Organic Electroluminescence by Dieter Neher

Embed Size (px)

Citation preview

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    1/40

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    2/40

    2Dieter Neher Organic Electroluminescence

    Overview

    Introduction into LEDsSome basic considerations and equationsThe real device

    cathode-quenching

    recombinationsinglet-triplet ratio

    Outcoupling of lightexternal efficiencies

    microcavity effectsluminance and luminous efficienciesPhosphorescent LEDs

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    3/40

    3Dieter Neher Organic Electroluminescence

    Organic Light-Emitting Diodes

    counter electrodee. g. Ca or Al

    -V

    glass substrate

    transparent electrode

    hole transport layer

    emission layer

    electron transport layer

    Typical active layer thickness: 100-250 nm

    j

    h

    T

    h+

    e

    ++++

    ++++

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    4/40

    4Dieter Neher Organic Electroluminescence

    Organic Light-Emitting Diodes (OLEDs)

    N

    OAl N

    ON

    O

    Alq3

    Poly(p-Phenylen-Vinylen)

    First demonstration of efficient LED from organic dye(layers prepared by thermal evaporation)C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett. 51 (1987) 913

    Thin layer devices from organic dyes or conjugated polymers

    First demonstration of electroluminescence from a conjugated polymer(layers prepared by spincoating)

    J.H. Burroughes et al., Nature 347 (1990) 539n

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    5/40

    5Dieter Neher Organic Electroluminescence

    Basic Mechanisms in Electroluminescence

    1 2

    3 4

    Charge injection Charge diffusion and recombination

    Exciton diffusion Exciton recombination and photon emission

    + -

    12

    3

    4

    1 2

    + -

    h

    T

    h+e-

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    6/40

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    7/40

    7Dieter Neher Organic Electroluminescence

    Radiative Recombination

    )( fl

    T

    )()( phfl TSr ++++==== )(25.0)(int PLEL R ====

    )(ph

    S

    ?

    simple spin statistic: S : T= 1 : 3

    pure hydrocarbon materials:(ph)

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    8/40

    8Dieter Neher Organic Electroluminescence

    Charge Carrier Balance

    major

    orr

    majoror

    orR

    j

    j

    jjr

    jr min1

    min

    min

    )1(

    += =

    HOMO

    LUMO

    jmajor

    ITO 4,7 eV

    Ca 2,9 eV

    Al 4,3 eV

    Au 5,2 eVPolymer

    jminorSimplifications:

    injection limited currentsdetermined by barrier heights

    electrons are minority carriers

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    9/40

    9Dieter Neher Organic Electroluminescence

    Tuning of Color and Electronic Properties

    PPP PPV

    O

    O

    R

    R

    n

    O

    O

    R

    R

    n

    kn

    O

    O

    Variation of the electronic structure by the defined control of the chemicalcomposition

    M. Remmers, D. Neher, R.H. Friend, J. Warman,J.-L. Bredas, Macromolecules 29 (1996) 7432

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    10/40

    10Dieter Neher Organic Electroluminescence

    Efficiency of Charge Recombination

    -5

    -4

    -3

    -2

    -1

    0

    PPP P3A P3V P2VMEH-PPV

    h+

    e-

    Ene

    rgy[eV]

    Ca

    ITO 0.01

    0.1

    1

    10

    100

    Recombin

    ationProbablity[%

    ]

    O

    O

    R

    R

    n

    O

    O

    R

    R

    n

    PPP PPV

    Compare (PL) with (EL)

    )(25.0)(int PLEL R ====

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    11/40

    11Dieter Neher Organic Electroluminescence

    The Real Device

    Questions:

    is the spin statistics: S : T= 1:3 correct

    is recombination and emission homogenous throughout the layer

    under which conditions do all electrons recombine with holes (or vice versa)

    is it correct to assume (fl) =(PL)

    how many photons leave the device

    the following sheets will give some answers!!!!

