fig.10 Top: center to top/Bottom: bottom to center

Fig.11 Top: top to center/Bottom: bottom to center

Fig.12 Top: center to top/Bottom: center to bottom

4-4. Lightsheet Readout Mode (Patented)LightsheetReadoutModeisauniqueandpatentedmethodof reading theCMOS imagesensor in theORCA-Flash4.0V3camerawhichprovidesimprovedcontrolovertherollingshutter mechanism.By finely synchronizing the camera readout with theilluminationscan,scatteredlightisrejectedallowingimagesofhighersignaltonoiseratiostobeacquired.

Detailed information about Lightsheet Readout Mode ispublishedonourwebsite.

Websitehttp://www.hamamatsu.com/jp/en/technology/innovation/lightsheetreadout/index.html

4-4-1. Readout directionThe camera reads out from the center line to the top lineandtothebottomlinesimultaneouslyinnormalareamode.(Fig.13)The camera reads out from the top to the bottom line orfromthebottomtothetoplineinLightsheetReadoutMode.(Fig.14)

Fig.13 Normal area mode

Fig.14 Lightsheet Readout Mode

- Toptobottomreadout(Fig.15):Thedataisreadoutfromthe top to the bottom line.

- Bottomtotopreadout(Fig.16):Thedataisreadoutfromthe bottom to the top line.

Page 9: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

4. Readout Modes

9

Fig.15 Top to bottom readout

Fig.16 Bottom to top readout

4-5. Dual Lightsheet Readout ModeDualLightsheetReadoutModeisanotheruniquefeatureofCMOSimagesensorwhichprovides improvedcontroloverthe rolling shutter mechanism.Dual Lightsheet Readout Mode can achieve a frame ratethatistwiceasfastasthatoftheLightsheetReadoutModelistedabove.Thesub-arraycanbeindependentlypositionedineachhalf(toporbottom)ofthesensorinDualLightsheetReadout Mode.

4-5-1. Readout directionThereadoutdirectioncanbesetforthetophalfareaandthebottomhalfarea independently inDualLightsheetReadoutMode.(Fig.17,18,19,20)

Fig.17 Top: top to center/Bottom: center to bottom

Fig.18 Top: center to top/Bottom: bottom to center

Fig.19 Top: top to center/Bottom: bottom to center

Fig.20 Top: center to top/Bottom: center to bottom

Page 10: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

5.DataManagement(ExclusivetoORCA-Flash4.0V3)

10

5. Data Management (Exclusive to ORCA-Flash4.0 V3)

5-1. 8 bit/12 bit LUTSelectable Pixel Bit DepthUsingthe8bit(256graylevels)or12bit(4096graylevels)depth is a method to reduce the image data volume to a user significantresolution.12bitdigitaloutput:Thedataisreducedto3/4,ofthe16bitoutput.8bitdigitaloutput:Thedataisreducedto1/2,ofthe16bitoutput.

Thus 8 bit or 12 bit digital output can also boost the USB 3.0 interface frame rates, while reducing your image datavolume.

76543210

1514131211109876543210

3210

151413121110987654

Look UpTable

OFF

11109876543210

1514131211109876543210

3210

151413121110987654

Look UpTable

OFF

Sensor output Sensor output12 bit output 8 bit output

Fig.21 LUTOFF

User-Controllable Look Up TableThe reduced8or12bit-depthacquisitioncan result in thecompressionofpixelintensitydatatherebyreducingintensityresolution.TheUser-ControllableLookUpTable(LUT)canbeusedtoregainintensityresolutionbyallowingaselectable,reducedrange,ofintensitiestomappedintothereducedbit-depth.

Selectable LUT is adjustable up to the 16 bit-depth resolution.

Look UpTable

ON

1514131211109876543210

76543210

1514131211109876543210

1514131211109876543210

11109876543210

1514131211109876543210

Look UpTable

ON

Sensor output Sensor outputLUT output 12 bit output LUT output 8 bit output

Fig.22 LUT ON

5-2. Data extraction (ORCA-Flash4.0 V3 Exclusive Feature)

Dataextraction is a function to reduce theamount of databy compressing data of unrequired area.User can specifytherequiredareainunitsof4×4pixelsusingcameradriversoftware “DCAM-API”. The “DCAM-API” reconstructs theoriginalimagefromtheoutputdata.

