8
1 NREM/BIOL 4464 – Ornithology Dr. Tim O’Connell Lectures 25–29 27, 29, and 31, March; 3, 5 April 2017 Most Material from the next several lectures will be associated with information in Gill, Chapter 6. Avian Physiology – gas exchange Mammalian respiratory system •Nares, trachea, bronchi, bronchioles, alveoli, capillary beds •Gas exchange takes place in capillaries associated with alveoli •In relaxed breathing, humans have a residual volume of air in the lungs that is about 50% of the volume inhaled and exhaled with each breath. •Oxygen taken in only during inhalation Unlike mammalian lungs, birds have associated air sacs. Avian air sacs – generally 9 of them: •Cervical (2) •Interclavicular (1) •Anterior thoracic (2) •Posterior thoracic (2) •Abdominal (2) Avian respiratory system •Key feature (unique to birds): unidirectional flow through lungs; never any “dead air” •Avian lungs spongy but rigid – they don’t expand and contract like mammalian lungs •Oxygen from “fresh air” taken in during both inhalation and exhalation. •Structure: nares, trachea, 1° bronchi, 2° bronchi, 3° bronchi a.k.a. “parabronchi”. Parabronchi – tubes within the avian lung that are the site of gas exchange. Parabronchus cross section: •Tiny tubes carrying air from the parabronchus (“air capillaries”) exchange gases with tiny tubes carrying blood (capillaries). •Capillaries arranged perpendicular to the primary direction of air flow through the parabronchus, resulting in “cross-current” gas exchange. In the tissues surrounding the main tube of each parabronchus, air capillaries and blood capillaries are arranged with their fluids moving in opposite directions, creating short segments of counter-current exchange. Because these flows are oriented perpendicular to the primary flow of air, however, we use the term “cross-current” exchange to describe it. Here’s how diffusion gradients can be more efficient with a counter-current flow: With con-current flow, a strong gradient weakens such that only 50% exchange can occur, i.e., equilibrium is reached.

Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

Embed Size (px)

Citation preview

Page 1: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

1

NREM/BIOL4464–OrnithologyDr.TimO’ConnellLectures25–2927,29,and31,March;3,5April2017MostMaterialfromthenextseverallectureswillbeassociatedwithinformationinGill,Chapter6.AvianPhysiology–gasexchangeMammalianrespiratorysystem•Nares,trachea,bronchi,bronchioles,alveoli,capillarybeds•Gasexchangetakesplaceincapillariesassociatedwithalveoli•Inrelaxedbreathing,humanshavearesidualvolumeofairinthelungsthatisabout50%ofthevolumeinhaledandexhaledwitheachbreath.•OxygentakeninonlyduringinhalationUnlikemammalianlungs,birdshaveassociatedairsacs.Avianairsacs–generally9ofthem:•Cervical(2)•Interclavicular(1)•Anteriorthoracic(2)•Posteriorthoracic(2)•Abdominal(2)Avianrespiratorysystem•Keyfeature(uniquetobirds):unidirectionalflowthroughlungs;neverany“deadair”•Avianlungsspongybutrigid–theydon’texpandandcontractlikemammalianlungs•Oxygenfrom“freshair”takeninduringbothinhalationandexhalation.•Structure:nares,trachea,1°bronchi,2°bronchi,3°bronchia.k.a.“parabronchi”.Parabronchi–tubeswithintheavianlungthatarethesiteofgasexchange.Parabronchuscrosssection:•Tinytubescarryingairfromtheparabronchus(“aircapillaries”)exchangegaseswithtinytubescarryingblood(capillaries).•Capillariesarrangedperpendiculartotheprimarydirectionofairflowthroughtheparabronchus,resultingin“cross-current”gasexchange.

Inthetissuessurroundingthemaintubeofeachparabronchus,aircapillariesandbloodcapillariesarearrangedwiththeirfluidsmovinginoppositedirections,creatingshortsegmentsofcounter-currentexchange.Becausetheseflowsareorientedperpendiculartotheprimaryflowofair,however,weusetheterm“cross-current”exchangetodescribeit.Here’showdiffusiongradientscanbemoreefficientwithacounter-currentflow:Withcon-currentflow,astronggradientweakenssuchthatonly50%exchangecanoccur,i.e.,equilibriumisreached.

