ORNL Induction Probe

Embed Size (px)

Citation preview

  • 8/9/2019 ORNL Induction Probe

    1/122

    3 4 4 5 6 0 0 2 3 8 2 2

    2

  • 8/9/2019 ORNL Induction Probe

    2/122

    This report was prepared as an account

    of

    work sponsored by t h s Uni ted

    Stares Government. Neither the United

    S t a r e s

    nor the United States Atomic

    Energy Commission, nor any of their elnployees, nor any of their contractors,

    subcontractors, or their employees, makes any warranty, express nr implied, or

    assumes any legal liability

    or

    responsibility for t h e accuracy, completeness or

    usefulness of any inforrnation, apparatus, product or process disclosed, or

    represents that i t s use would tnot infringe privately owned r jghts.

    .

    . _

     

  • 8/9/2019 ORNL Induction Probe

    3/122

    OR NL-TM -l t175

    Contract

    N O . W-71-0;1

    -eug

    -26

    M E T A L S

    AND CERAMICS

    DIVISION

    DESIGN

    OF ' INDUCTION PROBES

    FOR F E A S U K E m N T

    OF

    T,EVEL

    OF

    LIQUID

    m'rAu

    C .

    V .

    Dodd C.

    C .

    Cheng

    C . W. N e s t o r ,

    J r .

    R . B .

    H o c s t r n

    M A Y

    1973

    OAK

    R I D G E N A TI O N A L LA R O R 4TO R Y

    O a k

    R i d g e ,

    Tennessee 37830

    ope

    r a t e d by

    UNION C A R B I D E COKPORATION

    f o r t h e

    3 4 4 5 5

    0 0 2 3 8 2 2 2

  • 8/9/2019 ORNL Induction Probe

    4/122

  • 8/9/2019 ORNL Induction Probe

    5/122

    iii

    CONTENT

    S

    ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . .

    .

    1

    .

    I N T R O D U C T I O N

    . . . . . . . . . . . . . . . . . . . . . . . . .

    2 . THEORETICAL ANALYSIS

    . . . . . . . . . . . . . . . . . . . . .

    3 -

    COMPUTER CALCULATIONS

    FOR

    11 PROBE INSIDE BISMUTH- . . . . . .

    11 . MEASUREMENTS ON LIQUID LEVEL SYSTEM . . . . . . . . . . . . .

    5

    SUMMARY A N D CONCLUSIONS . . . . . . . . . . . . . . . . . . .

    6 A CKNOWLE DGMENTS . . . . . . . . . . . . . . . . . . . . . . .

    APPENDIX

    A

    omputer Programs f o r a L iquid Lev el Pro be

    I n s i d e

    C o a x i a l C o n d u c t o r s

    . . . . . . . . . . . . . . . . . . . . . .

    I

    . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . .

    II

    D e s c r i p t i o n of INNMUL . . . . . . . . . . . . . . . . . .

    A .

    D R I V E R

    Program . . . . . . . . . . . . . . . . . . . .

    B . INhMUI. Subroutine . . . . . . . . . . . . . . . . . .

    1

    . X J S N T

    F u n c t i o n . . . . . . . . . . . . . . . . . .

    2 XILNT Function

    5

    . GAMCAL S u b r o u t i n e . . . . . . . . . . . . . . . .

    a

    .

    GCA1. C S u b r o u t i n e . . . . . . . . . . . . . . .

    b

    .

    MODBES S u b r o u t i n e . . . . . . . . . . . . . .

    c

    .

    CND

    KF:

    S

    S

    u

    b

    r

    ou t

    i

    ne

    . . . . . . . . . . . . . .

    i . COMKB

    S u b r o u t i n e . . . . . . . . . . . . .

    ii . C M I S u b r o u t i n e

    . . . . . . . . . . . . . .

    IC11. Execut ion oP INNMUL

    . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . .

    A

    .

    TELINC.Fh Program

    . . . . . . . . . . . . . . . . . .

    B

    . D a t a D e s c r i p t i o n . . . . . . . . . . . . . . . . . . .

    I V . ATTEN Program . . . . . . . . . . . . . . . . . . . . . .

    C . S ample Dat a and Re su l t s . . . . . . . . . . . . . . .

    Page

    _

    1

    1

    c

    d

    24

    33

    5’f

    38

    35

    93

    99

    1O?

    108

  • 8/9/2019 ORNL Induction Probe

    6/122

  • 8/9/2019 ORNL Induction Probe

    7/122

    I

    D E S I G N OF I N D U C T I O N

    PROBES FOR MEASTJESPfENT

    -

    OF

    LEVEL

    OF LIQUID IIETALS

    C . V. Dodd C . C . Chengl

    C .

    W.

    N e s t o r ,

    J r . 2

    E.

    B.

    H o f s t r a 2

    ABSTRACT

    This r e p o r t g i v e s g e n e r a l a n a l y s es

    of

    e d d y - c u r r e n t p r o b e s

    f o r m ea s ur i ng t h e

    l e v e l

    o f l i q u i d m eta l s . T h e C ~ S P f a c o i l

    e n c i r c l i n g a l e v e l c ha mb er a nd t h e

    case

    of a co-il i n s i d e

    a

    l e v e l chamber h a v e b e e n solved t h e o r e t i c , d l y , a n d c o m p u t e r

    programs

    a r e

    inclridrAd i n t h e A p p e nd i x f o r t h e l a t t e r case .

    A ; a s p e c i f i c e x am p le , w e h a v e d e s l g n e d a p r o be en c l os e d i n

    molybdenum (a

    good

    c o n d u c t o r ) t o measure t h e level

    of

    m o l t e n

    b i s mu th

    ( i t

    p o o r c o n d u c to r ) . Ry u s in g a c om p ut er a n a l y s i s , t h e

    q e n s i t i v i t y of

    t h e

    p r o b e

    t o

    l e v e l c h an g es i s maximized

    w h i l e

    t h e s e n s i t i v i t y t o u n de s i r a b l e v a r i a b l e s , s uc h

    as

    t e m p e r a t u r e

    c h a n g e s

    i s

    min iini z e d . E x p e r im e n ta l me a s ure me nts d e mo n s t ra t e d

    t h a t

    the

    l e v e l c o u l d

    be

    m ea su re d t o w i t h i n 4 0.089 iu. o v e r a

    l e v e l

    rangci

    f rom

    o

    t o 13 i n . w i t h i n a t e m p e r a t u r e range of

    600"

    t o 6 5 0 ° C .

    The

    h i g h d e g r e e of buccess a ch i ev e d i n t h e

    p r o b e d e s i g n and mcasurements f o r t h i s u n f a v o r a b l e c o m b i na t io n

    o f c o n du c t or s i n d i c a t e t h a t h i g h l y a c c u r a t e ed dy -c ur r en t meas-

    u re me n ts c a n

    be

    made w i t h a l m o s t

    any

    c o m b i n a t i o n

    of

    c o n d u c t o r s .

    1.

    INTLWDUCTION

    T h e a b i l i t y t o m ea su re

    t h e

    level of B m o l t e n meta l i s very i .mportan t

    i n

    a

    number

    of

    i n d u s t r i a l a nd c h em i c a l p r o c e s s e s .

    W e

    h a v e a n a l y z e d t h e

    g e n e r a l p r o b l e m

    of

    m e a s u r i n g t h e 1 . ev e l

    of

    a c o n d u c t iv e f l u i d b y a n i nd u c-

    t i o n , o r e d d y - c u r r e n t p r o c e s s . T he e d d y - c u r r e n t

    p r o b e

    c o n s i s t s

    of

    a

    l on g b i f i l a r

    c o i l ,

    which c an e i t h e r e n c i r c l e a c h a m b e r c o n t a i n i n g t h e

    l i q u i d m e t a l o r be i n s i d e a t u b e mo un te d i n t h e c ha mb er c o n t a i n i n g t h e

    l i q u i d l e v e l . W e o b ta i n ed i n t e g r a l s o l . u t i o n s wh ic h were

    v a l i d

    f o r

    the

    c ha mb er e i t h e r e m pt y o r f u l l , a n d , be c au s e of

    t h e

    p r o b e l e n g t h ,

    we

    a s s u m e d t h a t

    t h e

    r e s p o n s e

    of

    t h e p r o b e

    t o

    l e v e l s b e t we en t h e s e t wo

    ex t r eme wa

    s

    app

    r

    oxlmat e l y 1 n e a

    r .

    showed thLs

    t o

    b e a n e x c e l l e n t a s s um p ti o n.

    A

    r e l a x a t i o n s o l u t i o n

    c o u l d

    L a

    t

    e r experimen a1

    measiir e m e m t

    s

    lConsu l t an t f ro m t h e U n i v e r s i t y o f T e n n es s e e.

    2Ma

    themat i c s

    D i v i s i o n .

  • 8/9/2019 ORNL Induction Probe

    8/122

    be us ed t o c a l c u l a t e t h e p ro be r es p on s e s t o v a r i o u s l e v e l s of l i q u i d

    m e t a l , b u t w as j u dg e d t o b e

    too

    e x p e n s iv e t o r u n f o r t h e a d d i t i o n a l

    i n fo i -m a t io n g a i n e d . W hi le t h e t e c h n i q u e i s v e r y g e n e r a l a nd c a n b e

    a p pl i- e d t o a l m o st an y c o n d u c t i v e f l u i d ,

    w e

    a n al - yz e d a s y s t e m t h a t c o n -

    s i - s t e d

    of

    a c o i l e n c a s e d i n mo ly bd en um ( a go od c o n d u c t o r ) u se d t o me a su r e

    t h e l e v e l

    of

    mol t en b i smuth ( a

    p o o r

    c o n d u c t o r ) . T he h i g h d e g r e e o f

    s u c c e s s a c h i ev e d i n t h e p ro b e dt . ; i l ; i I and measurements f o r t h i s u n fa v or a bl e

    c o m b i n a t i o n of c on du ct :o rs l e a d s u s t o c o n c lu d e t h a t h i g h l y a c c u r a t e e dd y -

    c u r r e n t t e c h n i q u e s c a n be d e s i gn e d a n d a p p l i e d f o r l e v e l m ea su re me nt s w i t h

    a l m o s t a ny c o m b i n a t i o n o f c o n d u c t o r s .

    2. THEORETICAT. ANALYSCS

    The g e n e r a l c o n f i g u r a t i o n t o be c o n s id e r e d i s a n a x i a l l y s ym me tr ic

    d r i v i n g c o i l l o c a t e d c o n c e n t r i c a l l y w i t h a n a r b i t r a r y riurrlber o f c y l i n -

    d

    r i c a 1 c o n d u c to r s w i t h a r b i t r a r y t h i c k n e s s , p erm ea b

    i

    1 t

    y ,

    p e r m i t t i v i t y ,

    a n d c o n d u c t i v i t y . F o r s i m p l i c i t y , we a ss um e Lh dt a l l me dia a r e l i n e a r ,

    i s o t r o p i c , a n d h om og en po us , a nd t l ie d r i v i n g c u r r e n t

    i s

    t ime-ha rmonic w i t h

    f r e q u e n c y ,

    w .

    Th en , t h e c u r r e n t d e n s i t y J and v e c t o r p o t e n t i a l A w i l l

    have on ly az i i nu tha l componen t s i n c y l i n d r i c a l c o o rd i n a te s

    :

    -3

    -3

    .

    p

    J ( x )

    =

    J ( r , z )

    ^c

    6'

    and

    + ..)

    8

    A ( x ) = A ( r , z ) ^e

    ( 2 )

    where e . i s a n a z i m u th a l u n i t v e c t o r . The v e ct -o r p o t e n t i a l a t ( r , ~ ) ,

    produ ced by a d r i v i n g c o i l w i t h a c u r r e n t d e n s i t y J ( r ' , z ' ) a t ( r l , z ' ) ,

    c a n b e e x p r e s s e d a s

    c;

    A ( r , z ) =

    G ( r , z ; r ' , z ' ) J ( r ' , z '

    )

    d r ' d z '

    D r i v i n g

    Coi 1.

    where G ( r , z ; r ' , z ' ) i s t h e G r e e n 's

    f u n c t i o n f o r a u n i t b - f u n c t io n c u r r e n t

  • 8/9/2019 ORNL Induction Probe

    9/122

    .+..

    a t

    ( r ' ,

    2 ' ).

    fiiiic t i o n

    s

    n t i s i e

    In a l i n e a r , i s o t ro p i c , homogeneous medium, t h e

    Green's

    3

    where

    1.1, E, 3 i - d n a r e t h e p e r m ea b i l i t y , p e r m i t t i v i t y ,

    a n d

    c o n d u c t i v i t y

    oE the medium.

    t h e p r o p e r b ou nd ar y c o n d i t i o n s .