Thedataextractionprocessisperformedinreal-timewithoutsacrificingthereadoutspeedatall.

Theextractedareashouldbelessthan3/4ofthefullresolutionimagesize.

Whenusingsub-arrayreadoutmode,theverticalsub-arraysizeshouldbemore than128 lines forNormalAreaModeand Lightsheet Readout Mode, the vertical sub-array sizeshouldbemore than64 lines forW-VIEWModeandDualLightsheet Readout Mode.

DCAM-API reconstructs imageSpecify the required area

Stored data can reduced

Fig.23 DataExtraction

Page 11: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

6. Triggering

11

6. Triggering

6-1. Master PulseConventional systemshave requiredanadditional externalpulsegeneratorinordertosynchronizemultiplecamerasanddevices.Ournew“MasterPulse”allowstheORCA-Flash4.0V3totrulysimplifythetriggertimingwithitsbuilt-intiminggenerator.

Thecamerahasamasterpulsefunctionwhichcangeneratepulsesthatisindependentoftheexposureorreadouttimingof the imagesensor.Thecamerabesynchronizedwith themasterpulsegenerated timingpulseswhenset toexternaltriggermode,exceptforLightsheetReadoutmodeandDualLightsheet Readout. The programmable timing output can be settousethemasterpulseasareference,soitispossibletosetupasynchronoussystemincludingperipheraldeviceswithoutanexternalpulsegenerator.ThisfunctioncanbeturnedONandOFF.(DefaultisOFF)Themasterpulsesupports free runningmode,start triggermodeandburstmode.Therangeofintervaltimeis10µsto10s,andthestepis1µsforthemasterpulse.

Exposure timing of the master and slave camera can be controlled easily with 2 cameras operated in synchronized state.

Master pulse generator

Master pulse

Master camera exposure timing

Slave camera exposure timing

Timing output

Master camera

Slave camera

Fig.24 Exampleofexposuretimingcontrol

6-2. Trigger output Inordertosynchronizethecamerawithanexternaldevice,ORCA-Flash4.0V3 is equippedwith various trigger outputsignals in which the camera becomes themaster and theexternaldevicetheslave.

6-2-1. Global exposure timing outputThecameraoutputstheperiodwhereall linesareexposedsimultaneously.Sincethetimingoftheexposureineachlineisdifferentfortherollingshutter,itispossiblethataphenomenonmaybeobservedpartiallyineachoftwoconsecutiveframes.Aglobalexposuretimingallowsforsynchronizingoftheeventtothetimewhenalllinesareexposing,thereforemovingtheeventintoasingleframe.Exposureshouldbesettolongerthanreadouttotakeadvantageofthissynchronization.Formoreinformationonthetiming,pleaserefertoFig.28to39.Please note that the global exposure timing output is notoutput in the light sheet mode.

6-2-2. Programmable timing outputFor the programmable timing output, pulses with a delaytimeandpulsewidtharesetbyacommand,andreferencedto the user selection of the end of the sensor readout,Vsync (vertical synchronous signal) or Hsync (horizontalsynchronoussignal).By using the programmable timing output, simplesynchronization with external devices will be enabled,allowingittoreplaceasimpledelayunitorpulsegenerator.Thesettingrangeoftimedelayis0μsto10sandpulsewidthis10μsto10s.

Sensor readout

Vsync

Read End

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Pulse width

Delay

Pulse width

Delay

Fig.25 Programmable timing output (normalareamode,edgetrigger)

Sensor readout

Vsync

Read End

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Pulse width

Delay

Pulse width

Delay

Fig.26 Programmable timing output (lightsheetmode,edgetrigger)

Page 12: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

6. Triggering

12

6-2-3. Pre-HsyncInlightsheetmodeatimingsignalreferencedtothehorizontallinereadoutmaybeoutputbysettingtheHsyncoutputtrigger.Thedelayandwidthissetbycommand.InadditionthestartofthelightsheetmodemaybedelayedbysettinganumberofPre-Hsyncpulses.