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    12/40

    12Dieter Neher Organic Electroluminescence

    Determination of the Emission Zone

    ITO

    Aluminium

    light output

    n monolayersof parallelorientation

    O

    O n

    100 - n monolayersof perpendicularorientation

    Detection of the polarization of emitted light from a supramolecular stack ofmolecules

    Spreading

    Transfer

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    13/40

    13Dieter Neher Organic Electroluminescence

    Recombination and Quenching

    0 20 40 60 80 100 120

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    ITOAl PPP e miss ion Zone

    Dis tanc e from Al-e le c trod e [nm]

    Quenching

    Percentageoflightemittedper

    10monolayers(12nm)

    J. Grner, M. Remmers, D. Neher, Adv. Mater. 9 (1997) 964

    quenchingat cathode exponential

    decay

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    14/40

    14Dieter Neher Organic Electroluminescence

    Effect of Metal Cathodes on Radiative Emission

    Quartz substrate

    Metal layer

    SiO2 spacer

    CN-PPV

    Laser

    light

    H. Becker, S.E. Burns, R.H. Friend,PRB 56 (1997) 1893

    nrr

    r

    kk

    kPL

    ++++====)(

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    15/40

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    16/40

    16Dieter Neher Organic Electroluminescence

    Langevin Recombination

    kTr

    e

    co

    ====4

    2

    ceee Aveni ====

    (((( )))) )( che rrF ====++++

    +

    -

    -

    -

    -

    E

    rc 2

    4 cr

    (((( ))))

    eo

    heeeR eneenii ====++++========

    (((( ))))

    o

    he e++++====

    Coulomb radius rc:

    Electron current towards countercharge:

    Recombination current per cation iR:

    F(rc)

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    17/40

    17Dieter Neher Organic Electroluminescence

    Recombination Cross Section

    e

    he

    o

    hRhE

    enn

    ++++======== ~

    ee

    ndx

    dn

    ====

    he

    he

    o

    h

    E

    j

    ++++====

    2

    + -

    + -j

    h+ e-

    0 2 4 6 80

    5

    10

    15

    20

    25

    30

    Efficiency[cd/A

    ]

    Current density [mA/cm2]

    R

    current density of electrons towards cations

    electron absorption coefficient

    x

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    18/40

    18Dieter Neher Organic Electroluminescence

    Recombination Considerations

    he

    he

    o

    h

    xE

    xjx

    ++++====

    )(

    )()(

    2

    injection limited currentsconstant nh, constant E

    exponential recombination profile

    small jj, < d-1

    inefficient recombination

    large, > d-1

    recombination close to cathode

    space charge limited currentsnh(x), E(x)

    0 20 40 60 80 100

    cathodeanode

    x[nm]

    nh

    [a.u.]

    E[a.u.]

    largest close to anodeideal recombination conditions

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    19/40

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    20/40

    20Dieter Neher Organic Electroluminescence

    The Singlet-Triplet Branching Ratio

    h+ + e-

    (((( )))) (((( ))))

    ++++

    2

    1

    2

    1

    spin statistics: S : T= 1 : 3, ifsinglet and triplet excitons have

    same formation cross-section: S : T

    M. Wohlgenannt, S. Mazumdar, Z.V. Vardeny et al.Nature 409 (2001) 494

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    21/40

    21Dieter Neher Organic Electroluminescence

    Few Remarks on the Quantum Efficiency of Emission

    singlet excitons (and triplet excitons) can be quenching in the presence

    of an electric field (exciton dissociation)

    Singlet excitons are quenching by charges (via energy transfer)

    Is(fl) =(PL)?

    In comparison with PL experiments, emission in a LED is in the presence ofan electric field and charge carriers

    M. Deussen, M. Schneidler, H. Bssler, Synth. Met. 73 (1995) 123.K.E. Ziemelis,D. D. C. Bradley, R. Friend, J. Rhe, G. Wegner, Phys. Rev. Lett. 66 (1991) 2231.D. Fichou, F. Charra, Synth. Met. 76 (1996) 11.

