39
Outflows from YSOs and Angular Momentum Trans fer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Embed Size (px)

DESCRIPTION

Angular Momentum Transfer Magnetic Braking Alfven Speed Ambient density Column density Free-fall time in ambient matter >1: For super- critical clouds Longer than dynamical time B-Fields do not play a role in angular momentum transfer in a contracting cloud?

Citation preview

Page 1: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Outflows from YSOs and Angular Momentum Transfer

National Astronomical Observatory (NAOJ)

Kohji Tomisaka

Page 2: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Angular Momentum

• Fragmentation (binary formation) is much affected by the amount of angular momentum in rotation supported disk cr.

• Angular Momentum Problem: j* << j cl Specific angular momentum of a new-born star:

is much smaller than that of parent cloud:j RR

P*

* FH IKFHG IKJ6 102 10

162

daycm s

-12 -1

j Rcl -1 -1

2 -1

pc kms pccm s

FHG IKJ FHG IKJ5 100 1 4

212

.

Page 3: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Angular Momentum Transfer

• Magnetic Braking

tV

GB

GBa A

a

( ) /

2

2 40

1 2

a

vA

Alfven Speed

Ambient density

Column density Free-fall time in ambient matter

>1: For super-critical clouds

Longer than dynamical time

•B-Fields do not play a role in angular momentum transfer in a contracting cloud?

Page 4: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Angular Momentum Redistribution in Dynamical

Collapse• In outflows driven by magnetic fields:

– The angular momentum is transferred effectively from the disk to the outflow.

– If 10 % of inflowing mass is outflowed with having 99.9% of angular momentum, j* would be reduced to 10-3 jcl.

Outflow

Disk

B-FieldsOutflow

MassInflow star Outflow

Ang.Mom.

Page 5: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Shu’s Inside-out SolutionLarson-Penston SolutionOutflow

What we have done.• Dynamical contraction of slowly rotating

magnetized clouds is studied by ideal MHD numerical simulations with cylindrical symmetry.

• Evolution is as follows: Run-away Collapse Increase in Central Density Formation of Adiabatic Core Accretion Phase

Page 6: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Numerical Method• Ideal MHD + Self-Gravity +

Cylindrical Symmetry• Collapse: nonhomologous• Large Dynamic Range is att

ained by Nested Grid Method.– Coarse Grids: Global Structur

e – Fine Grids: Small-Scale Struc

ture Near the Core

L0 L231

1/21/4

Page 7: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Initial Condition

• Cylindrical Isothermal Clouds– Magnetohydrostatic ba

lance in r-direction– uniform in z-direction

• B-FieldsB B Bz r , 0

• Slowly rotating (~ rigid-body rotation)

• Added perturbation with of the gravitationally most unstable mode MGR.

M

GR

parameters

Page 8: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

1 50, (L2)

t=0 0.6Myr 1Myr

ビデオ クリップ

Run-away Collapse Phase

Page 9: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Accretion Phase

• High-density gas becomes adiabatic.– The central core becomes optically thick for ther

mal radiation from dusts.– Critical density =

• An adiabatic core is formed.• To simulate, a double polytrope is applied

– isothermal– adaiabatic

1ncrit

-3cm 1010

p cs 2

p K

= 7 / 5 = 5 / 3

n n crit

n n crit

Page 10: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Accretion Phase (II)

• Collapse time-scale in the adiabatic core becomes much longer than the infall time.

• Inflowing gas accretes on to the nearly static core, which grows to a star.

• Outflow emerges in this phase.

Outflow

Page 11: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Core + Contracting Disk

Pseudo-Disk

Accretion Phase B0,

Adiabatic (the first) Core

Page 12: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

A Ring Supported by Centrifugal Force

Run-away Collapse Stage Accretion Stage

Accretion Phase 0 , B=0

z

ビデオ クリップ

Page 13: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Accretion Phase B0, 0

Run-away Collapse Stage 1000yr

L10

300A

U

ビデオ クリップ

ビデオ クリップ

ビデオ クリップ

Page 14: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Why Does the Outflow Begin in the Accretion Stage?