Hsync

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Pulse width

Delay

Fig.27 Pre-Hsyncoutput(lightsheetmode,edgetrigger)

6-2-4. Trigger ready outputWhenoperatingintheexternaltriggermode,theintervalfromoneexposuretothenextcanbeshortenedwiththeuseofthetriggerreadyoutput.Whenthecameraisoperatingintheexternaltriggermode,forexamplefortheedgetrigger,thenextexposurecanstartonly after the sensor readout has ended. For this reason,a trigger for thenextstartofexposurecannotbeacceptedduringanexposureor readout.Bymonitoring theoutputasignal at the end of readout the input triggermay be sentimmediately to start the next exposure, reducing the deadtime as much as possible.

Page 13: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

7. Various Timing Charts

13

7. Various Timing Charts

7-1. Explanation of timing chartsInChapter7,eachimagingmodeisdescribedwithreferencetoatimingchart.First,thechapterdiscusseshowtoreadthetiming charts.ThehorizontalaxisinFig.28representsthepassageoftime.ThepartcoloredinyellowrepresentstheexposureconditionoftheCMOSsensor.ThetopofthefigurerepresentsthetopofthescreenoftheCMOSsensor,andthebottomofthefigurerepresentsthebottomofthescreenoftheCMOSsensor.AstheCMOSsensorcontrolstheexposureinonehorizontallineincrement,thetransversetimingoftheCMOSsensorisomittedinthefigure.Thisfigureiswhentheexternaltriggerisinput.After inputting an external trigger (1), a sensor readout(readout of the data in the previous frame) is started (2),andthecenterlines(1023H,1024H)ofthescreenwillstartexposing at the same time. The camera data output alsobeginswiththestartofthesensorreadout(3).Withthepassageoftime,thesequentialreadoutofpreviousframesonaline-by-linebasisandexposureofthenextframestart.In the period where all lines are exposed (red square inthefigure),theglobalexposureoutput(4)isoutput.Also,atriggerreadyoutput(5)willbeoutputoncethereadoutofoneframeiscompletedandthenextexternaltriggerreceptionisenabled,andifaUSB3.0isconnected,USB3.0dataoutputwillbeoutput(6).

(5) Trigger ready output

(6) USB 3.0 Data output

(3) Camera data output

(4) Global exposureTiming output

(2) Sensor readoutStart signal

0H1H

··

1023H1024H

··

2046H2047H

(1) External trigger

Exposure

Fig.28 Camera operation mode

7-2. Normal area mode7-2-1. Free running modeORCA-Flash4.0 V3 allows the exposure time to be set byan external command and is equipped with free runningmode that operates in the camera itself. The free runningmodeisequippedwiththenormalreadoutmode(whentheexposuretimeislongerthanthereadouttimeofoneframe)and electronic shutter mode (when the exposure time is

shorter than the readout timeofone frame).Thesemodesautomaticallyswitchaccordingtotheexposuretimesetting.

7-2-1-1. Normal readout modeThenormalreadoutmodeisamodewherethesetexposuretimeiseitherthesameasorlongerthanthereadouttime.Iftheexposuretimeissettobeequalorlongerthanthereadouttimeforoneframe,theglobalexposuretimingoutputsignalwillbeoutputwhenexposurestartsfortheperiodinwhichtheexposureisperformedinallpixels.Whentheexposureendsandreadoutofthesensorstarts,thecameradataisoutputat the same time as the sensor readout start signal is output.

Internal exposure time setting

Camera Linkdata output

USB 3.0data output

Sensor readout

0H1H

··

1023H1024H

··

2046H2047H

Global exposuretiming output

Exposure

Fig.29 Normal readout mode

7-2-1-2. Electronic shutter modeThe electronic shutter mode is used for imaging with asuitablesignal levelwhenthe light intensity is toohighandoutputsignaloverflowsinthenormalreadoutmode.Althoughtheexposuretimeisshorterthanoneframe,theframerateis100frames/s(whenreadingoutallpixels).Althoughthebasictiming is the same as the normal readout mode, because the exposuretimeisshort,theglobalexposuretimingoutputwillnot be output.