    Tlic

    s o l u t i o n

    o f

    E q .

    ( )

    for

    e a c h mcadiurn

    rlirrst a l s o s a t i s f y

    We s h a l l f i r s t

    c o n s i d e r a ? ) - fu n c t io n c o i l c o a x i a l

    w i t l i

    k a k f - ?

    c y l i n d r i c a l cu n d u ct o r s; k-1

    of

    the m i n s i d e

    t h e

    c o i l

    arid

    k ' - 1

    o f

    t l i c n i

    o u t s i de th e c o i l , a s

    shown

    i n F i g . 1. Tlicl g e n e r a l s o l u t i o n o f E q . ( 1 1 )

    i n

    any

    r e g i o n ,

    t i ,

    may

    be

    o b t a i n c d

    b y

    s e p a r a t i o n

    of v a r i a b l e s .

    S e t t i n g

    a n d d i - v i d i n g E q .

    1 1 )

    by

    R ( r ) Z z )

    g i v e s :

    T h e s

    ul,

    s

    c r

    i

    p t

    s

    n 011 the

    p

    c r m e a b i. 1 i t

    y , p e r m i t

    t

    i

    v

    j.t

    y,

    a nd

    c

    ond

    i.ic t i v i : y

    d e n o t e t h e

    values

    of

    t h e s e

    p a r a m e t e r s i.n t h e r e g i o n n .

    We

    s h a l l

    choose

    the

    s e p a r a t i o n " c o n s ta n t " , (X'.., o be n e g a t i v e

    a n d

    de f i -ne

    'C. V.

    Dodd

    and

    W.

    E . Deeds, J .

    A p p l .

    Phys ,

    2 829-2838 (1968).

  • 8/9/2019 ORNL Induction Probe

    10/122

    C X FI L-

    CWG

    7 2 - 3 0 7

    2

    F i g .

    1.

    Mul t ip l e Concen t r i - c Conduc to r s

    i n

    t h e P r e s e n c e o f a Delta

    F u n c t i o n C o i l .

    Then

    we

    c a n

    w r i t e f o r Ehe z

    drpendence

    S o l v i n g his d i f f e r e n t i a l e q ua t io n g i v e s :

    L ( Z )

    A

    sin L - ( z - z 0 ) i B cos i e - z 0 ) .

    We c a n

    d r o p

    t h e s i n e t e r m

    d u e t o

    t h e symmetry a b o u t

    z l .

  • 8/9/2019 ORNL Induction Probe

    11/122

    5

    The

    r a d i a l t e r m h a s t fi e f o l l o w i n g d e pe n de n ce :

    .

    T h i s

    d i f € e r e n t i a l e q u a t i on

    has

    t h e

    f o l l u w i

    ng

    s o l u t i . o n :

    where

    I tY r )

    and

    K (Q r ) a r e

    m o d i f i e d

    Ressel

    f u n c t i o n s

    of

    f i r s t o r d e r .

    The c om p le te s o l u t i o n t o

    t h e

    Green's f u n c t i o n i n e a c h r e g i o n i s a n

    1 n I n

    i n t e g r a l o v e r t h e s e p a r a t i o n c o n s t a n t

    0:

    f o r

    n

    L 1,2,

    . . .

    k ;

    l l , ? ' ,

    .

    . . k'. T h e unknown cons i an t s

  • 8/9/2019 ORNL Induction Probe

    12/122

    4

    ORNL-DWG 72-3046

    /-

    F i g .

    2.

    T o p

    V i e w

    of a Typ ic al Boundary Between

    Two

    Regions .

    U s i n g

    t he

    G r e e n ' s f u n c t i o n s f r o m

    E q .

    ( 1 0 )

    i n

    E q .

    ( 1 2 )

    w e

    o b t a i n :

  • 8/9/2019 ORNL Induction Probe

    13/122

  • 8/9/2019 ORNL Induction Probe

    14/122

    We c a n r e v e r s e t li e o r d e r

    o f

    i n t e g r a t i o n of t h e i n t e g r a l s c o n t a i n i ng

    : - s s e l

    f u n c t i o n s an d u s e t h e F o u r i e r i n t e g r a l t he or em ,

    F:quation

    (16)

    t h e n b e c o me s :

    A

    s i m i l a r o p e r a t i o n

    on

    E q . ( 1 1

    )

    g i v e s :

    E q u a t i o n s (1

    )

    and ( 1 - ) r e p r e s e n t

    t h e

    r e l a t i o n s b e tw ee n t h e c o n s t a n t s

    f o r

    a n y

    two r e g i o n s i n s i d e t h e c o i l . We

    s h a l l

    now so lve f o r a l l t h e

    unkoowyii c o n s t a n t s i n t h e f o l l o w i n g m a n n er . S i n c e t h e i n n e r m o s t r e g i o n

    h a s only one unknown cons tan t :

    C I , w e

    s h a l l s o l v e f o r t h e unknown co n -

    s t a n t s i n t h e s e co nd r e g i o n

    i n

    t e r m s of i t . N ext we s h a l l s o l v e f o r

    t h e

    u n k n o wn c o n s ta n t s i n t h e t h i r d r e g io n i i i t e rms o f C t h e n t h e f o u rt l l ,

    u n t i l we r e ac h t h e r e g i o n c o n t a i n i n g t h e c o i l , k . We s h a l l d o t h e s a m e

    k h i n g

    f o r t h e r e g io n s outside t h e c o i l , s t - a i t i n g w i t h t h e o u t e r m o s t a n d

    w o rk i ng i nw a rd s, s o l v i n g f o r e a ch r e g i o n i n t e rms o f D', u n t i l

    we

    r e a c h

    t l ie r e g i on k ' . We s h a l l t h e n u s e E q . ( 1 0 and E q .

    ( l e )

    f o r t h e c o i l

    r e g i o n s k a n d k'. T h i s w i l l g i v e t w o e q u a t i o n s f o r t h e t wo un kn ow ns ,

    C

    and

    D

    a nd we c a n s o lv e f o r th em.

    h i s

    w i l l t h e n a l l o w u s t o

    - > ] r i t e

    h e e x p r e s s i o n f o r t h e u nknown c o n s t a n t s i n a ny r e g i oi i .

    1'

    1

    1

    1 ' '

    S o l v i n g E q s .

    ( 1 0

    and

    (16)

    o r t h e u nknown c o n s t a n t s i n

    a n y

    r e g i o n ,

    n + l ,

    i n terms

    o f

    t h e unknown c o n s t a n t s i n r e g i o n n . w h e r e t h e c o i l i s

    n o t b e twe e n

    l l i ~

    e g i o n s , g i v e s :

  • 8/9/2019 ORNL Induction Probe

    15/122

  • 8/9/2019 ORNL Induction Probe

    16/122

    10

    T h i s t r a n s f o r m a t i o n

    m a t r i x

    g i v e s t h e r e l a t i o i l b et wPen t h e c o n s ta n t s i n

    a n y two re g i o n s n o t c o n t a i n i n g

    t h e

    c o i l b e t w ee n t h em . I t

    i s

    t h e s a me

    f o r r e g i o n s i n s i d e

    and

    o u t s i d e t h e c o i l , w i t h t h e e x c ep t i o n t h a t n s h ou l d

    b e r e p l a c p d b y n f o r r e g i on s o u t s i d e t h e c o i l t o c or re sp on d t o o ur

    n o t a t i o n .

    S t a r t i n g f ro m t h e i n n e rm o s t r e g i o n (n:

    1)

    an d g o i n g t o t h e s ec on d

    g i v e s :

    The

    c on st ar it s i n t h e t h i r d r e g i o n ca n

    b e

    o b t a i n e d

    b y :

    a n d t h e c o n s t a n t s i n t h e f o u r t h r e g i o n b y :

    The g e n e r a l e x p r e s s i o n f o r t h e n t h r e g i o n

    i s

    (26)

    To

    make o u r e x p r e s s i o n s s h o r t e r ,

    we

    s h a l l

    define:

  • 8/9/2019 ORNL Induction Probe

    17/122

    v ( n ) T

    . . . T

    -3,2 T

    q1 '

    -n, n

    -

    1

    -11

    - 1., 1

    -

    a n d when 11 := lr, w e sha1.1 d r o p t h e a r g u m e n t. T hu s w e h a v e

    We h a v e

    v e r y

    s imi la r e q u a t i -0 1 1 s

    f o r

    the>

    r e g i o n s o u t s i d e

    t h e

    c o i l

    :

    where w e

    h a v e rriade

    a s i m i l a r d e f i n i t i o n :

    and we h a v c d r o p p e d t h e a rg u me n t w h e n 11' k' T l ~ u s , we c a n

    noTo

    w r i t e

    t h e c o n s t a n t s

    i n

    a n y L e qi o n i n

    terms

    o f t h e co n s t a n t i n

    t h e

    innerrrlos t

    region,

    a ~

    [ o r

    t h e

    ouLerrnost region,

    a [2,] b y means

    o f t h e

    t r a n s f o i n i a t i o n m a t r i c e s , V(n) and

    U ( n ) . We

    s h a l l w r i t

    e

    E q s . ( 1 ' 0

    and

    (18) f o r t h e

    r e g i o n s

    on

    e i t h e r

    s i d e of

    t h e c o i l ,

    k

    a n d

    k .

    h a v e r :: L ,

    s o

    t l i a t

    7 ( r -r'

    ) = 1 . A l s o = 2

    =

    Cr a nd 13 - H

    - ; io, s o

    t h a t the

    e q u a t i o n s becorric:

    -1 -1 '

    v

    Y

    Herr w e

    II 11

    k

    I<

    0

    k

    -

    k '

    and

    ck~,(uor'

    4 D K

    (Der')

    z

    c lC ,1

    (a r ' )

    +

    D ~ ,(i-y

    r ' )

    .

    (36)

    k 1 1 0

  • 8/9/2019 ORNL Induction Probe

    18/122

    U si ng o u r m a t r i x n 3 t a t i o n ,

    we

    c a n w r i t e

    2

    Dk =

    V , C

    cl 1

    -- LT D ,

    'k' 16 1 '

    and

    We now have

    two

    equa t i ons and on ly two unknowns .

    S o l vi n g t h e s e g i v e s

    and

    ( 4 4 )

    whe r e t h e d e n o m in a to r h a s a g a i n b ee n s i m p l i f i e d

    by

    u s e of t h e Wronsk ian ,

    and t h e f a c t t h a t P o

    =

    2

    .

    Now

    w e

    c a n s u b s t i t u t e t h e v a l u es of t h e

    0

  • 8/9/2019 ORNL Induction Probe

    19/122

    c o n s ta n t s i n E y s . k 3 ) a n d (41 i ) i n t o

    E q s .

    (51

    )

    and (53) t o g i v e t h e

    c o n s t a n t s i n a n y r e g i o n .

    Wc'

    c a n w r i t e

    t h e

    G r e e n ' s f u n c t i o n

    f o r a n y

    r eg io ti i n s i d e t h e c o i l a s

    The

    G r ee n 's f u n c t i o n f o r a ny r e g i on o u t s i d e t h e c o i l i s

    Once

    we

    h a v e t h e G r e e n ' s f u a c t i o n ,

    we

    c a n

    g e t t h e

    v e c t o r p o t e n t i a l

    b y u s i n g

    E q . ( 3 ) .

    c r o s s s e c t i o n , a s shown

    in

    F i g .

    3 .

    We

    a dd ed a n o t h e r r e g i o n , t h a t c o n -

    t a i n s t h e c o i l , and d e si g n at e d

    i t

    r e g i o n c . For a

    dense1.y

    a n d u n i f o r m l y

    wound c o i l ,

    t h e

    c u r r e n t d e n s i t y

    J ( r ' ,

    z '

    ) i s

    a p p r o x i m a t e l y :

    The most common type of c o i l is on(: of r e c t a n g u l a r

    wherc

    n

    i s t h e

    number

    of

    t u r n s

    p e r

    u n i t a r e a , an d

    I i s

    t h e c u r r e n t p e r

    t u r n . S u b s t i t u t i n g

    E q s . ( ) + ( )

    and

    (4))

    i n t o

    E q .