Run- awayC ollapse

Accretionstage

Rotation Speed v vr

v v r

T oroidal B - F ield B B pol B B pol

Rotation Angle

c cG/

. .

20 2 0 4

d i

muchAngle betweenB- F ields and adisk

60 – 70 deg 10 – 30 deg

B0, 0Accretion Phase

Blandford & Peyne 82

Mass Accretion RateMagneto-Centrifugal Wind

Page 15: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Angular Momentum Distribution

L rv dV( )

z1

1

M dV( )

z1

1

j M LM

( ) ( )( )

1

1

(1) Mass measured from the center

(2) Angular momentum in

(3) Specific Angular momentum distribution

M( ) 1

Angular Momentum Problem

Page 16: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Core Formation

7000 yr afterCore Formation

Mass

Specific Angular Momentum

Initial

High-density region is formed by gases with small j.

Run-away Collapse

Magnetic torque brings the angular momentum from the disk to the outflow.

Outflow brings the angular momentum.

Accretion Stage

Angular Momentum Problem

Page 17: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Magnetic Torque, Angular Momentum Inflow/Outflow Rate

Mass

Initial

Torque

Inflow Outflow

Accretion Phase Inflow

Torque

Core Formation

Inflow

Torque

Page 18: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

• In weakly ionized plasma, neutral molecules have only indirect coupling with the B-fields through ionized ions.

• Neutral-ion collision time• When , ambipolar diffusion is import

ant.• Assuming (on core formatio

n), rotation period of centrifugal radius:

rot yrms

FHIKFH IKFH IK

2 4000 1 0 1 190

33

3

1

3

p GMc

p MM

c

s

s

. .

Ambipolar Diffusion?

niiK n

200yr

5 81 2/

j GMc

GMcs s

( . . )0 1 0 25

ni rot

ni dyn

Page 19: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Edge of Hole madeby Molecular Outflow

Molecular Outflow Optical Jets

L1551 IRS5 Optical Jets

105 AU

12 1 0CO J

Page 20: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Optical Jets

• Flow velocity: faster than molecular outflow.• The width is much smaller.

• These indicate ‘Optical jets are made and ejected from compact objects.’

• The first outflow is ejected just outside the adiabatic (first) core.

Jets and Outflows

Page 21: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

• Optical jets are formed just outside the second core?

Temperature-Density RelationJets and Outflows

Temperature-Density Relation

adiab

atic

H 2 Disso

c.

isothermal

1st Core

2nd CoreLo

g T

Log

Outflows

Jets?Log 5 10 15

1

2

3

4

Tohline 1982

Page 22: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

10 5

2 10 5

0 002.

zOutflow

Jetsz

zJets and Outflows

s=104H2cm-3

=1,

L8

L16

10AU

10Rc=1014.6H2cm-3

c=1019H2cm-3

c=1021.3.H2cm-3

H 2 D

issoc

.

10R

2nd RunawayCollapse

X256

ビデオ クリップ

Page 23: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Summary

• In dynamically collapsing clouds, the outflow emerges just after the core formation (yr).

• In the accretion phase, the centrifugal wind mechanism & magnetic pressure force work efficiently.

• In 7000 yr ( ), the outflow reaches 2000 AU. Maximum speed reaches

M M* . 0 2

v cc

ss

max-1

-1 km s m s

FH IK7 1 3190

. .

Page 24: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Summary(2)

• In the process, the angular momentum is transferred from the disk to the outflow and the outflow brings the excess j.

• This solves the angular momentum problem of new-born stars.

• The 2nd outflow outside the 2nd (atomic) core explains optical jets.