Camera Linkdata output

Sensor readout

Internal exposure time setting

Global exposuretiming output

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Fig.30 Electronic shutter mode

Page 14: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

7. Various Timing Charts

14

Internal exposure time setting

USB 3.0data output

Global exposuretiming output

Sensor readout

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Fig.31 Electronicshuttermode(USB3.0)

7-2-2. External trigger modeAsanexternaldevicebecomesthemasterwhenperformingimage capturing in synchronism with the external device,ORCA-Flash4.0V3isequippedwithvariousexternaltriggermodesinwhichthecamerabecomestheslave.

7-2-2-1. Edge trigger modeTheedgetriggermodeisusedwhenperformingexposureinsynchronizationwithanexternaltriggersignal.Theexposure time is externally set by a command. In theedgetriggermode,theexposureofthecenterlines(1023Hand 1024H in the figure below) is started by the edge(rising/falling edge) timing of the trigger signal input to thecamera.Then,after the readout timeofone line,exposureofthenextlines(1022H,1025H)starts,afterwhicheachlinesuccessively starts theexposure.Fig.32shows the timingchartoftherisingedgeexample.

Camera Linkdata output

Trigger ready output(Camera Link)

Trigger ready output(USB 3.0)

Global exposuretiming output

USB 3.0 data output

External trigger

Sensor readout

0H1H

··

1023H1024H

··

2046H2047H

Exposure

*

* Delay 87.7 μs, Jitter 9.74 μs* Delay 292.33 μs, Jitter 32.48 μs (slow scan mode)

Fig.32 Edge trigger mode

7-2-2-2. Global reset edge trigger modeIn the edge triggermode, the global reset ismade by theedge (rising/falling edge) of the trigger signal input to thecamera.At the same time, global exposure is started, and

thereadoutisdonebynormalreadout.Thetimingotherthanthe reset is the same as the edge trigger mode.

USB 3.0 data output

Camera Linkdata output

Trigger ready output(Camera Link)

Global exposuretiming output

External trigger

Sensor readout

0H1H

··

1023H1024H

··

2046H2047H

Trigger ready output(USB 3.0)

*

* Delay 87.7 μs, Jitter 9.74 μs* Delay 292.33 μs, Jitter 32.48 μs (slow scan mode)

Exposure

Fig.33 Globalresetedgemode

7-2-2-3. Level trigger modeTheleveltriggermodeisusedwhenperformingexposureinsynchronizationwithanexternaltriggersignalandexternallycontrollingtheexposuretimewithatriggersignal.TheleveltriggermodeisamodewheretheexposurestartswhentheinputtriggersignalswitchesfromLowtoHigh(orHigh to Low), and continues until the end of the period ofHigh(orLow).Anexampleofthe“High”triggerlevelisshownbelow.WhenthetriggersignalgoestoHigh,theexposureofthecentrallines(1023H,1024H)starts,thenafterthereadouttimeofoneline,exposureofthenextlinestarts,afterwhicheachlinesuccessivelystartsexposure.TheexposureofthefirstlinestopsatthemomentthesignallevelgoestoLowtostartthereadoutofthesignal.The exposure time of each line is the time fromwhen thetriggerlevelgoestoHighuntilitgoestoLow.

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Camera Linkdata output

Trigger ready output(Camera Link)

Trigger ready output(USB 3.0)

Global exposuretiming output

USB 3.0 data output

Sensor readout

*

* Delay 87.7 μs, Jitter 9.74 μs* Delay 292.33 μs, Jitter 32.48 μs (slow scan mode)

Fig.34 Level trigger mode

Page 15: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

7. Various Timing Charts

15

7-2-2-4. Global reset level trigger modeIn theglobalreset, the level triggermodeisamodewheretheglobalreset isperformedandexposureisstartedwhentheinputtriggersignalswitchesfromLowtoHigh(orHightoLow),andtheexposurecontinuesuntiltheendoftheperiodofHigh(orLow).Aswiththeedgetriggermode,thereadoutisdonebynormalreadout.Thetimingotherthantheresetisthe same as the level trigger mode.