Page 2: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

2

Withcounter-currentflow,apositivediffusiongradientismaintainedalongtheentirelength.Ifthepathislongenough,near100%exchangecanoccur.Gasexchangeintheavianlungoccursviaacross-currentexchangemechanism.It’snotasefficientascounter-currentexchange,butitisasignificantadvanceoverconcurrentexchange.Hereisthemammaliangasexchangesystem–concurrent.Bloodandairflowtowardeachotheratapointofdiffusion,butoncetheconcentrationofoxygenineithervesselapproaches50%,thegradientsoshallowthatnofurthernetgasexchangetakesplace.•Blue=oxygen(%ofmaximumpartialpressure)•Red=bloodvessel.Oxygencontentisverylowatfirst,butthevesselquicklypicksupoxygen.Asthebloodflowsdownthevesselitpicksupoxygenfromtheairtube,buttheconcentrationofoxygendeclinesandthewidthofgradientbetweenthevesselsdecreases.Oncethatconcentrationapproaches50%,thereisnogradientinoxygenconcentrationandnonetmovementofoxygenintotheblood.

Theoretically,acounter-currentexchange(suchasexistsinthebloodvesselarrangementsofbirds’feettofacilitateheattransfer)coulddomuchbetterthanraisingtheoxygencontentofthebloodto50%.•Red=bloodvessel.Oxygencontentisverylow(0%)atfirst,butalongtheentirelengthofitsarrangementnexttotheairtube,apositivediffusiongradientismaintained.Asthebloodvesselpicksupoxygen,itcontinuallyencountersairwithagreateroxygenconcentration.Birdsactuallydon’tusecounter-currentexchangeintheirlungs,theyusecross-currentexchange.•Red=bloodvessel.Atmultiplepointsalongtheparabronchus,deoxygenatedbloodcomesinclosecontactwiththe“aircapillaries”thatalwayshaveahigheroxygenconcentration.Thisisnotefficientenoughtoincreasetheoxygencontentofthebloodcloseto100%(theoreticalmaximumwithcounter-currentsystem),butitisasignificantimprovementoverthe~50%thatcouldbeachievedwithaconcurrentsystemlikeours.•avianrespiratorysystem–airsacsandunidirectionalflow•Nodiaphragminbirdsasinmammals.•Airbroughtinandoutthroughloweringofthesternum(creatingnegativepressure,justlikedroppingdiaphragm)andinexpansionandcontractionofairsacslikebellows.•Muscleactivitycanassistrespirationinflight;manybirdshaverhythmtoflappingthatfacilitatesrespiration.

Page 3: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

3

avianrespiratorysystem–airsacsandunidirectionalflow•Inhalation1:“fresh”airmovestoabdominal(posterior)airsacs•Exhalation1:freshairmovesfromabdominalairsacsthroughlungs•Inhalation2:“stale”airnowmovesfromlungstoanteriorairsacs–isreplacedinlungsbynewfreshairwaitinginabdominalairsacs.•Exhalation2:staleair(theoriginalairbroughtinfrominhalation1)nowexpelledfromanteriorairsacsthroughtracheaandnares.Forcoolanimationofunidirectionalflowandairsacinvolvementinrespiration,checkout:http://people.eku.edu/ritchisong/birdrespiration.htmlThermoregulationstrategiesBirdsdealwithextremesoftemperatureinmultipleways.We’vealreadylearnedabitaboutthecounter-currentheatexchangerinlegsofcertainwaterbirds:Counter-CurrentExchanger:Networkofarteriesandveinsarrangedincloseproximitywithoppositedirectionalflowtopromotefavorablegradientfordiffusionoveramaximumdistance.

Left:Cross-sectionofcounter-currentheatexchangetissueinatuna.Thickwalls–arteries,thinwallsareveins.

Notethatsomebirdscanalsoshuntbloodflow(vasoconstriction)awayfromthetoestofurtherreducetheamountthatbloodcoolsattheextremities.

Page 4: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

4

Generalthermoregulatorychallenges•Forendotherms,thereisazoneofambienttemperaturesatwhichnometabolismincreaseisneededtomaintainhomeostasis.•Abovetheuppercriticaltemperatureandbelowthelowercriticaltemperature,birdsmustexpendenergy,throughevaporativecoolingorshivering,respectively.

Dealingwithcold•Insulation•Counter-currentheatexchangerinlegs•Torpor•Fatdeposition,hyperphagiaBehavioralthermoregulation:•Avoidcold–seekshelterfromwind•Ptarmigan–roostinsnowbanks•Reduceheatgradient(non-torpor)–chickadeeslowerbodytemperatureonreallycoldnights.•Huddlingtoreduceheatloss

Communalroosting,examples:•EmperorPenguin•SpectacledEider•PygmyNuthatch–record179individualsinacommunalroosthole!Dealingwithheat

! Behavioralthermoregulation:•Seekingshade,water,etc.! sleekingfeathers–squeezesoutwarmairclosetotheskin! Counter-currentheatexchangerinhead–allowbodytemptoincreasebutkeepbraincool! Gularfluttering–evaporativecooling.