Page 25: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Runaway Collapse Accretion-associated Collapse

Den

sity

incr

ease

s inf

inite

lyInside-out CollapseHydrostatic Core

Larson 1969, Penston 1969, Hunter 1977,Whitworth & Summers 1985

Shu 1977

Dynamical Collapse

Page 26: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Parameters

• Angular Rotation Speed

• Magnetic to thermal pressure ratio

014

1 2

09 10100 5

FHG IKJ F

HGIKJ rad s

H cm-1

2-3

ns

/

( / ) / , .B p02 4 1 0 1th

vr

FH IKFHG IKJ2 79 10

014. km s

rad s 1pc-1

-1cl

Page 27: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Nest (Self-Similar) Structure

L5

L12

z

vzBz

z

2 1287

ビデオ クリップ

Run-away Collapse Phase

Along z-axis

Page 28: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Run-away Collapse

• Evolution characterized as self-similar 10AU

0 1. pc

Page 29: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Magnetocentrifugal Wind Model:Blandford & Peyne 1982

• Consider a particle rotating with rotation speed = Kepler velocity and assume is conserved moving along the B-fields.

• Along field lines withdeg the particle is accelerated. For deg decelerated.

Effective potential for a particle rotating with

Page 30: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Momentum Flux (Observation)• Low-Mass YSOs (Bontemps et al.1996)

Class0Class1

F L cbolCO /

Luminosity

Mom

entu

m

Page 31: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Angular Momentum

L rv dV( )

z1

1

M dV( )

z1

1

j M LM

( ) ( )( )

1

1

(1) Mass measured from the center

(2) Angular momentum in

(3) Specific Angular momentum distribution

j M( )

M( ) 1

Angular Momentum Problem

Page 32: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Effective Outflow Speed

V

dMVdt

dMdt

eff

Page 33: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Outflow Driving Mechanism

• Rotating Disk + Twisted Magnetic Fields– Centrifugal Wind +

• Pudritz & Norman 1983;• Uchida & Shibata 1985;• Shu et al.1994; • Ouyed & Pudritz 1997;• Kudoh & Shibata 1997

• Contraction vs Outflow?• When outflow begins?

• Condition?

Outflow

Disk

B-FieldsOutflow

Inflow

Page 34: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Accretion/Outflow Rate

• Inflow Rate is Much Larger than Shu’s Rate (1977).

• LP Solution: • Outflow/Inflow Mass

Ratio is Large ~ 50 %.• Source Point of Outflo

w Moves Outward.

m v ndS z

0 975 3. /c Gs

29 3c Gs /

10 5 M -1yr

mShu

6000yr2000yr 4000yr

1

2

3

4

Page 35: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Momentum Driving Rate

• Molecular Outflows (Class 0&1 Objects) show Momentum Outflow Rate (Bontemps et al.1996)

3 10 5 106 4 yr km s-1 -1M

dmvdt

v dSzz z 2

Upper / Lower

Boundaries

1 10 5 M yr km s-1 -1

6000yr2000yr 4000yr

2 10 5 M yr km s-1 -1

Page 36: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Weak Magnetic Fields (=0.1,)

0 yr 2000 yr 4000 yr ビデオ クリップ

B0, 0Accretion Phase

Page 37: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Effect of B-Field Strength

• In small model, toroidal B-fields become dominant against the poloidal ones.

• Poloidal B-fields are winding. • Small and slow rotation lead less effecti

ve acceleration.

B0, 0Accretion Phase

Page 38: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Angular Momentum Problem

• Typical specific angular momentum of T Tauri stars

• Angular momentum of typical molecular cores

• Centrifugal Radius

j RR

P*

* FH IKFHG IKJ6 102 10

162

daycm s

-12 -1

j Rcl -1 -1

2 -1

pc kms pccm s

FHG IKJ FHG IKJ5 100 1 4

212

.

R jGM

j MMc

FH IKFHIK

2 1

0 06. pc5 10 cm s21 2 -1

2

R Rc *

j jcl *

Angular Momentum Problem

Page 39: Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka

Molecular Outflow H CO+13

1400AU = 10"

Saito, Kawabe, Kitamura&Sunada 1996 L1551 IRS5Optical Jets

105 AU

12 1 0CO J

Snell, Loren, &Plambeck 1980