    (3) g i v e s t h e v e c t o r

    p o t e n t i a l f o r any r e g i o n i n s i d e t he c o i l a s

    C

  • 8/9/2019 ORNL Induction Probe

    20/122

    14

    F i g .

    3 .

    C o i l w i t h R e c t a n g u l a r Cross S e c t i . o n C o n c e n t r i c w i t h C y l i n -

    d r i c a l C o n d u c t o r s .

    R e v e r s i n g the o r d e r of i n t e g r a t i o n a n d i n t e g r a t i n g o v e r t h e d i me n si o ns

    of

    t h e c o i l g i.ve s

    a(z-R ) -

    sin

    ( n ) I a

    r )

    f

    V (n)Kl(anr)]

    ._

    ..-..

    ... . ..

    .-

    1

    A (n)(r,

    z ) =

    1

    7T

    2

    0

    (u22v11

    -

    u 1 2 v 2 1 )

  • 8/9/2019 ORNL Induction Probe

    21/122

    15

    where v w

    have

    d e f i n e d t h e f u n c t i o n r ;

    and

    where r and r a r e now taken

    a s

    t h e c o i l i n n e r and o u t e r r a d i i , and

    s h o u l d n o t

    b e

    c on fu se d w i t h t h e o u t e r r a d i i

    of

    t h e f i r s t t v 7 0 r e g i o n s .

    The v e c t o r p o t e n t i a l f o r a ny r e g ion o u t s i de t h e c o i l i s

    1 2

    T h e r e g i o n of t h e c o i l r e q u i r e s s p e c i a l t r e a t m e n t .

    To

    f i n d t h e v e c t o r

    p o t e n t i a l a t

    a

    p o in t i n the c o i l r e g i o n , r , v7e must add

    t h e

    s o l u t i o n of

    A ( > ( r , z ) f o r

    a

    c o i l g o in g f ro m

    r

    t o r t o t h e s o l u t i o n

    of

    2

  • 8/9/2019 ORNL Induction Probe

    22/122

    7

    a

     

    a

     

    a

     

    c

     

    h

     

    -

     

    n

     

    i

    -

    kt

    0

    W

     

    7

     

    0

    W

     

    .

    0

    d

     

    0

    d

     

    W

     

    d

    N

    H

     

    u

     

    n

    kd

    0

    W

     

    n

    L

     

    d

    %

     

    0

    t

     

    rhr

    H

    &

    L

    0

    u

     

    d

    p

    r

    L

    a

     

    w

     

    d

     

    W

     

    0

    2

    W

     

    d4

     

    8

    0

    -

    h

     

    d

    0

     

    M

     

    G

     

    0

    M

     

    i

    -

    n

    L

    s

    o

     

    u

    t

     

    G

     

    4

     

    H

    n

    L

     0

    4

    n

     

    r

    .

    0

    u(

    d

     

    d

     

    0

    L

    0

    d

     

    v

    0

    7

     

    W

     

    I

    d4

     

    4

     

    H

     

    4

    0

     

    h

     

    k

    r

    L

     

    X

     

    -

    X

  • 8/9/2019 ORNL Induction Probe

    23/122

    1 7

    We s h a l l

    u s e t h e d e f i n i t i o n s g iv en i n E q s . (50)

    and

    (51)

    f o r

    1(r2>rl)

    and K ( r r ) , and we s h a l l use t he r e l a t i o n s

    2 '

    1

    a n d

    E q u a t i o n (53)

    t he n

    becomes

  • 8/9/2019 ORNL Induction Probe

    24/122

    18

    We

    h a v e s ho wn i n a n

    c a r l l e r

    paper ’ t h a t t h e i n t e g r a l

    o f

    t h e e x p r e s si o n

    i n t h e l a r g e s qu a re b r a ck e t s i s

    rn

    - e da

    (55)

    ( r , r ) J ( a r )

    0 2

    2 2 2 1

    1

    0

    where

    1

    ( r ,r

    )

    5

    2 2

    1.

    c1

    Making t h i s s u b s t i t u t i o n g i v e s

    :

    ) - s i n a(z-R

    ___

    ’IT

    0

    We

    h av e now d et e r m i ne d t h e v e c t o r p o t e n t i a l f o r a n y re g i o n . Onc e

    t h e v e c t o r p o t e n t i a l h a s b ee n d et e rm i ne d ,

    we

    c a n c a l c u l a t e a ny p h y s i c a l l y

    o b s e r v a b l e e l e c t r o m a g n e t i c i n d u c t i o n p h en om en on f r om i t . The p a r t i c u l a r

    p a r a m et e r s t h a t w e w is h t o c a l c u l a t e a r e t h e m u t u a l i m pe da nc e a nd t h e

    s e l f - i m p e d a n c e of two i d e n t i c a l b i f i l a r c o i l s .

    The

    mutua l impedance

    be tween two c o i l s , 1 and 2 , i s

    t h e

    v o l t a g e i n du c ed i n one c o i l

    by

    a u n i t

    c u r r e n t i n t h e o t h e r :

  • 8/9/2019 ORNL Induction Probe

    25/122

    1 9

    S i n ce b o t h c o i l s a r e i d e n t i c a l and o ccup y t h e samc r e e f o n , we can

    expand

    E q . ( 5 7 ) and perforiii the i n t - ’ g r a t i o n o v e r t h e s ec on d c o i l t o o b t a i n

    Th e c o i l i m p ed a nc e

    i s

    and s i n c e t h e c o i l s a r e i d e n t i c a l and i n

    the

    same r e g i o n , M =

    I f

    w e t a k e t h e s p e c i a l case

    where

    t h e r e

    are

    110 c o n d u c t o r s o u t s i d e the

    c o i l

    w e

    h a v e

    E q .

    (59)

    becomes

    1 2

    =

    l

    t h e u n i t m a t r i x . Th en

    U22

    =

    1

    and

    U I 2

    =

    0

    so

    t h a t

  • 8/9/2019 ORNL Induction Probe

    26/122

    20

    A

    c o mp u te r p ro g ra m, ENCMTJL, t o e v al u a

    s i o n w i l l b e gi v en i n a

    l a t e r

    r e p o r t .

    t h e c o i l ,

    we h a v e

    x

    = 1,,

    and

    E q .

    (5 9 )

    r

    A

    c o mp u te r p ro g ra m, ENCMTJL, t o e v a l ua t - e t h e i n t e g r a l p a r t

    o f

    t h i s e xp re s- -

    s i o n w i l l b e gi v en i n a

    l a t e r

    r e p o r t .

    O r , if we

    h av e no c o n d u c t o r s i n s i d e

    t h e c o i l ,

    we h a v e

    x

    = 1,, and E q .

    (59) becomes

    2

    2n p

    2

    0

    -

    ( '2- ' J-> (r2-r1)

    %2

    -

    t e

    t h e i n t e g r a l p a r t

    o f

    t h i s

    O r , if we h a v e n o c o n d u c to

    becomes

    .pres--

    i n s i d e

    A compute r p rogram, Il???bIuL, t o e v a l u a t e

    t h e

    i n t e g r a l p a r t o f t h i s

    e x F r e s s i o n i s i n t h e a pp en di x.

    T h u s ,

    by u s e o f t h e s e p r o g ra m s w e c a n c a l c u l a t e t h e m u tu al i n d u ct a n ce

    and c o i l imrledance of c o i l s i n a l i q u i d l e v e l p r ob e,

    c o n s i s t i n g of m u l t i p l e

    c o nd u ct o rs i n s i d e o r o u t s i d e the c o i l s .

    We

    s h a l l now c o n s i d er t h e e f f e c t s

    of t h e c x t e r n a l e l e c t r i c a l c i r c u i t .

    The e q u i v a l en t c i r c u i t

    o f

    a l i q u i d l e v e l p r ob e i s show n i n F i g .

    4 .

  • 8/9/2019 ORNL Induction Probe

    27/122

    21

    ORNL-DWG

    72-6710

    F i g

    P r o b e .

    Vo DRIVING VOLTAGE

    Ro

    Cg

    Z ,

    SERIES RESISTANCE IN THE DRIVING CIRCUIT

    S HUNT CA P A CI T A NCE OF THE DRIVING CIRCUIT

    R6

    M MUTUAL IMPEDANCE BETWEEN THE DRIVER AND PICK-UP COIL

    Zpu IMPEDANCE

    O F

    THE PICK-UP COIL

    R,

    C,

    D.C. RESISTANCE O F THE DRIVER COIL

    I M P E DA NCE

    OF

    THE DRIVER

    C OI L

    D.C. RESISTANCE OF THE P ICK-UP COIL

    S HUNT CA P A CI T A NCE

    OF

    TH E P ICK-UP CIRCUIT

    R g A M P L I F I E R I N P U T I M PE D AN C E

    I LOOP CURRENT

    , 4 .

    Simplified C i r c u i t D ia gr am f o r a n E dd y C u r r e n t L i q u i d L e v e l

    W e c a n

    w r i t e

    t h e f o l l o w i n g s e t of e q u a t i o n s f o r t h e v o l t a g e d r o p s a r ou n d

    e a c h

    of

    t h e

    l o o p s

    i n t h e c i r c u i t :

  • 8/9/2019 ORNL Induction Probe

    28/122

    We c an use determinants and solve f or the currelit in the f i n a l loop,

    I,,,

    produced by an applied voltage V

    .

    c;’

    c:

    I ,

    \J

    0

    We

    shall solve

    €or

    the current,

    I,,

    multiply it

    by

    t i le

    resistance

    R

    to

    dptermine the input voltage to the amplifier, and then multiply by

    t h e

    amplifier gain G to determine the output voltage:

    9

  • 8/9/2019 ORNL Induction Probe

    29/122

    23

    R e a r r a n g i n g terms so t h a t E q . (68) c l e a r l y r e ma in s f i n i t e when t h e

    c a p a c i t a n c e go es t o z e r o , we f i n d t h a t

    From E q .

    ( 6 9 )

    we c an c a l c u l a t e t h e p h as e s h i f t b etw ee n t h e v o l t a g e

    d r i v i n g t h e e d d y - c u r r e n t p r o b e an d t h e a m p. li fi ed v o l t a g e r e c e i v e d b y t h e

    p ha se s h i f t d e t e c t o r . S in c e t h e d r i v e r c o i l and pi ck up c o i l a r e i n t h e

    same

    r e g i o n a nd

    a r e

    i d e n t i c a l ,

    w e

    h a v e

    where

    M

    w i l l b e g i ve n by e i t h e r E q . (61) o r E q .

    ( 6 2 ) .

    T o e v a l u a t e E q .

    ( 6 9 ) , t h e r e i s a compute r p rogram, ATTEN,which c a l c u l a t e s t h e magn i tude

    an d p h a se o f t h e o u tp u t v o l t a g e f o r v a r i o u s v a l u e s o f t h e t e r m s i n

    E q .

    ( 6 9 )

    The c i r c u i t p a r a m et e r s , Ro, C 6 , R

    and C a r e v a l u e s t h a t may b e

    9 ’ 7

    v a r i e d ( w i th i n c e r t a i n l i m i t s ) w i t h a n e x t e r n a l p l ug -i n a t t e n u a t o r .

    Th e a t t e n u a t o r , when p r o p e r l y c h o s en , h a s t h e f o l l o w i n g e f f e c t s :

    (1)

    The

    p h a s e

    s h i f t d ue t o t e mp er at ur e d r i f t s c a us i ng

    v a r i a t i o n s i n t h e dc r e s i s t a n c e v a l u es of

    E:

    and

    R

    c an b e e s s e n t i a l l y e l im i n a te d .

    6

    7

    (2) The

    L-C

    n et wo rk i n t h e d r i v i n g and p ic ku p c i r c u i t s

    i n F ig . 4 a n d t h e m u t u a l c o u p l i n g b e t w ee n t h e c i r -

    c u i t s com bin e t o a c t as a b an d- pa ss f i l t e r t h a t

    r e d u ce s t h e n o i s e i n t h e i n s t r u m e n ta t i o n .

    3 ) A r e d u c t i o n i n s e n s i t i v i t y o c c u rs and t h e p h a se

    s h i f t s d u e t o v a r i a t i o n s i n t h e o t h e r parameters

    i n c r e a s e . H ow ev er , t h e s e e f f e c t s ca n b e made

    n e g l i g i b l e i f t h e a t t e n u a t o r

    i s

    p r o p e r l y d e s i g n e d .

