30
Overview: Observing Techniques & Types 24 February 2016

Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Overview:  Observing  Techniques  &  Types  24  February  2016  

Page 2: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Science  cases  by  wavelength  Regime   Wavelength  (nm)   Approximate  

Blackbody  Temperature  

Some  Common  Sources  

Gamma  rays   <0.01   >  108  K   Some  nuclear  reac;ons  

X-­‐rays   0.01-­‐20   106  –  108  K   AGN,  gas  in  galaxy  clusters,  supernova  remnants,  solar  corona  

Ultraviolet   20-­‐400   105  –  106  K   Supernova  remnants,  very  hot  stars  (recent  star  forma;on)  

Visible   400-­‐700   103  –  105  K   Stars,  hot  (104  K)  gas  

Infrared   103  -­‐  106   10  -­‐  103  K   Warm  clouds  of  dust  and  gas,  planets  

Radio   >  106   <  10  K   Dust,  cold  gas  

Page 3: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Observatories  across  the  EM  spectrum  

•  Blah  blah  

Image:  STScI/JHU/NASA  

Page 4: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Why  do  we  send  telescopes  to  space?  •  The  atmosphere  absorbs  all/most  of  the  photons  at  some  wavelengths  

Page 5: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Image:  STScI/JHU

/NAS

A  

Atmospheric  Absorption  

Page 6: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Image:  STScI/JHU

/NAS

A  

Atmospheric  Absorption  

This  is  never  zero  –  always  need  to  calibrate!  

Page 7: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Why  do  we  send  telescopes  to  space?  •  The  atmosphere  absorbs  all/most  of  the  photons  at  some  wavelengths  

•  Atmospheric  turbulence  blurs  images    •  “Seeing”  =  size  of  a  point  source  in  arcseconds;  depends  on  site  and  weather    

•  0.5”  in  the  best  condi;ons,  3-­‐5”  in  bad  condi;ons  

Page 8: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Atmospheric  blurring  

•  Speckled  point  spread  func;on  +  image  mo;on  •  Averages  out  to  a  Gaussian  “seeing  disk”  

Movie:  C.  Max,  Center  for  Adap;ve  Op;cs  

Page 9: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

In  space,  diffraction-­‐limited  •  Light  wave  interference  causes  diffrac;on,  which  dictates  the  point  spread  func;on    •  PSF  is  the  Fourier  Transform  of  your  pupil  (mirror)  •  Resolu;on  ~  λ/D  

Page 10: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources
Page 11: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Adaptive  Optics  •  Measure  turbulence  in  the  atmosphere  and  correct  the  blurring  •  Achieve  diffrac;on-­‐limited  imaging  from  the  ground  •  Much  cheaper  than  flying  to  space!  

Image:  C.  Max,  Center  for  Adap;ve  Op;cs  

Page 12: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Movie:  C

.  Max,  Cen

ter  for  Adap;

ve  Op;

cs  

Page 13: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Optical  ConFigurations  

Prime  Focus    

Cassegrain    

Coudé  or  Nasmyth    

Page 14: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources
Page 15: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Optical  ConFigurations  

Prime  Focus    

Cassegrain    

Coudé  or  Nasmyth    In  pairs:  what  are  some  reasons  why  a  design  team  might  

choose  to  put  a  camera  at  one  focus  versus  another?    

(4  min)  

Page 16: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Optical  ConFigurations  

Prime  Focus    Widest  field  of  view,  highest  throughput  

Cassegrain    For  instruments  too  large  to  sit  at  PF  

Coudé  or  Nasmyth    For  instruments  that  can’t  move  with  the  telescope  

Page 17: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Types  of  Data  •  Images  •  Morphology,  sizes,  colors  

Page 18: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Types  of  Data  •  Images  •  Morphology,  sizes,  colors  

•  Spectroscopy  •  Chemical  abundances,  stellar  popula;ons  •  Emission/absorp;on  line  analysis  •  Kinema;c  informa;on  

Page 19: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Types  of  Data  •  Images  •  Morphology,  sizes,  colors  

•  Spectroscopy  •  Chemical  abundances,  stellar  popula;ons  •  Emission/absorp;on  line  analysis  •  Kinema;c  informa;on  

•  Integral-­‐Field  Spectroscopy    •  Resolved  spectroscopy:  mapping  above  

Page 20: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Types  of  Data  •  Images  •  Morphology,  sizes,  colors  

•  Spectroscopy  •  Chemical  abundances,  stellar  popula;ons  •  Emission/absorp;on  line  analysis  •  Kinema;c  informa;on  

•  Integral-­‐Field  Spectroscopy    •  Resolved  spectroscopy:  mapping  above  

•  Interferometry  •  Combine  light  from  mul;ple  telescopes    •  Resolu;on  set  by  distance  between  them  

Page 21: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Types  of  Data  •  Images  •  Morphology,  sizes,  colors  

•  Spectroscopy  •  Chemical  abundances,  stellar  popula;ons  •  Emission/absorp;on  line  analysis  •  Kinema;c  informa;on  

•  Integral-­‐Field  Spectroscopy    •  Resolved  spectroscopy:  mapping  above  

•  Interferometry  •  Combine  light  from  mul;ple  telescopes    •  Resolu;on  set  by  distance  between  them  