USB 3.0 data output

Camera Linkdata output

Trigger ready output(Camera Link)

Global exposuretiming output

External trigger

Sensor readout

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Trigger ready output(USB 3.0)

*

* Delay 87.7 μs, Jitter 9.74 μs* Delay 292.33 μs, Jitter 32.48 μs (slow scan mode)

Fig.35 Globalresetleveltriggermode

7-2-2-5. Synchronous readout trigger modeIn the synchronous readout triggermode, the exposure ofthe camera is ended and readout is started, and the nextexposureissimultaneouslystartedbytheedge(rising/fallingedge)of the triggersignal input to thecamera.That is, theexposure timewillbe the intervalbetweentheedgesofanexternaltrigger.

0H1H

··

1023H1024H

··

2046H2047H

External trigger

Exposure

USB 3.0 data output

Camera Linkdata output

Trigger ready output(Camera Link)

Global exposuretiming output

Sensor readout

Trigger ready output(USB 3.0)

*

* Delay 38.96 μs, Jitter 9.74 μs (Standard scan)* Delay 129.92 μs, Jitter 32.48 μs (slow scan)

Fig.36 Synchronousreadouttriggermode(risingedge)

Also, the synchronous readout trigger mode is capable ofpulse count readout where the readout is performed onceper any number of input triggers. The figure below is anexamplewhere one readout ismadewith respect to threeinput triggers.

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

USB 3.0 data output

Camera Linkdata output

Trigger ready output(Camera Link)

Global exposuretiming output

Sensor readout

Trigger ready output(USB 3.0)

*

* Delay 38.96 μs, Jitter 9.74 μs (Standard scan)* Delay 129.92 μs, Jitter 32.48 μs (slow scan)

Fig.37 Synchronousreadouttriggermode(pulsecount)

Page 16: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

7. Various Timing Charts

16

7-2-2-6. Start trigger modeThe start trigger mode is a mode that captures continuous imageswithoneexternaltriggerpulse,andasitoperatesinfree running, it iscapableofoperatingat the fastest framerate.In the start trigger mode, the exposure of the camera isstartedat the same timeas the camera is switched to thefree running by the edge (rising/falling edge) of the triggersignal input to the camera.

Internal exposure time setting

0H1H

··

1023H1024H

··

2046H2047H

External trigger

Exposure

Camera Linkdata output

Trigger ready output(Camera Link)

Trigger ready output(USB 3.0)

Global exposuretiming output

USB 3.0 data output

Sensor readout

*

* Under 100 ms: the readout is disabled for 1 frame.* 100 ms or more: 100 ms (delay)

Fig.38 Starttriggermode(risingedge)

7-2-2-7. Slow scan modeIn theslowscanmode, the readoutslope ischanged from10msto30ms,andthefastest framerate is30 frames/s.Asthereisnochangeintherelationshipofeachtriggerinputand output other than the readout slope, please see the timingdiagramsofFig.28to38forthestandardscan.

Internal exposure time setting

0H1H

··

1023H1024H

··

2046H2047H

Exposure

Readout time

Camera Linkdata output

Global exposuretiming output

USB 3.0 data output

Sensor readout

Fig.39 Slowscanmode,freerunningmode

7-3. Light sheet mode7-3-1. Free running modeAswith thenormalareamode, itallows theexposure timetobesetbyanexternalcommandandisequippedwithfreerunningmode thatoperateswithin thecamera itself. In thefreerunningmode,theexposuretimeandreadoutdirectioncan be set by an external command. In the top to bottomreadout,exposure isperformed from line0Hof thesensortop to 2047H in 1H increments.When the exposure ends,readoutcontinuessequentiallyfromline0H.

Internal exposure time setting

0H1H

··

1023H1024H

··

2046H2047H

Exposure

The length of 1H can be changed

Camera Linkdata output

Sensor readout

Fig.40 Freerunningmode(toptobottomreadout)

7-3-2. Edge trigger modeIn the edge trigger mode, exposure is made sequentiallyfrom0Hbytheedge(rising/fallingedge)ofthetriggersignalinput to the camera.When the exposure ends, readout isperformedbyeachhorizontalline.