    The a t t e n u a t o r d e s i g n w i l l b e c o ns id e re d i n g r e a t e r d e t a i l i n t h e n e xt

    c h a p t e r .

  • 8/9/2019 ORNL Induction Probe

    30/122

    24

    3 . COMPUTER CALCULATIONS

    F O R

    A

    PRO BE I N SI D E

    BISMUTH

    The t y pe o f l i q u i d l e v e l p r ob e an a ly z ed i n t h i s r e p o r t

    i s

    shown in

    F i g . 5 . I t c o n s i s t s o f a l o n g b i f i l a r c o i l i n s i d e a molybdenum c o n-

    t a i n e r . Th e d ra w in g

    i s

    s ym ni et ri c a b o u t t h e c o i l a x i s , s o o n ly h a l f

    of

    t h e p r o b e i s shown ( i n c r o s s s e c t i o n ) . 'The p r o b e

    i s

    p l a c e d i n s i d e a

    m oly bd en um c a v i t y , a nd t h e l e v e l of t h e m o l te n b is m ut h i n

    t h e

    c a v i t y

    c a n b e m e a s u r e d .

    A

    c u r r e n t f l ow i ng i n t h e d r i v i n g c o i l p ro du ce s a n

    e l ec t ro m a gn e t i c f i e l d t h a t

    i s

    m o d i f i e d b y t h e p r e s e n c e of t h e c o n d u c t o r s .

    The p ic ku p c o i l d e t e c t s t h i s f i e l d . I n t h e de s ig n

    of

    t h i s p r o b e , w e

    used t h e f o l l o w i n g p r o c e d u r e . We f i r s t maximized t h e s e n s i t i v i t y of

    t h e p r ob e t o c ha ng es i n l i q u i d l e v e l , t h e n m in im iz ed t h e e f f e c t s

    of

    t h e

    u n d e s i r a b l e v a r i a b l e s s u c h a s t e m p e ra t u r e d r i f t , and f i n a l l y maximized

    t h e s e n s i t i v i t y t o e r r o r r a t i o .

    ORNL -DW G

    71

    9737

    I

    L i q u i d L e v e l

    P r o b e

    F i g . 5 .

    L i q u i d

    L e v e l P ro be I n s i d e C o n d u c t o rs .

  • 8/9/2019 ORNL Induction Probe

    31/122

  • 8/9/2019 ORNL Induction Probe

    32/122

    26

    w i t h a w a l l t h i c k n e s s o f a p p r o xi m a t el y 1' m i l s , t h e r e i s n o c h a n ge i n

    p h as e a s t h e 1 iq ui .d l e v e l

    i s

    v a r i - e d . A s t h e w a l l t h i- c kn e s s

    i s

    i n c r e a s e d

    f u r t h e r , t h e c u r v e s o f p h a se w i t h a n d wi .t h ou t b i s m u th b ecome q u i t e Ear

    a p a r t i n d i c a t i n g t h a t t h e r e

    wil l

    b e a l a r g e ph as e s h i f t a s t h e l i q u i d

    l e v e l

    i s

    v a r i e d . T he p h a s e d i f f e r e n c e a p p r o a c h e s a maximum a t a p p r o x i -

    m a t e l y 4-(m i l s and t h e n d e c r e a s e s a g a i n t o z e r o a s t h e c u r ve s c ro s s a t

    14? m i l s , appro ach an o t he r maxi-mui., s ep a ra t i -on , and t he n c ro s s ag a i n .

    The b e h a v i o r

    o f

    t h e m ag n it ud e c u r v e s o f t h e v o l t a g e i s v e r y s i m i l a r ,

    w i t 1 1

    t h e c u rv es c r o s s in g and approach i -ng a maximum

    a n d

    t h e n c r o s s i n g

    agai .n. The f i - r s t maximum, w hich i s n o t shown i n F i g .

    6,

    i s t h e l a r g e s t

    an d o c c u r s a t z e r o w a l l t h i c k n e s s f o r b o t h t h e m ag n it ud e c h an ge a nd

    t h e p has e s h i f t . S in ce t h i s i s i m p r a c t i c a l i n o u r d es i gn , we e l e c t e d

    t o

    c o n c e n t r a t e o n

    t l ie

    seco nd maximum. The v a l u e

    o f

    w a l l t h ic k n e s s a t

    which t h i s maximum occ ur s i s a l s o a f u n c t io n

    o i

    f r e q ue n c y . I n F i g .

    r[,

    W E h a v e a v e r y s i m i l a r p l o t o f m a g n i tu d e a n d p ha s e o f t i le p i c k u p coi .1

    v o l t a g e a s f u n c t i o n s o f t h e c o n t a i n e r w a l l t h i c k n e s s , wi.th an d w i t h ou t

    b i sm u t h, a t a f r e q u e n c y of 22 kHz . F igure 6: w h i c h was r u n a t 10 kHz,

    i s

    v er y s i m i l a r t o F i g .

    7,

    e x ce p t t h e v a l u e s of w a l l t h i c k n e s s f o r

    maximum magni tude and phase change a r e s ma l l e r at-

    the

    h i g h e r f r e q u e n c y .

    A t

    20 kHz th e wa l l t h i c kn es se s f o r maximum phase and magni tude change

    o cc ur a t 2.7 m i l s and 80 m i l s , r e s p e c t i v e l y , c om pare d t o jk 7 m i l s and

    110

    m i l s , r e s p e c t i v e l y , a t

    10

    kHz.

    I n g e n e r a l ,

    w e

    a r e a b l e t o p l o t optimum w a l l t h i c k n e s s

    f o r

    maximum

    s e n s i t i v i t y a g a i n s t f re qu en cy ,

    a s

    s ho wn i n F i g .

    fl

    Ln F ig . we have

    o p t i m i z e d t h e w a l l t h i c k n e s s f o r t h e iiiaximum p h a s e s h i f t , a nd t li e

    amount o f phase s h i f t we ge t a t opt imum

    i s

    a l s o p lo t t e d a g a i n s t t h e

    f r e q u e n c y . B e ca u se t h e c u r v e s a r e r ou nd ed , i t

    i s

    d i f f i c u l t

    t o

    e x a c t l y

    d e t e rm i n e t h e o ptimum w a l l t h i c k n e s s f o r

    a

    g i v e n f r e q u e n c y . Th e

    s h a p e

    o f t h e c u r v e s v a r i e s w i th c o i l s i z e , s o w e made s i m i l a r p l o t s f o r u p t i -

    uium w a l l t h i c k n e s s f o r maximum s e n s i t i v i t y t o b o t h m a g n it u d e a nd p h a s e

    c ha ng es v s f re q u en c y u s i n g d i f f e r e n t s i z e c o i l s .

    A

    compos i t e o f t h e s e

    p l o t s f o r p hase s h i f t

    i s

    show n i n F i g . 3. F rom F ig . 'j, we conc luded

    t h a t a l i q u i d l e v e l pr ob e w i t h

    a

    w a l l t h i c k n e s s o f 30 m i l s would have

    a d eq u a te s e n s i t i v i t y . Once t h e w a l l t h i c k n e s s h a s b e en f ix e d , t h e n

    w e

  • 8/9/2019 ORNL Induction Probe

    33/122

    PY-

  • 8/9/2019 ORNL Induction Probe

    34/122

    N

    x

    I

     

    c

     

    1

     

    (

    U

     

    l

    4

    H

    S

     

    3

    S

    V

    '

    H

    d

     

    f

     

    l

    X

     

    k

    8

    S

    N

    Y

    3

    1

    V

    M

     

  • 8/9/2019 ORNL Induction Probe

    35/122

    c a n detemt:i.ne the

    o p t i n i i m f r e q u e n c y

    f o r

    maximum s e n s i t . i v i t y a n d t h e s e n s i -

    t i .vf . ty at . t h a t f r eq u en c y f o r a ny s i z e c o i l . I n F i g . 10,

    WE ?

    h a v e

    opt i .mize t l

    f o r maximum p h a s e sl-iiEt, and w e have made s i ln i I a r

    pl .o ts

    f o r mal:i.murn atnp1.i-

    t u d e c1-iange, From t h i s pLoL we

    d e c i d e d t h a t

    w e

    would have a d e q u a t e sen.s:i -

    t i v i t y i . f the

    c o i l

    form

    01)

    was

    O.72,Y

    i n .

    a f requency

    of 16 kHz, w e

    h a v e 0.1.8 r a d i a n s o r a p p r o x i m a t e l y 10 phase

    s h i - f t a s t:he 1 i q u i . d I.e-vel

    i.s v d r i e d f r o m f u l l . ' to e m p t y . W l i l t . t h i s i s

    not: t l ie most

    s e n s i t

    i - ~ e onf igura t : io[ j . ,

    t h e sen:;-i.ti.vii:y i s riluch

    nmre

    t h a n

    adequigte, and tile compromises

    m a d e

    t h u s f a r i n s u r e a

    good

    i nexpens i -ve

    m e c h a n i c a l . d e s i g n . W s h a l l . now t u r n o u r

    at

    With t h i s s i z e coi.1. o p e r a t e d

    a t

    d r i f t s .

    2:

    7c

    5

    0

    ...

    \

    -

    ..

    ...

    O W L - DWG 71.- 7 798

    0 . 2 5

    R I V L H

    c r i i l

    31CKUP Colt

    L E N G T H O F C O I L - 4 3 i n

    TEMPERATIJRF - 700"C

    31

    RFSiS1

    V I l Y=15O$km

    Mu R E S I S T I V I T Y - 2 O p C L L m

    1AVlTE OD = 7 A

    W IRE

    D l A h l E T E R z r2 - r , r-45rri Is

    W A L L

    T H I C K N E S S = A

    A = 3 0 m i i s

    0.375 0.500 0.625 0.750 0.875 1 0 0 0

    LAVITE OD

    f i n

    1

    F i g . 10.

    O p t i i r n u m F requency f o r Maximum Phase S h i f t and P h a s e S h i f t

    a t Maximum

    P l o t t e d

    A g a i n s t C o i l Form 01).

  • 8/9/2019 ORNL Induction Probe

    36/122

    I n t h e c a l c u l a t i o n s t o m in im iz e d r i f t s , w e i n c l u d e d t h e o u t e r m ol yb -

    denum con t a ine r a s show n i n F i g .

    5.

    We assumed t h a t b o t h t h e c o i l s h e a t h

    and t l ie o u t e r c o n ta i ne l ' w er e i n f i n i t e l y l o n g ; t h e c o i l was a c t u a l l y

    13.625

    i n . l o n g.

    The m aj or c o n t r i b u t i o n t o d r i f t s i s t h e

    w i d e

    r a n g e

    of

    o p e r a t i n g

    t e m p e r a t u r e of t h e p r o b e . Th e t e m p e r a t u r e c o n t r i b u t i o n s ca n b e b r o k e n

    t h e f o l l o w in g :

    'There i s a c ha ng e i n t h e a c f i e l d d u e t o c h an ge s i n t h e

    r e s i s t i v i t y

    of

    t i i t . molybdenum and b i smu th . T h i s ca us es

    a

    c h an g e i n t h e s e l E - im p e da n c e o f b o t i i t h e d r i v e r a nd

    p i c k u p c o i l s an d t h e m u tu a l c o u p l i n g b et w ee n t he m .

    T here i s a ch an ge i n t h e d c r e s i s t a n c e o f b o th c o i l s .

    T hermal expans ion

    oC

    t h e c o i l a nd c o n du cl o r s a l s o

    c a u s e s a c h a n g e i n t h e i mp e da n ce s a n d m u t u a l c o u p l i n g .

    \?e s h a l l c o n s i d e r e a ch of t h e s e f a c t o r s s e p a r a t e l y .

    I n F i g .

    11

    we h a v e p l o t t e d t h e p h a s e o f t l ie v o l t a g e o f t h e p i- ck up

    c o i l a g a i n s t fr eq u en cy f o r v a r i o u s t e m p e r a t u re s . We c a n s ee t h a t t h e s e

    c ur ve s i n t e r s e c t

    a t

    a c e r t a i n f r e q u e n c y , w h i ch m ea ns t h a t t h e te m p e r a -

    t u r e c o e f f i c i e n t of tlhe phase

    i s

    e s s e n t i a l l y z e r o air t h a t f r e q u e n c y .