•  Polarimetry  •  Only  observe  waves  polarized  by  e.g.  dust  scanering  

Page 22: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Telescopes  with  ANU  Access  •  2.3-­‐meter  at  Siding  Spring  (RSAA  TAC)  •  WiFeS  op;cal  integral  field  spectrograph  (medium  resolu;on,  R~3000-­‐7000)  

•  Op;cal  imager  •  Echelle  op;cal  spectrograph  (high  resolu;on,  R~24,000)  

•  Skymapper  (RSAA  TAC)  •  1.3m  telescope  with  5.7  sq  degree  field  of  view;  uvgriz+Hα  

•  Keck  Observatory,  10-­‐m  telescopes  (KTAC:  Aus-­‐wide)  •  Op;cal  and  near-­‐infrared  imaging  •  Op;cal  and  near-­‐infrared  spectroscopy  (longslit  and  mul;plexed)  

•  Near-­‐IR  integral  field  spectroscopy  •  AO  in  the  near-­‐IR  

Page 23: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Telescopes  with  Australian  Access  •  AAT  4-­‐m  telescope  (ATAC)  •  Op;cal  spectroscopy:  high  resolu;on  and  moderate  resolu;on  mul;-­‐object;  integral  field  spectroscopy  

•  Near-­‐IR  imaging/moderate  res  spectroscopy  •  Gemini  N+S  8-­‐m  telescopes  (ATAC)  •  Op;cal  and  near-­‐IR  imaging,  spectroscopy,  IFU;  AO  in  the  near-­‐IR  

•  Australia  has  a  7  nights  in  2016;  not  clear  for  2017  and  beyond;  classical  observing  only  

•  Magellan  6.5-­‐m  telescopes  (ATAC)  •  Op;cal  and  NIR  imaging  and  spectroscopy  •  MagAO  –  correc;on  in  NIR  and  op;cal  images  simultaneously  

Page 24: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Telescopes  with  Australian  Access  •  Las  Cumbres  Observatory  Global  Telescope  network:    •  9  1-­‐m  telescopes  (imaging)  ;  2  2-­‐m  telescopes  (imaging  +  low-­‐res  spectroscopy)  

•  Radio  telescopes  (ATNF  TAC)  •  Australia  Telescope  Compact  Array  (1.1-­‐105  GHz,  6km)  •  Parkes  (0.7-­‐22  GHz,  64-­‐m  single  dish)  •  Australian  Long  Baseline  Array  -­‐>  VLBI  (1.65  –  8.4  GHz,  up  to  0.0038”  resolu;on!)  

•  Tidbinbilla  70-­‐m  and  34-­‐m  antennas  (1.65-­‐22  GHz  and  32GHz,  single  dish)  

•  Mopra  (16-­‐116  GHz;  22-­‐m  single  dish)  •  Murchison  Widefield  Array  (80-­‐300  MHz;  MWA  TAC)  

Page 25: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Telescopes  with  Australian  Access  

•  Also  note  that  many  interna;onal  observatories  have  “guest  observer”  programs  so  you  can  apply  from  anywhere!  •  ESO  observatories  •  NASA  space  observatories  •  ALMA  

•  But  –  “open  skies”  ;me  is  limited!  

Page 26: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Observing  Modes  •  Guest  Observer:  “scheduled”  •  You  stay  awake  all  night  and  control  the  telescope  /  camera  •  Can  be  in  person  or  remote  

•  Queue  /  Script-­‐based:  “service”  •  You  submit  scripts  in  advance  •  Your  proposal  is  ranked  and  the  computer  or  a  support  astronomer  picks  according  to  priori;es  

•  You  get  an  email  when  the  data  are  ready  •  Archival  Data  •  You  comb  through  data  archives  and  use  what’s  available  

•  Target  of  Opportunity  •  You  interrupt  someone  else  for  an  unpredictable  short-­‐lived  event  (e.g.  gamma-­‐ray  burst)  

Page 27: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Observing  Modes:  Pros  and  cons  •  Guest  Observer  

Page 28: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Observing  Modes:  Pros  and  cons  •  Guest  Observer  •  Pro:  On-­‐the-­‐fly  adjustments;  can  change  science  plan  based  on  recent  developments  

•  Con:  Bad  weather  is  your  loss  

•  Queue  /  Script-­‐based  

Page 29: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Observing  Modes:  Pros  and  cons  •  Guest  Observer  •  Pro:  On-­‐the-­‐fly  adjustments;  can  change  science  plan  based  on  recent  developments  

•  Con:  Bad  weather  is  your  loss  

•  Queue  /  Script-­‐based  •  Pro:  Can  op;mize  program  based  on  condi;ons;  cheaper  •  Con:  You  don’t  know  if  your  script  is  wrong  un;l  awer  its  too  late  

Page 30: Overview:Observing Techniques&Typesamedling/obstech/obstech_2_telescopes.pdf · Sciencecasesbywavelength Regime& Wavelength(nm)& Approximate& Blackbody& Temperature SomeCommon Sources

Observing  Modes:  Pros  and  cons  •  Guest  Observer  •  Pro:  On-­‐the-­‐fly  adjustments;  can  change  science  plan  based  on  recent  developments  

•  Con:  Bad  weather  is  your  loss  

•  Queue  /  Script-­‐based  •  Pro:  Can  op;mize  program  based  on  condi;ons;  cheaper  •  Con:  You  don’t  know  if  your  script  is  wrong  un;l  awer  its  too  late  

But  you  rare

ly  get  to  ch

oose!