* Delay 1H 9 (The length changes by the setting of 1H.) Jitter 1H

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

The length of 1H can be changed

Camera Linkdata output

Sensor readout

*

Trigger ready output(Camera Link)

Fig.41 Edgetriggermode(toptobottomreadout)

Page 17: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

7. Various Timing Charts

17

7-3-3. Start trigger modeThestarttriggermodeisusedwhencontrollingthetimingforexternallystartingtheimagecaptureaswiththenormalareamode.Inthestarttriggermode,theexposureofthecameraisstartedatthesametimeasthecameraisswitchedtothefree running by the edge (rising/falling edge) of the triggersignal input to the camera.

* Delay 1H 9 (The length changes by the setting of 1H.) Jitter 1H

External trigger

0H1H

··

1023H1024H

··

2046H2047H

Exposure

*

Camera Linkdata output

Sensor readout

Trigger ready output(Camera Link)

Fig.42 Starttriggermode(toptobottomreadout)

Page 18: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

8.SoftwareSupport

18

8. Software Support

8-1. DCAM-APIORCA-Flash4.0 V3 is supported by DCAM-API, which isprovided as driver software. DCAM-API supports many ofour digital cameras for scientific measurement as well asORCA-Flash4.0V3,andisdesignedtoabsorbthedifferenceintheirpropertiesandtoallowcontrolbyacommoncallingmethod.FordetailedinformationsuchascompatibleOS,I/Fcardandapplicationsoftware,pleasecontactthesalesrepresentative.Notethatjustasthe64bitversionisrecommendedfortheOS, the64bit compatible version is recommended for theapplicationsoftware.

8-2. DCAM-SDK & DCIMG-SDKTheSDKisaSoftwareDevelopmentKitfortheintegrationofHamamatsucameraswith thecustomersoftware.Youmaydevelop own application software depends on the needs,for camera control with the DCAM-SDK and for recordingDCIMGfileswiththeDCIMG-SDK.YouareavailabletodownloadourDCAM-SDKandDCIMG-SDKfromthelinkbelowwiththeuserregistrationcompletedandpleaserefertoHamamatsusoftwareinformationaswellfromthesamepage.https://dcam-api.com/

8-3. GPUsSample code for GPUVarious kinds of sample codes for application softwareDevelopmentareincludedintheDCAM-SDK,oneofwhichistheuseforincorporatingGPUprocessingpowerintoyourimage acquisition workflow. Through the combination ofDCAM-API and CUDA, offering simple with powerful andnative function groups, Hamamatsu is open for the freesoftwaredevelopmentbytheSDKusers.

8-4. Third party software support/optionsAs imagingsetupsbecomemorecomplex,softwarehas tonotonlytocontrolacamera,butmanyotherdevicessuchasmicroscopes,stagesandfilterwheels…Therefore,softwarecompanies have integrated Hamamatsu DCAM basedcamerasintotheirsoftwareproducts.

Thirdpartysoftwareislistedonhere.http://camera.hamamatsu.com/jp/en/software/third_party_software/index.html

Page 19: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

9. Understanding SNR

19

9. Understanding SNR

9-1. SNR and rSNR chartHow can I easily compare cameras?No single technical specification can provide all thenecessaryinformationtomatchacameratoanapplication.Butwhen the quantumefficiency and noise characteristicsofacameraareconsideredinlightofthesignalandsignalnoise,wecanunderstandthetheoreticallimitsofacameraunderthefullrangeoflightconditions.Thesesignaltonoise(SNR)curvesprovidetremendousvalueinpredictingwhichcamera performs best for certain applications, assumingthe light levels for thatapplicationareknown(moreonthislater).TomakeSNRdataevenmoreapproachable,ausefulvariationistolookatrelativeSNR(rSNR),wherealldataisnormalizedtoanimaginary“perfect”camerathathas100%QEandzeronoise.Withthistransformation,it’seasytoseethatatthelowestlight levels(lessthan4photonsperpixelwith0background),EM-CCDsachievethehighestpossibleSNR.Andyet,above4photonsperpixel,ORCA-Flash4.0V3surpassestheSNRperformanceoftheEM-CCDandexceedsallothertechnology,includingCCDandpreviousgenerationsofsCMOS.ThisSNRperformance,combinedwithfastframeratesandlargefieldofviewmaketheORCA-Flash4.0V3anexcellentchoiceformosteverybiologicalapplication.