    T hese z e r o t e m p e ra t u r e c o e f f i c i e n t p o i n t s o c c u r a t a p p ro x i m a te l y 25

    kHz f o r t h e c a s e i n wh ich t h e l i q u i d l e v e l p r ob e i s e mp ty a nd a t a b o u t

    .jO kHz f o r t h e p r ob e b e i n g f u l l o f b i sm u t h. More e x a c t c a l c u l a t i o n s

    w i t h a n e x t e rn a l c i r c u i t a t ta c h ed

    t o

    t h e p r ob e f o r an o p e r a t i n g f r e -

    quency of

    i ' )+.300kHz

    a r e s hown i n t h e t a b l e b e l o w.

    T a b l e 1 . C a l c u l a t e d P h as e S h i f t V a l u es ( i n D e g r e e s )

    w i t 1 1 Bismuth and

    A i r

    a t S e v e r a l T e m p e ra t ur e s

    M a t e r i a l

  • 8/9/2019 ORNL Induction Probe

    37/122

    W N L - I IWG 71- 9076R

    U

    u

    4

    c

    I,

    1

    F i g .

    11.

    Phase o f t h e Pickup

    Coi.1 Vol t

    a g e P l o t t e d

    A g a i n s t

    Frequency

    f o r Different T e m p e r a t u r e s .

    I n

    t h e t e m p e r a t u r e

    range

    of p a r t i c u l a r i n t e r e s t ,

    ~ O O

    o

    f;:;oO(:, we have

    c h o s e n our p a r a m e t e r s s o t h a t

    we have

    e x a c t : l y t h e same p o s i . t : i v e s l o p e

    of phase

    with te rr ipe ra t :u re

    (4-0. $ " / ~ 0 " c )

    n

    b i s n ~ r t : t ia s t h e

    negative

    s l o p e

    (-'3.06"/50")

    i n a i r . T h ese

    two e n d

    p o i n t s r e p r e s e n t

    t h e

    worst t,ernpera

    -.

    t u r e c o e f f i c i e n t ,

    and

    i t

    i s e x pe c te d t o

    d e c r e a s e t o z e r o

    f o r

    t h e c a s e 01

    t h e

    p r o b e

    b e i n g

    h a l f

    f u l l .

    T h i s

    worst

    c a se

    o f t h e c a l c ul . a te t l - t e m p e r a t u r e

    c o e f f i c i e n t i s e q u i va l - e nt t o

    I-0.0015

    n . / " C e r r o r i n t h e l i q u i d

    level .

    measurement .

    S i - m i l a r

    c a l c u l a t i o n s

    were made

    f o r t h e ma g n i tu d e of t h e p i c k u p

    c o i l

    v o l t a g e , b u t t h e r e

    i s no

    f r e q u en c y a t w h ic h t h e

    magnii-udch

    r e ma in s

    constant

    w i t h t e n i p e r at u r c c h a n ge s .

  • 8/9/2019 ORNL Induction Probe

    38/122

    we

    n e x t c o n s i de r e d t h e v a r i a t i o n i n p ha s e d ue to c h a ng e s i n d c

    r e s i s -

    t a n ce of t h e c o i l . A s we d i s c us s e d e a r l i e r ,

    a

    v a l u e o f c a p a c i t a n c e and

    r e s i s t a n c e i n t h e d r i v i n g a nd d e t e c t i n g c i r c u i t s c an b e c ho se n ti ia t

    w i l l

    g i v e e s s e n t i a l l y n o ch an ge i n p ha se a s t h e d c r e s i s t a n c e o f t h e c o i l i s

    v a r i e d , a n d will

    also

    a c t as a f i l t e r t o r ed u c e t h e s ys te ii i n o i s e . How ev er,

    when the R - C ne twork

    i s

    a d j u s t ed t o g i v e e x a c t ly z e r o te mp e ra tu re d r i f t

    w i t h t h e b is m ut h p r e s e n t , i t w i l l n o t g i.v e e x a c t l y z e r o d r i f t w i t h t h e

    b i s mu t h a b s e n t . T h e r e f o r e , t h e n e tw o rk

    i s

    a dj us ce d t o g i v e sm al l d r i f t s

    of o p p o s i t e s i g n s i n t h e two c a s e s . Bu t t h e more

    we

    f i . l t e r t o r p du ce

    s y s t e m

    n o is c , t h e g r e a t e r t h e s e

    s m a l l

    d r i f t s become. I n a d d i t i o n , t h e

    p ha se s h i f t s d ue t o v a r i a t i o n s i n t h e c a p a c i t a n c e and r e s i - s t a n c e v a l u e s

    i n t i le c i - r cu i t i n c r e a s e a s

    w e

    r e d uc e t h e s y st e m n o i s e . T h e r ef o r e ,

    w e

    m us t co mp ro mi se b e tw e en t h e s y s t e m n o i s e an d d r i f t s . The f o l l o w i n g t a b l e

    summar izes t he d r i f t s be tween 60i3'and 6;d) 'c , u s i n g

    -*j6.:j

    f o r t h e s e r i e s

    r e s i s t a n c e of t h e d r i v e r c i r c u i t and t l ie s h u n t r e s i s t a n c e o f t h e p ic k u p

    c i r c u i t and 5e.30 pF f o r t h e s h u n t c a p a c i t a n c e .

    T a b l e 2. Summary o f P h a se S h i f t s D ue t o V a r i a t i o n s

    i n Va r io u s C i r c u i t P a ra m e te r s

    P a r a m e t e r V a r i e d

    Va r ia t i o n

    i n

    P aramete r

    ($)

    P h a s e S h i f t

    ( d e g r e e s

    )

    D r i v e r C o i l R e s i s t a n c e

    P ic k up C o i l R e s i s t a n c e

    D r i v e r Sh u nt C a p a c i t a n c e

    P i c k u p S hu n t C a p a c i t a n c e

    D r i v e r C i r c ui

    t

    S e r i e s

    R e s i s t a n c e

    P i c k u p C i r c u i t S h u n t

    R e s i s t a n c e

    Opera t i ng F requency

    1 >

    1s

    1

    1

    1

    1

    1

    0.004

    0.001

    The p h a s e s h i f t s g i v e n

    i n

    T a b l e 2 a r e t h e a b s o l u t e maximum v a l u e s

    t h a t o c c u r a ny wh er e i n t h e t e m p e r a t u r e r a n g e w i t h o r w i t h o u t b i sm u t h .

  • 8/9/2019 ORNL Induction Probe

    39/122

    53

    T h e f i l i a l c o r i t - r i b u t i o n t o d i r f t s t h a t

    w e

    con s id e re d was t he rm31

    e x p a n s i o n o f th e sys tem. In cl ud in g t li er rual. expans i.o i i e f f e c t s , a tempc?ra-

    t u r e

    v a r i . a t i o n f r o m 600"

    t o

    6 5 0 ~

    aused

    a

    0.05" d i f f e r e n c e i n t h e p l ~ a s p

    change b e t w e e n t h e two t e m p e r a t u r e s , which

    can

    b e compensated C o r w i t h

    a s m a l l f r e q u e n c y c h a n g e .

    Additional information o n t h e d e s i g n uf t h i s

    probe

    is g i v e n i n

    I

    othe l -

    r e p o r t s .

    T hr ee d i f f e r e n t

    sets of

    measurements

    h a v e

    be en performed on

    [:he

    l i - q u i d

    l eve l .

    p r o b e .

    T ie f i r s t - s e t o f iiieasuz-cI~metlTs

    w a s

    p e rf o rm e d a t a

    f r e q u e n c y

    of

    10

    kHz

    a nd a t room t em per a tu re . T he p r imary purpose o f

    t hese measurement s

    was

    t o

    t e s t

    tl-ie

    linear

    .t:y of

    t h e

    p l - ~ b ~ ,

    1- t c1

    tile

    secc2iitl

    p u r p o s e W ~ ~ S

    o check t h e a c c u r a c y

    o f

    t h e c a l c u l a t i o n s

    T h e

    p r o b e c o n s i s t e d

    of

    t h e c o i l e n cl os ed i n

    a

    moI,ybdenuin sheath, I,ut

    w i t h -

    oii't

    any o u te r iiioly1)dennum c o n t a i n e r . The bi.siuu1:11 was

    rcpl.aced by 12

    r i n g s 01' Snc,onel ,

    each machined

    t o

    1

    _ _ 0 . 0 l i j

    i n . t h i c k .

    The

    phase

    s h i f t

    was

    r Q c o r d e d

    t:o w L t 1 i i n O.OI." a s t h e

    r i n g s

    were

    added, siim.lI.ating

    a n

    i n cr e as i -n g l i q u i d l e v e l .

    A ] .east-squarc:s

    f i t

    was

    marl

  • 8/9/2019 ORNL Induction Probe

    40/122

    The measurements

    were

    made a t a f r eque ncy o f

    27.'7

    kHz l o r v a r i o u s

    l e v e l s o f b i sm u th a nd a t v a r i o u s

    t e m p e r a t u r e s b e t w e e n 550°C and 700"C.

    T h e r e s u 1 . t ~a r e p l o t t e d i n F i g . 12. T h e p h a s e s h i f t i s a l i n e a r f u n c t i o n

    o f l i q u i d l e v e l o v e r a r a ng e f ro m z e r o t o a bo u t 13 i n . The s l o p e o f t h e

    c u rv e v a r i e s s l i g h t l y w i t h t em p e ra t ur e , with the minimum temperature

    c o e f f i c i - e n t o c c u r r i n g b e t we e n 600" C and 650"

    .

    The t em p e r at u r e c o e f f i c i e n t o f

    t h e

    l e v e l r e a d in g was

    0.009

    n . / " C

    I O

    f o r t h e chamber e il ip ty and 0.00211 i n . : C f o r t h e c h am be r f u l l o f b i s mu t h.

    T he h i g h e r t e m p e r a t u r e c o e f f i c i e n t w i t h t h e c ha mb er e m pt y w as p r o b a b ly

    du e t o t h e f e r r o m a gn e t ic o u t e r c a s i n g .

    A s e r i e s

    of

    more a c c u r a t p c a l c u l a t i o n s , c o n s id e r i 'i g m ore d i f f e r e n t

    p a r a m e t e r s , sh owed t h a t m o re a c c u r a t e m e a s ur e m en t s c o u l d b e made a t

    2)-

    kHz f o r t h e t e m p e r a t u r e r a n g e o f 600"~o 650"~. he l e v e l i n t h e p r ob e

    14

    35

    36 37

    38

    39 40 41

    42 43 1 4

    45

    46

    47

    PH ASE

    SH IFT I deq l

    F i g . 12. P ha se S h i f t P l o t t e d A ga i n s t L i q u i d L e v el f o r V a r i o u s

    T empera tu res Measured a t a F requency o f 27.7 kHz.

  • 8/9/2019 ORNL Induction Probe

    41/122

    .55

    was s e t a t

    t h e maximum, de ter min ed by th e amount of b i sm uth

    .i.n

    t h e s y s t e m

    a t t h e t i m e . The m an om ete r r e a d i n g i n d i c a t e d

    10

    i n . , b u t l a t e r m ea su re -

    m en ts i n d i c a t e t h a t t h e a c t u a l l e v e l was a b ou t 13.5 i n . T ab le 3 shows

    b o t h c a l c u l a t e d a nd m e as u re d v a l u e s o f m a g n i t u d e a nd p h a s e . The a c t u a l

    c a l c u l . n t i o n s w er e made w i t h t h e p r o be e i t h e r f u l l o r em pt y of b i s m u th ,

    and t h e 1 0 - i n . c a l c u l a t i o n s r e p r e s e n t a 1 .i ne ar i n t e r p o l a t i o n b et we e n z e r o

    and

    13.625

    i n . o f b i s m u t h .

    The r e s i s t o r v a l u e s a r e t h o s e o f b o t h t h e d r i v e r s e r i e s and t h e p i c ku p

    s h u n t r e s i s t a n c e s , an d t h e s e c a n b e v a r i e d t o nc li i- ev e a " f i n e tu n in g " i n

    t h e t e m p e r a t u r e c o e f f i c i e n t o f t h e p r o b e . T he p h a s e d if fe rc -. nc :c i

    i s

    t h e

    p h a s e a t t h e l o w er t er np pr at :u re s u b t r a c t e d f ro m t h e p h a se a t t h e u p p e r

    t e m p e r a t u r e .

    w ou ld h e e q u a l b u t o p p o s i t e i n s i g n w i t h t h e p r o be i u l .1 a nd e mp ty , a s

    shown f o r

    t he

    c a l c u l a t e d v a l u e s u s i - n g

    36.3 ~2.

    p ha se d i f f e r e n c e was -1.0.1.2 r a t h e r t h an O.06 c a l c u la t e d f o r t h e 1 0 - i n .

    l e v e l . By i n c r e a s i n g t h e Val-ue s o f t h e r e s i s t o r s i n t h e a t t e n u a t o r , we

    a r e a b l e t o d e c r ea s e bo t h

    t h e

    c a l c u l a t e d a nd m e as ur ed p h a s e d i f f e r e n , c e s .