Evaporativecoolingworksbytakingtheheatenergyofthebodyandusingittoraisetheenergyofwatertothepointofevaporation.Wehumansareunusualinthatweaccomplishthisbysweating.Birdsengageinevaporativecoolingthroughpanting(gularfluttering)likemanymammals.Somebirds(e.g.,storks)alsoachieveevaporativecoolingthroughwettingtheirlegs,eitherbywadingordefecatingdirectlyontheirlegs.Avianphysiologicalextremes:1.Gettinghigh–Bar-headedGoose•ThisspecieswintersinsouthernAsiaandbreedsinthesteppesofcentralAsia.•TheIndianpopulationatleastmigratesalongadirectroute–overtheHimalaya.•ThisspecieshasbeenseenmigratingoverMt.Everest.

Forperspective-cruisingaltitudes:Smallplanes–10,000’Jetliners–30,000–35,000’Migratingsongbirds–4000’Migratingwaterfowl–7000’Migratingeagles–10,000’

Bar-headedGooseinHimalayanmigration–29,500’•Worldrecordholder–Ruppel’sGriffonVultureseenat37,000’,buttheBar-heaedGooseroutinelycrossesHimalayanpasses>29,000’–andit’sflappingthewholetime.How?OntopofMt.Everest...•ThewindiestplaceonEarth.FromOct.–Mar.,3ofevery4dayswillexperiencehurricaneforcewinds(74mph).Windsroutinelytopoutabove156mph,thethresholdforCategory5hurricane.•“Frikkin’freezingMr.Bigglesworth.”EvenMaytempsaverage-13F.-100Fhasapparentlybeenrecorded.•LowOxygen–about33%partialpressureofOxygencomparedtosealevel.

Page 5: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

5

HowBar-headsmakeitover(generallyinoneday,andnearthemiddleofa1000-mileflight):•Largerlungsthanotherbirds•Takeingreatervolumeofairwitheachinhalation•RedbloodcellscontainaformofhemoglobinwithextraOxygen-bindingaffinity•Flightmusclesricherinmyoglobinthanotherspecies

2.Goingdown–EmperorPenguin•EmperorPenguinshavebeenrecordedat1,752mdeep.•Confirmedholdingbreathfor15.8minutes.•How?Below–decreaseinO2andincreaseinCO2inbloodafter15minutes.•Aviandivingreflex(verysimilartomammalian,whichisbetterstudied)•(left)OxygenisusedupandCarbonDioxideaccumulatesthelongerthebodyisdeprivedofOxygen.•Thedivingreflexinbirdsandmammalsissimilar,andkicksinwhenthenervoussystemisstimulatedbysubmersionofthefaceincoldwater.•Thegoal?Minimizeoxygenusetothegreatestextentpossible.Howachieved?•StorageofOxygenintissuesotherthanlungs–e.g.,myoglobininmuscles.•PenguinscandosomeairsacstorageComparisonofO2storedintissuesinhumansandselectmarinemammals:

Page 6: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

6

Howtouselessoxygen?Pumpless!•Bradycardia–slowingheartrate.Right–changeinheartrateinadivingduckduringandafteradive.•Peripheralvasoconstriction–reducingbloodflowtoperipherytokeepvitalorganssuppliedwithOxygenfirst.•Ondeeperdives,bloodflowisfurtherrestrictedfromtheinternalorgansandthebraintakespriorityastheonlythinggettingOxygen.ExampleofreductioninbloodflowtodifferentorgansystemsinWeddellSeal.Onreallydeepdives.Bloodflowisonlymaintained(it’sactuallyslightlyincreased)tothebrain.

Sowhatdopenguinsactuallydo?First,birdsdon’tdothisbradycardiastuff...Ordothey?

Aha!Theydo(left).EmperorPenguins–thedeepestandlongest-divingbirdsknown–actuallydothesamethingthatdivingmammalsdoinslowingtheirheartrateonadive.Theyonlydothislongerdurationdives,however.Penguinsdeviatefrommammals(below)in~3Xtheoxygenstorageinmusclescomparedtohumansand~2Xthatofelephantseals.

Insum,EmperorPenguinsaresuchgreatdiversbecausetheyuse•Bradycardia•PeripheralVasoconstriction•Oxygenstorageinmuscletissue•Tachycardiaonsurfacing!