Calculating SNRCalculatingSNR is a simple ratio of the total signal to thetotal noise.

Formicroscopecameras,theequationlookslikethis:

Page 20: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

10.ApplicationExamples

20

10. Application Examples

10-1. Super Resolution MicroscopyWidefield fluorescence microscopy has been and remainsan essential tool for understanding complex biologicalprocesses. And, as the questions biologists are askinghave moved more and more towards the molecular level,overcoming the diffraction limit of light microscopy (about200nm)hasbecome increasingly important.Over thepastseveralyearsadvances in localizationor “super resolution”microscopy have been opening doors to visualizing andmeasuringcellularstructureswithunprecedenteddetail.ForlackofabetterchoiceEMCCDshavebeenwidelyusedasthedetectorinmostlocalizationmicroscopysystems.Butnowthereisabetterchoice.Hamamatsu’sORCA-Flash4.0seriesofsCMOScamerashavedemonstrablyimprovedtheprecisionofsuperresolutionimaging.Our latest in the series, the ORCA-Flash4.0 V3, is ideallysuitedfor thischallengingapplication.The increasedsignaltonoiseratiosandidealpixelsizeofthiscameraoffermoreprecisedataresultinginanincreaseinlocalizationprecision.

A stack of image frames was used to construct the TIRF images

Conventional imaging

Super-resolution imaging

The reconstructed super-resolution image

Magnified image. The actin bundles can be clearly observed.

Magnified image. The actin bundles become indistinct.

18.6 m 2.7 m

18.6 m 2.7 m

10-2. Lightsheet Microscopy“LightsheetReadoutMode”isauniqueandpatentedfeatureofHamamatsusCMOScameraswhichcanimprovesignaltonoiseratiosinLightsheetmicroscopy.Utilizingselectiveplane illumination,Lightsheetmicroscopyisafluorescencemethodthatplacesathinsheetofexcitationlightacrossonlythefocalplanebeingimaged.Thesheetoflight is swept in very precise synchronization to the rollingshutterofthecamera.Thescanheightoftherollingshuttereffectivelybecomesaslit,enablinglessbackgroundsignalandscatteredlight.Byusingthiscombinationofilluminationandcamera readout, very fastacquisitionofopticallysectionedimagesisenabled.Additionally,thereissignificantlyreducedphotobleachingandphototoxicitytothesampleascomparedtomanyothermethods.Lightsheetmicroscopyisusedforlivecellimagingatscalesthat range from small groups of cells to whole organisms.Therapidincreaseintheuseofthistechniqueoverthepastseveralyearshasbeenremarkable.

Page 21: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

11. Diagrams

21

11. Diagrams

11-1. Dimensional Outlines

Unit: mmCamera (Approx. 2.2 kg)

125

4.5

85.5

85

13.5

2830

11.4

843

13.2 107.328 50

403353

405064

4×M6×8

4×M3×84×n4.5

4×n8

1/4-20UNC×8

36 16

1-32UN×5 C-MOUNT

11-2. System Configuration

Microscope

C-mount TV cameraadapter relay lens

C-mount lens

F-mount lens

AC adapter

PCC-mount TV cameraadapter relay lens

W-VIEW GEMINI

ORCA-Flash4.0 V3 Digital CMOS camera set

* HCImage Live software provides standard image measurement functions. Upgrades to more feature-rich versions are available.

StandardOption

HCImage Live*

Commercially available software

Camera Link interface board and cable

Intel USB 3.0 eXtensible Host Controller is recommended

USB 3.0 interface cable

Page 22: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

11. Diagrams

22

11-3. OptionsModel Name Product Name

A10788-04 Hosesetw/noseamsA12106-05 SMA-BNCexternaltriggercable,5mA12107-05 SMA-SMAexternaltriggercable,5mA11185-01 AdjusterpoleforC13440-20CUA13261-02 Mountingbracket(C13440-20CU);forcablesA12801-01 W-VIEWGEMINIImageSplittingOpticsA12801-10 W-VIEWGEMINI-2CImageSplittingOptics