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    22/40

    22Dieter Neher Organic Electroluminescence

    External Efficiencies

    External quantum efficiency:only fraction of generated photons leave LED

    ideal fluorescent emitterideal recombination conditions

    n = 1.7:%5)( =EL

    ext

    SubstrateAnode

    Emitter

    Cathode

    2

    int

    2

    )()(

    n

    ELEL

    ext

    =

    LED is a Lambert emitter

    N.C. Greenham et al., Adv. Mater 6 (1994) 491

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    23/40

    23Dieter Neher Organic Electroluminescence

    Microcavity Effects

    Z

    de

    Spectral Tuning: I() at fixed angle Angular Tuning: I() at fixed wavelength Efficiency Tuning Avoid emission into leaky modes

    de< lc

    self-interference of emittedphotons by multiple reflections

    because of energy conservation and Fermis Golden Rule, photons can onlybe emitted under conditions of constructive interference

    I(,)

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    24/40

    24Dieter Neher Organic Electroluminescence

    Microcavity Color Tuning

    200 300 400 500 600 700 800

    0

    1

    2

    3

    4

    Absorptioncoe

    fficient(107m

    -1)

    W avelength (nm)

    EmissionIntens

    ity(arb.unit)

    H R'

    R'

    RR'

    R'

    HR

    H Rn

    400 500 600 700 800

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    NormalizedIntensity

    Wavelength (nm)

    Blue (= 460 nm) for d= 60 nmGreen (= 565 nm) for d= 250 nmRed (= 695 nm) for d= 150 nm

    LPPP

    glass/Au/LPPP/Al

    V. Cimrova, U. Scherf, D. Neher,Appl. Phys. Lett. 69 (1996) 608

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    25/40

    25Dieter Neher Organic Electroluminescence

    Microcavity Field Distribution

    25 nm Aluminium

    230nm

    4 layers SPPP+ 114 layers

    Polyglutamate

    FWHM

    ~20nm

    Wavelength (nm)

    Inten

    sityo

    fonax

    isem

    ission

    25 nm Aluminium

    m=2 mode

    ~387nm

    0

    0.05

    0.1

    0.15

    0.2

    360 370 380 390 400 410 420 430 440

    0 50 100 150 200 250

    SimulationExperiment

    Intensity

    ofon-ax

    is

    emission

    Distance into sample, nm

    0.30.7

    CHNH CO

    CH2

    CH2CH2

    COOC18H37COOCH3

    CH2

    CONH CH

    O

    On

    (a)

    (b)

    S. E. Burns, D. Neher, et al., Adv. Mater. 9 (1997) 395

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    26/40

    26Dieter Neher Organic Electroluminescence

    Microcavity Optimization of Efficiency

    450 500 550 600 6500

    2

    4

    6

    8

    10

    12

    Wavelength [ nm ]

    Intensity

    [a.u.]

    solid: exp

    dashed: sim

    ZnSe

    0 nm

    30 nm

    40 nm50 nm

    60 nm

    100 nm

    top-emitting microcavity diodes

    dielectric layer: ZnSecathode: Ca/Mganode Al/Ni H. Riel, S. Karg, T. Beierlein, W. Rie, K. Neyts, JAP in press

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    27/40

    27Dieter Neher Organic Electroluminescence

    Luminance and Luminous Efficiencies

    [[[[ ]]]] ][]/)[( WWlmVlumen EV ====

    [[[[ ]]]] PV VWlm ==== )(/

    Power efficiency:light power versus electrical power

    )(

    )()(

    EL

    ELeUeU

    EL

    ext

    extE

    p

    ========

    Luminous efficiency:

    luminous flux versus electrical power

    Luminous flux V

    400 500 600 700

    V

    (lm

    /W

    )

    max

    = 555 nm680

    Wavelength (nm)

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    28/40

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    29/40

    29Dieter Neher Organic Electroluminescence

    Phosphorescent Emitters

    400 500 600 7000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Intensity(a.u)

    Wavelength (nm)

    FirpicIr(ppy)

    3

    btp2ir(acac)

    F

    O

    F

    F

    N

    N

    Ir

    NF

    O

    CH3

    CH3

    CH3

    N

    N

    N

    Ir

    CH3

    CH3

    O

    OS

    Ir

    N

    2

    Firpic Ir(mppy)3 btp2ir(acac)

    Increase phosphorescent rate by addition of heavy metal atoms

    Pt(II) Octaethylporphine,

    * transition in ligandN

    N

    NN P t

    Ir-complexes,ligand-to metal transition

    PtOEP

    M. A. Baldo, S. Sibley, M. E. Thompson,S. R. Forrest et al. Nature 395 (1998) 151.

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    30/40

    30Dieter Neher Organic Electroluminescence

    Guest-Host Systems

    Pure phosphorescent dyes can not be used due to triplet-triplet annihilation

    HOMO

    S1

    T1

    LUMO

    HOMO

    S1

    T1

    LUMO

    Host Guest

    e

    -

    h+

    3 major processes: charge transfer to guestDexter and Frster transfer for singlet excitonsDexter transfer of triplet excitons

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    31/40

    31Dieter Neher Organic Electroluminescence

    Selection of Host

    Guest T1 energy must be below host T1 level!!