    The b e s t v a l u e of r e s i s t o r s t o g i v e minimum d r i f t wou1.d p rob abl y b e

    s l i g h t l y l a r g e r t ha n

    36.3

    R. T h e l e v e l was a1 .so v a r i e d u s i n g t h e 75-a

    r e s i s t o r s i n . t h e a t t e n u a t o r . The t e m p er a t ur e c o e f f i c i e n t of t h e piinse

    v a r i e d f r o m

    +O.OO&? / C (-i-O.U352

    i n , / °C) w i . t h

    t h e

    chamber empty t o O.O($ /

    " C

    w i t h t h e c ham ber f u l l .

    Ey

    d e c re a s in g t h e v a l u e of t h e r e s i s t o r s , i t

    s h ou ld b e p o s s i b l e t o o b t a i n

    a

    t em p e ra t ur e c o e f f i c i e n t

    of

    -t-O.OOl.6

    i.n./"C

    wi t h t h e chamber empty , - 0 . 0016

    i n . / " C

    w i t h t h e c h am be r f u l l and z e r o

    w i t h t h e c ha mb er h a l f f u l

    1.

    I n t h e i d e a l c a se , t h e p h a se s h i f k s be tw ee n 600°C and

    650°C

    However , t h e measured

    T h e c a l c u l a t e d s l o p e a t 600°C was

    0 . 8 ) + j o / i n .

    compared

    t o

    a measured

    v a l u e o f 0 . 8 6 6 " / i n .

    m a g ne t ic p e r m e a b i l i t y o f t h e o u t e r c o n t a i n e r i s on ly approx ima te ly known.

    P a r t o f t h i s e r r o r may b e du e t o t h e f a c t t h a t t h e

    W i t l i

    t h e i n f o r m a t i

    on

    g a in c cl i n t h e s e measurements , we

    wi l l

    b e a b l e

    t o c a l i b r a t e t h e p r ob e u se d i n t h e

    l o o p

    w i t h a n o u t e r c o n t a i n e r

    of

    molyb-

    denum, a s

    shown

    i n F i g .

    3 .

    The l o we r c a l i b r a t i o n p o i n t f o r t h e p ro b e

    c a n b e o b t a i n e d b e f o r e b i s mu t h

    i s

    e v e r ad de d t o t h e s y s te m . To g e t t h e

    u p pe r c a l i b r a t i o n p o i n t , t h e bi sm u th l e v e l m u s t b e r a i s e d o v e r t h c t o p

    o f t h e p ro b e , an d t h e

    phase

    r e a d i n g r e c o r d e d .

    I f

    0.110'

    i s s u b t r a c t e d

  • 8/9/2019 ORNL Induction Probe

    42/122

    C

    pi

     

    m

     

    U

    .

    A

    r

    4

     

    \

    D

    r

    t

    W

     

    tl

    n

  • 8/9/2019 ORNL Induction Probe

    43/122

    3‘I

    f ro m t h i s p h a se re a d in g , t h i s g i v e s the v a l u e of t he pha . se

    w h e n

    t h e l i q c i d

    l e v e l

    i s

    15 i n . The phase wi l l . be a l i n e a r f u n c t io n

    of

    t h e b i smuth l e v e l

    be tween 0 i n . and

    13

    i n . W r i n g t h e n i n e ~ ii on .t hso f t e s t i n g o f t h e

    probe,

    t h e z e r o p o i n t a p p e a r e d t o move, but t h e s l o p e was e s s e n t i a l 1 ~ y o n: ;t am t

    ( w i t h i n

    1 +$).

    T h e r e f o r e , b y as s um i ng a c o n s t a n t s l o p e 2 i . t

    i s

    possLbIe

    t o r e c a l i b r a t e t h e p ro b e b y r a i s i n g the b i smuth L eve l o v e r t l i e probe .

    T h e r e

    w a s

    a c o n s i d e r a b l e a m o u n t

    of

    c o r r o s i o n i . n t h e

    l.oc)j) wli.:i.ch

    probi~b1.y

    accoun ted f o r t l ie s h i f t i n t he z e r o l e v e l p o i n t .

    A

    p a s s i v e KLC phase

    c a l . i . b r a t o r was

    c o n s t r u c t e d t o e l i m in a t e i n s t r u -

    m e n . t

    v a r i a t i o n s

    It

    g i v e s two measurements of

    t h e

    i.nst:rurrtt:nt gain. ( s ~ . o p e

    and

    two

    :i.ndependei-it: nei3 sure Inen t s of t h e z e r o p o i n t .

    T h e

    1.orig-tc1.rm s t a -

    b i I - i t y

    o f

    t h e c a I ih r a t :o r i s a p p r o x i m a t e l y 0 . 0 1 ” .

    A d d i t i o n al i n f o r ma t i on on t h e l i n e a r i t y

    t e s t s , ‘

    t h e i n i t i a l . mcasure-

    6

    ments

    a r e

    g iv e n i n

    o t h e r

    r e p o r t s .

    in. t l ie t e s t loop , and t l ie

    : f i n a l

    measurements‘ i n t h e t e s t l oo p

    >

    .

    SUMMARY ANT) CONCX1ISIONS

    The problem

    f o r

    a c . oi l e i t h e r e n c i r c l. i n g o r enc-.>sed by

    a n

    a r b i t r a r y

    number

    of

    c o n d u c t o r s h a s bee11 s o l v e d . A c c u r a t e a nd versa : i Je computer

    programs have

    be t ~ i

    w r i t t e n w h ic h n u m e r i c a l l y

    eval .uate

    t h e s e

    s o l . u t i o n s

    G o o d a g r e e m e n t h a s

    been

    o b t a i n e d b e tw e e n t h e c a l c u l a t i . o n s a nd e x p e i r i . m c ? r i t s .

    These programs h a v e b ee n. a p p l i e d to d e s i g n very a c c u r a t e l i q u i d l e v e l

    p r o b e s even

    t hough

    w e

    a r e l o o k i n g t h r o u g h a

    good

    conductor (molybdenum)

    arid m e as ur in g t h e l e v e l

    o f

    a p o or c o n d u c t o r ( b i s m u t h ) .

    ‘Id. E . McNeese e t l . ,-

    E n g i n e e r in . g D ev el op me nt S t u d i e s f o r Mol.ten-

    S a l t B r ee d er Reactor P r o c e s s in g No. 13, ORNL-TM--3776 ( i n p r e p a r a t i o n >.

    I,. E .

    McNeesc It

    ala,

    E nginee r ing Deve lopment Studies f o r

    Molten-

    S a l t

    Breeder R

    O I W L - T M - ~ ~

    ( i n

    p r e p a r a t i o n ) .

    ‘L.

    E . McNeese c t

    l . ,

    E ng inec r ing Deve lopment S t ud i e s F o r r l _ l t c n -

    S a l t B r e e d e r R e a ct o r P r o c e s s i n g

    N o .

    16,

    O I W L - T M - I I O ? ~ ( i n

    p r e p a r a t i o T -

  • 8/9/2019 ORNL Induction Probe

    44/122

    6.

    ACKNOWLEDGMZNTS

    The

    a u t h o r s wish

    to

    acknowledge

    t h e

    a s s i s t a n c e o f C . C . L u

    in

    t h e

    p r e j

    irninary programming, t

    r a s s i s t a n r - o f

    I 0 . Weeren,

    I , .

    D.

    Chitwood,

    a n d

    0 . E . Conner i n p e rf o rm i ng

    t h e

    n e a s u r c m e n t s ,

    Id.

    E .

    Deeds

    slid

    L . E .

    McNeese

    f o r e d i

    Ling t h e i e p o r t , J a n i c e

    Shannon f o r preparing the

    f i n a l

    manusc r ip t and Jerry R o t l i and L. E . McNeese for providing ovcrall

    giii dailce

  • 8/9/2019 ORNL Induction Probe

    45/122

    APPENDIX A

  • 8/9/2019 ORNL Induction Probe

    46/122

    APPENDIX A

    ComKuL-er.. P ro g ra m s f o r 3 Liq uid J ,evel Probe

    I n s i d e

    ...

    C o a x i a l C o n d u c t o r s

    I. lNTKODUCTION

    T hi s compute r p rogram

    i s

    u s e d t o ca l c ul a f rv t h e n o r m a l i z e d c o i l i mp ed -

    a n ce of b o t h t h e d r i v e r and p i c ku p c o i l s o f an e d d y - c u r re n t p ro be , s u r -

    r o un d ed by m u l t i p l e c o a x i a l c y l i n d r i c a l c o n d u c t o r s . T he p ro gr am mi ng

    c o n s i s t s of a f u n d a m e n t a l s u b r o u t i n e namcd

    I . N M L ,

    which i s c a l l e d i n t o

    e x e c u t i o n b y a m ai n D R I V E R program. INNMLTL b r a nc h e s t o e i g h t o t h e r new

    s u b r o u t i n e s d u r i n g e x e c u t i o n .

    Z N N N U T ,

    i t s c l

    f

    i s

    a d ap te d f ro m a n e a r l i e r

    p rogram i n t h e BASIC l ang uage .

    The FORTRAN-IV computer languagc i s u s e d , w i t h

    REALYE

    a r i t h m e t i c , o n

    t h e IBF1/36G c o m p u t e r s .

    l a t i o n s w i t h s u f f i c i e n t a c c ur ac y i n t h e c a s e of a " t h i n" r e g i on among

    t h e c o n d uc t in g m e di a . I n c o n n e c ti o n w i t h tlij-s, yoine s p e c i a l s u b r o u t i n e s

    w er e a l s o d ev el op ed f o r t h e c a l c u l a t j o n o f t h e n e c e s sa r y m od if ie d Re sse l

    f u n c t i o n s , w i t h ac cu ra c y of a t l e a s t 15 s i g n i E ic a n t d ec im al d i g i t s f o r

    r e a l a rg u m en t s, a nd lu s i g n i f i c a n t d i g i t s f o r c om plex a rg ii me nt s.

    New work w a s d on e t o

    c a r r y

    o u t t h e ne ed ed c a l c u -

    An o u t l i f i e of t h e p ro gr am f o l l o w s , w i t h d i s c u s s j o n an d p ro gr am l i s t i n g

    o f e ac h s e p n r a t e r o u t i n e . The e i g h t s u b r o u t i n e s r e q u i r r d by I N W L a r e

    named

    X I I N T , X J J N T ,

    GAMCLL, GCALC; MODBES,

    CMDKES, COMKB,

    and C M I . They

    a r e ne ed ed f o r i n t e g r a t i o n s of x3 ( x ) and XI (x ) , f o r c a l c u l a t i o n oE t h e

    gamma f a c to r , and f o r i i ie i r l o d i f i e d B e s s e l f u n c t i o n s .

    1 1

    L a s t a n i n t e r a c t i v e p r og ra m w i l l b e g i v e n f o r g e n e r a t i o n of t h r d a t a

    b l o c k F i l e , which I n l i s t b e s u b m i t t e d

    w i t h

    t h e p r og ra m f o r e x e c u t i o n

    011

    t h e I B M , / ~ ~ O o m p u t e r .

    T l i i s

    program, named T E L J N C ,

    i s

    s t o r e d o n t h e

    PDP-10

    d is k, and may be used f rom

    t h e

    t e l e t y p e t o prep '3i-e t h e d a t a i n t h e n e c e s -

    s a r y f or ma t f o r t h e D R I V E K . T he d a t a c o u l d , o f c o u r s e , b e s e t up f o r

    e x e c u t i o n o f t h e p ro g ra m b y a n y o l -h e r c o n v e n i e n t m e t h o d.

  • 8/9/2019 ORNL Induction Probe

    47/122

    4 .

    11.

    DESCRIPTION OF

    INNIYIJL

    A .