Page 7: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

7

3.Toocoldandtoosmall–RufousHummingbird•NorthernmostbreedinghummingbirdinNorthAmerica•ManyreallycoldnightseveninsummerinnorthernRockies–upto12,000’•Normalwingbeatfrequency,52–62/sec.•Howdoesthislittledynamokeepfromusingupallitsstoredenergyaccumulatedduringtheday?•Ithibernates!•Severalhummingbirdsthatoccurincoldenvironments(e.g.,theAndes)enterintodailytorportoreduceheatlosstotheexternalenvironment.ThePoorwillalsodoesthisinwesterndeserts.•Heartrateslowsquicklyandbodytemperatureisallowedtodecreaseclosetoambienttemperaturetoreduceheatlossandenergyconsumption.•Torpor–formoffacultativehypothermiainwhichbodytemperatureisloweredtootherwiselethallevels.Cannotregaininstantactivitylevel.AvianEnergyDemandandDigestionBirdsareremarkablyvariedinthefoodstheyeatandhowtheyobtainit.Whathappensafteritsswallowed?Mammalianfoodprocessing:mechanicalbreakdownwithchewingteethfollowedbychemicalbreakdownwithstomachacidsanddigestiveenzymes.Avianfoodprocessing:noteeth!•Chemicalbreakdownfollowedbymechanicalbreakdowninthegizzard.•Billsandtonguescanbegreattoolsforextractingseedsfromhusks,forexample,butnochewinginbirds,perse.

•Esophagus–mucusglandsinlininghelptotransferfooddownthedigestivetract.(Pigeon“milk”producedbytheesophagus.)•Crop–outgrowthoftheesophagus–foodstorage,softening,andregulationofflow.(SiteofforegutfermentationintheHoatzin.)•Stomach=proventriculus+gizzard•Proventriculus–chemicaldigestionhere.Stomachacids(pH0.2–1.2insomebirds)anddigestiveenzymescapableofdissolvingbone.Fishoilsstoredhereincertainspecies.•Gizzard–muscularwalled,crushesfoodintosmallerpieceswiththeaidofswallowedgrit.•Intenstines–absorptionofnutrientsandretentionofwater.Mayincludedevelopmentofceca–outpocketsoflargeintestinethatserveasfermentationchambersforvegetablematter.

•Cropstoragecanbeimportantfortakingfoodbacktoyoungorcollectingfoodtobecachedelsewhere.•CropmilkproductioninColumbiformes•Somebirdsejectpelletsofundigestiblematter.•Gutretentiontimesfast–birdsextractnutrientsquicklyandthenreleaseexcessweight.•Fruit-eatingbirdsprobablythefastest–CedarWaxwingapparentlyholdstherecordat8minutes!•Otherbirds,e.g.,raptors,mightcompletelyprocessamealin6–12hours.

Page 8: Ornithology lectures 25–29 - NREM/BIOL 4464 – … ·  · 2017-04-07•In relaxed breathing ... •Structure: nares, trachea, 1° bronchi ... •Red blood cells contain a form

8

•Intestines–absorptionofnutrientsandretentionofwater.Mayincludedevelopmentofceca–outpocketsoflargeintestinethatserveasfermentationchambersforvegetablematter.

MaintainingWaterBalance•Birdsusuallycometofreshwateronceortwiceaday.•Thosethateat“wet”foodslikefruitandinsectslesslikelytodependonspecificwatersourcethanthosethateat“dry”foodslikeseeds.•Inhot,dryenvironments,morewaterisneededthanmightbepredicted:heat-stressedCaliforniaTowheesconsumed4XasmuchwaterthanwhenintheirTNZ,butonly2XasmuchOxygen.•Metabolicwater–oxidationoforganiccompoundscanresultinwaterproducedasabyproduct.•Foreverygramoffatmetabolized,1.07gramsof“metabolicwater”isproduced.Birdsalsoconservewaterwiththeirunusualexcretorysystem.•Mammalsexcretenitrogenouswastesintheformofurea,awatersolublecompoundthatrequireslargeamountsofwatertoflushfromtheexcretorysystem.•Birds,likereptiles,excreteuricacid.•Byweight,uricacidcontainstwicethenitrogenandanorderofmagnitudelesswaterthanurea.•Birdscanfurtherconcentrateuricacidincloacato3000timestheacidityoftheblood;kangarooratscanonlygetto20or30Xbloodacidity.Seabirdshavespecialproblems–1%saltcontentinbodyfluidbutforcedtodrink3%saltywater.•Kidneysnotspeciallymodifiedtorestorebalance.•Specializedorgans–saltglands–intheskullsofoceanicbirds.•Counter-currentflowofsaltwaterandbloodflow,andactivetransport,concentratesbrineywaterinsaltglandupto5%!