    HOMO-LUMO (single particle) gap versus S1 energyS1 gap versus T1 energy

    A.P. Monkman, A.D. Burrows et al.,PRL 86 (2001) 1358

    T1 = (1.13 S1 1.45 eV)

    e.g. green emitting guest

    requires large-bandgap host

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    32/40

    32Dieter Neher Organic Electroluminescence

    Charge and Energy Transfer

    Hole-trapping

    Exciton-transfer

    Phosphor.-quenching

    Electron-transfer

    Exciton-transfer

    V. Cleave, N. Tessler et al.,Adv. Mater 13 (2001) 44

    Variation of polymer matrix:

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    33/40

    33Dieter Neher Organic Electroluminescence

    Charge Carrier Trapping on Guest

    P.A. Lane et al., PRB 63 (2001)235206

    n

    N

    N

    NN P t

    PFO PtOEP

    EL spectrum dominated by guestalready at very low concentration

    Increase in driving voltage with

    increasing guest concentration

    ext= 3.5 % V> 0.2 lm/W

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    34/40

    34Dieter Neher Organic Electroluminescence

    PVK-based Green Phosphorescent Diode

    doped into PVK-PBD (40 wt.%)

    X. Gong, D. Moses, A.J. Heeger et al., Adv. Mater, 14 (2002) 581

    ITO/PEDOT/Emitter/Ca/Al

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    35/40

    35Dieter Neher Organic Electroluminescence

    Device with Improved Carrier Injection

    Use 70 nm PEDOT layer, CsF/Al cathode

    improved electron injection: compensation of positive space chargePeak luminance efficiency: 27 cd/A, EQE 7.6 % at 610 cd/m22

    Peak PCE: 14 lm/W at 170 cd/m2

    0 20 40 60 80 1000

    5

    10

    15

    20

    25

    30

    0

    5

    10

    15

    PCE[lm/W]

    Lumin

    anceefficiency[cd/A]

    Current density (mA/cm2)

    (b)

    0 2 4 6 8 10 120

    20

    40

    60

    80

    0

    5000

    10000

    15000

    Currentdensity(mA/cm

    2)

    Voltage (V)

    (a)

    B

    rightness(cd/m

    2)

    X. Yang, D. NeherAdv. Mater.

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    36/40

    36Dieter Neher Organic Electroluminescence

    The Efficiency Record

    M. Ikai et al., APL 79 (2001) 15670 lm/W @ 65 cd/A, ext = 19 %

    Ir(ppy)3 in TCTA

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    37/40

    37Dieter Neher Organic Electroluminescence

    Doped Injection Layers

    Problem:depending on treatment, ITO has a work function of 4.3-4.9 eVinefficient hole injection into many organic semiconductors

    One solution:chemical or electrochemicaldoping of semiconductor

    One example:PEDOT:PSSwork function ca. 5.2 eVnot soluble in organic solventsquite transparent

    hole-injection layer

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    38/40

    38Dieter Neher Organic Electroluminescence

    Control of Workfunction

    Electrochemical doping ofpolythiophene hole-injection layer

    M. Gross, U. Scherf, D. Neher, K. Meerholz,Nature 405 (2000) 661-665.

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    39/40

    39Dieter Neher Organic Electroluminescence

    Efficiency of Light-Emitting Diodes

    Polymer OLED

    Small molecule OLED

  • 8/7/2019 Organic Electroluminescence by Dieter Neher

    40/40

    40Dieter Neher Organic Electroluminescence

    eMagin 0.6 Microdisplay

    Sony 13

    Kodak Camera

    Thanks to:

    Heike Riel (IBM)Andreas Elschner (HC Starck)