    D R I V E R

    Program

    The D R I V E R

    main

    p ro gr am r e a d s t h e d a t a f o r

    t h e

    c a s e s

    t o

    b e e x e c u t e d

    b y

    the INNfWL

    s u b r o u t i r i e . A f t e r r e c e i vi n g t h e d a t a a n d

    making

    p r e l i m i n a r y

    c a l c u l a t i o n s i f n e c e s sa r y , t h e D R I V E R t h e n b r a n c h ( i s t o INNMLJT,. A f t e r t h e

    c a l c u l a t i o n

    of

    n o r m a l i z e d

    c o i l

    impedance

    i s

    comple t ed by INWRTL and

    i t s

    o t h e r s u b r o u t i ne s , t h e n

    Lhe

    DRIVER program prepares

    a

    summary print

    o u t ,

    showing data and

    r e s u l t s .

    Data must be g i v e n

    t o t h e

    DRIVER program f o r t h e

    c o i l .

    di .mensions, fo r

    the a i r n o r m iI . i za t i o ii f a c t o r , an d

    f o r

    i n f o r m a t i o n a b o u t each r:oriductor

    o u t s i d e t:h e c o i l . Th e

    inner

    r a d i u s , t h e r e I . n t l v e p e r m e a b i l it y ,

    2

    t h e v a l u e

    of

    t h e q u a n t i t y (~~p . n i? r e n ee de d f o r

    each

    c o n d u c t o r .

    m

    and

    b 3 E L '

    2

    m

    he D R I V E R program

    i s

    w r i t t e n

    t o

    r e c e i v e t h e q u a n t i t y ,

    q J , u F

    , i n any

    one

    of

    t h r e e d : i . f f e r e n t

    w a y s . F i r s t ,

    t l i e v a l u e

    of the

    q u a n t i t y may b e

    g iv e n d i r e c t l y f o r e a c h c o n d u c t o r . S ec on d, t h e f a c t o r

    o

    may b e g i v en f o r

    each c o n d u c t o r . In

    t h a t :

    case, t he p e r m e a b i l i t y ,

    p i i s

    IT. x 1.0 x

    li .

    R A

    Then t h e o p e r a t i n g f r e qu e n c y a l s o i s g i v e n i n o r d e r t o o b t a i n 1d

    for

    t h e

    c o i l , and F i n

    meters , i s

    e i t h e r g i ve n o r c a 1. c ul o te d f o r t h e C L ~ ~ J . ,

    - 7

    m'

    T hi rd , t h e r e s i s t i v i t y ,

    p (pil-cm)

    may be g iv en a s d a t a

    f m ach

    c o n -

    8

    d u c t o r . The r e l a t i o n b e tw ee n

    p

    and

    i~ i s

    g i v e n b y :

    q u a n t i t y w y a r

    i s

    c a l c u l a t e d

    a s O.. - ,Ogi9 j ?

    x f r e q .

    x

    r

    x

    ilREL/p. The

    c o n s t a n t

    i s a

    p r o d u c t of c o n v er s io n f a c t o r s

    --

    ( 2 r / - ) ( O . O 2 5 4 ) hi x I . O ) ( l O ) .

    T h e re f o re i n this t h i r d case, t h e known d a t a must i n c l u d e t h e d r i v i n g

    f r e q u e n c y ( H e r t z ) , a n d

    F

    ( i n . ) , a s

    w e l l a s

    r e l a t i v e p e r m e a b i l i t y . The

    d e t a i l s o f s e t t i n g up t h e d a t a f o r s u b mi s s io n

    with

    t he compute r p rogram

    wi1.L

    b e gi v e n i n t h e

    l a s t -

    s e c t i o n .

    o CL 10

    p .

    Then t h e

    2

    2

    m

    F o l l o w i n g

    i s

    a l i s t o f t l ie program DRIVER.

  • 8/9/2019 ORNL Induction Probe

    48/122

    A

     

    0

    y

     

    i

    x

     

    L

     

    03

    r

    I

     

    4

     

    v

    D

     

    C

     

    L

     

    M

    P

     

    0

    U

     

    F P

    v

    (

    T

      x

     

    3

     

    m

     

    A

    -

     

    C

    r

     

    I

    -

    D

     

  • 8/9/2019 ORNL Induction Probe

    49/122

  • 8/9/2019 ORNL Induction Probe

    50/122

    44

    9

    10

    1 I

    5

    1a Q

    185

    1 9 0

    1 1

    2

  • 8/9/2019 ORNL Induction Probe

    51/122

    45

    11

    l a ) INNMUL

    T he fo rmula which

    i s

    c a l c u l a t e d by t h e INN?IUL s u b r o u t i n e

    i s

    t h e

    n o r m a l i z e d c o i l i mp ed a nc e ,

    of b o th t h e d r i v e r

    and

    p ic ku p c o i l s i n a b i f i l a r c o i l s ur r ou nd ed by

    m u l t i p l e c o a x i a l c o n d u ct o rs .

    T h e q u a n t i t y

    i s

    given by Eq. (50) .

    I t

    i s c a l c u l a t e d by a b r an c h t o t h e

    X I I N T

    f u n c t i o n

    s u b p r o g r a m . S i m i l a r l y , t h e q u a n t i t y ,

    i s

    g i v e n by E q .

    r a t i o ,

    U12/U22,

    o r gamma, i s c a l c u l a t e d b y

    a

    b r a n c h f r o m INNMUL t o t h e

    GAMCAL

    s u b r o u t i n e .

    (56) and i s c a l c u l a t e d b y

    the

    X J J N T subprogram.

    The

  • 8/9/2019 ORNL Induction Probe

    52/122

    The X I I N T ,

    XJJNT,

    and GAMCAL s u b r o u t i n e s w i l l

    b e

    d i s c us s e d s e p a r a t e l y .

    The i n t e g r a n d i n t h e n u m er a to r o f t h e i mp ed an ce f o r m u la i n INNMUL

    -(XI,

    c o n t a i n s a t:errn w i t h t h e f a c t o r ( X -C E

    v a l u e s o f

    CiL

    l e s s

    t h a n

    0.5,

    t h i s f a c t o r i s c a lc u l a t e d by t h e r a t i o n a l

    a p p r o x i m a t i o n ,

    -

    l ) , where I,

    =

    k - A l . For

    2

    8

    T h i s

    i s

    d e r i v e d a s a c o n t i n u e d f r a c t i o n a pp ro xi ma nt f ro m t h e P a d e ' t a b l e

    a s s o c i a t e d w i t h t h e p ower

    s e r i e s ,

    -a.

    I f CXL

    i s

    l a r g e r t h an 20, e i s d ro pp e d f ro m t h e c a l c u l a t i o n of

    01+

    r

    --

    1 ) . F o r a?, be tween

    0.5

    and

    20,

    e

    i s

    e v a l u a t e d b y L h e e x p o n e n t i a l

    f u n c t i o n s ub pr og ra m a v a i l a b l e

    i n t h e 1 ~ ~ / 3 6 3ORTRAN l i b r a r y .

    -OX A

    T h e q u a n t i t y (1

    -

    cos(ol?,)

    w hi ch a p p e a r s i n o n e

    t e r m

    o f L h e i n t e g r a n d

    2 L

    2

    s o b t a i n e d by t h e h a l f - a n g l e f o rm u la f ro m si n (- ) .

    The o v e ra l l i n f i n i t e i n t e g r a l

    i s

    a p p r o x i m a t e d i n INNMUL

    for

    a n u p p e r

    l i m j t o f 16. T h e a v e r a g e o f t h e i n t e g r a n d

    i s

    c a l c u l a t e d f o r

    100

    e q u a l l y -

    s p a c e d p o i n t s f r o m

    0

    t o 1 . F o r e a c h o f t h e r e m a i n i n g 15 i n t e r v a l s oL

    u n i t l e n g t h , t h e a v er a ge of t h e i n te g r a n d f o r 20 e q u a l l y s p ac e d p o i n t s

    i s u s ed . T h i s h a s be en f ou nd t o g i v e a s u f f i c i e n t l y good a p p r o xi m at i on

    t o t h e i n t e g r a l and

    i s

    named

    17

    i j I 6 i n t he p rograu i .

    A t

    t h e same

    t i m e

    d ur in g t h i s c a l c u l a t i o n i n

    'LNNMTJL,

    i n t e g r a t i o n

    i s

    p e rf o rm e d i n d e p e n d e n t l y o n t h e s e c o n d t e r m o f t h e i n t eg r a n d t o o b t a i n

    a n e s t i m a t e d a i r v a l u e , named

    19.

    The a i r va l ue c o n t r i b u t e s t o t h e r e a l

    p a r t o f t h e i n t e g r a l , 17, and

    i s

    b y f a r t h e s l o w e s t p a r t t o co nv er ge .

    We

    'Als ton

    S .

    Househo lde r ,

    A

    G l o s s a r y f o r N u m e r ic a l A n a l ys i s 2

    ORNL-2704,

    pp 73

    -7'4

  • 8/9/2019 ORNL Induction Probe

    53/122

    c n l c u l a t e t h e air v a l u e i n s c p a r a t e program and givc. t h ~a l u e

    a s

    p a r t

    o f

    t h e

    d a t a to t h i s p r o g r a m , a s Ag.

    The

    a i r v a l ue d e p e n d s o t l ly on t h e

    o n

    t h e c o i l

    dimensions

    a nd not on

    the

    c o n d u c t o r , 2 n d

    i s

    ( T h i s term a p p e a r s b o t h i n t h e n u m e r a t o r

    and

    the denorn ina to r . )

    T h e r e f o r e , we c a n o b t a i n

    t h e

    c o m p l e t e l y c o n v e r g e d

    real part

    oi t h e i n t e -

    g r a l

    by

    a d d i n g t h e d i f f e r e n c e b et we en A3 and 19. The completely c o n -

    v e r g e d r e a l p a r t i s I'( t

    (Arj-Iy).

    The

    normalized impedance is

    A listing

    of IplNMuL f o l l o w s .

  • 8/9/2019 ORNL Induction Probe

    54/122

    48

    c

    C

    c

    C

    C

    C

    C

    C

    c

    c

    C

    c

    C

    C

    c

    C

    C

    1

    t i l =

    I N N E X C U L L

    i < A D I U > / MLAN

    C D I L t I A D I U S

    r

  • 8/9/2019 ORNL Induction Probe

    55/122

    49

    c

    G l = O . D O

    I;Z =H%

    P R I N T 3

    3

    F ~ K M A T C ~ X ,X ' P

    1 4 A 9

    'AIR V A L U E U r 5 X ~H E A L

    P A t < T ' > G X , ' I M A G

    P A R T ' / / / )

    C

    c b E G I N LMBP DN A L P H A > l l H I C H IS T H E V A K I A L ~ L E NAMED X

    c

    125 J 7 = 0 * O

    J S = O . D O

    J ' 9 = O o D O

    X = t i * i i 1 * 0 * 5DO

    130 W9 = X * L

    G I l = )< *X

    O = O f * Q 1

    Q 6 = 2 * W 1

    c

    C

    C

    135

    1 4 0

    C

    c

    c

    C

    c

    c

    145

    KL

    C

    GAMMA )= ii6 J

    I

    M

    C G A M M A

    1=F7

  • 8/9/2019 ORNL Induction Probe

    56/122

  • 8/9/2019 ORNL Induction Probe

    57/122

    11.

    B e l

    and

    2 )

    X J J N T

    and X I I N T

    T he se t w o f u n c t i o n s u bp ro gr am s e v a l u a t e t h e e x p r e s s ions,

    and

    2

    x I 1 ( x ) dx ,

    xr-l

    r e s p e c t i v e l y . These a r e equal. t o t h e va1.i.ies g i v e n f o r

    J ( r , > ,

    ) i n E q .

    ( $ 6 )

    and

    I ( r < , r )

    i n

    E q . (50).

    The method

    of

    i n t e g r a t i o n in l ~ o t i

    ases ,

    for- a n

    u p p e r l i m i t n o t g r e a t e r t h a n

    5, i s

    t h e summati -on o f a p o w e r

    s e r i e s

    expre:;-

    s i o n

    u n t i l t h e

    l.nst

    i n c l u d e d t e r m i s I.ess t h a n t imes t h e c u r r e n t

    s u m .