11-3-1. W-VIEW GEMINI

The W-VIEW GEMINI is an image splitting optics whichprovidesonepairofdualwavelength imagesseparatedbya dichroic mirror onto a single camera. Simultaneous image acquisition of dual wavelength images allows you highspeed ratiometric imagingandothermultiplefluorescenceapplications.The W-VIEW GEMINI is designed to take advantage ofthewidefieldof viewprovidedbysCMOScameras.Up to13mm×6.4mmF.O.V.andresolutionofuptoapproximately2000pixels×1000pixelsforeachimage.Becauseit iscompatiblewithcommerciallyavailablefilters,theW-VIEWGEMINIallows forgreatwavelengthflexibility.Choosethedichroic,bandpassandneutraldensityfiltersthatworkforyourexperimentalquestion.The W-VIEW GEMINI has a correction lens unit in thelongwavelengthpathand it can improve themagnificationdifference of twowavelength images caused by chromaticaberration.The right images show an example of the magnificationdifferencecausedbychromaticaberrationisimprovedbythecorrection lens unit.The W-VIEW GEMINI is designed to be easily adjustedwhenusedwithanycamera.And,whenusingaHamamatsucamera,theincluded“W-VIEWAdjustment”softwaremakesthe process even faster by simultaneously displaying andmagnifyingninestrategicpointsontheconcentricchart(alsoincluded).Thisvisualfeedbackletstheuserdialinalignmentquicklyandaccurately.

11-3-2. W-VIEW GEMINI-2C

Unrivaled Optical Quality Provides Superior Images

1. Custom Designed Lenses Optimized for FluorescentImaging

Using custom designed optics, our engineers fullyoptimizedsystemperformance,offeringsuperresolutionquality by minimizing point spread function (PSF)degradation,fieldcurvatureandwavefrontaberration.

2. WideFieldofView(20mmforstandardimaging,12mmfordiffraction-limitedimaging)

Maintaining optical quality at the edges of the fielddemands extra care. TheW-VIEWGEMINI-2C deliversexcellent performance over the entire field of twoORCA-Flash4.0 sCMOS cameras and diffraction-limitedperformancewithinthecenter12mmdiameterFOV.

3. Ultra-Low Distortion (0.05 %), High Spatial Uniformity(98%),HighTransmission(98%@450nmto800nm)

This unmatched level of optical performance deliversbright, even, chromatic aberration-corrected images to both cameras.

Page 23: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

MEMO

Page 24: ORCA-Flash4.0 V3 Digital CMOS camera C13440-20CU … · 3. Key Features 4 3-1-5. Readout noise performance of ORCA-Flash4.0 V3 Fig. 1 shows the frequency distribution of the readout

Productandsoftwarepackagenamesnotedinthisdocumentationaretrademarksorregisteredtrademarksoftheirrespectivemanufacturers.Subjecttolocaltechnicalrequirementsandregulations,availabilityofproductsincludedinthispromotionalmaterialmayvary.Pleaseconsultyourlocalsalesrepresentative.InformationfurnishedbyHAMAMATSUisbelievedtobereliable.However,noresponsibilityisassumedforpossibleinaccuraciesoromissions.

Specificationsandexternalappearancearesubjecttochangewithoutnotice.Graphsandothermaterialgivenarerepresentativeexamplesandnotguarantees.ThecontentofthiscatalogiscurrentasofJanuary2018.Thecontentofthiscatalogmaychangewithoutnoticeforimprovements.

©2018HamamatsuPhotonicsK.K.

HAMAMATSU PHOTONICS K.K.HAMAMATSU PHOTONICS K.K., Systems Division812 Joko-cho, Higashi-ku, Hamamatsu City, 431-3196, Japan, Telephone: (81)53-431-0124, Fax: (81)53-433-8031, E-mail: [email protected].: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: [email protected]: Hamamatsu Photonics Deutschland GmbH.: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: [email protected]: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: [email protected] Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court,10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, UK, Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: [email protected] Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 E-mail: [email protected]: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: [email protected]: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: [email protected]: Hamamatsu Photonics Taiwan Co., Ltd.: 8F-3, No.158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)03-659-0080, Fax: (886)03-659-0081 E-mail: [email protected]

www.hamamatsu.com

Cat.No.SCAS0134E01JUN/2018 CRCreated in Japan