    I f

    t h e

    upper 1.iinf-t

    of the i n t e g r a l

    is

    g r e a t . e r t h a n 7, a s y m p t o t i . c

    formu.--

    l a s a r e u s e d

    i n

    b o t h s u b r o u t i n e s . I n g en .e ra l a p p l i c a t i . o n , we assume

    i .a i

    t h e s e s u br o u t i n e s t h a t

    b o t h

    1.imits a r e n o n r i e g a t i v e and

    tilie

    l o w e r

    l i m i t i s

    less t h a n O K e q u a l t o t h e u p pe r I .i mi t

    on

    t h e i n t e g r a l .

    r._ 1

    2 1

    9

    An e x p l a n a t i o n f o l l o w s

    f o r

    the summation method ,

    w h i c l t i s uscil i n t h e

    c a se

    t h a t t h e u pp e r

    l i m i t i s l e ss

    t h a n o r

    e q u a l

    t o

    5.

    For t h e p u r p o s c o f e x p l a i n i n g t h e g e n e r a l mcthod

    o f i n t e g r a t i o n , l e t

    f x ) b e a ny f u n c t i o n

    o f

    a

    r e a l

    v a r i a b l e w it h t h e

    Taylor

    s e r i e s

    expanPion,

    Term wise i n t e g r a t i o n y i e l d s

    ( 771

    9W.

    A . Si m pson

    et GP j omputer Yrogrnins f o r Some Eddy-Curren t

    Problems

    - 1970, ORNL-TM-3335 p . 259

    ( J u n e lg'(1

    ) .

  • 8/9/2019 ORNL Induction Probe

    58/122

    52

    I n t r o d u c e a new sequence,

    2 2

    2

    b-

    --

    a

    -

    ..

    ,

    and

    s o

    o n . I n r e l a t i.onnd i t

    i .s

    s e en t h a t

    q

    0

    =I,

    q

    1

    = = b- . a ,

    q 2

    t o t h i s s eq ue nc e, o u r i n t e g r a l may be w r i t t e n a s

    W

    T h i s i s t h e s e r i e s t o b e a p p r o x i m a t e d .

    R e c ur r en c e r e l a t i o n s may b e d c r i v e d t o g e t t h e t er m s o f t h e q - se q u en c e

    i n t h e f o l l o w i n g w ay. Use t h e a 1g eb ra i. c i d e n t i t y

    (‘19)

    n

    n

    -1 n - 1 a b ( b n - 2

    -

    a n - 2 )

    bn -

    a

    = (cl-tb)(b

    - - - a

    )

    -

    11

    T h i s g i v e s , w i t h n q

    T he n d i v i s i o n by n and s i m p 1 i f i . c a t i o n g i v e s

    ::: (bn - a ), n qn :: ( a + b ) ( n - l ) q n-1 - a b ( n - 2 )

    q

    11-2-

    n

    S i m i l ar l y , one c a n s t a r t w i t h t h e i d e n t i t y

    n

    2 2 n - 2

    n - 2

    2 2 11-4 n - 4 )

    b n - a = : ( a + b ) ( b - a ) - a b ( b - a

    t o o b t a i n a s e co nd u s e f u l r e c u r r e n ce r e l a t i o n ,

    (80

    ( E 2 )

    I n t h e f u n ct i on s X J J N T a nd XIINT, t h e s e c on d r e c u r r e n c e r e l a t i o n i s used

    f o r n g r e a t e r t h an

    3 ,

    of xJl(x) and

    xT1(x) .

    s i nc e a l t e r n a t e

    t e rms

    a r c z e r o f o r t h e power s e r i e s

  • 8/9/2019 ORNL Induction Probe

    59/122

    53

    I n

    o r d er t o a p p l y

    t h i s

    i n t e g r a t i o n p r oc e du r e,

    l ook

    f i r s t a t t h e

    power se r i e s" f o r

    ~ ] . ( x ) :

    Then

    m 2r

    +

    1

    r

    ( r - i - l )

    (86

    k )

    2k-l

    k/2-1 )

    (k/2)

    (k

    )

    k

    X

    X I . x ) =

    k=2

    ( e v e n v a l u e s

    o n l y )

    I n t h e p r ec e di n g e x p r e s s i o n , (k

    )

    d en om i na to r, t o c o i n c i d e w i t h t h e

    f

    k=

    0

    h a s b e e n m u l t i p l i e d i n t o n u m e r at o r a nd

    T a y l o r s e r i e s

    k

    k k

    x .

    Then

    i t i s

    e a s i l y seen t h a t

    t h e

    c o e f f i c i e n t s f o r an even number

    k

    a r e :

    = 15/8, w i t h

    c6

    = 1, c4 = y 2 ,

    2

    k

    T he se e ve n- i nd ex ed c o e f f i c i e n t s a r e r e l a t e d by

    c

    o t h e r

    c o e f f i c i e n t s ,

    co ,

    e l ,

    c 7 ,

    c5,

    . .

    a r e z e r o .

    c i e n t s h o l d f o r

    Jck = ( k + l ) / k .

    A l l

    k-t,

    The same

    c o e f f i -

    J

    'OH. J e f f r e y s a nd 3. S.

    Jeffreys,

    Methods

    of

    M a t h e m a t i c a l Phys ic s ,

    p .

    574,

    C am b ri dg e U n i v e r s i t y P r e s s , 1950.

  • 8/9/2019 ORNL Induction Probe

    60/122

    54

    x J l ( x )

    x

    J

    r2lrl

    w i t h

    t h e

    e x c e pt i on t h a t t h e

    terms

    a r e a l t e r n a t i n g i n s i g n .

    The summation m et hod , which j s d e s c r i b e d a b o v e , i s c o m b i n e d w i t h t h e

    9

    a s y m p t o t i c f or mu la s’ , f o r t h e c a s e t h a t t h e l o we r

    l i m i t

    i ; l e s s t h a n o r

    e qu a l t o 5 , b u t t h e u p p er 1 i i i i i . t

    i s

    g r e a t p r t h a n

    5.

    L is t i ngs o f XI INT and X J J N T f o l l o w ,

  • 8/9/2019 ORNL Induction Probe

    61/122

    c.

    i;

    f

    9 0

    1 C 5

    c.

    c

  • 8/9/2019 ORNL Induction Probe

    62/122

    56

  • 8/9/2019 ORNL Induction Probe

    63/122

    .

    \

    z

     

    L

    \

    L

    C

     

    i

    z

  • 8/9/2019 ORNL Induction Probe

    64/122

    1

    5r'

    1 r 5

    3 C 5

    3

    0

    3 1 1

    ::

    )r

    3 1

    5

  • 8/9/2019 ORNL Induction Probe

    65/122

    59

    11. B ( 3 )

    GAMCAL

    uL2/

    he GAMCAL s u b r o u t i n e i s used by INNMLJL

    t o

    compute gamma r a t i o ,

    UZ2, w hic h a p p e ar s i n t h e f i r s t t e rm

    of

    t h e i n t e g ra n d of i n t e r e s t i n

    INNMUL

    .

    I t

    i s n e c es s a ry i n t h e c a l c u l a t i o n s o f

    GAMCAL t o

    h a v e g i v e n t he quan-

    ~

    F 2

    named

    %, f o r

    e a c h c o n d u c t o r .

    I n t h i s p ro d uc t i?

    i s

    t h e

    Wlik

    k m ’

    m

    i t y ,

    mean

    c o i l r a d i u s i n m e t e r s . The a n g u l a r f r e qu e n c y

    of

    t h e d r i v i n g c u r r e n t

    i s

    g iven by

    w .

    The o t h e r v a r i a b l e s I arid

    7

    a r e t h e p e r m e a b i l i t y a nd

    c o n d u c t i v i t y , r e s p e c t i v e l y , of t h e c o n d u c t o r . F o r e a c h c o n d u c t o r ,

    k k

    where a i s t h e v a r i a b l e of i n t e g r a t i o n

    i n

    INNMLJL. Then,

    The i n n e r r a d i u s and r e l a t i v e p e r m e a b i l i t y m u s t a l s o

    be

    known f o r

    e a c h c o nd u ct o r f o r t h e c a l c u l a t i o n s t o o b ta in gamma. Cau t ion m u s t b e

    e x e r c is e d i n t h e c a s e o f a l a r g e p e r m ea b i l i ty t h a t t h e c a l c u l a t i o n s do

    n o t l e a d t o c om pu te r o v e r f l o w o r u n d e r f l o w.

    The u s e of t h e z e r o - t h and f i r s t o r d e r m o d i li e d B e s s e l f u n c t i o n s

    h a s b ee n s ee n i n t h e c h a p t e r d e a l in g w i th t h e o r e t i c a l a n a l y s i s .

    s u b r o u t i n e s h a v e b e en w r i t t e n

    t o

    s e c u r e

    more

    s i g n i f i c a n t f i g u r e s th a n

    p r e v i o u sl y a v a i l a b l e i n t h e c a l c u l a t i o n s o f

    GAMCAL.

    T h e s e s u b r o u t i n e s ,

    names

    MODBES,

    CMDBES,

    COMKB,

    and CM I , w i l l b e d e s c r i be d i n d i v i d u a l l y .

    New

    A d i s t i n c t i o n

    i s

    made be tween a norma l condu c to r r e g io n and a “ t h in ”

    c o n d u c t o r r e g i o n .

    A

    r e g i o n

    i s

    c l a s s i f i e d a s t h i n i .f

  • 8/9/2019 ORNL Induction Probe

    66/122

    t h e o u t e r b o u nd a ry

    of

    r e g i o n k ,

    k-1’

    h e e l e m e n t s of t h e T - m a t . r i x a t

    r

    a r e

    T

    11 k , k - 1 ) = z K 0 ( z ) I 1

    (a

    - l r k - l 1

    (89)

    T 1 2 ( k , k - l ) :::

    z K ~ ( z ) K

    (a - l r k - l

    1

    (90

    and

    T22 k , k - 1 ) = z l O ( z ) K1(a - l r k - l )

    (92

    (pk/bLk- l ) ak - l rk - l K() (%-l rk- l ) ‘1 (’)

    where /. = CI r

    (93

    k k - l *

    For cross ing a normal . ,

    o r

    “ t h i c k “

    reg ion ,

    t h e s e m a t r i x e l em e n t s a r e

    computed

    b y GAMCAL

    a c c o rd i n g t o t h c ab ov e r e l a t i o n s h i p s .

    H owev er, i f t h e r e g i o n i s “ t h i n ” , a s p e c i a l p r o c e d u r e i s u s e d .

    I n

    t h a t ca s c, n o t e t h a t a t

    t h e

    i n n e r

    boundai-y, r of

    t h e r e g i o n k, t h e

    m a t r i x e l e me n ts a r e

    k’

  • 8/9/2019 ORNL Induction Probe

    67/122

    61

    To

    c r v s s r e g i o n k, t h e

    T-rna t r ix

    i s

    the p r o d u c t T

    In t h e

    f o l l o w i n g

    e q u a t i o n s we

    w i l 1

    d r o p

    t h e ( k i 1 , k - 1 )

    f o r convenier icc .

    - k + l , k :k,k-l Tki1,k-I.

    T h e

    matrix

    eI.ernents

    of the

    p r o d u c t

    a r c ?

    t h e n

    T12 = T

    1

    (k - I - l , k )

    T

    1 2( k , k - I )

    - -

    T l f ( k + l , k )

    T

    2 k , k - 1 ) ,

    (100)

    TZ1 =;

    T,.,

    ( k + l , k ) T .

    (k,k-1) i-

    Tpp(k-i-1.,k)

    T

    ( k , k - 1 )

    ,

    (7.01.

    )

    1

    1.1 . ..

    21

    a n d

    (k-i-1,k) T12(k,k-1) 1 T, , , (k t l ,k)

    T , > , , ( k , k - l )

    (102)

    21.

    L . L- ..

    T,,,,

    =

    T

    :..d

    This matrix

    rnuI . t i p1 . i ca t i on y i e l d s t h e

    following

    complcx

    e l e m e i ~ t s

    of t h e

    p r o d u c t m a t r i x :

  • 8/9/2019 ORNL Induction Probe

    68/122

    n

     

    9

     

    N

    W

     

    s

    N

    W

     

    d

    H

     

    Y

     

    /

    -

    u

     

    -

    g

    4

     

    ,

    H

    W

     

    -

    n

    -

     

    d

     

    W

     

    I

     

    N

    W

     

    w

     d

     

    m

     

    N

    H

    v

     

    d

     

    -

    i

     

    d

    W

     

    I

     

    N

    v

     

    W

     

    W

     

    d

     

    H

     

    .

    N

    W

     

    b

    i

     

    N

    W

     

    s

    G

    N

    U

    W

     

    3

     

    r

    7

    4

     

    v

    N

    W

     

    r

    H

     

    5

     

    N

    W

     

    s

    o

     

    N

    W

     

    -